WO2019080897A1 - 破岩装置和工程机械 - Google Patents

破岩装置和工程机械

Info

Publication number
WO2019080897A1
WO2019080897A1 PCT/CN2018/111875 CN2018111875W WO2019080897A1 WO 2019080897 A1 WO2019080897 A1 WO 2019080897A1 CN 2018111875 W CN2018111875 W CN 2018111875W WO 2019080897 A1 WO2019080897 A1 WO 2019080897A1
Authority
WO
WIPO (PCT)
Prior art keywords
ripper
rock breaking
arm
hinge
breaking device
Prior art date
Application number
PCT/CN2018/111875
Other languages
English (en)
French (fr)
Inventor
凌夕珈
Original Assignee
成都市猎石者破岩科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 成都市猎石者破岩科技有限责任公司 filed Critical 成都市猎石者破岩科技有限责任公司
Priority to US16/759,192 priority Critical patent/US20200332495A1/en
Publication of WO2019080897A1 publication Critical patent/WO2019080897A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/96Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements
    • E02F3/966Dredgers; Soil-shifting machines mechanically-driven with arrangements for alternate or simultaneous use of different digging elements of hammer-type tools
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • E02F5/32Rippers
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/301Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom with more than two arms (boom included), e.g. two-part boom with additional dipper-arm
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/30Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom
    • E02F3/32Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets with a dipper-arm pivoted on a cantilever beam, i.e. boom working downwardly and towards the machine, e.g. with backhoes
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F3/00Dredgers; Soil-shifting machines
    • E02F3/04Dredgers; Soil-shifting machines mechanically-driven
    • E02F3/28Dredgers; Soil-shifting machines mechanically-driven with digging tools mounted on a dipper- or bucket-arm, i.e. there is either one arm or a pair of arms, e.g. dippers, buckets
    • E02F3/36Component parts
    • E02F3/38Cantilever beams, i.e. booms;, e.g. manufacturing processes, forms, geometry or materials used for booms; Dipper-arms, e.g. manufacturing processes, forms, geometry or materials used for dipper-arms; Bucket-arms
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F5/00Dredgers or soil-shifting machines for special purposes
    • E02F5/30Auxiliary apparatus, e.g. for thawing, cracking, blowing-up, or other preparatory treatment of the soil
    • E02F5/32Rippers
    • E02F5/326Rippers oscillating or vibrating
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02FDREDGING; SOIL-SHIFTING
    • E02F9/00Component parts of dredgers or soil-shifting machines, not restricted to one of the kinds covered by groups E02F3/00 - E02F7/00
    • E02F9/20Drives; Control devices
    • E02F9/22Hydraulic or pneumatic drives
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C27/00Machines which completely free the mineral from the seam
    • E21C27/20Mineral freed by means not involving slitting
    • E21C27/30Mineral freed by means not involving slitting by jaws, buckets or scoops that scoop-out the mineral

