WO2019080769A1 - 套管式超细径骨固定针 - Google Patents

套管式超细径骨固定针

Info

Publication number
WO2019080769A1
WO2019080769A1 PCT/CN2018/110870 CN2018110870W WO2019080769A1 WO 2019080769 A1 WO2019080769 A1 WO 2019080769A1 CN 2018110870 W CN2018110870 W CN 2018110870W WO 2019080769 A1 WO2019080769 A1 WO 2019080769A1
Authority
WO
WIPO (PCT)
Prior art keywords
needle
bone
sleeve
fixation
bone fixation
Prior art date
Application number
PCT/CN2018/110870
Other languages
English (en)
French (fr)
Inventor
王力平
Original Assignee
王力平
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 王力平 filed Critical 王力平
Publication of WO2019080769A1 publication Critical patent/WO2019080769A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61DVETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
    • A61D1/00Surgical instruments for veterinary use
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B17/00Surgical instruments, devices or methods, e.g. tourniquets
    • A61B17/16Bone cutting, breaking or removal means other than saws, e.g. Osteoclasts; Drills or chisels for bones; Trepans

Definitions

  • the invention relates to a medical device, in particular to establish a model of an experimental animal fracture and a segmental bone defect, and a medical repair target for a bone defect of a specific part such as a hand, a foot and the like, and a special stress small bone for the laboratory small animal.
  • a medical device in particular to establish a model of an experimental animal fracture and a segmental bone defect, and a medical repair target for a bone defect of a specific part such as a hand, a foot and the like, and a special stress small bone for the laboratory small animal.
  • special surgical instruments for bone fixation technology in the bone environment of small bones, polyps, tendons, and other small bones such as hands, feet, wrists, and ankles.
  • Extra-bone fixation techniques for fractures and bone defects are widely used in orthopedic and bone wound repair procedures.
  • laboratory small animal orthopedic surgery such as calf external fixation for mice
  • bone fixation devices for use in small tibial environments.
  • the ability of the medical model of the tibia fracture and segmental bone defect to perform bone research.
  • the small size of the mouse tibia strictly limits the size of the bone-fixing puncture needle that can be used in orthopedic external fixation techniques.
  • Injury and the easy external fixation of the mouse facilitate postoperative health recovery.
  • the toughness of the tibia means that the smaller needle (for example, 30G gauge, 0.30 mm in diameter) may bend or become weak when drilling into the bone tissue and cannot penetrate into the bone.
  • K-wires are widely used in trauma surgery for small bones, multiple joints, wrists, ankles and other small joints.
  • the Kirschner wire can be directly inserted into the needle anchor bone without the need of a percutaneous incision, which reduces the chance of local nerve and extensor tendon injury; it also reduces the operation time of the operation; and also achieves the non-invasive extraction of the fixed needle after bone healing.
  • Kirschner wire there are two distinct complications with the use of Kirschner wire, namely the proximal end of the Kirschner wire to the surrounding soft tissue irritations and the Kirschner wire shift.
  • the minimum diameter of the electric drill that can be achieved in the actual operation and application into the bone Kirschner wire is 0.8mm.
  • the small diameter will make the needle body too thin and the electric tool is not easy to clamp, or the needle body is too soft and easy to bend and cannot be electric. Drill into the bone. Therefore, the traditional Kirschner wire anchor fixation method, the soft tissue stimulation caused by the protruding end and the disadvantage of slipping caused by slipping, limit the wide application of Kirschner wire technology in the field of clinical bone fixation.
  • the contralateral requirements of the hand fracture are very high, the deviation is slightly deviated, and the healing time is greatly prolonged.
  • the function recovery of the opponent is extremely unfavorable; the fixation can be performed in the early stage, and the function can be restored early.
  • the thickness of the fixed needle in the hand fracture has a great influence on the contralateral position of the hand fracture.
  • the excessively thick fixed needle will increase the stress but easily cause iatrogenic fracture and reduce the bone strength.
  • a better way is to choose a thinner fixed needle.
  • Increasing the number of fixed needles on each major fracture end can reduce the stress at the needle-bone interface of the individual to ensure the alignment and strength of the fracture, and to maintain the stability of the fracture alignment during the time period required for bone healing. Therefore, it is necessary to fix multiple needles and remove the needle as early as possible, because the functional exercise of the fingers is very important for fracture recovery.
  • the present invention provides a surgical instrument which is simple in structure, convenient and practical, and can solve the small bone external fixation, and can be used to simulate stress bone fractures and sections of the clinically prone site which are difficult to be implemented in the laboratory.
  • the external fixation technique of small animal models of segmental bone defects, or the difficult surgical fixation technique for the treatment of small bone trauma such as hand, foot, wrist and ankle in clinical medicine can be changed to general laboratory technicians and general clinical orthopedic surgeons. Control the operation.
  • the present invention adopts the following technical solutions:
  • the sleeve type ultra-fine diameter bone fixing needle is characterized in that the sleeve type ultra-fine diameter bone fixing needle comprises a power-assisting sleeve and an ultra-fine diameter bone fixing needle built in the power-assisting sleeve, and one end of the power-assisting sleeve is provided with The adapter for driving the rotor of the motor is connected, and the other end is provided with a detachable rigid connecting device.
  • the boosting sleeve and the bone fixing needle are fixed by a rigid connecting device, and the rigid connecting device limits the needle tip of the bone fixing needle to extend out of the power guiding sleeve. length.
  • the adapter that is connected to the rotor of the drive motor can be easily connected to the external motor by plugging and unplugging the embedded coupling, so that the booster sleeve rotates together with the rotor of the motor.
  • the booster sleeve and the bone fixation needle are fixed by a rigid connecting device, so that the booster sleeve can rotate the bone fixing needle together when rotating.
  • the length of the bone fixation needle extending out of the assist sleeve only needs to ensure that the extended needle tip section has sufficient mechanical strength, and the length should be as short as possible under the premise of being able to penetrate the target bone, and the electric bone fixation needle can be realized after starting the motor.
  • the rigid connecting device at the distal end of the booster cannula is removed, the power-assisting sleeve on the bone-fixing needle is removed, and finally pushed and pulled by the needle-clamp The threaded section of the distal end of the fixed needle is screwed into the anchoring bone matrix.
  • the combination of the external power-assisted sleeve and the built-in bone fixation needle ensures that the ultra-fine diameter bone fixation needle can realize the percutaneous drilling of the self-tapping bone by the motor drive; firstly, the bone fixation needle needle tip section is drilled into the bone, and the power is removed. The distal end of the cannula is used to fix the rigid connecting device of the bone fixation needle, and then the entire external power steering sleeve is removed; the root of the bone fixation needle is pulled into the bone to complete the fixed point anchor of the fixed needle; finally, at least four bone fixations are performed.
  • the invention is supplemented by bone fixation needles of different diameters, which can not only realize the surgical fixation of small bone fractures and segmental bone defect models of transgenic small animals in modern medical research laboratories, but also can be used for clinical medicine hands, feet, wrists, Orthopedic surgery for tibiofibular trauma surgery, optimization of multiple fractures, fracture nonunion, fractures with major vascular nerve injuries, bone extension, bone or soft tissue defect deformity, arthrodesis and other small bone fixation surgery As soon as possible, the needle should be removed as early as possible to perform the stress recovery of the functional recovery of fracture recovery or bone defect repair.
  • the bone fixation needle has a diameter of less than 0.8 mm (e.g., 0.3 mm in one embodiment).
  • the ultra-fine-diameter fixation needle is built into the power-assisted sleeve and is connected to a detachable rigid connection device provided at the distal end of the booster sleeve.
  • the external power-assisted sleeve is loaded with the ultra-fine-diameter fixed needle that covers most of the section, and is worn.
  • the initial stage of the perforating tissue assists the cannula to support the hardened bone puncture needle; while the rigid attachment device also locks to limit the length of the inner bone fixation needle exposed to extend the booster sleeve (eg, 6 mm in one embodiment),
  • the extended defined length ensures that the ultra-diameter bone-fixed needle tip segment has the strength to penetrate through the hard animal bone tissue in an electrically driven mode to avoid bending.
  • the needle tip of the bone fixation needle extends beyond the length of the assist sleeve to be determined by the thickness of the target bone to be penetrated and the diameter of the bone fixation needle.
  • the proximal end of the booster sleeve is provided with a connection base (ie, an adapter) that is coupled to the motor shaft, and the adapter is preferably in the shape of a hollow truncated cone.
  • a connection base ie, an adapter
  • the adapter seat and the truncated-tube motor rotor are coupled by plugging and inserting, so that the ultra-fine-diameter fixed needle unit can be conveniently connected to the motor device to realize the bone.
  • the fixed needle motor drives the percutaneous drill into the bone.
  • the needle tip of the bone fixation needle may be a three-bladed conical concentric tip (ie, a central needle tip) or a three-blade conical eccentric needle tip (ie, an asymmetrical tapered three-blade eccentric tip).
  • the tapered eccentric tip can be made up of three unequal cones.
  • the eccentric tip shaped by the sharp edge of the asymmetric triangular cone can repeatedly vibrate in the forward bone tissue interface during the rotation of the needle tip. Rotation provides a more powerful impact cut with the tip of the bouncing or swinging, which can greatly improve the efficiency of the bone fixation needle into the bone.
  • the distal end of the booster sleeve is provided with a rigid connecting device that can be easily disassembled, and the rigid connecting device has a locking function of rigidly connecting the built-in bone fixing needle, and can realize the temporary assisting sleeve and the bone fixing needle. Binding allows the operator to easily disassemble the device after the bone fixation needle initially penetrates the bone tissue.
  • the rigid connecting device is a rigid plastic ball
  • the end of the boosting sleeve is provided with a clamping arm, and the rigid plastic ball is enclosed in the clamping arm, and the bone fixing needle passes through the center of the rigid plastic ball. The bone fixation needle is bonded to the rigid plastic ball.
  • the rigid plastic ball referred to in the present invention refers to a bonding ball formed by a rigid plastic material heated to a melt viscosity bonded bone fixing needle.
  • the cooled bonding ball is hard but brittle and can be easily crushed by a surgical forceps.
  • Plastic materials can also be replaced with other rigid bonding materials such as ceramic or plexiglass, photosensitive gels, and the like.
  • the rigid plastic ball rigidly fixes the bone fixation needle in the power-assisted sleeve. After the front part of the needle tip of the bone fixation needle has been drilled into the bone tissue, the rigid plastic ball can be crushed by the surgical forceps to remove the power-assisted sleeve.
  • the rigid connecting device is a sleeve tightening nut, the sleeve tightening nut is provided with a tapered internal thread, and the end of the boosting sleeve is designed as a three-part trapezoidal flap, trapezoidal flap There are tight threads on the top. In the clinical surgical procedure, it is only necessary to loosen the casing tightening nut to unbind and remove the external power steering sleeve.
  • the surface of the bone fixation needle tip is smooth and sharp, the entire needle surface is smooth, and only the thread of the convex surface is provided at the root of the needle.
  • the bone fixation needle that wears the skin is reserved for a certain length, which facilitates the conformal shape-locking of the bone anchor after the bone fixation, facilitates the formation of the integrated external fixation frame, and greatly facilitates the external fixation after bone healing.
  • the removal of the frame and the non-opening of the bone fixation needle are non-invasive.
  • the bone fixation needle is threaded at the tip of the needle at the tip of the needle. This design facilitates direct insertion of the needle tip into the bone in an environment where the open bone trauma exposes the bone tissue, as well as implanting the bone matrix.
  • the tip segment portion can be firmly anchored to the bone tissue.
  • the present invention focuses on surgical fixation devices that break through the mouse calf bone fracture and the calf segmental bone defect model.
  • the cannulated ultra-fine-diameter bone fixation needle of the invention can be used not only for establishing an acute calf fracture of a transgenic mouse with human diseases, but also for an experimental model of an acute calf bone segmental bone defect, and can also be used for a certain disease
  • the cannulated ultra-fine-diameter bone fixation needle of the invention has strong operability in laboratory operations, and is suitable for professional populations of life science laboratories of general colleges and universities (laboratory technicians, students, non-medical background) ); wide indications (multi-type small animals); minimally invasive, no need to open the skin, do not exfoliate the periosteum (protect the bone wound segment of the blood, less separation of soft tissue and peeling the periosteum); the needle is fixed reliably, allowing the needle to be extended outside the body Conformal adjustment, locking to form an external fixation frame (after the animal can be active; promote healing); can change the fixed stiffness of the external fixation frame, eliminate the fixed stress shielding, increase the physiological stimulation (rigid fixation, flexible fixation); less complications, conducive to Postoperative observation; the process of removing the fixator is simple, and the complete pathological result can be collected; the price is low, and the cost performance is high.
  • the cannulated ultra-fine-diameter bone fixation needle of the present invention can realize the optimization of anchoring technology by using a multi-point bone fixation needle with a relatively small diameter, and the small bone and light external fixation structure to overcome the two inherent in the Kirschner wire. Obvious defects.
  • the present invention also has significant technical advantages over the clinical use of Kirschner wires.
  • the small diameter of the needle is fixed, which widens the applicable range of small bones, multi-slice small bones and multi-joint wound fixation;
  • the polished needle surface and the smooth three-blade tapered eccentric needle tip can be directly and easily percutaneously implanted, anchor It is fixed on the bone to avoid the damage of local nerves and extensor tendons;
  • the third is to drive the drill into the bone by means of a motor that is easy to insert and remove the bone fixation needle.
  • the needle can be placed and the needle can be grasped by one hand, and the bone is fixed by one hand.
  • the needle end root surface convex thread to ensure the firmness and stability of the fixed needle root after implantation into the bone
  • the bone fixation needle is sufficient length after the skin is worn, can be constructed freely
  • the fixed frame is flexibly matched with the external fixing frame connecting rod to lock the molding
  • the exposed needle outside the skin is extremely convenient for the non-invasive extraction of the fixed needle after the bone healing. Therefore, the clinical use of ultra-fine-diameter fixed needles and small external fixators can not only overcome the obvious defects inherent in Kirschner wire, but also simple and feasible implementation techniques to greatly improve the clinical fingers, toes, wrists, ankles, etc.
  • the external power-assisted sleeve helps the ultra-fine-diameter bone fixation needle with a diameter of only 0.3 mm to achieve percutaneous electric puncture anchoring to the bone, penetrating the hard bone tissue without bending, breaking through the current clinical minimum diameter of 0.8 mm Kline The application limit of the needle.