Definitions

  • Embodiments of the present disclosure relate to a rock breaking device and a construction machine.
  • ripper In the current field of mechanical rock breaking, ripper is mainly used for breaking mining in rock formation with low hardness. The ripper is mainly used in excavators and bulldozers, as well as rock breakers that may appear in the future.
  • this type of excavator equipped with a ripper is widely used, and it is mainly completed by an excavator equipped with a boom, a small arm, a ripper, and a corresponding pushing cylinder.
  • the device consisting of the boom, the arm, the ripper and the corresponding pushing cylinder can be called a rock breaking device, and the rock breaking device is widely used because of its high flexibility and reliable structure.
  • Embodiments of the present disclosure provide a rock breaking device and a construction machine.
  • the rock breaking device comprises: a boom comprising a first boom end, a second boom end and a first hinge at a middle portion of the boom; the arm comprising a first arm end and a second arm end and a second hinge portion located in the middle of the arm; a ripper comprising a third hinge portion, the ripper being passed through the third hinge portion and connected to the tip end of the third hinge portion and the ripper
  • the vertical line of the line is divided into a first ripper portion near the tip end of the ripper and a second ripper portion connected to the first ripper portion; a first hydraulic cylinder; and a second hydraulic cylinder, the first The boom end is configured to be coupled to the carrier, the second boom end is hinged to the second hinge portion, and one end of the first hydraulic cylinder is hinged to the first hinge portion, the first hydraulic cylinder The other end is hinged to the first arm end, the second arm end is hinge
  • FIG. 1 is a schematic structural view of a rock breaking device according to an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of another rock breaking device according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic structural view of another rock breaking device according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural view of a construction machine according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic structural view of a rock breaking device according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural view of a rock breaking device according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a first angle of view of an arm according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a ripper according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural view of a rock breaking device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural view of a ripper equipped with a weight according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic structural view of a rock breaking device equipped with a weight for a ripper according to an embodiment of the present disclosure
  • FIG. 12 is a schematic structural diagram of another rock breaking device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic structural view of another rock breaking device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic structural diagram of another rock breaking device according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural view of another rock breaking device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic structural view of a rock breaking device in which a ripper is hollow and a small arm is solid according to an embodiment of the present disclosure
  • Figure 17 is a schematic structural view of the ripper of Figure 16.
  • Figure 18 is a schematic view showing the structure of the second angle of view of the arm of Figure 16;
  • Figure 19 is a cross-sectional view taken along line A-A of Figure 18;
  • FIG. 20 is a schematic structural view of a third angle of view of the arm of FIG. 16;
  • Figure 21 is a cross-sectional view taken along line B-B of Figure 18;
  • FIG. 22 is a schematic structural view of another rock breaking device in which a ripper is hollow and a small arm is hollow according to an embodiment of the present disclosure
  • FIG. 23 is a schematic structural view of a first angle of view of the arm of FIG. 22;
  • Figure 24 is a cross-sectional view taken along line C-C of Figure 23;
  • Figure 25 is a cross-sectional view taken along line D-D of Figure 23;
  • Figure 26 is a schematic view showing the structure of the second angle of view of the arm of Figure 22;
  • Figure 27 is a cross-sectional view taken along line E-E of Figure 26;
  • FIG. 28 is a schematic structural view of a first perspective view of the ripper of FIG. 22;
  • Figure 29 is a cross-sectional view taken along line F-F of Figure 28;
  • Figure 30 is a schematic structural view of the second angle of view in Figure 22;
  • Figure 31 is a cross-sectional view taken along line G-G of Figure 28;
  • FIG. 32 is a schematic structural view showing a ripper provided in a hollow body and a hollow arm-shaped rock breaking device according to a second embodiment of the present disclosure
  • FIG. 33 is a schematic structural view of a rock breaking device when a first bushing, an oil seal, and a lubrication hole are disposed on a ripper according to an embodiment of the present disclosure
  • FIG. 34 is a diagram showing an angle between a line connecting the first hinged shaft and the second hinged shaft and a line connecting the first hinged shaft to the third hinged shaft between 95° and 135° according to an embodiment of the present disclosure. Schematic diagram of the structure of the rock breaking device.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like are to be understood broadly, and may be, for example, a fixed connection or a
  • the connection may be disassembled or integrated; it may be a mechanical connection or an electrical connection; it may be directly connected or indirectly connected through an intermediate medium, and may be an internal connection of two elements or an interaction relationship of two elements.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature may include direct contact of the first and second features above or below the second feature, and may also include the first and second features not being in direct contact but being contacted by additional features therebetween.
  • the first feature includes, above and above the second feature, the first feature is directly above and above the second feature, or merely indicates that the first feature level is higher than the second feature.
  • the first feature includes, below and below the second feature, the first feature is directly below and below the second feature, or merely indicates that the first feature level is less than the second feature.
  • the effect is mainly determined by the four factors of the ripper's rock angle, strength, impact force and energy loss.
  • the above-mentioned impact force refers to the force generated when the driver taps the rock layer with the ripper during the operation of the ripper.
  • the rock breaking device mainly increases the force by the change of the moment and the increase of the weight, and has a good rock entrance angle to improve the rock breaking effect, but the rock crusher is in the rock breaking device due to the weight of the ripper.
  • the proportion of the weight is small, the weight is relatively small, and the impact force is relatively small.
  • the reaction force is transmitted to the cylinder at a large proportion during operation, resulting in a large energy loss.
  • the above-mentioned ripper does not include a device with a functional device such as a motor and a piston such as a high-frequency hammer or a breaker, but a structural member having two or more hinge portions usually having a tooth. Used to break hard soils and less hard rock formations.
  • the impact action of the working device is not advocated in the use of the excavator, it is common to apply a certain amount of impact to the rock formation in the actual rock breaking work, and the rock breaking effect is very good, and the damage to the machine is Controllable, in order to improve the rock breaking effect and reduce the damage to the machine, the ripper is as heavy as possible. Therefore, since the weight of the rock breaking device is limited, the inventors of the present application have thought that by optimizing the weight ratio and the volume ratio of the ripper, the arm and the boom, the proportion of the ripper is larger, thereby improving the rock breaking. effect.
  • the weight distribution of the ripper should be the largest, and due to the structural relationship problem, if the weight of the boom is minimized, it is difficult to do so, then the arm is It has become the lightest weight, mainly considering the strength and flexibility of use.
  • the boom In terms of volume, due to the need of structural functions, the boom needs to ensure a certain functional space range, which requires a large volume, and the arm can be minimized by structural optimization, and the ripper is relatively large in size due to weight.
  • the angle of the ripper cylinder is further optimized and the energy loss is reduced.
  • the embodiment of the present disclosure provides a rock breaking device and a construction machine, which optimizes the weight ratio and the volume ratio of the ripper, the arm and the boom, thereby providing a flexible and efficient rock breaking mode.
  • the rock breaking device includes a boom, an arm, a ripper, a first hydraulic cylinder, and a second hydraulic cylinder.
  • the boom includes a first boom end, a second boom end, and a first hinge located at a middle portion of the boom;
  • the arm includes a first arm end and a second arm end and a second hinge portion located in the middle of the arm;
  • the ripper includes a third hinge portion, and the ripper is divided into a first ripper portion near the tip end of the ripper and the first pine by a line perpendicular to the line connecting the third hinge portion and the tip end of the ripper a second loose soil portion connected to the soil portion;
  • the first boom end is configured to be coupled to the carrier,
  • the second boom end is hinged to the second hinge portion, and one end of the first hydraulic cylinder is hinged to the first hinge portion, first The other end of the hydraulic cylinder is hinged to the first arm end, the second arm end is hinged to the third hinge portion, one end of the second hydraulic cylinder is hinged to the arm, and the other end of the second hydraulic cylinder is hinged to the second loose portion.
  • the weight of the ripper is 30%-85% of the total weight of the rock breaking device. Therefore, in the rock breaking device, on the one hand, the connection relationship between the boom, the arm, the ripper, the first hydraulic cylinder and the second hydraulic cylinder can ensure the flexibility of the rock breaking device and is convenient. Operation; on the other hand, the weight of the ripper is higher than the total weight of the rock breaking device, and the center of gravity of the rock breaking device is optimized, so that the rock breaking device has better rock breaking impact, and Helps reduce damage to vehicles such as excavators or rock breakers.
  • the weight of the ripper is adjustable in proportion to the total weight of the rock breaking device, so that the proportion of the total weight of the ripper to the rock breaking device can be flexibly configured for different usage scenarios, so as to obtain higher flexibility and comparison at the same time. Good rock breaking effect.
  • FIG. 1 is a rock breaking device 1 according to an embodiment of the present disclosure.
  • the rock breaking device includes a boom 2, a small arm 3, a first hydraulic cylinder 4, a second hydraulic cylinder 5, and a ripper 6.
  • the boom 2 includes a first boom end 20, a second boom end 21, and a first hinge portion 28 located in the middle of the boom 2;
  • the arm 3 includes a first arm end 36, a second arm end 37, and a small arm a second hinge portion 33 in the middle of the arm 3;
  • the ripper 6 includes a third hinge portion 63, the ripper 6 being passed through the third hinge portion 63 and perpendicular to the line connecting the third hinge portion 63 with the tip end 72 of the ripper 6 Divided into a first ripper portion 61 near the tip end 72 of the ripper 6 and a second ripper portion 62 connected to the first ripper portion 61;
  • the first boom end 20 is configured to be coupled to the carrier, the second boom
  • the end 21 is hinged with the second hinge portion 33, one end of the first hydraulic cylinder 4 is hinged with the first hinge portion 28, the other end of the first hydraulic cylinder 4 is hinged with the first arm end 36, and the second arm end 37 is The three hinges
  • the design of the boom, the arm, the ripper, the first hydraulic cylinder and the second hydraulic cylinder ensures the flexibility of the rock breaking device, and the common ripper is omitted.
  • the connecting rod is just enough for the rock breaking, achieving a better combination of flexibility and energy loss without reducing the smoothness of the operation.
  • this interaction is manifested by the transfer (or transfer) process of mechanical motion between the ripper and the rock in motion. It is to measure the physical quantity of the mechanical movement of the ripper from the angle of mechanical motion transmission. This transmission is carried out in equal amounts.
  • the ripper will lose the same amount of momentum, and the result of the transmission
  • the total momentum of the two remains the same.
  • the momentum of the ripper refers to the tendency of the ripper to keep moving in the direction of its movement.
  • the weight of the ripper accounts for 30%-85% of the total weight, thereby increasing the momentum of the ripper, and further optimizing the degree of center of gravity and having more Good rock breaking impact and help reduce damage to excavators or rock breakers.
  • the weight of the specific ripper has different advantages and disadvantages. By increasing the proportion of the weight of the ripper, the rock breaking capacity can be further improved, and the appropriate reduction of the weight ratio of the ripper can improve the operability.
  • the layout of the first hydraulic cylinder and the second hydraulic cylinder mainly solves the digging force and the flexibility, and the ripper has better digging force during excavation, and the spatial position is more reasonable. In addition, when the rock is impacted, the impact damage to the first hydraulic cylinder and the second hydraulic cylinder is reduced, thereby reducing damage to the machine.
  • the volume of the ripper 6 is greater than the volume of the arm 3, the weight of the ripper 6 is greater than the weight of the arm 3, and the weight of the ripper 6 is greater than the weight of the boom 2, thereby further optimizing the center of gravity forward degree.
  • the volume of the second ripper portion 62 is greater than three times the volume of the first ripper portion 61. Therefore, on the one hand, the second loose soil portion 62 has a large volume, and is convenient for providing a plurality of hinge positions for articulating with the second hydraulic cylinder 5, thereby facilitating adjustment of the magnitude of the torque and adjusting the reaction of the second hydraulic cylinder. On the other hand, the second loose soil portion 62 has a large volume, and it is also convenient to provide other functional components on the second loose soil portion 62, for example, a weight or a shock device.
  • the ripper 6 is divided by the third hinge portion 63 and a line perpendicular to the line connecting the third hinge portion 63 and the tip end 72 of the ripper 6 into the first ripper portion 61 and the first portion near the tip end 72 of the ripper 6.
  • the ratio is greater than 1, so that the lever structure composed of the second hydraulic cylinder 5 and the ripper 6 is a labor-saving lever.
  • embodiments of the present disclosure include, but are not limited to, the distance between the connection point of the second hydraulic cylinder 5 and the second loose soil portion 62 and the third hinge portion 63 and the ripper when the hardness of the rock layer requiring the breakage is low.
  • the ratio of the distance between the tip end of the 6 and the third hinge portion 63 can also be less than 1, resulting in better flexibility. That is, when the volume of the second ripper portion 62 is large, a plurality of hinge positions for articulating with the second hydraulic cylinder 5 may be provided, so that the lever structure composed of the second hydraulic cylinder 5 and the ripper 6 can be adjusted. The torque is adjusted according to the actual needs, and the optimal torque is selected.
  • the ripper 6 is caused to generate digging force or impact force in the downward and lateral directions and toward the vehicle direction, and the tip end 72 of the ripper 6 is used to contact the rock layer to apply to the rock formation. Breaking the power to achieve the purpose of breaking.
  • the reaction force from the rock formation is transmitted to the second hydraulic cylinder 5 through the ripper 6.
  • the distance between the connection point of the second hydraulic cylinder 5 and the second ripper portion 62 and the third hinge portion 63 and the tip end of the ripper 6 and the third can be made.
  • the ratio of the distance of the hinge portion 63 is greater than 1, thereby reducing the reaction force of the second hydraulic cylinder 5, reducing the power loss, and facilitating the gravity transfer of the rock breaking device to the tip end of the ripper, thereby facilitating the breakage. The effect is improved.
  • the distance between the connection point of the second hydraulic cylinder 5 and the second loose soil portion 62 and the third intersection portion 63 and the distance between the tip end 72 of the ripper 6 and the third hinge portion 63 may be less than 1, in the guarantee In the case where the ripper has a reasonable rock-breaking shape, the distance between the connection point of the second hydraulic cylinder 5 and the second loose soil portion 62 and the third interface portion 63 and the tip end 72 and the third hinge portion 63 of the ripper 6 The ratio of the distance has a large adjustment range.
  • the volume of the second ripper portion 62 is greater than 5 times the volume of the first ripper portion 61, and on the one hand, it may be convenient to provide more hinged positions for articulation with the second hydraulic cylinder 5, Thereby, it is convenient to adjust the magnitude of the torque; on the other hand, it is also convenient to provide more other functional components on the second ripper portion 62, for example, a weight or a shock device.
  • the power loss can be further reduced, which facilitates the gravity transfer of the rock breaking device to the tip end of the ripper, thereby facilitating the improvement of the mining effect.
  • the weight of the second ripper portion 62 is greater than three times the weight of the first ripper portion 61. Since the weight of the second ripper portion 62 is greater than three times the weight of the first ripper portion 61, the weight of the ripper 6 can be more effectively converted into the breaking force of the tip end of the ripper 6.
  • the weight of the second ripper portion is greater than five times the weight of the first ripper portion, and the weight of the ripper 6 can be further effectively converted to the breaking force of the tip end of the ripper 6.
  • the weight of the ripper is between 40% and 85% of the total weight of the rock breaking device, thereby further increasing the ratio of the weight of the ripper to the total weight of the rock breaking device, thereby further increasing the momentum of the ripper, Further, the rock breaking effect of the rock breaking device is improved.
  • the second ripper portion 62 is provided with at least two first hinged positions 56, such as 561, 562, and 563 shown in FIG. 1, respectively for use with the second
  • the hydraulic cylinders 5 are connected, and in at least two first hinged positions 56, the different first hinged positions 56 are different in distance from the third hinged portion.
  • the distances of the three first hinge positions 561, 562, and 563 from the third hinge portion 63 are sequentially increased.
  • the torque of the second hydraulic cylinder 5 is different, so that the torque for adjusting the second hydraulic cylinder 5 can be achieved.
  • the first arm end 36 includes at least two second hinge positions 42, such as 421 and 422 shown in FIG. 1, for connection to the first hydraulic cylinder 4, respectively. And in at least two second hinged positions 42, the different second hinged positions 42 are different in distance from the second hinged portion 33. For example, as shown in FIG. 1, the distance between the two second hinge positions 421 and 422 and the second hinge portion 33 is sequentially increased.
  • the first hydraulic cylinder 4 is connected to the different second hinge positions 421 and 422, the moments of the first hydraulic cylinder 4 are different, so that the torque for adjusting the first hydraulic cylinder 4 can be achieved.
  • one end of the second hydraulic cylinder 5 is hinged with the first arm end 36 of the arm 3, and the first arm end 36 further includes at least two third hinge positions 55, For example, 551, 552 and 553 shown in Fig. 1 are respectively connected to the second hydraulic cylinder 5, and in at least two third hinge positions 55, the distance between the different third hinge position 55 and the second hinge portion 33 different.
  • the distances of the three third hinge positions 551, 552, and 553 from the second hinge portion 33 are sequentially increased.
  • the second ripper portion 62 further includes a weight 64 that is detachably mounted on the second ripper portion 62 to adjust the second ripper portion 62. weight.
  • the weight of the ripper 6 can be adjusted by setting the number and weight of the weights 64.
  • the weight 64 has a long motion stroke during rock breaking to obtain greater kinetic energy, and the kinetic energy acts on the rock breaking region to increase the rock breaking impact.
  • the weight 64 is attached to the second ripper portion 62, so that the center of gravity of the weight 64 and the center of gravity of the ripper 6 substantially coincide in the vertical direction during the rock breaking operation, further concentrating the impact force on the rock breaking region.
  • the tip end 72 of the ripper 6 is a rock breaking portion, and the rock breaking portion 7 can directly break rock or mount the tooth 7.
  • the axis of the second hydraulic cylinder 5 is between the connection point of the end of the second hydraulic cylinder 5 and the first arm end 36 to the line connecting the third hinge portion 63.
  • the minimum value of the angle C is greater than 24 degrees.
  • the axis of the second hydraulic cylinder 5 is between the connection point of the end of the second hydraulic cylinder 5 and the first arm end 36 to the line connecting the third hinge portion 63.
  • the maximum angle C is greater than 60 degrees.
  • the axis of the second hydraulic cylinder 5 is between the connection point of the end of the second hydraulic cylinder 5 and the first arm end 36 to the line connecting the third hinge portion 63.
  • the angle C ranges from 45° to 130°.
  • the axis of the second hydraulic cylinder 5 is between the connection point of the end of the second hydraulic cylinder 5 and the first arm end 36 to the line connecting the third hinge portion 63.
  • the angle C ranges from 70° to 110°.
  • the volume of the ripper is between 1.8 and 4.5 times the volume of the arm.
  • the ripper has a weight between 1.2 and 2.7 times the weight of the arm.
  • the volume of the boom is between 1.6 and 4.2 times the volume of the arm.
  • the weight of the boom is between 1.4 and 3.1 times the weight of the arm.
  • the arm is a solid structure, thereby reducing the volume of the arm while maintaining the strength of the arm.
  • the hinge of the second hydraulic cylinder 5 and the arm 3 is a third hinge position 55, in a plane perpendicular to the axis of rotation of the third hinge position 55, the third hinge
  • the distance from the position 55 to the second hinge portion 33 is 0.7 to 1.3 times the distance from the second hinge portion 33 to the third hinge portion 63.
  • the hinge of the first hydraulic cylinder 4 and the arm 3 is the second hinge position 42, and the distance from the second hinge position 42 to the second hinge portion 33 is the second hinge portion.
  • the distance from 33 to the third hinge portion 63 is 0.9 to 1.4 times.
  • FIG. 2 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure.
  • the boom 2 has a curved shape, and the first hinge portion 28 is located outside the curved portion of the boom 2, that is, the side of the boom 2 away from the ground.
  • FIG. 3 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure.
  • a shock device 65 is attached to the second ripper portion 62. Since the second ripper portion 62 has a relatively large volume, it is advantageous to mount the stimulator device 65 thereon.
  • the oscillating device 65 refers to a device that uses a motor to drive the eccentric block to generate vibration, which can improve the rock breaking ability. If you do not open the vibration, you should try not to open it because it has a large energy consumption. However, it can be used as a supplementary function to improve the rock breaking ability in some environments.
  • the ripper 6 includes a cavity 44.
  • the cavity 44 can be filled with a filler so that the weight of the ripper 6 can be increased by using a lower-priced filler, thereby increasing the weight and volume of the ripper on the one hand and reducing the cost of the ripper on the other hand.
  • a shock device 65 can also be disposed in the cavity 44. At this time, the cavity 44 can provide protection for the shock device 65.
  • the volume of the cavity 44 may be more than 30% of the volume of the ripper 6.
  • the cavity 44 is filled with a filler 640, and the material of the filler 640 may include rock, sand, and the like.
  • Another embodiment of the present disclosure provides a construction machine comprising the rock breaking device described in any of the above. Since the construction machine is equipped with the rock breaking device described in any of the above, the construction machine has a flexible and efficient rock breaking effect. For details, refer to the related description in the above embodiment.
  • FIG. 4 is a schematic diagram of a construction machine according to an embodiment of the present disclosure.
  • the construction machine further includes a carrier 8 and a third hydraulic cylinder 12.
  • the carrier 8 includes a vehicle body 81 and a traveling device 82 that carries the vehicle body 81 and drives the vehicle 8 to move; the first boom end 20 is hinged to the vehicle body 81, and one end of the third hydraulic cylinder 12 is hinged to the vehicle body 81, and one end is The boom 2 is hinged so that the body 81 can drive the boom 2 to move through the third hydraulic cylinder 12.
  • the carrier 8 can be an excavator
  • the body 81 includes an upper body 811 and a lower body 812
  • the upper body 811 is rotatably coupled to the lower body 812
  • the lower body 812 is provided with a walking device 82 , for example, a track.
  • An embodiment of the present disclosure provides a rock breaking device mounted on an excavator.
  • the ripper 6 is divided into upper and lower portions by a seventh hinge shaft 63, that is, a third hinge portion and a line 73 perpendicular to the line 74 of the seventh hinge shaft 63 to the lower end 72 of the ripper 6.
  • the upper volume of the ripper is more than 5 times the volume of the lower part of the ripper
  • the volume of the ripper 6 is larger than the volume of the small arm 3, and the weight of the ripper is broken rock. 40%-85% of the total weight of the device.
  • the interaction is represented by the mechanical movement between the ripper and the rock formation in motion (
  • momentum is to measure the physical quantity of mechanical movement of the ripper from the perspective of mechanical motion transfer. This transfer is carried out in equal amounts. How much mechanical motion (momentum) is transferred to the rock layer by the ripper, the ripper will be lost, etc.
  • the momentum of the quantity the result of the transmission is that the total momentum of the two remains unchanged. From the perspective of dynamics, the momentum of the ripper refers to the tendency of the ripper to keep moving in the direction of its movement. The greater the momentum of the ripper, the better the rock breaking effect. In this embodiment, the momentum of the ripper is increased by increasing the proportion of the weight of the ripper in the rock breaking device.
  • the upper part of the ripper is large (for example, the upper volume of the ripper is more than 5 times the volume of the lower part of the ripper), so that the effective ripper is more reasonable, the ripper and the ripper cylinder (second hydraulic cylinder) and the arm are The torque setting range is larger and more reasonable.
  • the counterweight and the shock absorber can be installed, and the effective working position is more reasonable, which further improves the breaking capacity of the rock breaking device.
  • first hinge position 56, the second hinge position 42, and the third hinge position 55 may be hinge shafts, and the fourth hinge shaft 42, the fifth hinge shaft 55, and the sixth hinge shaft 56 are respectively or simultaneously Multiple installation locations. That is, the number of the first hinge position 56, the second hinge position 42, and the third hinge position 55 is respectively plural or plural.
  • a plurality of installation positions can provide a large adjustment range of the torque, which is advantageous for maintaining high efficiency under different working conditions.
  • the angle formed by the line connecting the fifth hinge shaft 55 and the sixth hinge shaft 56 with the line connecting the fifth hinge shaft 55 and the seventh hinge shaft 63 is a minimum angle C of 24 during operation. Above the degree. In this way, the range of rotation of the ripper around the seventh hinge axis can be controlled within a reasonable range, which is smaller than the prior art angle range, and actually removes the inapplicable portion, and it is easier to make the digging force throughout the stroke. The changes are relatively small and the operator is more manageable.
  • the ripper 6 is removably mounted with a weight 64.
  • the ripper is detachably mounted with a weight, and the digging force can be adjusted by adjusting the weight of the ripper according to the rock condition.
  • the weight of the ripper is increased, thereby increasing the digging force and the relative hardness of the rock layer.
  • the weight of the ripper is reduced to increase the working speed. Since the connection between the ripper and the tooth is rigid, the adjustment effect by the ripper is best.
  • the ripper 6 has a cavity that is more than 30% of its volume, and a cavity having a specific gravity of 2 or more. This is to reduce the cost for the ripper to have a larger weight, because the filler is much cheaper than steel.
  • a squish device is mounted on the ripper 6. Since the ripper has a relatively large volume, it is advantageous to install a shock device thereon.
  • the shock device refers to a device that uses a motor to drive the eccentric block to generate vibration, which can improve the rock breaking ability and operate without vibration. In the case, try not to open because it has a large energy consumption, but it can be used as a supplementary function to improve the rock breaking ability in some working conditions.
  • the ripper 6 is divided into upper and lower portions by the line 73 of the seventh hinge shaft 63 and perpendicular to the line 74 of the seventh hinge shaft 63 to the lower end 72 of the ripper, and the weight of the upper portion of the ripper It is more than 5 times the weight of the lower part. This allows the ripper to have a relatively large weight in the case of a more reasonable length of the effective rock breaking site.
  • the seventh hinge shaft 63 has two positions on the ripper 6.
  • the hinge point has two installation positions on the ripper to adjust the length of the effective rock-breaking part under different rock conditions.
  • the effective rock-breaking part refers to the area between the hinge point and the tooth.
  • the length is relatively Short, it is beneficial to improve the digging force.
  • the length is relatively long, which is beneficial to improve the efficiency.
  • the position is more favorable for adjustment. Because the strength of the part is higher, the adjustment range of other parts is larger, and the two are the best.
  • the ratio of the power arm to the resistance arm of the ripper 6 is greater than 0.7. That is, the ratio of the distance of the first hinge position 56 to the third hinge portion 63 to the distance between the tip end 72 of the ripper 6 and the third hinge portion 63 is greater than 0.7.
  • the rock breaking device provided by the embodiment improves the digging force and efficiency under the premise of maintaining good flexibility, reduces the energy consumption, and obviously improves the breaking capacity of the rock breaking device.
  • An embodiment of the present disclosure provides a rock breaking device mounted on an excavator.
  • the excavator is 45 tons and has a power of 260 kW.
  • the total weight of the rock breaking device is 17 tons.
  • the ripper weighs 6.8 tons and the ripper weighs 40% of the total weight of the rock breaking device.
  • the fourth hinge shaft 42 has two positions, the fifth hinge shaft 55 has one position, and the sixth hinge shaft 56 has one position.
  • Line 73 divides the ripper into upper and lower sections. It is estimated that the weight of the lower part is 1.1 tons, the weight of the upper part is 5.7 tons, and the weight of the upper part is 5.2 times the weight of the lower part.
  • the vertical distance from the axis of the ripper cylinder to the seventh hinge shaft is 1468 mm, and the distance from the seventh hinge shaft to the lower end 72 of the ripper is 1283 mm, and the distance ratio between the two is 1.14.
  • the vertical distance from the axis of the ripper cylinder to the seventh hinge shaft is 1615 mm, and the distance ratio between the two is 1.26.
  • the axis of the ripper cylinder and the seventh hinge shaft The vertical distance is 1732 mm and the distance between the two is 1.35.
  • the angle C is 55 degrees.
  • the ripper 6 has a hollow cavity which accounts for 70% of its volume, and has a filler having a specific gravity of 2.8.
  • the first lever (the lever for driving the ripper) composed of the ripper and the ripper cylinder is a labor-saving lever, and the digging force of the whole process is small, and the process of extending the piston rod of the ripper cylinder is also
  • the ripper continuously applies momentum to the rock formation, and the variation range is smaller to facilitate rock breaking.
  • the hydraulic oil When the reaction force is larger, the hydraulic oil has a larger compression capacity, lower efficiency, and a reasonable leverage ratio. It is very important for the ripper to break the rock. The existing technology is difficult to make labor-saving levers due to the structural relationship.
  • the weight ratio of the ripper is also significantly higher than the prior art. The weight of the prior art ripper is less than 15% in the weight of the rock breaking device. Compared with the prior art, the present invention has better breaking capacity. Upgrade. The invention has a relatively low cost due to more fillers.
  • An embodiment of the present disclosure provides a rock breaking device mounted on an excavator.
  • the ripper weighs 10.37 tons and the ripper weight is 61% of the total weight of the rock breaking device.
  • the fourth hinge axis position is two, the fifth hinge axis position is two, and the sixth hinge axis position is two.
  • Line 73 divides the ripper into upper and lower sections. It is estimated that the weight of the lower part is 0.45 tons, the weight of the upper part is 9.92 tons, and the weight of the upper part is 22 times the weight of the lower part.
  • the angle C is 34 degrees.
  • the vertical distance from the axis of the ripper cylinder to the seventh hinge shaft is 1412 mm, and the distance from the seventh hinge shaft to the lower end of the ripper is 1400 mm, and the distance ratio is 1.01.
  • the vertical distance from the axis of the ripper cylinder to the seventh hinge shaft is 1513 mm, and the distance ratio is 1.08.
  • the vertical distance from the axis of the ripper cylinder to the seventh hinge shaft It is 1495 mm and the distance ratio is about 1.08.
  • the ripper has a large proportion of the weight and the torque adjustment range is large, and the first lever has a reasonable leverage ratio in the full stroke, and the effective rock breaking portion is longer.
  • An embodiment of the present disclosure provides a rock breaking device mounted on an excavator.
  • the ripper weighs 14.45 tons and the ripper weighs 85% of the total weight of the rock breaking device.
  • the fourth hinge axis position is two
  • the fifth hinge axis position is two
  • the sixth hinge axis position is three
  • the seventh hinge axis position is two.
  • Line 73 divides the ripper into upper and lower sections, the lower section weighs 0.45 tons, the upper section is 14 tons, and the upper section weighs 31 times the lower section weight.
  • a weight is detachably provided on the ripper.
  • the angle C is 24 degrees.
  • the weight of the ripper of the rock breaking device is large, the weight can be adjusted, the length of the effective rock breaking portion can be adjusted, the range of the torque adjustment is large, and the adaptability of different working conditions is strong, and now Compared with technology, the ability to break the production has been significantly improved.
  • rock breaking devices include booms, arms, rippers, ripper cylinders (soiler cylinders), and arm cylinders (cylinder cylinders).
  • the volume of the ripper is mainly the following part, and there is basically no upper part.
  • the effective length of the ripper is 1.3 meters, of which 0.3 meters is difficult to enter the rock and the weight is 17 tons.
  • the excavator equipped with the rock breaking device is 45 tons and has a power of 260 kW.
  • the rock breaking device provided by an embodiment of the present disclosure adopts the structure of the above embodiment, wherein the ripper weight is 10.37 tons, and the ripper weight is 61% of the total weight of the rock breaking device.
  • the fourth hinge axis position is two
  • the fifth hinge axis position is two
  • the sixth hinge axis position is two.
  • Line 73 divides the ripper into upper and lower sections. It is estimated that the weight of the lower part is 0.45 tons, the weight of the upper part is 9.92 tons, and the weight of the upper part is 22 times the weight of the lower part.
  • the angle C is 34 degrees.
  • the vertical distance from the axis of the ripper cylinder to the seventh hinge shaft is 1513 mm, and the distance ratio is 1.08.
  • the vertical distance from the axis of the ripper cylinder to the seventh hinge shaft It is 1495 mm and the distance ratio is about 1.08.
  • Construction site situation 1 The site is a hard shale with few cracks and is suitable for ripper operations.
  • the construction of the two broken rock installations is as follows:
  • the ripper cylinder When the rock breaking device provided by the embodiment of the present disclosure is in the hooking operation, the ripper cylinder is extended, the arm cylinder (the arm cylinder) is kept stationary, the rock entering is relatively smooth, accompanied by the smoke, and the rock depth is 0.8 m at 7 seconds.
  • the stick cylinder is extended at the same time, the operating device continues to cut down, the rock entering speed begins to slow down, the undercut action is completed at 11 seconds, the depth is 1.1 meters, the operating device reaches the next tangent point, and the distance between the two tangent points is 0.7 meters, each The cut point is a combined action, and the total time is 16 seconds.
  • the ripper shift takes 5 seconds, and the measured amount is 120 squares after one hour.
  • the cutting point distance is reduced to 0.4 meters, the stick cylinder is extended, the ripper cylinder is not extended, the rock entering speed is accelerated, accompanied by smoke, and after 7 seconds, the ripper cylinder is extended, and the speed is obviously slow.
  • the rock depth is 0.6 m, and the cutting is continued. The cutting is completed at 11 seconds and the depth is 0.8 m. After one hour, the measured amount is 75 square.
  • Construction site situation 2 Shale with relatively low hardness, excavator bucket operation is difficult.
  • the construction of the two broken rock installations is as follows:
  • the rock breaking device provided by the embodiment of the present disclosure is in the hooking operation, the ripper cylinder and the stick cylinder are simultaneously extended, the rock entering is smooth, and there is no smoke.
  • the depth is 5 meters, the depth of the rock is 1.1 meters, and the cutting speed continues to be cut. Slow, 10 seconds, the next cut is completed, the depth is 1.4 meters, the operating device to the next point, the cut point distance is 1 meter, and the measured amount is 210 squares after one hour.
  • the same excavator was replaced with the usual rock-breaking device with a cutting point distance of 0.9 m.
  • the ripper cylinder and the stick cylinder were simultaneously extended.
  • the incoming rock was slightly slower than the present invention, and the rock was smoother.
  • the depth of the rock at 7 seconds was 0.9 m, continue to cut, the rock entering speed is slow, the cutting is completed at 10 seconds, the depth is 1, 1 meter, and the measured amount is 180 squares after one hour.
  • the rock breaking device provided by the embodiment of the present disclosure has the following characteristics:
  • rock breaking effect (the rock breaking effect provided by the embodiment of the present disclosure is better), and the greater the depth, the better the loading efficiency after the mining.
  • the cylinder When the reaction force is equal to or greater than the thrust of the cylinder, the cylinder cannot extend or produce a small amount of retraction. This is also the main reason for the difficulty of the ripper cylinder and the turbulence of the ripper.
  • the bore diameter can increase the thrust, but it can not effectively reduce the compression of the hydraulic oil.
  • the reasonable first lever ratio can make the ramper cylinder thrust relatively smaller when the required thrust of the ripper is satisfied, and the reaction force is also small, and the momentum rigidity is increased. Delivery ability.
  • An embodiment of the present disclosure provides a rock breaking device including a boom, a small arm, an arm cylinder (first hydraulic cylinder), a ripper cylinder (second hydraulic cylinder), and a ripper.
  • the rock breaking device may be mounted on an excavator having an upper vehicle body rotatably coupled to the lower vehicle body, the lower vehicle body having a traveling mechanism, and the boom having a first end (second boom end)
  • the arm has oppositely disposed second ends (first arm ends) and third ends (second arm ends), the arms and the arms are hinged to the middle of the arm through the pin shaft, and one end of the arm cylinder is hinged In the upper position of the middle of the boom, the other end of the arm cylinder is hinged to the second end of the arm, and the third end of the arm is hinged to the middle and lower position of the ripper, and the other end of the ripper and the other end of the ripper cylinder Hinged.
  • the boom can have a first boom end coupled to the carrier and a second boom end hinged to the middle of the arm, the arm having a first arm end hinged to the first cylinder and a ripper The second arm end of the hinge.
  • the volume of the ripper is greater than the volume of the arm; the weight of the ripper is greater than the weight of the arm, the weight of the ripper is greater than the weight of the boom, and the weight of the ripper is 30% to 70% of the total weight of the rock breaking device.
  • the above middle portion is not specifically one-half, and may be a range near one-half.
  • the flexibility of the rock breaking device is ensured by the design of the boom, the arm, the ripper, the arm cylinder (the first hydraulic cylinder) and the ripper cylinder (the second hydraulic cylinder). It eliminates the need for connecting rods in common ripper, just enough for rock breaking, achieving a better combination of flexibility and energy loss, and does not reduce the smoothness of operation.
  • the weight of the ripper is 30%-70% of the total weight, which further optimizes the degree of center of gravity and has better rock breaking impact, and is beneficial to reduce damage to the excavator or rock breaker.
  • the weight of the specific ripper has different advantages and disadvantages.
  • the layout of the arm cylinder (first hydraulic cylinder) and the ripper cylinder (second hydraulic cylinder) is mainly to solve the digging force and flexibility.
  • the ripper has better digging force during excavation, the spatial position is more reasonable, and the other is When the rock is impacted, the impact damage to the cylinder is reduced, thereby reducing damage to the machine.
  • the volume of the ripper is larger than that of the lower arm in order to have a better degree of center of gravity and a greater weight of the ripper, and thus a better impact force.
  • the ripper is a solid structure.
  • the ripper has a first space in which a first filler is disposed.
  • the ripper is removably provided with a counterweight for adjusting the weight of the ripper, and when the ripper is equipped with the counterweight, the total weight of the ripper and the counterweight accounts for 40% of the total weight of the rock breaking device. -75%.
  • the ripper has a rock breaking portion for direct rock breaking or mounting of a tooth, and the weight is located at an upper portion of the ripper away from the rock breaking portion.
  • the weights are placed on either side of the ripper.
  • the second hinge of the arm is provided with at least two sets of hinged holes.
  • the ripper cylinders are set to two and are located on the side of the ripper and the arm.
  • the ripper is hinged to the arm by a first sleeve, the ripper being provided with a lubrication hole for lubricating the sleeve, and the first sleeve is further provided with an oil seal for enclosing the lubricating oil.
  • the ripper cylinder is set to one, above the ripper and the arm.
  • the hinge of the ripper cylinder and the arm is a first hinge shaft
  • the hinge of the ripper cylinder and the ripper is a second hinge shaft
  • the hinge of the arm and the ripper is a third hinge shaft, broken
  • the angle between the line connecting the first hinge shaft and the second hinge shaft and the line connecting the first hinge shaft to the third hinge shaft can reach 60° or more.
  • an excitation device is provided on the ripper.
  • the volume of the ripper is between 1.8 and 4.5 times the volume of the arm.
  • the ripper has a weight between 1.2 and 2.7 times the boom.
  • the weight of the boom is between 1.4 and 3.1 times the weight of the arm.
  • the volume of the boom is between 1.6 and 4.2 times the volume of the arm.
  • the angle between the line connecting the first hinge axis to the second hinge axis and the line connecting the first hinge axis to the third hinge axis during operation of the rock breaking device The minimum is 45° and the maximum is 130°.
  • the above angle is at least 45°
  • the maximum 140° means that when setting the angle, the minimum is not less than 45°, and the maximum is not more than 140°, instead of having a minimum of 45° and a maximum of 140°.
  • the angle between the line connecting the first hinge axis to the second hinge axis and the line connecting the first hinge axis to the third hinge axis during operation of the rock breaking device The minimum is 70° and the maximum is 110°.
  • the hinge of the ripper cylinder and the arm is a first hinge shaft; the hinge of the ripper cylinder and the ripper is a second hinge shaft, and the hinge of the arm and the ripper is a third hinge shaft, broken During operation of the rock device, the angle between the line connecting the first hinge shaft and the second hinge shaft and the line connecting the first hinge shaft to the third hinge shaft is at least 45° and the maximum is 140°.
  • the arm is a solid structure.
  • the hinge of the ripper cylinder and the arm is a first hinge shaft; the hinge of the arm and the ripper is a third hinge shaft; and the hinge of the boom and the arm is a fourth hinge shaft, first The distance from the hinge shaft to the fourth hinge shaft is 0.7 to 1.3 times the distance from the fourth hinge shaft to the third hinge shaft.
  • the hinge of the arm and the ripper is a third hinge axis; the hinge of the boom and the arm is a fourth hinge axis; the hinge of the arm cylinder and the arm is a fifth hinge axis; The distance from the hinge shaft to the fourth hinge shaft is 0.9 to 1.4 times the distance from the fourth hinge shaft to the third hinge shaft.
  • the design of the boom, arm, ripper and cylinder ensures the flexibility of the rock breaking device, eliminating the need for connecting rods in common ripper, just enough for breaking rock, achieving flexibility and energy loss. Better combination, and does not reduce the smoothness of the operation.
  • the ripper weight accounts for 30%-70% of the total weight, further optimizes the degree of gravity forward and has better rock breaking impact, and is beneficial to reduce damage to the excavator or rock breaker.
  • the weight of the specific ripper has different advantages and disadvantages. By increasing the proportion of the weight of the ripper, the rock breaking capacity can be further improved, and the appropriate reduction of the weight ratio of the ripper can improve the operability.
  • the cylinder layout of the present disclosure mainly solves the digging force and flexibility.
  • the ripper has better digging force during excavation, the space position is more reasonable, and when impacting on the rock, the impact damage to the cylinder is reduced, thereby reducing Damage to the machine.
  • Two sets of hinge holes are arranged on the second hinge portion according to different working conditions: different speeds and digging forces are set.
  • the solidity of the arm is to reduce the volume of the arm while ensuring its strength, thereby minimizing the volume of the arm and leaving more space for the ripper, which is beneficial to the weight setting of the ripper.
  • the volume of the ripper is larger than that of the lower arm in order to have a better center of gravity and a greater weight of the ripper, and thus have a better impact.
  • the form of filling with the first filler makes the weight of the ripper more than 30% of the total weight of the rock breaking device can effectively reduce the production cost.
  • the ripper has an exciting force to facilitate rock breaking.
  • FIG. 5 is a rock breaking device according to an embodiment of the present disclosure.
  • FIG. 6 is a perspective view of a rock breaking device according to an embodiment of the present disclosure.
  • the rock breaking device 1 includes a boom 2, a small arm 3, an arm cylinder 4, a ripper cylinder 5, and a ripper 6.
  • the boom 2 has a first end 21 provided with an arm mounting slot 22 for articulation with the arm 3.
  • the arm mounting groove 22 has a first mounting wall 23 and a second mounting wall 24, and both the first mounting wall 23 and the second mounting wall 24 are provided with an arm mounting hole 25, and an arm mounting hole on the first mounting wall 23 25 and the arm mounting holes 25 on the second mounting wall 24 are coaxially disposed. Engagement of the arm 3 by the arm mounting hole 25 causes the arm 3 and the boom 2 to be hinged to the first end 21.
  • the arm 3 has opposite first and second faces 31, 32, and a small arm hinge 33 is provided in the middle of the arm 3, and the arm hinge 33 (i.e., the second hinge) 33) consisting of two second bushings 34 located between the first face 31 and the second face 32.
  • the axes of the two second bushings 34 are parallel to the first face 31 and the second face 32, one second bushing 34 passes through one arm mounting hole 25, and the other second bushing 34 is mounted through the other arm.
  • the hole 25 allows the arm 3 to articulate with the boom 2.
  • the second bushing 34 is lubricated by the lubricating oil to ensure that the frictional force is minimized when the arm 3 is rotated relative to the boom 2. Therefore, an oil seal is also arranged outside the second sleeve 34 to prevent the lubricating oil from leaking out.
  • the arm 3 has oppositely disposed second ends 36 and third ends 37.
  • a ripper mounting portion is disposed at an end of the third end 37 of the arm 3, and the ripper mounting portion is provided with two first bushings (not directly shown in this embodiment) to correspond to the ripper 6.
  • the ripper 6 is hinged to the third end 37 of the arm 3 by the sleeve being sleeved on the first sleeve.
  • the ripper 6 includes a ripper body 61 and an extension 62.
  • the extension 62 and the ripper body 61 are integrally formed.
  • the ripper body 61 is the portion of the ripper 6 near the third end 37, and the extension portion 62 is the portion of the ripper 6 near the second end 36.
  • the ripper body 61 has a first connecting portion 51.
  • the first connecting portion 51 is provided with two wings, and each slat is provided with a ripper mounting hole 63, and a first bushing is passed through the first bushing.
  • the ripper mounting hole 63 and the other first sleeve pass through the other ripper mounting hole 63 to articulate the ripper 6 to the third end 37 of the arm 3.
  • the two coaxial first bushings form a third hinge shaft, and the ripper 6 and the arm 3 are relatively rotatable about the third hinge axis.
  • a lubrication hole (not shown) is further disposed on the ripper 6, and the lubrication hole communicates with the outer wall of the first sleeve and the outside, and the lubrication hole can be conveniently A lubricating fluid is added between the first bushing and the ripper mounting hole 63.
  • the boom 2 is curved, the boom 2 has an outer curved surface 26 and an inner curved surface 27, and a first hinge portion 28 is disposed in the middle of the outer curved surface 26.
  • the first hinge portion 28 is composed of two parallel wings, and a first hinge space is formed between the two wings.
  • One end of the arm cylinder 4 is accommodated in the first hinge space and hinged with the first hinge portion 28.
  • FIG. 7 is a schematic diagram of an arm according to an embodiment of the present disclosure.
  • a first hinged position 42 is provided on the first face 31 of the second end 36 of the arm 3, and the second hinged position 42 is formed by two parallel wings, in the two wings A second hinge space is formed, and an end of the arm cylinder 4 remote from the first hinge space is accommodated in the second hinge space and hinged with the second hinge position 42.
  • first large arm 2 segment Between the first end 21 and the first hinge portion 28 is a first large arm 2 segment, and between the second hinge portion 33 and the second hinge position 42 is a first arm 3 segment, the first boom 2 segment, the first The arm 3 segment and the arm cylinder 4 form a triangle, the three sides of the triangle are hinged to each other and the arm cylinder 4 has a variable length, so that the first arm 3 segment and the first boom are driven by the change of the length of the arm cylinder 4 The angle between the two segments is variable, and the arm 3 can be rotated by the expansion and contraction of the arm cylinder 4.
  • the second hinge position 42 may be disposed in two, that is, the second hinge position 42 includes two sets of hinge holes, so that the end of the arm cylinder 4 away from the first hinge space may be selected arbitrarily.
  • a set of hinged holes are hinged to adjust the force arm.
  • FIG. 8 is a schematic diagram of a ripper according to an embodiment of the present disclosure.
  • a third hinge position 55 is provided at the second end 36 of the arm 3, in the present embodiment, the third hinge position 55 is formed by two parallel wings, in two wings A third hinge space is formed, one end of the ripper cylinder 5 is accommodated in the third hinge space, and is hinged with the third hinge position 55 as a hinge axis of the first hinge shaft, that is, the arm 3 and the ripper cylinder 5 can be wound
  • the first hinge shaft rotates relative to each other.