  • Ultra-fine bone fixation needles can be used for the calf fracture or segmental bone defect model of each type of mouse.
  • the transgenic mouse tibia its small size strictly limits the size of the puncture implantable bone fixation needle that can be used; and the ultra-fine diameter bone fixation of the present invention is easy for the tough and small mouse tibia electric drill to enter the bone, and It is efficient and reliable.
  • the ultra-fine-diameter fixed needle and the motor's plug-in embedded loading and electric drilling design make the needle-fixing needle easy to handle with one hand and hold the drill.
  • the surgeon can fix the contra-position fracture in the left hand, and the right hand-drilling puncture needle can realize the purpose of a surgeon can freely implant the fixation needle.
  • the operation is simple and convenient, the needles are saved in time and effort, and the self-fit is in place, and the needle fixing effect is better.
  • the jumping impact force generated by the rotation of the eccentric tip makes the bone drilling easier.
  • An eccentric tip with a sharp edge drill s into the bone to produce a rotational vibration with each rotation, and provides a high-efficiency impact drill with a needle swing or bounce, which greatly improves the drilling efficiency, thereby avoiding a significant increase in the temperature inside the bone during drilling. It avoids the high heat of the needle track caused by long-term inefficient rotary friction when the concentric tip needle is drilled into the bone. Therefore, in order to anchor the metal fixation needle to the bone and have a long-term close contact with the bone, it is necessary to minimize the excessive temperature generated by the fixed needle electric drilling and cause local acute blood supply insufficiency and osteocytosis. Sharp needle.
  • the convex thread on the surface of the needle at the proximal end of the bone fixation needle provides the anchoring force of the bone anchor after the bone fixation needle is anchored into the bone.
  • the combination of the base of the bone fixation needle is firm, which ensures the stability of the external fixation base.
  • the surface of the needle segment is smooth, which can reduce the friction during the puncture of the steel body through the relevant body tissues and avoid entanglement of the skin and muscles, and minimize the traumaticity of the penetrating bone needle.
  • the external fixation frame can be made small and light, ensuring the subsequent animal comfort of the bone fixation frame, reducing the weight bearing feeling of the post-operative animal activity recovery period, and facilitating post-operative healing and functional recovery.
  • the external fixation method of the ultra-fine diameter bone fixation needle can ensure that the bone part fixed by the anchor needle has more space as much as possible, which is beneficial to the interference-free observation of the dynamic X-ray film during the bone repair; the non-invasive extraction of the fine needle Out, can ensure the collection of pathological sample tissue integrity, to meet the laboratory research to obtain complete information on bone repair pathology.
  • the instrument and program for precise operation of the ultra-fine bone fixation needle and the conformal adjustment locking method of the fixed needle that penetrates the skin realize a complete and integrated external fixation structure, which overcomes two obvious defects inherent in the Kirschner wire and improves
  • the clinical environment cannot be widely used due to the lack of convenient instruments and methods.
  • This approach further promotes better bone regeneration, reconstruction and healing, supporting a wider range of applications, such as rigid and flexible external fixation of stress bone fractures, artificial biomaterials and cell repair techniques for segmental bone defects, including Acute segmental bone defects and chronic defects do not heal, and even the bone ends are closed, and chronic defects have developed into pseudo-articular formation.
  • more types of animals eg, mice, rats, rabbits or larger mammals
  • different characteristic animals eg, animals of any age
  • FIG. 1 is a schematic structural view of a cannulated ultra-fine-diameter bone fixation needle according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic view showing the overall unit structure of the sleeve type ultra-fine diameter bone fixing needle of the embodiment 1 connected to the motor;
  • Figure 3A is a cross-sectional view showing the cannulated ultra-fine bone fixing needle of the first embodiment
  • 3B is a schematic structural view of the built-in bone fixing needle of Embodiment 1;
  • 3C is a schematic partial enlarged structural view of the internal fixation needle of the embodiment 1;
  • FIG. 4A is a schematic structural view of a rigid connecting device of Embodiment 1;
  • Figure 4B is a schematic view showing the structure of the axial direction of the rigid connecting device shown in Figure 4A rotated 90;
  • Figure 5A is a transverse cross-sectional view of the rigid connecting device of Figure 4A;
  • Figure 5B is a cross-sectional view of the rigid connecting device of Figure 5A;
  • Figure 5C is a schematic view showing the structure of the rigid connecting device shown in Figure 5A rotated axially by 90°;
  • Figure 5D is a cross-sectional view of the rigid connecting device shown in Figure 5C;
  • FIG. 6A is a schematic structural view of a tapered eccentric needle tip of the bone fixation needle of Embodiment 1;
  • FIG. 6B is a schematic view showing the structure of the tapered eccentric needle tip shown in FIG. 6A in an axial rotation of 90°;
  • Figure 7A is a schematic transverse view of the tapered eccentric tip shown in Figure 6A;
  • Figure 7B is a schematic view showing the axial direction of the tapered eccentric needle tip of Figure 7A rotated by 180°;
  • Figure 7C is a schematic view showing the axial direction of the tapered eccentric needle tip of Figure 7A rotated 90°;
  • Figure 7D is a schematic longitudinal end front view of the tapered eccentric tip shown in Figure 7A;
  • Figure 8 is a schematic structural view of a cordless drive of Embodiment 2.
  • 9A is a schematic view showing the structure of the cannulated ultra-fine-diameter bone fixing needle of the second embodiment
  • FIG. 9B is a schematic view showing a B-type structure of a cannulated ultra-fine-diameter bone fixation needle according to Embodiment 2;
  • Figure 10A is a schematic structural view of a booster sleeve of Embodiment 2;
  • Figure 10B is a schematic view showing the structure of the distal end of the assisting sleeve of the embodiment 2;
  • 10C is a schematic structural view of the distal end tightening nut of the booster sleeve of Embodiment 2;
  • Figure 10D is a schematic structural view of the power assisting sleeve and the rigid connecting device of Embodiment 2;
  • FIG. 10E is a schematic view showing the structure of the A-shaped needle of the bone fixation needle of the embodiment 2; FIG.
  • Figure 10F is a schematic view showing the structure of the B-shaped needle of the bone fixation needle of the embodiment 2;
  • Figure 11 shows the hind limbs of a mouse placed in front of an animal orthopedic fixation device and shown with a positioning pinhole through the axilla.
  • Figure 12 shows the hind limbs of the mouse fixed by the positioning needle at the armpit and the elastic bandage cord at the claw and knee regions.
  • Figure 13 shows a mini cordless drive motor equipped with a cannulated bone fixation needle unit.
  • Figure 14 shows the mini-cordless drive motor driven with a cannulated bone fixation needle inserted into the distal tibia.
  • Figure 15 shows a cannulated bone fixation needle unit that has been inserted into the distal tibia, with the mini cordless drive motor removed.
  • Figure 16 shows that the detachable fixed ball has been removed to release the booster sleeve from the bone fixation needle portion.
  • Figure 17 shows that the bone fixation needle that has been detached from the booster sleeve has been inserted into the bone tissue and that the needle tip has penetrated the mouse tibia and that the threaded portion of the root fixation needle has not yet entered the bone.