  • a second connecting portion 52 is provided at an end of the extending portion 62 away from the ripper body 61.
  • the second connecting portion 52 is provided with a first hinge position 56.
  • the first hinge position 56 is composed of two parallel wings, in two wings.
  • a fourth hinge space is formed between the plates, and one end of the ripper cylinder 5 away from the third hinge space is accommodated in the fourth hinge space, and is hinged with the first hinge position 56 as a hinge axis of the second hinge shaft, that is, the ripper cylinder 5 and the ripper 6 are rotatable relative to each other about the second hinge axis.
  • the distance from the first connecting portion 51 to the second connecting portion 52 is greater than the arm length of the arm 3, so that the ripper 6 is larger than the arm 3, and the ripper 6 is also heavier than the arm 3.
  • the ripper 6 can be of a solid structure such that the weight of the entire ripper 6 reaches 30% of the rock breaking device 1.
  • the force of the rock breaking work area can be strengthened by the weight of the ripper 6, and the rock breaking effect can be optimized.
  • the maximum force arm acting on the ripper 6 by the ripper cylinder 5 is a line segment connecting the first connecting portion 51 to the second connecting portion 52. Therefore, by extending the connecting portion of the first connecting portion 51 to the second connecting portion 52 by the extending portion 62, the force arm can be lengthened, and the rock breaking effect can be optimized under the same force of the ripper cylinder 5.
  • the angle between the line connecting the first hinge shaft and the second hinge shaft and the line connecting the first hinge shaft to the third hinge shaft can reach 60° or more (Fig. 11).
  • the angle of X shown is the angle between the line connecting the first hinge axis to the second hinge axis and the line connecting the first hinge axis to the third hinge axis), and may increase as the angle of X increases.
  • the arm of the ripper 6 moves to enhance the rock breaking impact and reduce the damage caused by the rock breaking force feedback to the ripper 6 and the arm 3.
  • the X angle is varied within the range of 95° to 130°, so that the movement of the ripper 6 is better controlled, and the ripper 6 has a sufficient moving distance.
  • one end of the ripper body 61 away from the extending portion 62 is a rock breaking portion, and a tooth 7 for acting on the rock breaking surface is further provided on the rock breaking portion.
  • the rock breaking portion may be directly used without using the tooth 7 to perform rock breaking work.
  • the boom 2 is made of high-strength steel, and the inside of the boom 2 is hollow to reduce the overall weight of the boom 2; the arm 3 is also made of high-strength steel, but the arm 3 is solid. .
  • the center of gravity of the entire rock breaking device 1 is concentrated on the arm 3 by the solid structure of the boom 2 hollow and the arm 3.
  • the weight of the arm 3 acts on the ripper 6, which can increase the force of the ripper 6 on the rock breaking working area and improve the rock breaking effect.
  • the ripper 6 is also a solid structure to further strengthen the center of gravity, and the weight of the ripper 6 is larger than the weight of the boom 2, and is also larger than the weight of the arm 3, so that the force of the ripper 6 on the rock breaking working area is further increased. Big.
  • the method for using the rock breaking device 1 provided by the embodiment of the present disclosure is as follows:
  • the ripper 6 weight accounts for 30% of the total weight, further optimizes the degree of gravity forward and has a better rock breaking impact, and is beneficial to reduce damage to the excavator 8 or the rock breaker.
  • the cylinder layout of the present disclosure mainly solves the digging force and flexibility.
  • the ripper 6 has better digging force during excavation, the space position is more reasonable, and when impacting on the rock, the impact damage to the cylinder is reduced, and further Reduce damage to the machine.
  • Two sets of hinge holes are arranged through the second hinge position 42 according to different working conditions: different speeds and digging forces are set.
  • the solidity of the arm 3 is to reduce the volume of the arm 3 while ensuring its strength, thereby minimizing the volume of the arm 3, leaving more space for the ripper 6, which is beneficial to the weight setting of the ripper 6.
  • the volume of the ripper 6 is larger than that of the arm 3 in order to have a better degree of center of gravity and to make the ripper 6 more weight, and thus have a better impact force.
  • the boom 2 and the arm 3 in the prior art are mainly hollow and filled, and the filling refers to forming a space by welding a plate, and then filling a space with a large specific gravity in the space, which is often used in the prior art.
  • the weight is mainly increased, and the solid means that no space is available for filling.
  • the solid is mainly formed by cutting or casting the whole steel plate, mainly to ensure the volume is minimized under the strength condition.
  • the oil seal and the bushing are prior art.
  • the bushing functions to protect the bearing from friction
  • the oil seal functions to seal the lubricating oil in the storage area and the lubrication area. Therefore, it is only necessary to size the oil seal and the bushing of the prior art to fit the rock breaking device 1 provided by the present disclosure.
  • both the arm cylinder 4 and the ripper cylinder 5 use a telescopic hydraulic cylinder, and the arm cylinder 4 and the ripper cylinder 5 can easily control the length of the arm cylinder 4 and the ripper cylinder 5 through an external oil supply pipe. .
  • the extension portion 62 is integrally formed with the ripper body 61 for ease of manufacture.
  • the extension portion 62 may be detachably coupled to the ripper body 61, according to the rock hardness of the actual rock breaking region. Or the size of the rock-breaking area is selected to install extensions 62 of different lengths and an adapted ripper cylinder 5 for rock breaking.
  • the boom 2 may not be curved, and is set to a bending type, which can reduce the manufacturing difficulty, but the strength of the boom 2 is reduced; or it can be set to a straight rod shape, further reducing the manufacturing difficulty, but the boom The degree of freedom between the arm 2 and the arm 3 is lowered, and it is inconvenient to rotate the arm 3 relative to the boom 2.
  • FIG. 9 is a schematic view showing the structure of the rock breaking device 1 actually used on the excavator 8, which includes the excavator 8 and the rock breaking device 1.
  • the excavator 8 includes a main body 81 and a crawler belt 82.
  • the crawler belt 82 is disposed at a lower end of the main body 81, and the crawler belt 82 can drive the entire machine to move.
  • the rock breaking device 1 is provided at one end of the excavator 8, and is connected to the rock breaking device 1 by a boom cylinder (third hydraulic cylinder) 12.
  • a fifth hinge portion 29 is disposed between the first end 21 of the boom 2 and the first hinge portion 28.
  • the first end 21 of the boom cylinder 12 and the boom 2 are hinged to the fifth hinge portion 29, and the other end is opposite to the body.
  • the rotation of the boom 2 can be controlled by controlling the expansion and contraction of the boom cylinder 12.
  • the boom cylinder 12 uses a telescopic hydraulic cylinder, and the boom cylinder 12 can easily control the length of the boom cylinder 12 by an external oil supply pipe.
  • the trailer 9 has a placement platform 910 which is placed onto the placement platform 910 of the trailer 9 through which the overall movement of the complete machine 7 is achieved.
  • FIG. 10 is a schematic diagram of a ripper according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure. As shown in FIGS. 10 and 11, in the rock breaking device 1, the ripper 6 is provided with a weight 64.
  • the ripper 6 is set to be solid to increase the weight of the ripper 6.
  • a weight 64 is detachably mounted on the ripper 6, and the weight of the ripper 6 is increased or decreased by the weight 64.
  • the weight 64 is bolted or otherwise mounted to the ripper 6. When it is necessary to remove, the fit between the weight 64 and the ripper 6 can be easily removed by hand, and in the form of bolting, etc. during operation. A stable connection of the arm 3 and the weight 64 can be ensured.
  • the total weight of the ripper 6 plus the weight 64 can account for 40% of the total weight of the rock breaking device 1.
  • the impact capability of the ripper 6 is further enhanced.
  • the weight 64 is detachably arranged so that the weight 64 is removed to save energy when the ripper 6 itself provides sufficient impact.
  • the specific weight of the ripper 6 can be roughly weighted according to the weight of the ripper 6, and then adjusted by the weight 64, and the weight ratio is 40% to facilitate operation by having sufficient rock breaking performance.
  • the weight 64 is disposed at an upper portion of the ripper 6 away from the rock breaking portion.
  • the weight 64 is disposed at the side to cause inconvenience to movement, and the weight 64 is attached to the upper portion of the ripper 6.
  • the hardness of the rock formation is satisfied by the increase and decrease of the weight 64, and the balance between the energy saving and the rock breaking effect is well balanced, and the working efficiency is further optimized. Moreover, without major changes to the rock breaking device 1 itself, the rock breaking ability of the ripper 6 is further improved, and the cost is effectively saved.
  • An embodiment of the present disclosure provides a rock breaking device in which the weight of the ripper 6 accounts for 70% of the total weight of the rock breaking device 1, so that the center of gravity of the rock breaking device 1 is greatly advanced, and the rock breaking is improved.
  • An embodiment of the present disclosure provides a rock breaking device.
  • the ripper 6 when the ripper 6 is provided with the weight 64, the total weight of the ripper 6 plus the weight 64 can account for 75% of the total weight of the rock breaking device 1. .
  • the impact capability of the ripper 6 is further enhanced.
  • the weight 64 is detachably arranged so that the weight 64 is removed to save energy when the ripper 6 itself provides sufficient impact.
  • the specific weight of the ripper 6 can be roughly weighted according to the weight of the ripper 6, and then adjusted by the weight 64, which is convenient to operate at a weight ratio of 40% in the fourth embodiment, and has sufficient rock breaking performance. .
  • the weight ratio when the weight ratio is 75%, the rock breaking performance is greatly improved, but the operation is slightly inconvenient. Since the weight of the boom 2 and the arm 3 is limited, in order to ensure the strength, the material and the process have high requirements. .
  • An embodiment of the present disclosure provides a rock breaking device.
  • the X angle varies within a range of 74°-106°, that is, the X angle is always changed within about 90° to ensure the movement of the ripper 6
  • the arm allows the movement of the ripper 6 to be better controlled and the ripper 6 has a sufficient range of motion.
  • the rock breaking device 1 has a long arm state, that is, the X angle can reach 90°. In the state of the long arm, at this time, the force arm of the ripper cylinder 5 acting on the ripper 6 is: the first connecting portion 51 to the connecting line segment of the second connecting portion 52. Therefore, the angle of the X is varied from 74° to 106° so that the arm is long enough to provide sufficient rock breaking speed for the ripper 6 under the same equipment conditions.
  • An embodiment of the present disclosure provides a rock breaking device. As shown in FIG. 11 , the X angle changes within a range of 46°-77°, and the force arm for ensuring the movement of the ripper 6 makes the movement of the ripper 6 better controlled, and The ripper 6 has a sufficient moving distance.
  • FIG. 12 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure. As shown in Fig. 12, the ripper cylinder 5 in the rock breaking device 1 is provided in two, that is, the second liquid cylinder 5 can be provided in two.
  • Two ripper cylinders 5 are provided on the sides of the ripper 6 and the arm 3.
  • the ripper cylinder 5 has a first cylinder head and a second cylinder head which are disposed oppositely, a first cylinder head of one ripper cylinder 5 is disposed at one side of the third joint portion, and the first cylinder of the other ripper cylinder 5
  • the head is disposed on the other side of the third connecting portion, and the first cylinder heads of the two first ripper cylinders 5 are connected by a reinforcing rod;
  • the second cylinder head of one ripper cylinder 5 is disposed at one side of the fourth connecting portion,
  • the second cylinder head of the other ripper cylinder 5 is disposed on the other side of the fourth joint, and the second cylinder heads of the two first ripper cylinders 5 are connected by another reinforcing rod.
  • the two first ripper cylinders 5 are parallel, and in operation, the two ripper cylinders 5 act in synchronism
  • the size of the arm 3 is adjusted according to the cooperation of the respective connection points.
  • the first hinge shaft, the second hinge shaft and the third hinge shaft have been described above, and the hinges of the boom 2 and the arm 3 are
  • the fourth hinge shaft has a distance from the first hinge shaft to the fourth hinge shaft that is 0.7 times the distance from the fourth hinge shaft to the third hinge shaft.
  • the hinge of the arm cylinder 4 and the arm 3 is a fifth hinge shaft, and the distance from the fifth hinge shaft to the fourth hinge shaft is 0.9 times the distance from the fourth hinge shaft to the third hinge shaft.
  • FIG. 13 is a schematic structural view of a rock breaking device 1 actually used on an excavator 8 according to an embodiment of the present disclosure.
  • the complete machine includes an excavator 8 and a rock breaking device 1.
  • the excavator 8 and the rock breaking device 1 are connected by two third hydraulic cylinders 12.
  • Two third hydraulic cylinders 12 are disposed at both ends of the boom 2, and the two third hydraulic cylinders 12 are parallel.
  • the two third hydraulic cylinders 12 are synchronously urged to the boom 2 to control the boom 2 and the excavator 8. angle.
  • the working strength of the ripper 6 can be improved, and the ripper 6 can be driven by the two ripper cylinders 5 to make the ripper 6 act on the hard rock region and exhibit good rock breaking. effect.
  • FIG. 14 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure. As shown in Fig. 14, the ripper cylinder 5 in the rock breaking device 1 is provided in two.
  • two ripper cylinders 5 are provided at the side portions of the ripper 6 and the arm 3.
  • the ripper cylinder 5 has a first cylinder head and a second cylinder head which are disposed oppositely, a first cylinder head of one ripper cylinder 5 is disposed at one side of the third joint portion, and the first cylinder of the other ripper cylinder 5
  • the head is disposed on the other side of the third connecting portion, and the first cylinder heads of the two first ripper cylinders 5 are connected by a reinforcing rod;
  • the second cylinder head of one ripper cylinder 5 is disposed at one side of the fourth connecting portion,
  • the second cylinder head of the other ripper cylinder 5 is disposed on the other side of the fourth joint, and the second cylinder heads of the two first ripper cylinders 5 are connected by another reinforcing rod.
  • the two first ripper cylinders 5 are parallel, and in operation, the two ripper cylinders 5 act in synchronis
  • FIG. 15 is a schematic structural view of a rock breaking device 1 on an excavator 8 according to an embodiment of the present disclosure.
  • the complete machine includes an excavator 8 and a rock breaking device 1.
  • the weight 64 is attached to the upper portion of the ripper 6, i.e., the weight 64 is attached to one end of the ripper 6 near the arm cylinder 4.
  • the weight 64 has a longer motion formation during rock breaking to obtain greater kinetic energy, and the kinetic energy acts on the rock breaking area to increase the rock breaking impact.
  • the weight 64 is mounted to the upper portion of the ripper 6, so that when the rock breaks, the center of gravity of the arrangement block and the center of gravity of the ripper 6 substantially coincide in the vertical direction, and the impact force is further concentrated in the rock breaking area.
  • the excavator 8 and the rock breaking device 1 are connected by two third hydraulic cylinders 12.
  • Two third hydraulic cylinders 12 are disposed at both ends of the boom 2, and the two third hydraulic cylinders 12 are parallel.
  • the two third hydraulic cylinders 12 are synchronously urged to the boom 2 to control the boom 2 and the excavator 8. angle.
  • the angle between the line connecting the first hinge shaft and the second hinge shaft and the line connecting the first hinge shaft to the third hinge shaft fluctuates within a range of 95°-130°.
  • the movement of the ripper 6 is preferably controlled, and the ripper 6 has a sufficient moving distance.
  • the hardness of the rock formation is satisfied by the increase and decrease of the weight 64, and the balance between the energy saving and the rock breaking effect is well balanced, and the working efficiency is further optimized. Moreover, without major changes to the rock breaking device 1 itself, the rock breaking ability of the ripper 6 is further improved, and the cost is effectively saved.
  • An embodiment of the present disclosure provides a rock breaking device.
  • the volume and weight between the ripper 6, the boom 2, and the arm 3 are specifically limited.
  • the volume of the ripper 6 is 4.5 times the volume of the arm 3, and the weight of the ripper 6 It is 2.7 times of the boom 2, the weight of the boom 2 is 3.1 times the weight of the arm 3, and the volume of the boom 2 is 4.2 times that of the arm 3, so in the present embodiment, the ripper 6 accounts for about the rock breaking device. With a proportional relationship of 1%, the ripper 6 has excellent rock breaking ability, and the volume and weight of the arm 3 are reduced to the limit. And provide a sufficient force arm to provide sufficient travel for the ripper 6.
  • An embodiment of the present disclosure provides a rock breaking device.
  • the volume and weight between the ripper 6, the boom 2, and the arm 3 are specifically limited.
  • the volume of the ripper 6 is 4.1 times the volume of the arm 3, and the weight of the ripper 6 It is 2.0 times of the boom 2, the weight of the boom 2 is 2.3 times the weight of the arm 3, and the volume of the boom 2 is 2.9 times that of the arm 3, so in the present embodiment, the ripper 6 accounts for about the rock breaking device. 1 55% of the total weight. Through such a proportional relationship, the rock breaking ability and operability of the ripper 6 are well balanced.
  • An embodiment of the present disclosure provides a rock breaking device.
  • the volume and weight between the ripper 6, the boom 2, and the arm 3 are specifically limited.
  • the volume of the ripper 6 is 1.8 times the volume of the arm 3, and the weight of the ripper 6 It is 1.2 times of the boom 2, the weight of the boom 2 is 1.4 times the weight of the arm 3, and the volume of the boom 2 is 1.6 times that of the arm 3, so in the present embodiment, the ripper 6 accounts for about the rock breaking device. 1% of the total weight of 39%. Through such a proportional relationship, the ripper 6 has an ability to crush ordinary rock sufficiently, and is extremely operative, and there is no excessive weight requirement for the attached excavator 8.
  • An embodiment of the present disclosure provides a rock breaking device.
  • the distance from the first hinge shaft to the fourth hinge shaft is 1.1 times the distance from the fourth hinge shaft to the third hinge shaft, and the distance from the fifth hinge shaft to the fourth hinge shaft is the fourth hinge shaft 1.4 times the distance to the third hinge axis.
  • the fourth articulated shaft is moved down, which makes the broken rock more powerful but slower.
  • FIG. 16 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure. As shown in Fig. 16, the arm 3 has a solid structure.
  • FIG. 17 is a schematic diagram of a ripper according to an embodiment of the present disclosure.
  • 18 to 21 are side cross-sectional views of the arm in the rock breaking device shown in Fig. 16. As can be seen from the respective cross-sectional views of the arm 3, the arm 3 is provided in a solid structure.
  • FIG. 22 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure. As shown in Fig. 22, a second space 43 is provided in the arm 3, and the ripper 6 has a first space 64 therein, that is, a cavity 44.
  • 24 and 25 are side cross-sectional views of the arm 3 shown in Fig. 22.
  • 26 and 27 are front cross-sectional views of the arm 3 shown in Fig. 22.
  • the arm 3 is provided in a hollow structure, and a second space 43 is formed in the arm 3, and a second A second filler may be provided in the space 43 or may be left unfilled.
  • the arm 3 is solid to further reduce the volume under the condition of ensuring strength, so as to further increase the volume ratio of the ripper 6 to leave a space.
  • the arm 3 is hollow, mainly for the purpose of reducing the weight, but it is as small as possible under the condition of ensuring strength and working function.
  • FIGS. 28 to 31 are cross-sectional views of the ripper 6 of Fig. 22.
  • the ripper 6 is provided as a hollow structure, and a first space 64 is formed in the ripper 6, in the ripper.
  • the first filler is disposed in the first space 64 of 6, and the first filler having a large specific gravity is used, so that the rock breaking device 1 can have a better rock breaking impact.
  • the first filler is used to ensure that the weight of the ripper 6 accounts for 30% of the total weight of the rock breaking device 1.
  • the form of filling with the first filler allows the ripper 6 to occupy 30% of the total weight of the rock breaking device 1 to effectively reduce the production cost.
  • the motor in the excitation device 65 may be disposed in the first space 64.
  • the rock breaking device 1 can be specifically combined as follows:
  • the ripper 6 is a hollow structure, and the arm 3 is a solid structure;
  • the ripper 6 is a hollow structure, and the arm 3 is also a hollow structure.
  • a weight 64 may be provided on the ripper 6 in the present embodiment.
  • the weight 64 is mounted to the upper portion of the ripper 6, i.e., the weight 64 is mounted to the ripper 6. Near one end of the arm cylinder 4.
  • the weight 64 has a longer motion stroke during the rock breaking process to obtain a larger kinetic energy, and the kinetic energy acts on the rock breaking region to increase the rock breaking impact.
  • the weight 64 is mounted to the upper portion of the ripper 6, so that the center of gravity of the weight 64 and the center of gravity of the ripper 6 substantially coincide in the vertical direction during the rock breaking operation, and the impact force is further concentrated in the rock breaking region.
  • FIG. 17 A separate view of the ripper 6 in Fig. 16 is shown in Fig. 17, the ripper 6 has a small rock breaking portion, and a first bushing 38 for engaging the arm 3 is provided on both sides of the rock breaking portion, and An oil seal 39 is provided on the side of the first bushing 38.
  • the ripper 6 in this embodiment is a hollow structure, more supporting equipment can be installed on the ripper 6.
  • the arm 3 is solid in order to further reduce the volume under the condition of ensuring strength, so as to further increase the volume ratio of the ripper 6 to leave a space.
  • the small arm 3 is hollow mainly for the purpose of reducing the weight, but the volume is reduced as much as possible under the condition of ensuring strength during production.
  • the form of filling with the first filler allows the ripper 6 to occupy 30% of the total weight of the rock breaking device 1 to effectively reduce the production cost.
  • FIG. 33 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure.
  • the first bushing, the oil seal and the lubrication hole are not provided on the ripper 6, and the first bushing, the oil seal and the lubrication hole are provided on the arm.
  • the connection of the ripper 6 and the arm 3 is a common connection method in the prior art. However, it can still be applied to the present disclosure.
  • FIG. 34 is a schematic diagram of a rock breaking device according to an embodiment of the present disclosure.
  • the angle between the line connecting the first hinge shaft and the second hinge shaft and the line connecting the first hinge shaft to the third hinge shaft fluctuates within a range of 74°-106°, that is, the first hinge shaft
  • the angle between the line connecting the second hinge axis and the line connecting the first hinge axis to the third hinge axis is always
  • the movement of the ripper 6 is controlled so that the movement of the ripper 6 is better controlled, and the ripper 6 has a sufficient movement distance.
  • the rock breaking device 1 has a long arm state, that is, the angle between the line connecting the first hinge shaft and the second hinge shaft and the line connecting the first hinge shaft to the third hinge shaft can reach 90°, in the long force In the arm state, at this time, the force arm of the ripper cylinder 5 acting on the ripper 6 is a connecting line segment of the first connecting portion 51 to the second connecting portion 52.
  • the angle between the line connecting the first hinge shaft and the second hinge shaft and the line connecting the first hinge shaft to the third hinge shaft is varied within a range of 74°-106° so that the arm is long enough in the same equipment condition.
  • An embodiment of the present disclosure provides a rock breaking device. As shown in FIG. 33, an angle between a line connecting the first hinge shaft and the second hinge shaft and a line connecting the first hinge shaft to the third hinge shaft is 46°. The range of -77° is varied, and the arm that ensures the movement of the ripper 6 allows the movement of the ripper 6 to be better controlled, and the ripper 6 has a sufficient moving distance.
  • An embodiment of the present disclosure further provides a method for assembling a rock breaking device, including the following steps S401-S403.
  • Step S401 providing a boom, the boom comprising a first boom end, a second boom end, and a first hinge located in the middle of the boom.
  • the boom can be a boom on an existing construction machine or a rebuilt boom.
  • Step S402 providing an arm, a ripper, a first hydraulic cylinder and a second hydraulic cylinder, the small arm including a first arm end and a second arm end and a second hinge portion located in the middle of the arm; the ripper includes a third The hinge, the ripper is divided into a first ripper portion near the tip end of the ripper and a second ripper portion connected to the first ripper portion by a line perpendicular to the line connecting the third hinge portion and the tip end of the ripper.
  • Step S403 assembling the arm, the ripper, the first hydraulic cylinder, the second hydraulic cylinder and the boom, so that the second boom end is hinged with the second hinge portion, and one end of the first hydraulic cylinder is hinged with the first hinge portion
  • the other end of the first hydraulic cylinder is hinged to the first arm end, the second arm end is hinged to the third hinge portion, one end of the second hydraulic cylinder is hinged to the arm, and the other end of the second hydraulic cylinder is second loose.
  • the earth is hinged, and the weight of the ripper accounts for 30%-85% of the total weight of the rock breaking device.
  • the assembling method of the rock breaking device provided by the embodiment can utilize the boom of the existing construction machine (for example, an excavator, a bulldozer, etc.), thereby reducing the cost of the rock breaking device.
  • the boom of the existing construction machine for example, an excavator, a bulldozer, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Soil Working Implements (AREA)
  • Casings For Electric Apparatus (AREA)
  • Shovels (AREA)
  • Earth Drilling (AREA)
  • Motorcycle And Bicycle Frame (AREA)