  • Figure 18 shows that the threaded portion of the root end of the bone fixation needle has been fully anchored in the bone tissue after being pushed and pulled using a needle holder.
  • Figure 19 shows the three bone fixation needle threaded ends in place and anchored distal to the tibia.
  • Figure 20 shows that the three additional bone fixation needle thread ends are anchored proximal to the tibia.
  • Figure 21 shows the removal of the elastic bandage tying rope.
  • Figure 22 shows the removal of the armpit positioning fixation needle.
  • Figure 23 shows the hind limbs of a mouse removed from an animal orthopedic fixation device.
  • Figure 24 shows a 90° viewing angle of a hind limb of a mouse with an animal orthopedic fixation device removed.
  • Figure 25 shows that the outer segment of the bone fixation needle extending out of the skin has been curved into a frame towards the center.
  • Figure 26 shows that a photocurable flowable composite has been applied and then cured by an LED curing lamp.
  • Figure 27 is a view showing the application of the cannulated ultra-fine-diameter bone fixation needle in the treatment of segmental bone defect of the tibia in mice.
  • Figure 28 shows a schematic view of a surgical treatment of a mouse tibia fracture using a rigid external fixator.
  • Figure 29 shows a schematic view of a surgical treatment of a mouse tibia fracture using a flexible external fixator.
  • Fig. 30 is a view showing the application of the cannulated ultra-fine-diameter bone fixation needle of the present invention in the external fixation of the femoral segmental bone defect in mice.
  • Figure 31 is a view showing the application of the cannulated ultra-fine-diameter bone fixation needle in the external fixation of a clinical metacarpal fracture using the present invention.
  • the cannulated ultra-fine bone fixation needle 100 shown in FIGS. 1-7D includes a booster sleeve 116 and an ultra-fine-diameter fixation needle 102 built into the booster sleeve.
  • the bone fixation needle 102 has a diameter of 0.3 mm.
  • the bone fixation needle 102 is loaded in the booster sleeve 116, and is rigidly coupled by the clamp arm 118 at the distal end of the booster sleeve 116 and the detachable rigid plastic ball 120; the clamp arm 118 and the detachable rigid plastic ball 120 are bound to the bone
  • the fixed needle 102 and the booster sleeve 116 are rigidly integrated, and the length of the needle tip extending the assisting sleeve 116 of the bone limiting needle 102 is 6 mm to ensure that the protruding needle tip can have sufficient mechanical strength to meet the transcutaneous electric force.
  • the hardness requirements for drilling into the bone is 6 mm to ensure that the protruding needle tip can have sufficient mechanical strength to meet the transcutaneous electric force.
  • the booster sleeve 116 is divided into three main sections: a proximal adapter portion, a central sleeve portion, and a distal snap arm portion.
  • the booster sleeve 116 is both an easy to use vehicle and provides strength to the packaged ultra-fine bone fixation needle 102, enabling the operator to electrically drive the ultra-fine bone fixation needle 102 to a rigid object (eg, The animal is in the bone tissue of the example without bending or breaking.
  • the proximal sleeve 112 of the booster sleeve 116 and the adapter 124 connected to the rotor of the motor have a truncated cone shape, and the adapter 124 and the adapter 112 are plugged and connected.
  • the ultra-fine diameter bone fixation needle is embedded and coupled with the motor rotor.
  • the operator holds the motor handle 128 and the thumb control touch switch 126, so that the motor-driven tool can be used to implement the bone fixation needle percutaneous puncture self-tapping. bone.
  • the cylindrical power-assisted sleeve 116 has an inner diameter slightly larger than the diameter of the root segment thread 106 of the root-pinned needle surface of the bone-fixing needle 102 (for example, in this embodiment, the power-assisted sleeve is 22G gauge.
  • the needle can be fixed according to the bone. Diameter selection is different).
  • the booster sleeve 116 almost covers 4/5 of the bone fixation needle 102 while leaving a space between the two (which can be filled with air).
  • the booster sleeve 116 is provided with a snap-on gripping arm 118 at its distal end.
  • the distal end of the booster sleeve extends forwardly from the arms to transition to the gripping arm 118, and the extended gripping arm 118 is self-receiving and inwardly forming a protruding gripping arm, and the rigid plastic ball 120 is fixed to the gripping arm In the formed enclosed space, see Figures 4A, 4B, 5A, 5B, 5C, 5D.
  • the rigid attachment means for temporarily binding the bone fixation pin 102 may employ other structures such as metal ring snaps or spiral fasteners in addition to the rigid plastic ball 120.
  • the clamping arm 118 and the rigid plastic ball 120 provide a rigid connection that prevents the bone fixation needle 102 from sliding, and the bone fixation needle 102 can be adhered to the boost sleeve 116.
  • the rigid plastic ball 120 defines the length of the bone fixation needle 102 extending only outside the power assist sleeve 116 and the clamp arm 118 by 6 mm (the length can be adjusted according to the diameter of the bone fixation needle and the bone portion), ensuring that the bone fixation needle 102 has sufficient The strength is to penetrate the bone tissue without bending or breaking.
  • the removable rigid plastic ball 120 is formed of a rigid but brittle material (which may be a rigid plastic, ceramic, plexiglass or photosensitive gel, etc.). After the needle tip portion of the bone fixation needle 102 penetrates the bone tissue, the rigid plastic ball 120 can be squeezed and cracked by using a tool such as a nose clamp, and the clamp arm 118 at the end of the booster sleeve is completely opened. The bone fixation needle 102 is disengaged from the booster sleeve 116, and the bone fixation needle 102 is screwed into the bone tissue under the action of the round shank needle pusher push and pull.
  • the clamping arm 118 has a certain extension and is bent into a convex shape to clamp the rigid plastic ball 120 for the purpose of: 1.
  • the protruding rigid plastic ball 120 can also be used as a stop stop mark when the bone is inserted into the needle to help the operator to measure the distance that the bone fixation needle penetrates into the bone.
  • the bone fixation needle 102 can be made in a variety of diameters to meet clinical requirements.
  • the 30G specification is used in this embodiment, but can be smaller or larger.
  • the needle can be made of stainless steel hardened metal or titanium nickel alloy.
  • the bone fixation needle 102 has a smooth outer surface from the distal tip to the end of the thread to help ensure that the needle more easily enters the bone tissue while avoiding the entanglement of nearby skin and muscle.
  • a root segment thread 106 is provided at the proximal end of the bone fixation needle, and the root segment has a convex surface to keep the bone fixation needle firmly fixed in the bone tissue, and even if the animal has sufficient movement after the operation, it is not easy to loosen.
  • the needle tip of the bone fixation needle 102 is a tapered asymmetric triangular edge eccentric tip.
  • the eccentric tip 104 is composed of two equal large tapered faces and a small 1/3 small tapered face, respectively a needle tip large tapered surface 104a, a large tip tapered surface 104b and a small tip tapered surface 104c, which are formed. Sharp edges that are opposite each other.
  • the plurality of unequal flat tapered surfaces form a sharp triangular edge eccentric tip of unequal center, as shown in Fig. 7D, the eccentricity of the needle tip is 70%, and the electric drill bone produces a measurable swing during the recurring travel of each cycle. Or bounce, resulting in greater impact, helping the edge of the triangular blade to provide more powerful cutting force per rotation while reducing frictional overheating by creating more oscillating clearance.