Abstract

一种破岩装置,具有:大臂(2),包括第一大臂端(20)、第二大臂端(21)和第一铰接部(28);小臂(3),包括第一小臂端(36)、第二小臂端(37)和第二铰接部(33);松土器(6),包括第三铰接部(63),松土器(6)被分成靠近松土器(6)的尖端(72)的第一松土部(61)和与第一松土部(61)相连的第二松土部(62);第一液压缸(4);第二液压缸(5),第一大臂端(20)被配置为与载具相连,第二大臂端(21)与第二铰接部(33)铰接,第一液压缸(4)的一端与第一铰接部(28)铰接,第一液压缸(4)的另一端与第一小臂端(36)铰接,第二小臂端(37)与第三铰接部(63)铰接,第二液压缸(5)的一端与小臂(3)铰接,第二液压缸(5)的另一端与第二松土部(62)铰接,松土器(6)的重量占破岩装置(1)的总重量的30%-85%。还提供了一种包括该破岩装置的工程机械。

Description

破岩装置和工程机械
本申请要求于2017年10月25日递交的第201711008163.4号中国专利申请、2017年11月15日递交的第201711134980.4号中国专利申请、2017年11月15日递交的第201721529240.6号中国专利申请以及2018年06月13日递交的第201810604851.5号中国专利申请的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种破岩装置和一种工程机械。
背景技术
在目前的机械破岩领域里,在硬度不高的岩层破采中主要使用松土器进行破采作业。松土器主要搭载于挖掘机和推土机,还有将来可能出现的破岩机。
目前,挖掘机搭载松土器的这种方式被广泛使用,其主要通过挖掘机搭载大臂、小臂、松土器以及相应的推动油缸来完成。此时,大臂、小臂、松土器以及相应的推动油缸组成的装置可称为破岩装置,上述破岩装置具有灵活度高,结构可靠而被广泛采用。
另外,也有一种被称为一体臂的没有小臂的装置,其松土器重量相对较大,冲击效果好,但由于没有小臂而灵活度差。
发明内容
本公开实施例提供一种破岩装置和工程机械。该破岩装置包括:大臂,包括第一大臂端、第二大臂端和位于所述大臂中部的第一铰接部;小臂,包括第一小臂端和第二小臂端和位于所述小臂中部的第二铰接部;松土器,包括第三铰接部,所述松土器被通过所述第三铰接部且与所述第三铰接部与所述松土器的尖端的连线垂直的线分成靠近所述松土器的尖端的第一松土部和与所述第一松土部相连的第二松土部;第一液压缸;以及第二液压缸,所述第一大臂端被配置为与载具相连,所述第二大臂端与所述第二铰接部铰接,所述第一液压缸的一端与所述第一铰接部铰接,所述第一液压缸的另一端与所述第一小臂端铰接,所述第二小臂端与所述第三铰接部铰接,所述第二液压缸的一端与所述 小臂铰接,所述第二液压缸的另一端与所述第二松土部铰接,所述松土器的重量占所述破岩装置的总重量的30%-85%。由此,本公开实施例提供的破岩装置和工程机械可提供一种灵活、高效的破岩方式。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1为本公开一实施例提供的一种破岩装置的结构示意图;
图2为本公开一实施例提供的另一种破岩装置的结构示意图;
图3为本公开一实施例提供的另一种破岩装置的结构示意图;
图4为本公开一实施例提供的一种工程机械的结构示意图;
图5为本公开一实施例提供的一种破岩装置在第一视角下的结构示意图;
图6为本公开一实施例提供的一种破岩装置在第二视角下的结构示意图;
图7为本公开一实施例提供的一种小臂的第一视角的结构示意图;
图8为本公开一实施例提供的一种松土器的结构示意图;
图9为本公开一实施例提供的一种破岩装置在使用时的结构示意图;
图10为本公开一实施例提供的一种松土器配以配重块的结构示意图;
图11为本公开一实施例提供的一种松土器配以配重块的破岩装置的结构示意图;
图12为本公开一实施例提供的另一种破岩装置的结构示意图;
图13为本公开一实施例提供的另一种破岩装置在使用时的结构示意图;
图14为本公开一实施例提供的另一种破岩装置的结构示意图;
图15为本公开一实施例提供的另一种破岩装置在使用时的结构示意图;
图16为本公开一实施例提供的一种松土器为空心、小臂为实心的破岩装置的结构示意图;
图17为图16中松土器的结构示意图;
图18为图16中的小臂的第二视角的结构示意图;
图19为图18中A-A向的剖视图;
图20为图16中的小臂的第三视角的结构示意图;
图21为图18中B-B向的剖视图;
图22为本公开一实施例提供的另一种松土器为空心、小臂为空心的破岩装置的结构示意图;
图23为图22中的小臂的第一视角的结构示意图;
图24为图23中C-C向的剖视图;
图25为图23中D-D向的剖视图;
图26为图22中的小臂的第二视角的结构示意图;
图27为图26中E-E向的剖视图;
图28为图22中的松土器的第一视角的结构示意图;
图29为图28中F-F向的剖视图;
图30为图22中的第二视角的结构示意图;
图31为图28中G-G向的剖视图;
图32为本公开实施例二提供的松土器为空心、小臂为空心的破岩装置安装配重块时的结构示意图;
图33为本公开一实施例提供的一种第一轴套、油封和润滑孔设置到松土器上时的破岩装置的结构示意图;
图34为本公开一实施例提供的一种第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角在95°-135°间时的破岩装置的结构示意图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连 接,而是可以包括电性的连接,不管是直接的还是间接的。
在本公开实施例中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。另外,第一特征在第二特征之上或之下可以包括第一和第二特征直接接触,也可以包括第一和第二特征不是直接接触而是通过它们之间的另外的特征接触。而且,第一特征在第二特征之上、上方和上面包括第一特征在第二特征正上方和斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征之下、下方和下面包括第一特征在第二特征正下方和斜下方,或仅仅表示第一特征水平高度小于第二特征。
在使用松土器进行岩层破采的过程中,使用效果主要由松土器入岩角度、力量、冲击力以及能量损耗这四大因素决定。上述的冲击力是指在松土器作业时驾驶员利用松土器对岩层进行敲击时所产生的力。例如,在现有的破岩装置中,破岩装置主要通过力矩的改变和重量的增加来提高力量,而且具有较好的入岩角度从而提高破岩效果,但是由于松土器重量在破岩装置重量中所占比例小,重量相对较小,从而冲击力相对较小。另外由于松土器油缸(松土器缸)安装角度问题导致在作业时反作用力传到油缸的比例较大而导致较大的能量损耗。需要说明的是,上述的松土器并不包括高频锤、破碎锤等带有马达和活塞等功能性设施的装置,而是一种通常带有斗齿的有两个以上铰接部位的结构件,用于破裂硬土和不太坚硬的岩层。
虽然在挖掘机的使用中并不提倡工作装置的冲击动作,但在实际破岩工作中对岩层施以一定幅度的冲击动作是常有的,而且对破岩效果非常好,对机器的损伤是可控的,为了提升破岩效果和减少对机器的损伤,松土器重量越大越好。因此,由于破岩装置的重量是有限的,本申请的发明人想到通过对松土器、小臂、大臂的重量比例及体积比例进行优化,使松土器所占比例更大,从而提升破岩效果。
在具体的大臂、小臂、松土器的重量比例以及体积比例分配中,松土器重量分配应为最大,而由于结构关系问题,如果使大臂重量最小其实很难做到,那么小臂就成为了重量最轻的,主要是考虑到强度和使用灵活度的问题。在体 积方面,由于结构功能的需要,大臂需要保证一定的功能性空间范围,需要较大的体积,而小臂可以通过结构优化做到最小,松土器由于重量需要而体积相对较大,在松土器油缸布置上,角度也做了进一步的优化及减少了能量损耗。
本公开实施例提供一种破岩装置和工程机械,通过对松土器、小臂、大臂的重量比例和体积比例进行优化,从而提供一种灵活、高效的破岩方式。该破岩装置包括大臂、小臂、松土器、第一液压缸和第二液压缸。大臂包括第一大臂端、第二大臂端和位于大臂中部的第一铰接部;小臂包括第一小臂端和第二小臂端和位于小臂中部的第二铰接部;松土器包括第三铰接部,松土器被通过第三铰接部且与第三铰接部与松土器的尖端的连线垂直的线分成靠近松土器的尖端的第一松土部和与第一松土部相连的第二松土部;第一大臂端被配置为与载具相连,第二大臂端与第二铰接部铰接,第一液压缸的一端与第一铰接部铰接,第一液压缸的另一端与第一小臂端铰接,第二小臂端与第三铰接部铰接,第二液压缸的一端与小臂铰接,第二液压缸的另一端与第二松土部铰接,松土器的重量占破岩装置的总重量的30%-85%。由此,在该破岩装置中,一方面,通过上述的大臂、小臂、松土器、第一液压缸和第二液压缸的连接关系可保证该破岩装置的灵活性较高,便于操作;另一方面,松土器的重量占破岩装置的总重量的比例较高,优化了该破岩装置的重心前移程度,从而使得该破岩装置具有更好的破岩冲击力,并且有利于减少对载具(例如:挖掘机或破岩机)的损伤。另外,松土器的重量占破岩装置的总重量的比例可调,从而可针对不同的使用场景灵活地配置松土器占破岩装置的总重量的比例,以同时获得较高的灵活性和较好的破岩效果。
本公开另一实施例提供一种破岩装置。图1为根据本公开一实施例提供的一种破岩装置1。如图1所示,该破岩装置包括大臂2、小臂3、第一液压缸4、第二液压缸5和松土器6。大臂2包括第一大臂端20、第二大臂端21和位于大臂2中部的第一铰接部28;小臂3包括第一小臂端36、第二小臂端37和位于小臂3中部的第二铰接部33;松土器6包括第三铰接部63,松土器6被通过第三铰接部63并且与第三铰接部63与松土器6的尖端72的连线垂直的线分成靠近松土器6的尖端72的第一松土部61和与第一松土部61相连的第二松土部62;第一大臂端20被配置为与载具相连,第二大臂端21与第二铰接部33铰接,第一液压缸4的一端与第一铰接部28铰接,第一液压缸4的另一端与第一小臂端36铰接,第二小臂端37与第三铰接部63铰接,第二液压缸5 的一端与小臂3铰接,第二液压缸5的另一端与第二松土部62铰接,松土器6的重量占破岩装置1的总重量的30%-85%。需要说明的是,第一液压缸和第二液压缸可为油缸。
在该实施例提供的破岩装置中,通过大臂、小臂、松土器、第一液压缸和第二液压缸的设计保证了破岩装置的灵活度,省去了常见的松土器中的连杆,针对破岩刚好够用,实现了灵活度和能量损耗的更优结合,并且不降低操作的顺滑感。另一方面,由于破岩装置的松土器的机械运动与岩层间存在着相互作用,这种相互作用表现为运动中的松土器与岩层间发生着机械运动的传递(或转移)过程,动量正是从机械运动传递这个角度度量松土器机械运动的物理量,这种传递是等量地进行的,松土器把多少机械运动(动量)传递给岩层,松土器将失去等量的动量,传递的结果是两者的总动量保持不变。从动力学角度看,松土器的动量指的是松土器在它运动方向上保持运动的趋势,松土器的动量越大,破岩效果越好。本实施例通过提高松土器在破岩装置中所占重量比例,使得松土器重量占到总重量的30%-85%,来增加松土器的动量,并且进一步优化了重心前移程度和拥有更好的破岩冲击力,而且有利于减少对挖掘机或破岩机的损伤。而具体的松土器重量具有各自不同的优势和劣势,通过增加松土器重量占比可以进一步提高破岩能力,适当减小松土器重量占比可以提高操作性。第一液压缸和第二液压缸的布局主要是解决挖掘力和灵活度,松土器在挖掘时有更好的挖掘力,空间位置更合理。另外,在对岩石进行冲击时,减少对第一液压缸和第二液压缸的冲击损伤,进而减少对机器的损伤。
例如,在一些示例中,松土器6的体积大于小臂3的体积,松土器6的重量大于小臂3的重量,松土器6的重量大于大臂2的重量,从而进一步优化了重心前移程度。
例如,在一些示例中,第二松土部62的体积大于第一松土部61的体积的3倍。从而,一方面,第二松土部62的体积较大,便于设置多个用于与第二液压缸5铰接的铰接位置,从而可便于调节力矩的大小,调节第二液压缸所受到的反作用力;另一方面,第二松土部62的体积较大,也便于在第二松土部62上设置其他的功能性部件,例如,配重块或激震装置。
例如,松土器6被通过第三铰接部63且与第三铰接部63与松土器6的尖端72的连线垂直的线分成靠近松土器6的尖端72的第一松土部61和与第一松土部61相连的第二松土部62。由于第二松土部62的体积较大,第二液压缸 5与第二松土部62的连接点与第三铰接部63的距离和松土器6的尖端与第三铰接部63的距离的比例大于1,从而可使得第二液压缸5和松土器6组成的杠杆结构为省力杠杆。当然,本公开实施例包括但不限于此,当需要破采的岩层的硬度较低时,第二液压缸5与第二松土部62的连接点与第三铰接部63的距离和松土器6的尖端与第三铰接部63的距离的比例也可小于1,从而获得更好的灵活度。也就是说,当第二松土部62的体积较大时,可以设置多个用于与第二液压缸5铰接的铰接位置,从而可调节第二液压缸5和松土器6组成的杠杆结构的力矩,根据实际需要调节力矩的大小,选择最优的力矩。
另一方面,当破岩装置进行破采作业时,使松土器6产生向下和横向并朝向载具方向的挖掘力或冲击力,利用松土器6的尖端72与岩层的接触以向岩层施加破采力,从而达到破采的目的。在破采作业时,来自于岩层的反作用力通过松土器6传递给第二液压缸5,第二液压缸5所受反作用力越大,第二液压缸5的工作介质液压油的压缩量越大,压缩量越大功率损耗越大,能耗更高。而通过将第二松土部62的体积设置得较大,可使得第二液压缸5与第二松土部62的连接点与第三铰接部63的距离和松土器6的尖端与第三铰接部63的距离的比例大于1,从而减小第二液压缸5所受的反作用力,降低功率损耗,并利于把破岩装置的重力钢性地传递到松土器的尖端,进而利于破采效果的提高。需要说明的是,第二液压缸5与第二松土部62的连接点与第三交接部63的距离和松土器6的尖端72与第三铰接部63的距离比例可能小于1,在保证松土器具有较合理的破岩形状的情况下,第二液压缸5与第二松土部62的连接点与第三交接部63的距离和松土器6的尖端72与第三铰接部63的距离的比例有较大的调节范围。
例如,在一些示例中,第二松土部62的体积大于第一松土部61的体积的5倍,一方面,可便于设置更多的用于与第二液压缸5铰接的铰接位置,从而可便于调节力矩的大小;另一方面,也便于在第二松土部62上设置更多的其他的功能性部件,例如,配重块或激震装置。另外,还可进一步降低功率损耗,利于把破岩装置的重力钢性地传递到松土器的尖端,进而利于破采效果的提高。
例如,在一些示例中,第二松土部62的重量大于第一松土部61的重量的3倍。由于第二松土部62的重量大于第一松土部61的重量的3倍,可更有效地将松土器6的重量转换为松土器6的尖端的破采力。
例如,在一些示例中,第二松土部的重量大于第一松土部的重量的5倍,可进一步有效地将松土器6的重量转换为松土器6的尖端的破采力。
例如,在一些示例中,松土器的重量占破岩装置的总重量的40%-85%,从而进一步提高松土器的重量占破岩装置的总重量的比例,从而进一步提高松土器的动量,进而提高该破岩装置的破岩效果。
例如,在一些示例中,如图1所示,第二松土部62上设置有至少两个第一铰接位置56,例如,图1所示的561、562和563,分别用于与第二液压缸5相连,并且在至少两个第一铰接位置56中,不同的第一铰接位置56与第三铰接部的距离不同。例如,如图1所示,三个第一铰接位置561、562和563与第三铰接部63的距离依次增加。当第二液压缸5与不同的第一铰接位置561、562和563相连时,第二液压缸5的力矩不同,从而可实现调节第二液压缸5的力矩。
例如,在一些示例中,如图1所示,第一小臂端36包括至少两个第二铰接位置42,例如,图1所示的421和422,分别用于与第一液压缸4相连,并且在至少两个第二铰接位置42中,不同的第二铰接位置42与第二铰接部33的距离不同。例如,如图1所示,二个第二铰接位置421和422与第二铰接部33的距离依次增加。当第一液压缸4与不同的第二铰接位置421和422相连时,第一液压缸4的力矩不同,从而可实现调节第一液压缸4的力矩。
例如,在一些示例中,如图1所示,第二液压缸5的一端与小臂3的第一小臂端36铰接,第一小臂端36还包括至少两个第三铰接位置55,例如,图1所示的551、552和553,分别用于与第二液压缸5相连,在至少两个第三铰接位置55中,不同的第三铰接位置55与第二铰接部33的距离不同。例如,如图1所示,三个第三铰接位置551、552和553与第二铰接部33的距离依次增加。当第二液压缸5与不同的第三铰接位置551、552和553相连时,第二液压缸5的力矩不同,从而可实现调节第二液压缸5的力矩。
例如,在一些示例中,如图1所示,第二松土部62还包括:配重块64,可拆卸地安装在的第二松土部62上,以调节第二松土部62的重量。可通过设置配重块64的数量和重量来调节松土器6的重量。另外,配重块64在破岩过程中具有较长的运动行程以获得较大的动能,而该动能作用于破岩区域可以增加破岩冲击力。同时,安装到第二松土部62的配重块64,使得破岩工作时,配重块64的重心与松土器6的重心在竖直方向上基本重合,进一步把冲击力 集中在破岩区域。
例如,在一些示例中,如图1所示,松土器6的尖端72为破岩部,破岩部7可直接破岩或安装斗齿7。
例如,在一些示例中,如图1所示,第二液压缸5的轴线与第二液压缸5的一端与第一小臂端36的连接点到第三铰接部63的连线之间的夹角C的最小值大于24度。
例如,在一些示例中,如图1所示,第二液压缸5的轴线与第二液压缸5的一端与第一小臂端36的连接点到第三铰接部63的连线之间的夹角C的最大值大于60度。
例如,在一些示例中,如图1所示,第二液压缸5的轴线与第二液压缸5的一端与第一小臂端36的连接点到第三铰接部63的连线之间的夹角C的范围为45°-130°。
例如,在一些示例中,如图1所示,第二液压缸5的轴线与第二液压缸5的一端与第一小臂端36的连接点到第三铰接部63的连线之间的夹角C的范围为70°-110°。
例如,在一些示例中,松土器的体积为小臂的体积的1.8倍到4.5倍之间。
例如,在一些示例中,松土器的重量为小臂的重量的1.2倍到2.7倍之间。
例如,在一些示例中,大臂的体积为小臂的体积的1.6倍到4.2倍之间。
例如,在一些示例中,大臂的重量为小臂的重量的1.4倍到3.1倍之间。
例如,在一些示例中,小臂为实心结构,从而在保证小臂的强度的前提下,降低小臂的体积。
例如,在一些示例中,如图1所示,第二液压缸5与小臂3的铰接处为第三铰接位置55,在垂直于第三铰接位置55的转动轴线的平面上,第三铰接位置55到第二铰接部33的距离为第二铰接部33到第三铰接部63的距离的0.7到1.3倍。
例如,在一些示例中,如图1所示,第一液压缸4与小臂3的铰接处为第二铰接位置42,第二铰接位置42到第二铰接部33的距离是第二铰接部33到第三铰接部63的距离的0.9到1.4倍。
本公开另一实施例提供一种破岩装置。图2为根据本公开一实施例提供的一种破岩装置的示意图。如图2所示,大臂2具有弯曲形状,第一铰接部28位于大臂2的弯曲部的外侧,即大臂2远离地面的一侧。
本公开另一实施例提供一种破岩装置。图3为根据本公开一实施例提供的一种破岩装置的示意图。如图3所示,第二松土部62上安装有激震装置65。由于第二松土部62有相对较大的体积,有利于在其上安装激震装置65,该激震装置65是指利用马达带动偏心块转动产生震动的一种装置,可以提升破岩能力,在不开震动能作业的情况下尽量不开,因为其能耗较大,但是,其可以作为补充功能在一些使用环境中里起到很好的提升破岩能力的作用。
例如,在一些示例中,如图3所示,松土器6包括空腔44。空腔44中可填充填充物,从而可通过使用价格较低的填充物来增加松土器6的重量,从而一方面增加松土器的重量和体积,另一方面降低松土器的成本。
例如,在一些示例中,当松土器6具有空腔44时,激震装置65也可设置在空腔44中。此时,空腔44可为激震装置65提供防护。
例如,空腔44的体积可占松土器6的体积的30%以上。
例如,在一些示例中,如图3所示,空腔44中填充有填充物640,填充物640的材料可包括岩石、沙土等。
本公开另一实施例提供一种工程机械,包括根据上述任一项所描述的破岩装置。由于该工程机械搭载有上述任一项所描述的破岩装置,因此该工程机械具有灵活、高效的破岩效果,具体可参见上述实施例中的相关描述。
图4为根据本公开一实施例提供的一种工程机械的示意图。如图4所示,该工程机械还包括载具8和第三液压缸12。载具8包括车体81和承载车体81并驱动载具8运动的行走装置82;第一大臂端20与车体81铰接,第三液压缸12的一端与车体81铰接,一端与大臂2铰接,从而车体81可通过第三液压缸12驱动大臂2运动。
例如,在一些示例中,载具8可为挖掘机,车体81包括上部车体811和下部车体812,上部车体811旋转连接于下部车体812,下部车体812设置有行走装置82,例如,履带。
本公开一实施例提供一种搭载于挖掘机的破岩装置。在该破岩装置中,通过第7铰轴63,即第三铰接部并且与第7铰轴63到松土器6的下端72的连线74垂直的线73将松土器6分成上、下部分,即第一松土部61和第二松土部62,松土器上部分体积是松土器下部分体积5倍以上,松土器6的体积大于小臂3的体积,松土器的重量为破岩装置总重量的40%-85%。
在本实施例提供的破岩装置中,由于破岩装置的松土器的机械运动与岩层 间存在着相互作用,这种相互作用表现为运动中的松土器与岩层间发生着机械运动的传递(或转移)过程,动量正是从机械运动传递这个角度度量松土器机械运动的物理量,这种传递是等量地进行的,松土器把多少机械运动(动量)传递给岩层,松土器将失去等量的动量,传递的结果是两者的总动量保持不变。从动力学角度看,松土器的动量指的是松土器在它运动方向上保持运动的趋势,松土器的动量越大,破岩效果越好。本实施例通过提高松土器在破岩装置中所占重量比例,来增加松土器的动量。
另外,松土器上部体积较大(例如,松土器上部体积为松土器下部体积的5倍以上)使有效破岩部位更合理的情况下松土器与松土器油缸(第二液压缸)和小臂的力矩设置范围更大更合理。
另外,通过小臂、松土器、松土器油缸结构和位置关系的优化,使松土器油缸所需推力和所受反作用力明显减小,从而有效提高动量的刚性传递能力,有利于松土器动量最大化。
另外,由于松土器体积相对较大,可安装配重和激震器,有效工作部位更合理,进一步提升了破岩装置的破采能力。
例如,在一些示例中,第一铰接位置56、第二铰接位置42、第三铰接位置55可为铰轴,第4铰轴42、第5铰轴55、第6铰轴56分别或同时有多个安装位置。也就是说,第一铰接位置56、第二铰接位置42、第三铰接位置55的数量分别或同时为多个。另外,多个安装位置可以使力矩有较大的调整范围,有利于在不同工况下保持较高的效率。
例如,在一些示例中,第5铰轴55和第6铰轴56的连线与第5铰轴55和第7铰轴63的连线所形成的夹角在运行中的最小角度C为24度以上。这样可以使松土器围绕第7铰轴转动的范围被控制在一个合理的范围,比现有技术角度范围更小,实际上是去掉了不适用的部分,而更容易使挖掘力在整个行程中变化相对更小,操作人员更易操控。
例如,在一些示例中,松土器6上可拆装地安装有配重块64。松土器上可拆装地安装有配重块,能根据岩层情况通过调节松土器重量来调节挖掘力,通常情况下,岩层相对较硬时,增加松土器重量,从而增加挖掘力,岩层相对硬度较小时,减少松土器重量,来提高作业速度,由于松土器与斗齿的连接是刚性的,通过松土器调节效果最好。
例如,在一些示例中,松土器6有占其体积30%以上的空腔,空腔内有比 重在2以上的填充物。这是为了松土器有较大重量的前提下降低造价,因为填充物造价远低于钢材。
例如,在一些示例中,松土器6上安装有激震装置。由于松土器有相对较大的体积,有利于在其上安装激震装置,该激震装置是指利用马达带动偏心块转动产生震动的一种装置,可以提升破岩能力,在不开震动能作业的情况下尽量不开,因为其能耗较大,但是,其可以作为补充功能在部分工况里起到很好的破岩能力提升作用。
例如,在一些示例中,通过第7铰轴63并且与第7铰轴63到松土器的下端72的连线74垂直的线73将松土器6分成上、下部分,松土器上部分的重量是下部分重量的5倍以上。这样能使松土器在有效破岩部位长度更合理的情况下有相对较大的重量。
例如,在一些示例中,第7铰轴63在松土器6上有2个位置。铰接点在松土器上具有2个安装位置,是为了在不同岩层条件下,调节有效破岩部位的长度,有效破岩部位是指铰接点到斗齿之间的区域,硬度较大时长度相对短,有利于提高挖掘力,硬度较小时长度相对长,有利于提高效率,理论上位置多更利于调节,由于该部位强度要求较高,其它部位调节范围较大,2个为最佳。
例如,在一些示例中,松土器6的动力臂和阻力臂的比值大于0.7。也就是说,第一铰接位置56与第三铰接部63的距离与松土器6的尖端72与第三铰接部63的距离的比值大于0.7。
本实施例提供的破岩装置在保持较好灵活性前提下提高了挖掘力和效率,降低了能耗,明显地提升了破岩装置的破采能力。
本公开一实施例提供一种搭载于挖掘机的破岩装置。该挖掘机为45吨级,功率为260千瓦,破岩装置总重量为17吨。松土器重量为6.8吨,松土器重量为破岩装置总重量的40%。第4铰轴42位置为2个,第5铰轴55位置为1个,第6铰轴56位置为1个。线73将松土器分成上下部分,经测算,下部分重量为1.1吨,上部分重量为5.7吨,上部分重量是下部分重量的5.2倍。当松土器油缸5活塞杆完全伸出时,松土器油缸的轴线到第7铰轴的垂直距离为1468毫米,第7铰轴到松土器下端72距离为1283毫米,两距离比为1.14,当活塞杆伸出到靠近中部位置时,松土器油缸的轴线到第7铰轴的垂直距离为1615毫米,两距离比为1.26,当活塞杆完全收回时,松土器油缸的轴线与第7铰轴的垂直距离为1732毫米,两距离比为1.35。夹角C为55度。松土器6有占其体 积70%的中空腔,腔内有比重为2.8的填充物。
在本实施例提供的破岩装置,松土器、松土器缸组成的第1杠杆(驱动松土器的杠杆)为省力杠杆,整个过程挖掘力变化范围小,松土器油缸活塞杆伸出的过程也是松土器向岩层持续施以动量的过程,变化范围小更利于破岩,理论上,越省力,松土器下端行程相等的情况下,松土器油缸所需行程更大,其它因素相同前提下所需时间更长,效率下降,其实其它因素还包括:油缸所获得的流量、压力、缸径以及所受反作用力,反作用力更大情况下,液压油压缩量更大,效率下降,合理的杠杆比值对松土器破岩这种作业方是来说是很重要的,现有技术由于结构关系,在保证实用性前提下很难做成省力杠杆,另外,松土器重量比例与现有技术比较也有明显提升,现有技术松土器重量在破岩装置重量里所占比例在15%以下,本发明与现有技术比较,破采能力有较大提升。本发明由于有较多的填充物,造价相对更低。
本公开一实施例提供一种搭载于挖掘机的破岩装置。松土器重量为10.37吨,松土器重量为破岩装置总重量的61%。第4铰轴位置为2个,第5铰轴位置为2个,第6铰轴位置为2个。线73将松土器分成上下部分,经测算,下部分重量为0.45吨,上部分重量为9.92吨,上部分重量是下部分重量的22倍。夹角C为34度。当松土器油缸5活塞杆完全伸出时,松土器油缸的轴线到第7铰轴的垂直距离为1412毫米,第7铰轴到松土器下端距离为1400毫米,距离比为1.01,当活塞杆伸出到靠近中部位置时,松土器油缸的轴线到第7铰轴的垂直距离为1513毫米,距离比为1.08,当活塞杆完全收回时,松土器油缸的轴线到第7铰轴的垂直距离为1495毫米,距离比约为1.08。
在本实施例提供的破岩装置中,松土器重量所占比例大,力矩调节范围大,第1杠杆在全行程内杠杆比值合理,有效破岩部位更长。
本公开一实施例提供一种搭载于挖掘机的破岩装置。松土器重量为14.45吨,松土器重量为破岩装置总重量的85%。第4铰轴位置为2个,第5铰轴位置为2个,第6铰轴位置为3个,第7铰轴位置为2个。线73将松土器分成上下部分,下部分重量为0.45吨,上部分为14吨,上部分重量是下部分重量的31倍。松土器上可拆装地设置有配重块。夹角C为24度。
在本实施例提供的破岩装置中,该破岩装置松土器重量所占比例很大,重量可以调节,有效破岩部位长度可以调节,力矩调节范围大,不同工况适应能力强,与现有技术相比,破采能力有显著提升。
下面,通过对比通常的破岩装置和本公开一实施例提供的破岩装置的在实际破岩作业中的破岩效果来对本公开实施例进行说明。
通常的破岩装置包括大臂、小臂、松土器、松土器油缸(松土器缸)、斗杆油缸(斗杆缸)。松土器体积主要以下部分为主,基本没有上部分,松土器有效破岩部位长度为1.3米,其中有0.3米很难入岩,重量17吨。搭载该破岩装置的挖掘机为45吨级,功率260千瓦。本公开一实施例提供的破岩装置采用上述实施例的结构,其中,松土器重量为10.37吨,松土器重量为破岩装置总重量的61%。第4铰轴位置为2个,第5铰轴位置为2个,第6铰轴位置为2个。线73将松土器分成上下部分,经测算,下部分重量为0.45吨,上部分重量为9.92吨,上部分重量是下部分重量的22倍。夹角C为34度。当松土器油缸5活塞杆完全伸出时,松土器油缸的轴线到第7铰轴的垂直距离为1412毫米,第7铰轴到松土器下端距离为1400毫米,距离比为1.01,当活塞杆伸出到靠近中部位置时,松土器油缸的轴线到第7铰轴的垂直距离为1513毫米,距离比为1.08,当活塞杆完全收回时,松土器油缸的轴线到第7铰轴的垂直距离为1495毫米,距离比约为1.08。
施工现场情况1:该工地为较硬的页岩,裂纹少,适合松土器作业。两破岩装置施工情况对比如下:
本公开实施例提供的破岩装置在下钩作业时,松土器油缸伸出,斗杆油缸(斗杆缸)保持不动,入岩较顺畅,伴有烟尘,7秒时入岩深度为0.8米,斗杆油缸同时伸出,操作装置继续下切,入岩速度开始变慢,11秒时下切动作完成,深度为1.1米,操作装置到下一个切点,两切点距离为0.7米,每个切点为一个组合动作,总耗时为16秒,其中松土器移位耗时5秒,一小时后测量所破方量为120方。
同一台挖掘机换上通常的破岩装置,切点距离为0.7米,开始作业,松土器油缸没有伸出,斗杆油缸伸出,入岩比本发明实施例提供的破岩装置慢,烟尘更大,5秒后松土器油缸没有伸出并出现少量回缩,松土器出现抖动,下切明显变慢,此时入岩深度为0.4米,继续下切已很困难,操作装置到下一个切点,切点距离缩小到0.4米,斗杆油缸伸出,松土器油缸没有伸出,入岩速度有所加快,伴有烟尘,7秒后松土器油缸伸出,速度明显变慢,此时入岩深度为0.6米,继续下切,11秒时下切完成,深度为0.8米,一小时后测量所破方量为75方。
施工现场情况2:硬度相对不高的页岩,挖掘机挖斗作业困难。两破岩装置施工情况对比如下:
本公开实施例提供的破岩装置在下钩作业时,松土器油缸和斗杆油缸同时伸出,入岩顺畅,没有烟尘,5秒时入岩深度为1.1米,继续下切,入岩速度开始变慢,10秒时下切完成,深度为1.4米,操作装置到下一切点,切点距离为1米,一小时后测量所破方量为210方。
同一台挖掘机换上通常的破岩装置,切点距离为0.9米,松土器油缸和斗杆油缸同时伸出,入岩比本发明稍慢,入岩较顺畅,7秒时入岩深度为0.9米,继续下切,入岩速度变慢,10秒时下切完成,深度为、1米,一小时后测量所破方量为180方。
可见,相对于通常的破岩装置,本公开实施例提供的破岩装置具有以下特点:
1、产量有明显差异(本公开实施例提供的破岩装置产量较大),硬度越大差异越明显。