  • the rigid joint device rigid plastic ball 120
  • the booster sleeve 116 is removed, and finally the special round handle is held.
  • the needle pliers are pushed and screwed to the root segment of the bone fixation needle to thread into the anchoring bone matrix.
  • the Type II cannulated ultra-fine bone fixation needle shown in Figures 8-10 includes a Type II needle cannula 214 and a built-in Type II needle 202.
  • the Type II needle 202 has a diameter of 0.5 mm.
  • the type II needle cannula 214 is provided with a type II needle adapter 212 connected to the rotor of the drive motor.
  • the type II needle adapter is in the shape of a hexagonal prism, and the type II of the cordless motor.
  • the needle adapter chambers 210 are matched.
  • the Type II needle 202 is loaded into the Type II needle cannula 214 and is rigidly coupled to the cannula tightening nut 218 at the distal end of the Type II needle cannula 214.
  • the distal port of the II-type needle cannula 214 is divided into three equal parts and is extended by a trapezoidal valve.
  • the three trapezoidal petals are provided with a casing tightening thread 216.
  • the built-in type II needle 202 is fixedly locked, and also functions as the rigidity in the first embodiment of the present invention.
  • bone fixation needles are available in a variety of styles (you can also set a raised thread in the middle of the fixed needle or a thread on the body).
  • a type II needle tip thread 208 is provided at the tip end of the needle end of the bone fixation needle.
  • This embodiment is for explaining the use method and flow of the cannulated ultra-fine bone fixation needle of the present invention in the external fixation of the mouse tibia.
  • Figure 11-30 shows a schematic diagram of a mouse tibiofemoral external fixation model using the cannulated ultra-fine bone fixation needle of the present invention.
  • the mouse is fixed to the orthopedic fixation device 300, the hind limbs of the mouse are placed in the standard position in front of the animal orthopedic positioning fixture 302, and the positioning needle is shown with a needle that can be positioned through the anatomic position of the armpit. Hole 304.
  • the hind limbs of the mouse are positioned on the animal orthopedic fixation device and are positioned by the 25G syringe needle as a positioning needle 306 through the positioning pinhole 304 through the axillary anatomical position, with the claw and knee regions being positioned. It is fixed by an elastic bandage cord 308.
  • FIG. 13 it is a mini cordless drive motor 122 equipped with a cannulated ultra-fine bone fixation needle unit 100.
  • the bone fixation needle is driven into the distal tibia with a mini cordless drive motor.
  • the operator holds the motor handle 128 and the thumb controls the touch switch 126, so that the drive motor 122 can be conveniently used to perform the bone fixation needle percutaneous puncture and self-tapping into the bone.
  • the cannulated ultra-fine bone fixation needle 100 that has penetrated the distal tibia has been removed from the mini-cordless drive motor.
  • the detachable rigid plastic ball 120 has been removed and the booster sleeve 116 has been partially removed from the bone fixation needle 102.
  • the bone fixation needle 102 which has been detached from the booster sleeve, has been inserted into the bone tissue and the needle tip has penetrated the mouse tibia, and the root end of the bone fixation needle reveals the root thread 106.
  • the root end thread 106 portion of the bone fixation needle is completely anchored in the bone tissue, and the front portion of the bone fixation needle 102 has been worn out of the skin.
  • the ends of the three consecutive bone fixation needles are in place and anchored to the distal section of the tibia.
  • the other three bone fixation needle thread ends are anchored in the proximal section of the tibia.
  • the six bone fixation needles were anchored in place and the elastic bandage tying cord was removed.
  • the syringe needle for positioning the axilla is removed.
  • FIG. 23 the hind limbs of the mouse anchored with six bone fixation needles after removal of the orthopedic fixation device 300 are shown.
  • the position of the hind limb of the mouse anchored with the six bone fixation needles of the animal orthopedic fixation device 300 was rotated by a 90° angle of view.
  • the distal ends of the six bone fixation needles that have protruded from the skin have been bent and framed toward the middle portion of the mouse tibia using a bending forceps to form a base shape of the external fixation frame of the tibia.
  • Fig. 26 it is a rigid external bone mount which has been applied with a photo-curable flowable composite 310 on a bridge-shaped connecting frame formed by six bone-fixing needles and then solidified by an LED curing lamp.
  • FIG. 27 it is a schematic diagram of the external fixation of the segmental bone defect of the mouse.
  • Six bone fixation needles penetrate the mouse tibia and anchor the roots in place; the outer segments of the anchor fixation needles of the anchors are bent parallel to each other toward the center of the tibia; to form six needles and shoulder bridges; the bridge is coated with a light-curable flowable composite material. Filling; composite material is cured by LED lamp; 3.5mm segment defect is removed; bone defect is implanted with artificial material inoculated with cells; after several weeks, the solidified part of the external fixator is close to the solidified body and the fixed needle is removed. Remove; then remove all remaining bone fixation needles.
  • FIG. 28 it is a schematic view of a mouse tibia fracture using the cannulated ultra-fine bone fixation needle rigid external fixation frame of the first embodiment of the present invention.
  • Six needles penetrate the mouse tibia; the outer segments of each of the three needles are bent parallel to the center to form a shoulder bridge; the humeral fracture is generated by the broken bone device; the bridge is filled with the light-curable flowable composite material; the LED light for the composite material Curing; after a few weeks the cured portion of the outer holder is removed after the needle is severed; then all remaining stitches are removed.
  • FIG. 29 it is a schematic view of a mouse tibia fracture using the cannulated ultra-fine bone fixation needle flexible external fixation frame of the first embodiment of the present invention.
  • Six needles penetrate the mouse tibia; three distal needles and three proximal needles are respectively bent in parallel with each other with three needles at their respective ends to form two end clusters; each of them is coated with a photocurable flowable
  • the composite material is cured by LED lamp; two elastic pins are placed and two clusters are respectively connected, and the light-curable flowable composite material is respectively connected to each of the left end and the right end of the solidified two ends; the right elastic pin is used for connecting two The right end of the cluster, but only the proximal end is temporarily cured; the left elastic pin is used to connect the left end of the two clusters, but only the distal end is temporarily solidified; the two elastic pins are placed in parallel with the cement as a complete bone fracture.
  • FIG. 30 it is a schematic diagram of the external fixation of the femoral segmental bone defect in mice.
  • Six needles penetrate the mouse femur; the outer segments of the anchor needle are bent parallel to each other toward the center; to form a six-pin shoulder bridge; the bridge is coated with a light-curable flowable composite; the composite is cured with an LED lamp;
  • the segmental defect is deboned; the bone defect is implanted with artificial material inoculated with cells; after a few weeks, the solidified portion of the external fixator is removed after the needle is severed; then all remaining fixed pins are removed.
  • FIG. 31 it is a schematic diagram of a clinical external fixation of the metacarpal fracture using the cannulated ultra-fine bone fixation needle of the embodiment 2 of the present invention.
  • Six type II needles 202 penetrate the anchoring metacarpal and phalanx respectively; through the percutaneous puncture of the proximal and distal heart fractures at 404 of the metacarpal fracture, the steel needle is anchored; the outer segment of the anchor needle is fixed and clamped with a universal clamp 402
  • the crossbars 406 are connected and fixed to each other to form an integrated external fixator; the connecting rod fixing clip device is used to adjust the fracture stress alignment, and the external fixation of the multi-joint bone fracture integrated with the multi-needle stress combination and the external fixator is completed. purpose.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Dentistry (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgical Instruments (AREA)

Abstract

一种套管式超细径骨固定针(100),包括助力套管(116、214)和内置于助力套管(116、214)内的超细径骨固定针(102、202),助力套管(116、214)一端设有与驱动电机(122)转子连接的适配座(112、212),另一端设有可拆卸的刚性连接装置,助力套管(116、214)与骨固定针(102、202)通过刚性连接装置相固定,刚性连接装置限制骨固定针(102、202)的针尖端(104)伸出助力套管(116、214)一定长度。启动电机(122)即可实现电动骨固定针(100)经皮自攻钻进入骨,待伸出助力套管(116、214)的骨固定针(102、202)针尖端(104)刺穿目标骨后,拆除助力套管(116、214)远端的刚性连接装置,将骨固定针(102、202)上的助力套管(116、214)移除;最后通过持针钳旋拉至骨固定针(102、202)尾部螺纹段(106)旋入锚定骨基质。实现了小动物骨折及骨缺损模型及临床手足等特定部位小骨骼骨折固定经皮穿刺锚针的可行性,且方法简便,节时高效,手术创伤小,锚针稳定可靠。

Description

套管式超细径骨固定针 技术领域
本发明涉及一种医疗器械,具体是为建立实验动物骨折及节段性骨缺损模型,以及临床医学手足等特定部位骨折骨缺损医疗修复目的,发明的一种专门针对实验室小动物细小应力骨及临床手、脚、腕、踝等小骨骼多关节肌腱神经密集部位骨环境实施骨固定技术的专用手术器械。
背景技术
骨折和骨缺损的骨外固定技术广泛用于整形外科及骨创伤修复手术中。然而,在针对人类生命科学的骨基础学科的研究中,实验室小动物骨科手术,例如对小鼠进行的小腿胫骨外固定手术,由于缺乏适用于细小胫骨环境使用的骨固定器械而受到限制。这直接导致了难有研究人员能够使用骨外固定手段成功完成小鼠胫骨骨折和节段性骨缺损模型(急性或慢性)的固定手术;也严重限制了医学研究人员尝试使用人源化转基因小鼠胫骨骨折和节段性骨缺损医学模型实施骨研究的能力。
随着生物学性状限定的基因工程动物的建立及模拟人类疾患的重要临床前动物医学模型技术的进步,应用人源化转基因小鼠模型进行“针对性”骨生物工程研究和临床骨修复医学研究发挥着越来越重要的作用。然而传统的骨科钢板螺钉或克氏针临床骨骼固定方法,应用在小动物模拟临床好发的应力骨骨折或节段性骨缺损模型的骨固定技术上手术不易操作成功;特别是寄于厚望的模拟临床小腿骨骨科外固定技术,因缺乏可靠的手术固定专用器械,多年来难于拿出在转基因小鼠胫骨固定模型上标准化和重复性的实验结果。
因为转基因小鼠体积过小,小鼠小腿骨骨折骨缺损手术使用的材料和方法的缺陷,使得手术的难度极高,阻碍了该项技术的实际应用开展,限制了该项动物实验模型本应该发挥的潜能。所以,突破小鼠胫骨骨折外固定技术是对医学科研人员的一个重大技术挑战。
小鼠胫骨的小尺寸严格限制了骨科外固定技术可以使用的骨固定穿刺植入针的规格尺寸;此外,又需从科研角度考虑使用最小和最轻的骨固定针,有利于最小化骨组织损伤并小鼠身上轻松自如的外固定架有利于术后健康恢复。然而,目前实验室面对的实际情况是,胫骨的坚韧性意味着较小的针(例如,30G规格,直径0.30mm),在钻进骨组织时可能弯曲或无力而无法钻进入骨。因此,不得不冒着对于细小的胫骨骨穿刺可能引起的医源性骨折危险,被迫使用更大更强的骨穿刺针;即使是这样,也常常出现钻骨时针尖折弯的情况,只能替换一个新的穿刺针继续再钻,往往需要接连几根针才能完成钻进刺透;这种办法也通常只能在骨组织还不是很坚韧的幼年动物上操作。另外,因为穿刺针太细,仅限于小心翼翼地手控钻进穿骨,而不能够利用电机驱动。重复多针的耗时手动钻骨穿针,增加了手术创伤及感染几率;这种方法极易穿针失败,发生医源性骨折,或植入针松动;最后,这种手术需要训练有素的高技能专业人员操作,往往需要投入大量培训学习时间,均大大增加了动物实验的总体成本。
同样,在临床医学用于手、足、腕、踝等部位的张力带和应力骨骨折复位及骨缺损修复的固定手术中,由于这些位置的骨骼较小,肌腱神经分布密集,传统的钢板和螺钉内固定技术手术创伤大,在特定时间内保持较小骨块或骨碎片稳定性差,固定中损伤局部神经和伸肌腱的机率高;影响手术固定效果,且功能锻炼时间延迟,特别骨骼愈合后,需再次实施开皮侵入手术取出金属固定件。这些缺陷一并导致了手脚腕踝骨创伤修复专业技术要求更加严格,耗时和昂贵。