2、破岩效果有明显差异(本公开实施例提供的破岩效果较好),深度越大越有利于破采后装载效率的提升。
原因分析:由于松土器有效破岩部位长度有限,一般不能超过2米,越大的深度阻力越大,对破采效率越不利,根据松土器作业特点,其有效破岩部位体积较小,松土器上部体积明显大于下部体积,有利于松土器油缸力矩的设置,同时也有利于松土器较大重量的设置,当岩层较硬时,较小的第1杠杆动力臂与阻力臂比值,会使松土器油缸所受反作用力较大,当反作用力等于或大于油缸推力时,油缸则不能伸出或产生少量回缩,这也是松土器油缸伸出困难和松土器发抖的主要原因,通过加大缸径可以增加推力,但是不能有效降低液压油的压缩量,合理的第1杠杆比值,可以在满足松土器所需推力时使松土器油缸推力相对更小,所受反作用力也小,提升动量的刚性传递能力。另外,松土器上部体积较大和重量在破岩装置里占比较大时,更利于优化有效破岩部位的结构,使破岩效果进一步提升,也有利于在松土器上安装功能性设施。
本公开一实施例提供一种破岩装置,包括大臂、小臂、斗杆缸(第一液压缸)、松土器缸(第二液压缸)以及松土器。破岩装置可搭载于挖掘机,所述挖掘机具有上部车体,该上部车体旋转连接于下部车体,所述下部车体具有行走机构,大臂具有第一端(第二大臂端),小臂具有相对设置的第二端(第一 小臂端)和第三端(第二小臂端),大臂和小臂通过销轴铰接于小臂中部,斗杆缸的一端铰接于大臂中部上方位置,斗杆缸的另一端铰接于小臂的第二端的位置,小臂的第三端与松土器靠近中下部位置铰接,松土器的另一端与松土器缸的另一端铰接。也就是说,大臂可具有与载具相连的第一大臂端和与小臂中部铰接的第二大臂端,小臂具有与第一液压缸铰接的第一小臂端和与松土器铰接的第二小臂端。松土器的体积大于小臂的体积;松土器的重量大于小臂的重量,松土器的重量大于大臂的重量,松土器的重量占破岩装置总重量的30%—70%。需要说明的是,上述的中部不是特指二分之一处,可以为二分之一附近的区间范围。
在该实施例提供的破岩装置种,通过大臂、小臂、松土器、斗杆缸(第一液压缸)和松土器缸(第二液压缸)的设计保证了破岩装置的灵活度,省去了常见的松土器中的连杆,针对破岩刚好够用,实现了灵活度和能量损耗的更优结合,并且不降低操作的顺滑感。松土器重量占到总重量的30%-70%,进一步优化了重心前移程度和拥有更好的破岩冲击力,而且有利于减少对挖掘机或破岩机的损伤。而具体的松土器重量具有各自不同的优势和劣势,通过增加松土器重量占比可以进一步提高破岩能力,适当减小松土器重量占比可以提高操作性。斗杆缸(第一液压缸)和松土器缸(第二液压缸)的布局主要是解决挖掘力和灵活度,松土器在挖掘时有更好的挖掘力,空间位置更合理,另外在对岩石进行冲击时,减少对油缸的冲击损伤,进而减少对机器的损伤。松土器体积大于小臂是为了有更好的重心前移程度和使松土器重量更大,进而有更好的冲击力。
在一些示例中,松土器为实心结构。
在一些示例中,松土器具有第一空间,第一空间内设置有第一填充物。
在一些示例中,松土器可拆装地设置有用于调节松土器重量的配重块,松土器搭载配重块时,松土器和配重块的总重量占到破岩装置总重量的40%—75%。
在一些示例中,松土器具有用于直接破岩或安装斗齿的破岩部,配重块位于松土器远离破岩部的上部。
在一些示例中,配重块设置在松土器两侧。
在一些示例中,小臂的第二铰接部设置有至少两组铰接孔。
在一些示例中,松土器缸设置为两条,并且位于松土器和小臂侧部。
在一些示例中,松土器通过第一轴套与小臂铰接,松土器上设置有为轴套提供润滑油的润滑孔,第一轴套处还设置有用于封留润滑油的油封。
在一些示例中,松土器缸设置为一条,位于松土器和小臂的上方。
在一些示例中,松土器缸与小臂的铰接处为第一铰接轴,松土器缸与松土器的铰接处为第二铰接轴,小臂与松土器的铰接处为第三铰接轴,破岩装置在运行过程中,第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角能够达到60°以上。
在一些示例中,在松土器上设置有激振装置。
在一些示例中,松土器的体积是小臂体积的1.8倍到4.5倍之间。
在一些示例中,松土器的重量是大臂的1.2倍到2.7倍之间。
在一些示例中,大臂的重量是小臂重量的1.4倍到3.1倍之间。
在一些示例中,大臂的体积是小臂体积的1.6倍到4.2倍之间。
在一些示例中,破岩装置在运行过程中,所述第一铰接轴到所述第二铰接轴的连线与所述第一铰接轴到所述第三铰接轴的连线间的夹角最小为45°,最大为130°。
需要说明的是,以上夹角最小为45°,最大140°是指在设定角度时,最小不低于45°,最大不大于140°,而不是同时具备最小45°,最大140°。
在一些示例中,破岩装置在运行过程中,所述第一铰接轴到所述第二铰接轴的连线与所述第一铰接轴到所述第三铰接轴的连线间的夹角最小为70°,最大为110°。
在一些示例中,松土器缸与小臂的铰接处为第一铰接轴;松土器缸与松土器的铰接处为第二铰接轴,小臂与松土器的铰接处为第三铰接轴,破岩装置在运行过程中,第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角最小为45°,最大为140°。
在一些示例中,小臂为实心结构。
在一些示例中,松土器缸与小臂的铰接处为第一铰接轴;小臂与松土器的铰接处为第三铰接轴;大臂与小臂的铰接处为第四铰接轴,第一铰接轴到第四铰接轴的距离是第四铰接轴到第三铰接轴的距离的0.7到1.3倍。
在一些示例中,小臂与松土器的铰接处为第三铰接轴;大臂与小臂的铰接处为第四铰接轴;斗杆缸与小臂的铰接处为第五铰接轴;第五铰接轴到第四铰接轴的距离是第四铰接轴到第三铰接轴的距离的0.9到1.4倍。
本实施例提供的破岩装置至少具有以下效果之一:
一、通过大臂、小臂、松土器和油缸的设计保证了破岩装置的灵活度,省去了常见的松土器中的连杆,针对破岩刚好够用,实现了灵活度和能量损耗的更优结合,并且不降低操作的顺滑感。
二、松土器重量占到总重量的30%-70%,进一步优化了重心前移程度和拥有更好的破岩冲击力,而且有利于减少对挖掘机或破岩机的损伤。而具体的松土器重量具有各自不同的优势和劣势,通过增加松土器重量占比可以进一步提高破岩能力,适当减小松土器重量占比可以提高操作性。
三、本公开的油缸布局主要是解决挖掘力和灵活度,松土器在挖掘时有更好的挖掘力,空间位置更合理,另外在对岩石进行冲击时,减少对油缸的冲击损伤,进而减少对机器的损伤。
四、通过第二铰接部上设置两组铰接孔可以根据不同的工况:设定不同的速度和挖掘力。
五、小臂的实心是为了减少小臂的体积的同时保证其强度,进而实现小臂体积最小化,为松土器留下更大空间,有利于松土器重量设置。
六、松土器体积大于小臂是为了有更好的重心前移程度和使松土器重量更大,进而有更好的冲击力。
七、通过配重块的增减来满足不同的岩层硬度,很好地在节能和破岩效果之间做出平衡,进一步优化作业效率。
八、通过松土器增加重量实现重量比例的优化,而松土器的体积大于小臂可以为松土器的运动留下空间。
九、使用第一填充物填充的形式使得松土器的重量占破岩装置总重量的30%以上可以有效降低生产成本。
十、通过激振装置的安装使得松土器具有激振力,以利于破岩。
十一、在本公开中提供了不同小臂安装点设计,使得小臂可以在操作性能和破岩性能之间进行抉择。
本公开一实施例提供了一种破岩装置1。图5为根据本公开一实施例提供的一种破岩装置。图6为根据本公开一实施例提供的一种破岩装置的立体示意图。如图5和6所示,这种破岩装置1包括大臂2、小臂3、斗杆缸4、松土器缸5和松土器6。
如图5和6所示,大臂2具有第一端21,第一端21设置有用于与小臂3 铰接的小臂安装槽22。小臂安装槽22具有第一安装壁23和第二安装壁24,在第一安装壁23和第二安装壁24均设置有小臂安装孔25,第一安装壁23上的小臂安装孔25和第二安装壁24上的小臂安装孔25同轴设置。通过小臂安装孔25与小臂3配合使得小臂3与大臂2铰接于第一端21。
如图5和6所示,小臂3具有相对设置的第一面31和第二面32,在小臂3的中部设置有小臂铰接部33,小臂铰接部33(即第二铰接部33)由位于第一面31和第二面32之间的两个第二轴套34组成。两个第二轴套34的轴线平行于第一面31和第二面32,一个第二轴套34穿过一个小臂安装孔25,另一个第二轴套34穿过另一个小臂安装孔25使得小臂3与大臂2铰接。第二轴套34通过润滑油润滑以保证小臂3相对大臂2转动时尽量减小摩擦力。因此在第二轴套34外还套设有油封,以避免润滑油漏出。
如图5和6所示,小臂3具有相对设置的第二端36和第三端37。在小臂3的第三端37的端头处设置有松土器安装部,松土器安装部上设置有两个第一轴套(本实施例中未直接示出),将松土器6上的对应孔套接在第一轴套上即可将松土器6铰接在小臂3的第三端37。
如图5和6所示,松土器6包括松土器本体61和延伸部62,在本实施例中,延伸部62和松土器本体61一体成型。其中松土器本体61为松土器6靠近第三端37的部分,延伸部62为松土器6靠近第二端36的部分。松土器本体61上具有第一连接部51,第一连接部51上设置有两块翼板,在每块翼板上各设置有一个松土器安装孔63,将一个第一轴套穿过一个松土器安装孔63,另一个第一轴套穿过另一个松土器安装孔63即可将松土器6铰接在小臂3的第三端37。两个同轴的第一轴套形成第三铰接轴,松土器6和小臂3能够绕第三铰接轴相对转动。为了保证第一轴套与松土器安装孔63的润滑配合,在松土器6上还设置有润滑孔(图中未示出),润滑孔连通第一轴套外壁和外界,通过润滑孔可以方便地向第一轴套和松土器安装孔63之间添加润滑液。
如图5和6所示,大臂2呈弧形,大臂2具有外弧面26和内弧面27,在外弧面26的中部设置有第一铰接部28。第一铰接部28由两块平行的翼板构成,在两块翼板之间形成第一铰接空间,斗杆缸4的一端容置于第一铰接空间,并与第一铰接部28铰接。
图7为根据本公开一实施例提供的一种小臂的示意图。如图5-7所示,在小臂3的第二端36的第一面31设置有第二铰接位置42,第二铰接位置42由 两块平行的翼板构成,在两块翼板之间形成第二铰接空间,斗杆缸4的远离第一铰接空间的一端容置于第二铰接空间,并与第二铰接位置42铰接。第一端21与第一铰接部28之间为第一大臂2段,第二铰接部33与第二铰接位置42之间为第一小臂3段,第一大臂2段、第一小臂3段与斗杆缸4形成三角形,三角形的三边相互铰接且斗杆缸4长度可变,因此在斗杆缸4长度变化的带动下,第一小臂3段与第一大臂2段之间的角度可变,即可通过斗杆缸4的伸缩来使得小臂3转动。
需要说明的是,在本实施例中,第二铰接位置42可设置有两个,即第二铰接位置42包括两组铰接孔,使得斗杆缸4的远离第一铰接空间的一端可以选择任意一组铰接孔铰接来调节力臂。
图8为根据本公开一实施例提供的一种松土器的示意图。如图5-8所示,在小臂3的第二端36设置有第三铰接位置55,在本实施例中,第三铰接位置55由两块平行的翼板构成,在两块翼板之间形成第三铰接空间,松土器缸5的一端容置于第三铰接空间,并与第三铰接位置55以第一铰接轴为铰接轴铰接,即小臂3和松土器缸5能够绕第一铰接轴相对转动。在延伸部62远离松土器本体61的一端具有第二连接部52,第二连接部52上设置有第一铰接位置56,第一铰接位置56由两块平行的翼板构成,在两块翼板之间形成第四铰接空间,松土器缸5的远离第三铰接空间的一端容置于第四铰接空间,并与第一铰接位置56以第二铰接轴为铰接轴铰接,即松土器缸5和松土器6能够绕第二铰接轴相对转动。
第一连接部51到第二连接部52的距离大于小臂3的臂长,使得松土器6比小臂3的体积更大,松土器6的重量也比小臂3更大。松土器6可为实心结构,使得整个松土器6的重量达到了破岩装置1的30%。在实际操作时,可以通过松土器6的重量来加强对破岩工作区域的作用力,优化破岩效果。且通过松土器缸5作用于松土器6的最大力臂为:第一连接部51到第二连接部52的连线线段。因此通过延伸部62延长第一连接部51到第二连接部52的连线线段,可以加长力臂,在松土器缸5作用同样力度的情况下,优化破岩效果。
通过延伸部62拉长松土器6的设计,第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角能够达到60°以上(如图11所示的X夹角即为第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角),随着X夹角的增大,可以增加松土器6运动的力臂,增强破岩 冲击力,以及减少破岩力反馈对松土器6和小臂3造成的损伤。在本实施例中,使X夹角在95°-130°范围内变动,使得松土器6的运动较好控制,且松土器6具有足够运动距离。
在本实施例中,松土器本体61远离延伸部62的一端为破岩部,在破岩部上还设置有用于作用于破岩面的斗齿7。在其他实施例中,也可以不设置斗齿7,而直接使用破岩部进行破岩作业。
在本实施例中,大臂2由高强度钢制成,大臂2内部为空心结构以减轻大臂2的整体重量;小臂3也使用高强度钢制成,但是小臂3为实心结构。通过大臂2空心、小臂3实心的结构使得整个破岩装置1的重心集中在小臂3上。在实际破岩中,小臂3重量作用于松土器6,可以增加松土器6对破岩工作区域的作用力,改善破岩效果。
而松土器6也是实心结构可以进一步加强重心的集中,而松土器6的重量比大臂2重量大,也比小臂3的重量大,使得松土器6对破岩工作区域的作用力进一步增大。
通过如上的设计以解决现有技术中在重量比例分配和体积比例分配上效果不好的缺陷。
本公开实施例提供的破岩装置1的使用方法为:
a.检查各油封内润滑油是否足够;
b.控制斗杆缸4控制小臂3与大臂2之间的夹角,使得松土器6对准破岩工作区域;
c.通过控制松土器缸5控制松土器6的转动,斗杆缸4控制小臂3与大臂2之间的夹角,使得松土器6的斗齿7对破岩工作区域施力。
本公开实施例的有益效果在于以下各项至少之一:
一、通过大臂2、小臂3、松土器6和油缸的设计保证了破岩装置1的灵活度,省去了常见的松土器6中的连杆,针对破岩刚好够用,实现了灵活度和能量损耗的更优结合,并且不降低操作的顺滑感。
二、松土器6重量占到总重量的30%,进一步优化了重心前移程度和拥有更好的破岩冲击力,而且有利于减少对挖掘机8或破岩机的损伤。
三、本公开的油缸布局主要是解决挖掘力和灵活度,松土器6在挖掘时有更好的挖掘力,空间位置更合理,另外在对岩石进行冲击时,减少对油缸的冲击损伤,进而减少对机器的损伤。
四、通过第二铰接位置42上设置两组铰接孔可以根据不同的工况:设定不同的速度和挖掘力。
五、小臂3的实心是为了减少小臂3的体积的同时保证其强度,进而实现小臂3体积最小化,为松土器6留下更大空间,有利于松土器6重量设置。
六、松土器6体积大于小臂3是为了有更好的重心前移程度和使松土器6重量更大,进而有更好的冲击力。
需要说明的是,现有技术中的大臂2和小臂3主要为空心和填充,填充是指通过板材焊接形成空间,然后在空间内填充比重较大的物品体,在现有技术中常被使用,在破岩装置1里主要是增重,实心是指没有形成可用于填充的空间。而实心主要通过整块钢板经过切削加工或者铸造形成,主要是保证强度条件下实现体积的最小化。
进一步需要说明的是,油封和轴套为现有技术,在本公开中,轴套起到保护轴承降低摩擦力的作用,而油封起到将润滑油密封在储存区域和润滑区域的作用。因此只需要将现有技术中的油封和轴套进行尺寸设计以适合本公开提供的破岩装置1即可。
在本实施例中,斗杆缸4和松土器缸5均使用伸缩式液压缸,斗杆缸4和松土器缸5通过外接供油管可以方便控制斗杆缸4和松土器缸5的长度。
在本实施例中,延伸部62与松土器本体61一体成型,以便于制造,在其他实施例中也可以设置为延伸部62与松土器本体61可拆卸连接,根据实际破岩区域的岩石硬度、或者破岩区域的大小选择安装不同长度的延伸部62及适配的松土器缸5进行破岩。
在其他实施例中,大臂2可以不为弧形,设置为弯折型,可以降低制作难度,但是大臂2强度会降低;也可以设置成直杆状,进一步降低制造难度,但是大臂2与小臂3之间的自由度会降低,不便于小臂3相对大臂2转动。
图9为破岩装置1实际使用在挖掘机8上的结构示意图,该整机包括挖掘机8和破岩装置1。
挖掘机8包括主体81和履带82,履带82设置在主体81的下端,通过履带82可以带动整机整体移动。
如图9所示,破岩装置1设置在挖掘机8的一端,且通过大臂缸(第三液压缸)12与破岩装置1连接。
在大臂2的第一端21与第一铰接部28之间设置有第五铰接部29,大臂缸 12的第一端21与大臂2铰接于第五铰接部29,另一端与主体81铰接,使得主体81不动的时候,通过控制大臂缸12的伸缩可以控制大臂2的转动。
在本实施例中,大臂缸12使用伸缩式液压缸,大臂缸12通过外接供油管可以方便控制大臂缸12的长度。
通过本公开提供的整机,由于配备了破岩装置1,因此具备了破岩装置1的各种优势,在此基础上,增加了破岩装置1的机动性能。
由于松土器6具有较长的长度,在储存状态时,松土器6容易接触地面,因此设置有拖车9以适应整机的运输。拖车9具有放置平台910,整机放置到拖车9的放置平台910上,通过拖车9实现整机7的整体移动。
本公开一实施例提供一种破岩装置。图10为根据本公开一实施例提供的一种松土器的示意图。图11为根据本公开一实施例提供的一种破岩装置的示意图。如图10和11所示,在该破岩装置1中,松土器6上设置有配重块64。
松土器6设置为实心以增加松土器6的重量。在本实施例中,在松土器6上还可拆卸地安装有配重块64,通过配重块64增减松土器6的重量。配重块64通过螺栓连接或其他形式安装到松土器6上,在需要取下时,可以通过人工轻松解除配重块64和松土器6之间的配合,而在工作时,螺栓连接等形式能够保证,小臂3和配重块64的稳定连接。
在本实施例中,当松土器6加以配重块64时,松土器6加配重块64的总重量能够占破岩装置1总重量的40%。进一步增强松土器6的冲击能力。而且配重块64为可拆卸设置,使得在松土器6本身即可提供足够冲击力的情况下,卸下配重块64,节约能量。其松土器6的具体重量可以根据松土器6自身重量进行大致的配重,随后通过配重块64进行调节,其重量比40%的时候便于操作由具有足够的破岩性能。为了保证配重块64提供足够的重量又不直接接触到破岩区域,配重块64设置在松土器6远离破岩部的上部。
例如,在松土器缸5设置到松土器6侧部的时候,配重块64设置在侧部容置导致运动不便,于是将配重块64安装到松土器6的上部。
通过本实施例提供的破岩装置1,通过配重块64的增减来满足不同的岩层硬度,很好地在节能和破岩效果之间做出平衡,进一步优化作业效率。而且,在不对破岩装置1本身做出大改动的情况下,进一步提高了松土器6的破岩能力,有效节约了成本。
本公开一实施例提供一种破岩装置,在该破岩装置中,松土器6的重量占 破岩装置1总重量的70%,使得破岩装置1的重心大幅前移,提高了破岩的能力,但是在破岩过程中为了保持破岩机的稳定性,需要重量较大的挖掘机8机体进行配合,且在实际破岩过程中需要根据需要适当缩小X夹角的变化范围。
本公开一实施例提供一种破岩装置,在本实施例中,当松土器6加以配重块64时,松土器6加配重块64的总重量能够占破岩装置1总重量的75%。进一步增强松土器6的冲击能力。而且配重块64为可拆卸设置,使得在松土器6本身即可提供足够冲击力的情况下,卸下配重块64,节约能量。其松土器6的具体重量可以根据松土器6自身重量进行大致的配重,随后通过配重块64进行调节,其在实施例四中重量比40%的时候便于操作由具有足够的破岩性能。而在本实施例中重量比为75%时,破岩性能极大提高,但是操作会略显不便,由于大臂2和小臂3重量有限,为了保证强度,对材质及工艺有较高要求。
本公开一实施例提供一种破岩装置,如图11所示,X夹角在74°-106°范围内变动,即X夹角始终在90°左右内变动,保证松土器6运动的力臂使得松土器6的运动较好控制,且松土器6具有足够运动距离。其中,破岩装置1具有长力臂状态,即X夹角能够达到90°,在长力臂状态下,此时,松土器缸5作用于松土器6的力臂即为:第一连接部51到第二连接部52的连线线段。因此在这个X夹角在74°-106°范围内变动使得力臂足够长,在同等设备条件下,为松土器6提供足够的破岩速度。
本公开一实施例提供一种破岩装置,如图11所示,X夹角在46°-77°范围内变动,保证松土器6运动的力臂使得松土器6的运动较好控制,且松土器6具有足够运动距离。
本公开一实施例提供一种破岩装置1。图12为根据本公开一实施例提供的一种破岩装置的示意图。如图12所示,该破岩装置1中松土器缸5设置为两条,即第二液体缸5可设置有两个。
两条松土器缸5设置在松土器6和小臂3的侧部。例如,松土器缸5具有相对设置的第一缸头和第二缸头,一条松土器缸5的第一缸头设置在第三连接部的一侧,另一条松土器缸5的第一缸头设置在第三连接部的另一侧,两条第一松土器缸5的第一缸头通过加固杆连接;一条松土器缸5的第二缸头设置在第四连接部的一侧,另一条松土器缸5的第二缸头设置在第四连接部的另一侧,两条第一松土器缸5的第二缸头通过另一根加固杆连接。两条第一松土器缸5平行,在工作时,两个松土器缸5同步作用以控制松土器6与小臂3之间的角 度。
在本实施例中,小臂3的尺寸根据各连接点配合进行调整,前面已经描述了第一铰接轴、第二铰接轴和第三铰接轴,而大臂2与小臂3的铰接处为第四铰接轴,第一铰接轴到第四铰接轴的距离是第四铰接轴到第三铰接轴的距离的0.7倍。
斗杆缸4与小臂3的铰接处为第五铰接轴,第五铰接轴到第四铰接轴的距离是第四铰接轴到第三铰接轴的距离的0.9倍。
图13为根据本公开一实施例提供的一种破岩装置1实际使用在挖掘机8上的结构示意图。该整机包括挖掘机8和破岩装置1。
如图13所示,挖掘机8和破岩装置1通过两条第三液压缸12连接。两条第三液压缸12设置在大臂2的两端,两条第三液压缸12平行,通过两条第三液压缸12同步对大臂2施力以控制大臂2和挖掘机8的角度。
通过本实施例提供的破岩装置1,可以提高松土器6的工作强度,由两根松土器缸5共同驱动松土器6可以使得松土器6作用于坚硬的岩石区域,并展现良好的破岩效果。
图14为根据本公开一实施例提供的一种破岩装置的示意图。如图14所示,破岩装置1中松土器缸5设置为两条。
如图14所示,两条松土器缸5设置在松土器6和小臂3的侧部。例如,松土器缸5具有相对设置的第一缸头和第二缸头,一条松土器缸5的第一缸头设置在第三连接部的一侧,另一条松土器缸5的第一缸头设置在第三连接部的另一侧,两条第一松土器缸5的第一缸头通过加固杆连接;一条松土器缸5的第二缸头设置在第四连接部的一侧,另一条松土器缸5的第二缸头设置在第四连接部的另一侧,两条第一松土器缸5的第二缸头通过另一根加固杆连接。两条第一松土器缸5平行,在工作时,两个松土器缸5同步作用以控制松土器6与小臂3之间的角度。
图15为根据本公开一实施例提供一种破岩装置1在挖掘机8上的结构示意图。该整机包括挖掘机8和破岩装置1。
如图15所示,配重块64安装到松土器6的上部,即配重块64安装到松土器6靠近斗杆缸4的一端。使得配重块64在破岩过程中具有较长的运动形成以获得较大的动能,而该动能作用于破岩区域可以增加破岩冲击力。同时,安装到松土器6上部的配重块64,使得破岩工作时,配置块的重心与松土器6 的重心在竖直方向上基本重合,进一步把冲击力集中在破岩区域。
挖掘机8和破岩装置1通过两条第三液压缸12连接。两条第三液压缸12设置在大臂2的两端,两条第三液压缸12平行,通过两条第三液压缸12同步对大臂2施力以控制大臂2和挖掘机8的角度。
通过本实施例提供的破岩装置1,第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角在95°-130°范围内变动,使得松土器6的运动较好控制,且松土器6具有足够运动距离。
通过本实施例提供的破岩装置1,通过配重块64的增减来满足不同的岩层硬度,很好地在节能和破岩效果之间做出平衡,进一步优化作业效率。而且,在不对破岩装置1本身做出大改动的情况下,进一步提高了松土器6的破岩能力,有效节约了成本。
本公开一实施例提供一种破岩装置。在该破岩装置中,对松土器6、大臂2、小臂3之间的体积和重量进行具体的比例限制,松土器6的体积是小臂3体积的4.5倍,松土器6的重量是大臂2的2.7倍,大臂2的重量是小臂3重量的3.1倍,大臂2的体积是小臂3的4.2倍,因此在本实施例中,松土器6约占破岩装置1总重量的64%,通过这样的比例关系,使得松土器6具有极佳的破岩能力,而极限地缩小小臂3的体积和重量,在满足机动性能的要求下,尽量将中心前移,以及提供足够大的力臂为松土器6提供足够的行程。
本公开一实施例提供一种破岩装置。在该破岩装置中,对松土器6、大臂2、小臂3之间的体积和重量进行具体的比例限制,松土器6的体积是小臂3体积的4.1倍,松土器6的重量是大臂2的2.0倍,大臂2的重量是小臂3重量的2.3倍,大臂2的体积是小臂3的2.9倍,因此在本实施例中,松土器6约占破岩装置1总重量的55%。通过这样的比例关系,使得松土器6的破岩能力和操作性得到较好的平衡。
本公开一实施例提供一种破岩装置。在该破岩装置中,对松土器6、大臂2、小臂3之间的体积和重量进行具体的比例限制,松土器6的体积是小臂3体积的1.8倍,松土器6的重量是大臂2的1.2倍,大臂2的重量是小臂3重量的1.4倍,大臂2的体积是小臂3的1.6倍,因此在本实施例中,松土器6约占破岩装置1总重量的39%。通过这样的比例关系,使得松土器6具有足够破碎普通岩石的能力,而且操作性极强,对依附的挖掘机8也没有过多的重量要求。
本公开一实施例提供一种破岩装置。在该破岩装置中,第一铰接轴到第四铰接轴的距离是第四铰接轴到第三铰接轴的距离的1.1倍,第五铰接轴到第四铰接轴的距离是第四铰接轴到第三铰接轴的距离的1.4倍。即将第四铰接轴下移,这样使得破岩部力量更大但速度更慢。
本公开一实施例提供一种破岩装置1。图16为根据本公开一实施例提供的一种破岩装置的示意图。如图16所示,小臂3为实心结构。图17为根据本公开一实施例提供的一种松土器的示意图。图18-图21为图16所示的破岩装置中小臂的侧面剖视图。从小臂3的各剖视图均可看出,小臂3设置为实心结构。
本公开一实施例提供一种破岩装置1。图22为根据本公开一实施例提供的一种破岩装置的示意图。如图22所示,小臂3内具有的第二空间43,松土器6内具有第一空间64,即空腔44。
图23、图24和图25为图22所示的小臂3的侧面剖视图。图26、图27为图22所示的小臂3的正面剖视图,从小臂3的各剖视图均可看出,小臂3设置为空心结构,在小臂3内形成第二空间43,第二空间43内可以设置第二填充物,也可以留置不填充。小臂3采用实心是为了在保证强度情况下进一步缩小体积,以利于进一步增大松土器6体积比例留下空间。而小臂3为空心主要是为了减轻重量,但在制作时在保证强度及工作机能的条件下尽量缩小体积。
图28-图31为图22中松土器6的剖视图,由图28-图31可知,在本实施例中,松土器6设置为空心结构,在松土器6内形成第一空间64,在松土器6的第一空间64内设置第一填充物,使用比重较大的第一填充物,可以使得破岩设备1具有更佳的破岩冲击力。通过第一填充物来保证松土器6的重量占破岩装置1总重量的30%。使用第一填充物填充的形式使得松土器6的重量占破岩装置1总重量的30%可以有效降低生产成本。而且在安装激振装置65时,激振装置65中的马达也可以设置在第一空间64内。
根据松土器6为实心或空心、小臂3是否为空心可以将破岩装置1具体组合如下述两种情况:
1、如图16中,松土器6为空心结构,小臂3为实心结构;
2、如图22中,松土器6为空心结构,小臂3也为空心结构。
请参阅图16和图32,在本实施例中的松土器6上还可以设置配重块64,例如,配重块64安装到松土器6的上部,即配重块64安装到松土器6靠近斗 杆缸4的一端。使得配重块64在破岩过程中具有较长的运动行程以获得较大的动能,而该动能作用于破岩区域可以增加破岩冲击力。同时,安装到松土器6上部的配重块64,使得破岩工作时,配重块64的重心与松土器6的重心在竖直方向上基本重合,进一步把冲击力集中在破岩区域。
图16中的松土器6的单独视图如图17所示,该松土器6具有较小的破岩部,在破岩部的两侧设置有用于与小臂3配合的第一轴套38,而在第一轴套38侧设置有油封39。通过这样的设置可以减小破岩部的体积,使得松土器6可以进入较小的区域进行破岩。
同时,由于增大了松土器6的体积,且本实施例中的松土器6为空心结构,使得松土器6上可以安装更多的配套设备。
本实施例中提供的破岩装置1,小臂3采用实心是为了在保证强度情况下进一步缩小体积,以利于进一步增大松土器6体积比例留下空间。而小臂3为空心主要是为了减轻重量,但在制作时在保证强度条件下尽量缩小体积。使用第一填充物填充的形式使得松土器6的重量占破岩装置1总重量的30%可以有效降低生产成本。
本公开一实施例提供一种破岩装置。图33为根据本公开一实施例提供的一种破岩装置的示意图。如图33所示,松土器6上未设置第一轴套、油封和润滑孔,第一轴套、油封和润滑孔设置在小臂上。这种松土器6和小臂3的连接方式为现有设计中常用的连接方式。但是依然可以应用于本公开中。
本公开一实施例提供一种破岩装置。图34为根据本公开一实施例提供的一种破岩装置的示意图。如图34所示,第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角在74°-106°范围内变动,即第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角始终在
90°左右内变动,保证松土器6运动的力臂使得松土器6的运动较好控制,且松土器6具有足够运动距离。其中,破岩装置1具有长力臂状态,即第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角能够达到90°,在长力臂状态下,此时,松土器缸5作用于松土器6的力臂即为:第一连接部51到第二连接部52的连线线段。因此这个第一铰接轴到第二铰接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角在74°-106°范围内变动使得力臂足够长,在同等设备条件下,为松土器6提供足够的破岩速度。
本公开一实施例提供一种破岩装置,如图33所示,第一铰接轴到第二铰 接轴的连线与第一铰接轴到第三铰接轴的连线间的夹角在46°-77°范围内变动,保证松土器6运动的力臂使得松土器6的运动较好控制,且松土器6具有足够运动距离。
本公开一实施例还提供一种破岩装置的组装方法,包括以下步骤S401-S403。
步骤S401:提供大臂,大臂包括第一大臂端、第二大臂端和位于大臂中部的第一铰接部。例如,大臂可为现有的工程机械上的大臂,也可为重新制作的大臂。
步骤S402:提供小臂、松土器、第一液压缸和第二液压缸,小臂包括第一小臂端和第二小臂端和位于小臂中部的第二铰接部;松土器包括第三铰接部,松土器被与第三铰接部与松土器的尖端的连线垂直的线分成靠近松土器的尖端的第一松土部和与第一松土部相连的第二松土部。
步骤S403:将小臂、松土器、第一液压缸、第二液压缸和大臂进行组装,使得第二大臂端与第二铰接部铰接,第一液压缸的一端与第一铰接部铰接,第一液压缸的另一端与第一小臂端铰接,第二小臂端与第三铰接部铰接,第二液压缸的一端与小臂铰接,第二液压缸的另一端与第二松土部铰接,松土器的重量占破岩装置的总重量的30%-85%。
本实施例提供的破岩装置的组装方法可在利用现有工程机械(例如,挖掘机、推土机等)的大臂,从而降低该破岩装置的成本。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (29)

  1. 一种破岩装置,包括:
    大臂,包括第一大臂端、第二大臂端和位于所述大臂中部的第一铰接部;
    小臂,包括第一小臂端、第二小臂端和位于所述小臂中部的第二铰接部;
    松土器,包括第三铰接部,所述松土器被通过所述第三铰接部且与所述第三铰接部与所述松土器的尖端的连线垂直的线分成靠近所述松土器的尖端的第一松土部和与所述第一松土部相连的第二松土部;
    第一液压缸;
    第二液压缸,
    其中,所述第一大臂端被配置为与载具相连,所述第二大臂端与所述第二铰接部铰接,所述第一液压缸的一端与所述第一铰接部铰接,所述第一液压缸的另一端与所述第一小臂端铰接,所述第二小臂端与所述第三铰接部铰接,所述第二液压缸的一端与所述小臂铰接,所述第二液压缸的另一端与所述第二松土部铰接,
    所述松土器的重量占所述破岩装置的总重量的30%-85%。
  2. 根据权利要求1所述的破岩装置,其中,所述松土器的体积大于所述小臂的体积,所述松土器的重量大于所述小臂的重量,所述松土器的重量大于所述大臂的重量。
  3. 根据权利要求1所述的破岩装置,其中,所述第二松土部的体积大于所述第一松土部的体积的3倍。
  4. 根据权利要求3所述的破岩装置,其中,所述第二松土部的体积大于所述第一松土部的体积的5倍。
  5. 根据权利要求1所述的破岩装置,其中,所述第二松土部的重量大于所述第一松土部的重量的3倍。
  6. 根据权利要求5所述的破岩装置,其中,所述第二松土部的重量大于所述第一松土部的重量的5倍。
  7. 根据权利要求1-6中任一项所述的破岩装置,其中,所述松土器的重量占所述破岩装置的总重量的40%-85%。
  8. 根据权利要求1-6中任一项所述的破岩装置,其中,所述第二松土部上设置有至少两个第一铰接位置,分别用于与所述第二液压缸相铰接,
    在所述至少两个第一铰接位置中,不同的所述第一铰接位置与所述第三铰接部的距离不同。
  9. 根据权利要求1-6中任一项所述的破岩装置,其中,所述第一小臂端包括至少两个第二铰接位置,分别用于与所述第一液压缸相铰接,
    在所述至少两个第二铰接位置中,不同的所述第二铰接位置与所述第二铰接部的距离不同。
  10. 根据权利要求1-6中任一项所述的破岩装置,其中,所述第二液压缸的一端与所述小臂的所述第一小臂端铰接,所述第一小臂端还包括至少两个第三铰接位置,分别用于与所述第二液压缸相铰接,
    在所述至少两个第三铰接位置中,不同的所述第三铰接位置与所述第二铰接部的距离不同。
  11. 根据权利要求1-8中任一项所述的破岩装置,其中,所述第二松土部还包括:
    配重块,可拆卸地安装在所述的第二松土部上,以调节所述第二松土部的重量。
  12. 根据权利要求1-7中任一项所述的破岩装置,其中,所述松土器包括空腔。
  13. 根据权利要求12所述的破岩装置,其中,所述空腔中填充有填充物。
  14. 根据权利要求1-7中任一项所述的破岩装置,其中,所述第二松土部安装有激震装置。
  15. 根据权利要求1-14中任一项所述的破岩装置,其中,所述松土器的尖端为破岩部。
  16. 根据权利要求1-14中任一项所述的破岩装置,其中,所述第二液压缸的轴线与所述第二液压缸的一端与所述第一小臂端的连接点到所述第三铰接部的连线之间的夹角的最小值大于24度。
  17. 根据权利要求1-14中任一项所述的破岩装置,其中,所述第二液压缸的轴线与所述第二液压缸的一端与所述第一小臂端的连接点到所述第三铰接部的连线之间的夹角的最大值大于60度。
  18. 根据权利要求16或17所述的破岩装置,其中,所述第二液压缸的轴线与所述第二液压缸的一端与所述第一小臂端的连接点到所述第三铰接部的连线之间的夹角的范围为45°-130°。
  19. 根据权利要求16或17所述的破岩装置,其中,所述第二液压缸的轴线与所述第二液压缸的一端与所述第一小臂端的连接点到所述第三铰接部的连线之间的夹角的范围为70°-110°。
  20. 根据权利要求1-19中任一项所述的破岩装置,其中,所述松土器的体积为所述小臂的体积的1.8倍到4.5倍之间。
  21. 根据权利要求1-19中任一项所述的破岩装置,其中,所述松土器的重量为所述小臂的重量的1.2倍到2.7倍之间。
  22. 根据权利要求1-19中任一项所述的破岩装置,其中,所述大臂的体积为所述小臂的体积的1.6倍到4.2倍之间。
  23. 根据权利要求1-19中任一项所述的破岩装置,其中,所述大臂的重量为所述小臂的重量的1.4倍到3.1倍之间。
  24. 根据权利要求1-19中任一项所述的破岩装置,其中,所述小臂为实心结构。
  25. 根据权利要求1-19中任一项所述的破岩装置,其中,所述第二液压缸与所述小臂的铰接处为第三铰接位置,在垂直于所述第三铰接位置的转动轴线的平面上,所述第三铰接位置到所述第二铰接部的距离为所述第二铰接部到所述第三铰接部的距离的0.7到1.3倍。
  26. 根据权利要求1-19中任一项所述的破岩装置,其中,所述第一液压缸与所述小臂的铰接处为第二铰接位置,所述第二铰接位置到所述第二铰接部的距离是所述第二铰接部到所述第三铰接部的距离的0.9到1.4倍。
  27. 一种工程机械,包括根据权利要求1-26中任一项所述的破岩装置。
  28. 根据权利要求27所述的工程机械,还包括:
    载具,包括车体和承载车体并配置为驱动所述载具运动的行走装置;以及
    第三液压缸,
    其中,所述第一大臂端与所述车体铰接,所述第三液压缸一端与所述车体铰接,一端与所述大臂铰接。
  29. 根据权利要求28所述的工程机械,其中,所述载具为挖掘机,所述车体包括上部车体和下部车体,所述上部车体旋转连接于所述下部车体,所述下部车体设置有所述行走装置。
PCT/CN2018/111875 2017-10-25 2018-10-25 破岩装置和工程机械 WO2019080897A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/759,192 US20200332495A1 (en) 2017-10-25 2018-10-25 Rock Breaking Device and Construction Machinery