相对于骨科传统的钢板和螺钉,克氏针以其较小的尺寸和侵入性小为优点,而广泛应用于手、脚、腕、踝等小骨骼多关节肌腱神经密布部位的创伤外科。如克氏针可以无需开皮切口, 直接经皮进针锚骨固定,减少局部神经和伸肌腱损伤机会;也减少了手术操作时间;同时也实现了骨愈合后固定针的无创拔出。然而,克氏针使用存在着两个明显的并发症,即克氏针的尾端突起对周围的软组织激惹和克氏针移位。另外,在实际操作应用上目前可以做到的电动钻进入骨克氏针的最小直径为0.8mm,再小直径会使得针体过细电动工具夹持不易,或针体过软易弯而无法电动钻进入骨。所以,传统克氏针锚针固定方式,尾端突出导致的软组织激惹和易产生滑动引起退针的弊端,限制着克氏针技术在临床骨固定领域的广泛应用。
另外还需要补充的是,手部骨折的对位要求很高,对位稍有偏差,愈合时间就大大延长,这对手的功能恢复极为不利;固定到位,术后可以早期锻炼,便于功能恢复。手部骨折固定针的粗细,对手部骨折的对位影响很大,过粗的固定针会使应力增加但易造成医源性骨折而降低骨强度;更好的办法是选择更细的固定针,增加每个主要骨折端上的固定针数目可降低个体针-骨界面的应力,以保证骨折的对位和强度,有利于骨骼愈合所需的时间段内保持骨折对位稳定。所以提倡多点细针固定,尽量早拔针,因为手指的功能锻炼对骨折恢复非常重要。
针对上述技术问题,需要有新的技术发明来实现改进。
发明内容
为了克服现有技术中的缺陷,本发明提供了一种结构简单,方便实用,能够解决细小骨骼骨外固定的手术器械,可将实验室难以实施的模拟临床好发部位的应力骨骨折和节段性骨缺损的小动物模型的外固定手术技术,或临床医学手、脚、腕、踝等小骨骼创伤救治的高难度手术固定技术,变为一般实验室技术人员和一般临床骨科医生可以常规驾驭开展的手术。
为实现上述技术目的,本发明采用了以下技术方案:
套管式超细径骨固定针,其特征在于,所述套管式超细径骨固定针包括助力套管和内置于助力套管内的超细径骨固定针,助力套管一端设有与驱动电机转子连接的适配座,另一端设有可拆卸的刚性连接装置,助力套管与骨固定针通过刚性连接装置相固定,刚性连接装置限制骨固定针的针尖端伸出助力套管一定长度。
与驱动电机转子连接的适配座采用插拔嵌入式耦合连接可以方便地连接外部电机,使助力套管与电机转子一起转动。助力套管与骨固定针通过刚性连接装置相固定,可使助力套管在转动时带动骨固定针一起旋转。骨固定针伸出助力套管的长度只需保证伸出的针尖段具有足够的机械强度,在能够穿透目标骨的前提下该长度应尽可能短,启动电机后即可实现电动骨固定针经皮自攻钻进入骨。待伸出助力套管的骨固定针针尖段刺穿目标骨后,拆除助力套管远端的刚性连接装置,将骨固定针上的助力套管移除,最后通过持针钳推送及旋拉至骨固定针尾部螺纹段旋入锚定骨基质。
本发明以外部助力套管与内置骨固定针的组合保证了超细径骨固定针可实现电机驱动下经皮钻进自攻入骨;首先骨固定针针尖段钻进穿骨后,拆除助力套管远端用于固定骨固定针的刚性连接装置,再移除整个外部助力套管;将骨固定针根部旋拉进骨完成固定针的定点锚针;最后在至少四个以上的骨固定针锚定于骨后,将伸出皮外的所有骨固定针适型连接锁定,形成以多根锚植于骨的骨固定针为基础的骨外固定支架。因此,本发明辅以不同直径的骨固定针设计,不仅可以实现现代医学研究实验室转基因小动物细小骨骼骨折和节段性骨缺损模型的手术固定,而且可以胜任临床医学手、脚、腕、踝骨创伤手术的骨科手术固定技术,优化实施多发性骨折、骨折不愈合、伴主要血管神经损伤的骨折、骨骼延长、骨或软组织缺损畸形、关节融合术等多部位小骨骼固定手术,做到尽量早拔针,尽早进行骨折恢复或骨缺损修复的功能恢复的应力锻炼。
作为本发明的一种优选方案,所述骨固定针直径小于0.8mm(例如,在一个实施例中为0.3mm)。超细径骨固定针被内置于助力套管中,与设于助力套管远端的可拆卸刚性连接装置连接,外部助力套管装载包裹了大部分段的超细径骨固定针,在穿透骨组织的初始阶段助力套管 具有支撑硬化骨穿刺针的作用;同时刚性连接装置也锁定限制着内置骨固定针暴露伸出助力套管的长度(例如,在一个实施例中为6mm),伸出的限定长度确保了超细直径的骨固定针针尖段在电动驱动模式下具有钻进穿透坚硬动物骨组织的强度而避免弯曲。骨固定针的针尖端伸出助力套管长度可根据需穿透目标骨的厚度和骨固定针的直径来确定。
作为本发明的一种优选方案,所述助力套管近端设有连接电机转轴的连接基座(即适配座),所述适配座优选为空心圆台形状。在实施套管式超细径骨固定针钻骨时,适配座与圆台形电机转子采用插拔嵌入方式耦合连接,即可将超细径骨固定针单元便捷地连接上马达装置,实现骨固定针电机驱动旋转下经皮钻进入骨。
作为本发明的一种优选方案,所述骨固定针的针尖可以是三刃锥形同心尖(即中心针尖)或三刃锥形偏心针尖(即不对称锥面三刃偏心针尖)。锥形偏心针尖可以由三个不相等的锥面制成,这种由不对称三角锥刃锋利边缘所形的偏心针尖,在针尖旋转行进中可以周而复始向前行骨组织界面产生震动,每次旋转都以针尖的弹跳或摆动提供更强大的冲击切割,可以大大提高骨固定针经皮钻进入骨的效率。
作为本发明的一种优选方案,助力套管远端设有可以方便拆卸的刚性连接装置,该刚性连接装置具有刚性连结内置骨固定针的锁定功能,可实现助力套管与骨固定针的临时绑定,允许手术操作者在骨固定针初始穿透骨组织后容易地拆卸该装置。在一个实施例中,所述刚性连接装置为刚性塑胶球,助力套管端部设有夹持臂,刚性塑胶球被围合于夹持臂中,骨固定针从刚性塑胶球中心穿过,骨固定针与刚性塑胶球粘结在一起。本发明所指的刚性塑胶球是指由刚性塑胶材料加温到熔融粘度粘结骨固定针形成的粘结球,冷却后的粘结球坚硬但质脆,可以轻易被手术钳夹碎。塑胶材料也可以采用其他刚性粘结材料替换,例如陶瓷或者有机玻璃、光敏凝胶等。刚性塑胶球将骨固定针刚性地固定在助力套管内,待骨固定针针尖前段已经钻进穿透骨组织后,既可以用手术钳夹碎刚性塑胶球,从而将助力套管移除,以允许释放的内置骨固定针完全植入锚定于骨;另外,使用突出的刚性塑胶球为手术操作者提供方便的钻进可视刻度。在另一个实施例中,所述刚性连接装置为套管紧箍螺帽,套管紧箍螺帽内设有锥形内螺纹,助力套管端部设计成三等分的梯形瓣,梯形瓣上设有紧箍螺纹。在临床手术程序中,仅需要旋松套管紧箍螺帽即可解除绑定,移除外部助力套管。
作为本发明的一种优选方案,所述骨固定针针尖表面光洁锋利,整个针体表面光滑,仅在针的根部设有凸出表面的螺纹。在经皮电动钻骨穿刺骨固定针时,能够减少旋转进针与皮肤及周围组织的摩擦和缠结,并确保骨固定针前段穿透骨组织时不破坏进骨针孔的紧张力,使其尾端根部凸起的螺纹能够牢固锚定于骨组织,最终保证外固定架固定的基础牢固稳定。骨固定针锚定目标骨后针体穿出滞留皮外。穿出皮肤的骨固定针预留一定长度,可方便多根骨固定针锚骨后的适形调形锁定,方便完成一体化的外固定架形成,同时也极大方便了骨愈合后外固定架的拆除和骨固定针的不开皮无创拔出。在一个实施例中,骨固定针在针体前端针尖处设有螺纹,这种设计以方便在开放性骨创伤暴露骨组织的环境下,针尖部直接钻进入骨,同样使得植入骨基质的针尖段部分能够牢固锚定于骨组织。