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
CN201711008163.4 2017-10-25
CN201711008163 2017-10-25
CN201711134980.4 2017-11-15
CN201721529240.6U CN207660022U (zh) 2017-10-25 2017-11-15 一种破岩装置
CN201721529240.6 2017-11-15
CN201711134980.4A CN107780455A (zh) 2017-10-25 2017-11-15 一种破岩装置
CN201810604851.5A CN108487347B (zh) 2017-10-25 2018-06-13 破岩装置
CN201810604851.5 2018-06-13

Publications (1)

Publication Number Publication Date
WO2019080897A1 true WO2019080897A1 (zh) 2019-05-02

Family

ID=61433350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111875 WO2019080897A1 (zh) 2017-10-25 2018-10-25 破岩装置和工程机械

Country Status (3)

Country Link
US (1) US20200332495A1 (zh)
CN (4) CN207660022U (zh)
WO (1) WO2019080897A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207660022U (zh) * 2017-10-25 2018-07-27 凌夕珈 一种破岩装置
CN108756876A (zh) * 2018-07-23 2018-11-06 刘裕志 新型破岩臂、破岩机及其破岩方法
CN109356217A (zh) * 2018-12-13 2019-02-19 成都市猎石者破岩科技有限责任公司 搭载于挖掘机的破岩装置
CN110565724A (zh) * 2019-09-24 2019-12-13 成都市猎石者破岩科技有限责任公司 大臂和破岩装置
CN110528616A (zh) * 2019-09-24 2019-12-03 成都市猎石者破岩科技有限责任公司 搭载于挖掘机或破岩机的破岩装置
CN110565725A (zh) * 2019-09-24 2019-12-13 成都市猎石者破岩科技有限责任公司 破岩装置
CN111236351A (zh) * 2020-03-11 2020-06-05 成都市猎石者破岩科技有限责任公司 破岩装置
CN112160359A (zh) * 2020-10-12 2021-01-01 徐州徐工挖掘机械有限公司 工程机械
CN112696198B (zh) * 2020-12-18 2023-11-10 江西鑫通机械制造有限公司 一种长距离煤矿挖掘机臂
CN112814067A (zh) * 2021-01-13 2021-05-18 四川猎石者龙宇科技有限公司 一种破岩装置
CN114161406A (zh) * 2021-12-22 2022-03-11 航天科工智能机器人有限责任公司 一种基于闭链机构的电动重载机械臂及其控制方法
CN115522590A (zh) * 2022-09-03 2022-12-27 南通欧特建材设备有限公司 一种具有机械臂的液压破碎锤

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171783A (ja) * 1997-08-27 1999-03-16 Komatsu Ltd リッパ装置
CN204225183U (zh) * 2014-11-05 2015-03-25 凌杰 一种可调力矩的松土器小臂结构
CN204326137U (zh) * 2014-12-22 2015-05-13 山推工程机械股份有限公司 一种推土机松土器提升装置
CN204875899U (zh) * 2015-08-19 2015-12-16 四川今实工程机械设备有限公司 一种岩石臂结构
WO2016140042A1 (ja) * 2015-03-02 2016-09-09 株式会社小松製作所 作業車両及びリッパ装置
CN107780455A (zh) * 2017-10-25 2018-03-09 凌夕珈 一种破岩装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6417183A (en) * 1987-07-13 1989-01-20 Matsushita Electric Ind Co Ltd Card reader/writer
CN201095772Y (zh) * 2007-09-29 2008-08-06 广西玉林玉柴工程机械有限责任公司 液压挖掘机工作装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1171783A (ja) * 1997-08-27 1999-03-16 Komatsu Ltd リッパ装置
CN204225183U (zh) * 2014-11-05 2015-03-25 凌杰 一种可调力矩的松土器小臂结构
CN204326137U (zh) * 2014-12-22 2015-05-13 山推工程机械股份有限公司 一种推土机松土器提升装置
WO2016140042A1 (ja) * 2015-03-02 2016-09-09 株式会社小松製作所 作業車両及びリッパ装置
CN204875899U (zh) * 2015-08-19 2015-12-16 四川今实工程机械设备有限公司 一种岩石臂结构
CN107780455A (zh) * 2017-10-25 2018-03-09 凌夕珈 一种破岩装置
CN207660022U (zh) * 2017-10-25 2018-07-27 凌夕珈 一种破岩装置
CN108487347A (zh) * 2017-10-25 2018-09-04 凌夕珈 破岩装置

Also Published As

Publication number Publication date
CN207660022U (zh) 2018-07-27
CN208363154U (zh) 2019-01-11
CN107780455A (zh) 2018-03-09
CN108487347A (zh) 2018-09-04
US20200332495A1 (en) 2020-10-22
CN108487347B (zh) 2019-10-08

Similar Documents

Publication Publication Date Title
WO2019080897A1 (zh) 破岩装置和工程机械
CN103835720B (zh) 坚硬岩石破碎系统
CN2355001Y (zh) 自平衡节能型挖掘机
CN109356217A (zh) 搭载于挖掘机的破岩装置
CN208966198U (zh) 一种挖掘机式炮眼钻机
CN102134966A (zh) 切削钻机
CN110924861A (zh) 行走式全方位旋转液压桩基钻孔机
CN201598980U (zh) 全液压钻孔挖掘多用机
WO2021180010A1 (zh) 破岩装置
CN106979010B (zh) 一种车体、破岩机及破岩方法
CN101737008A (zh) 大孔径分体臂式潜孔钻机
WO2024012588A1 (zh) 一种液压正铲工作装置、控制方法及挖掘机
CN102493815A (zh) 钻装机工作装置
CN108301782A (zh) 一种旋挖钻机
CN2732843Y (zh) 多功能小型液压挖掘机
CN110565724A (zh) 大臂和破岩装置
CN202381100U (zh) 钻装机工作装置
CN105239614A (zh) 挖掘装载机的偏摆式挖掘工作装置
CN211113840U (zh) 大臂和破岩装置
CN210598809U (zh) 一种工程钻机主臂左右偏摆机构
CN210946964U (zh) 一种破岩装置及破岩机
CN209308091U (zh) 搭载于挖掘机的破岩装置
CN210033299U (zh) 一种用于固定非开挖钻机的可调式锚杆
CN204081992U (zh) 悬挂式回旋震冲工程开槽机
CN208168801U (zh) 长螺旋打桩机钻头

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870465

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870465

Country of ref document: EP

Kind code of ref document: A1