对于一般医学研究实验室,本发明着重突破小鼠小腿骨骨折及小腿骨节段性骨缺损模型的手术固定器械。本发明的套管式超细径骨固定针不仅可以用于建立有人类疾患的转基因小鼠的急性小腿骨骨折及急性小腿骨节段性骨缺损模型的实验研究,而且还可以用于以某病种为特征的慢性骨折骨不连接和慢性节段性骨缺损骨不修复的“个性化”基础医学研究;另外,还能用于针对特定病因病种实验动物骨折固定模型的刚性固定和柔性固定的临床比较医学研究。
对于实验医学,本发明套管式超细径骨固定针在实验室手术中可操作性强,适用于一般高等院校生命科学实验室专业人群(实验室技术人员、学生、可无学医背景);适应症广(多型小动物);微创,不用开皮、不剥脱骨膜(保护骨创伤段血运,少分离软组织和剥离骨膜);植针固定可靠,容许伸出体外固定针的适形调整,锁定形成外固定架(术后动物即可活动;促进愈 合);可改变外固定架固定刚度,消除固定应力遮挡,增加生理刺激(刚性固定、柔性固定);并发症少,利于术后观察;去除固定架过程简单,可收取完整的病理结果;价格低廉,性价比高。
对于临床医学,本发明套管式超细径骨固定针,可以实现选用较细直径的多点骨固定针优化锚定技术,小骨骼轻巧外固定架结构,以克服克氏针固有的两个明显缺陷。与克氏针的临床使用相比较,本发明也具有明显的技术优势。首先固定针小直径,拓宽了小骨骼、多碎片小骨、多关节创伤固定的可应用范围;二是抛光的针面及光洁的三刃锥形偏心针尖可直接轻松经皮穿骨植入,锚定于骨骼,避免了局部神经和伸肌腱的损伤;三是借助极易插拔装载骨固定针的电机驱动钻进入骨,手术时可以独自一手装针并握钻进针,一手对位固定骨骼而实现高效准确小骨骼对位穿针固定;四是针末端根部表面凸起螺纹,保证固定针根部植入骨后的牢固稳定;五是骨固定针穿皮后足够长度,可任意适型构建外固定框架,或灵活配合外固定架连接杆锁定成型;第六,露出皮外的固定针极为方便了骨性愈合后固定针的无创拔出。因此,超细径骨固定针及小型外固定架的临床使用,不仅可以克服克氏针固有的明显缺陷,而且简单可行的实施技术还极大的提升临床手指、脚趾、腕部、踝部等急慢性多范围骨创伤的手术处理能力和优化小骨骼多关节部位骨创伤的医学救治措施。
本发明具有以下有益效果:
1、有效减小了骨固定针的直径。外部助力套管帮助了直径仅有0.3毫米的超细径骨固定针能够实现经皮电动穿刺锚定于骨骼,穿透坚硬的骨组织而不出现弯曲,突破了目前临床最小直径0.8mm克氏针的应用极限。超细径骨固定针可以胜任各型小鼠的小腿骨骨折或节段性骨缺损模型。例如转基因小鼠胫骨,它的小尺寸严格限制了可以使用的穿刺植入骨固定针的规格尺寸;而本发明超细径骨固定针对应坚韧细小的小鼠胫骨电动钻进入骨轻松自如,且做到了高效可靠。
2、简化手术操作者的外科手术程序。超细径骨固定针与电机的插拔式嵌入装载及电动钻进设计,使穿刺骨固定针可以轻松单手装针和持钻操作。实施手术时,术者可以左手固定对位骨折处,右手持钻穿刺进针,实现了一名术者即能自如植入固定针的目的。既做到了操作简单方便,植针省时省力,又做到了自行配合到位,植针固定效果更好。
3、偏心针尖旋转产生的跳跃冲击力使钻骨更容易。具有锋利边缘的偏心尖针头钻进入骨每次旋转可以产生旋转震动,以针尖的摆动或弹跳提供高效冲击钻骨,大大提高了钻孔效率,从而避免了钻孔时骨内温度明显升高。避免了同心尖针头钻进入骨时因长时低效的旋转摩擦而产生的针道高热。所以,为了金属固定针锚定入骨后能与骨骼具有长时间的紧密接触,需尽量减少固定针电动钻进产生的过高温度而引起局部急性血供不全和骨细胞减少,应尽可能采用偏尖针头。
4、骨固定针近端根部隆出针表面的凸起螺纹提供了骨固定针锚定入骨后的骨骼锚牵力。骨固定针根部的结合牢固,保证了骨外固定架基础的稳定性。针体段表面光滑,可减少钢针穿刺经过相关机体组织过程中的摩擦并避免缠绕皮肤和肌肉,并使穿透的骨针道创伤性可以最小,随着固定针螺纹段锚入针道后,固定针不太可能松动,确保了植入的固定针牢固地保留在骨组织内,防止在骨内滑动,即使在动物运动充足的情况下也是如此。
5、最大限度地减少骨组织的直接创伤。使用最小和最轻的钢针可以最小化骨组织损伤,越小直径针对骨组织创伤越小,有利于手术创伤迅速恢复。另外,做成的外固定架可以很小很轻,保证骨固定架随后的动物舒适性,减少术后动物活动恢复期的负重感,有利于手术后愈合和功能恢复。
6、超细径骨固定针的外固定方式,能够保证被锚针固定的骨骼部位尽可能留有更多空间,有利于骨修复期间动态X线拍片的无干扰观察;细针的无创伤拔出,能保证收取病理样品组织完整性,满足实验室研究取得骨修复病理切片完整信息的要求。
7、光滑针体及光洁锋利的锥形偏心针尖直接经皮穿骨植入的细径针外固定不会损伤肌腱和神经,可以满足临床手脚骨创伤手术后较早的活动锻炼,促进功能恢复的要求。辅以优化技术的骨固定针实施方法,加强了临床的应用地位,并提高手脚创伤和整形外科临床环境中骨愈合修复效果。
8、进一步改善骨修复效果。可以精确操作的超细径骨固定针的器械和程序,及穿出皮肤的固定针适形调整锁定方式,实现完整一体的外固定架结构,克服了克氏针固有的两个明显缺陷,改善了临床环境由于缺乏便捷器械和方法而不能广泛应用骨固定针的限制。通过这一方式进一步促进更好的骨再生、重建和愈合,支持更多种应用程序,如应力骨骨折的刚性和柔性外固定,节段性骨缺损的人工生物材料与细胞的修复技术,包括急性节段性骨缺损和慢性缺损不愈合,甚至骨骼末端封闭、已发展成假关节形成的慢性缺损。同时,支持更多种类的动物(例如,小鼠,大鼠,兔或更大的哺乳动物)或不同特征动物(例如,任何年龄的动物)。
9、进一步提高了手术效率。除了使用更细小的针,非手术开皮环境的经皮钻骨穿刺操作,电动初始经皮对位到钻骨一步穿透,极大的方便了实验室小动物骨固定的手术实施,也方便了临床骨科急救及门诊医生的手术实施。它的节时,高效,省钱,不仅是实验室动物手术工作者追求的技术,同时,也实为对病人带来利益的一种外科手术器械。
附图说明
图1是本发明实施例1套管式超细径骨固定针结构示意图;
图2是实施例1套管式超细径骨固定针与电机相连的整体单元结构示意图;
图3A是实施例1套管式超细径骨固定针剖视图;
图3B是实施例1内置骨固定针结构示意图;
图3C是实施例1内置骨固定针局部放大结构示意图;
图4A是实施例1刚性连接装置结构示意图;
图4B是图4A所示刚性连接装置轴向转动90°视角结构示意图;
图5A是图4A所示刚性连接装置横向剖视图;
图5B是图5A所示刚性连接装置横截面剖视图;
图5C是图5A所示刚性连接装置轴向转动90°视角结构示意图;
图5D是图5C所示刚性连接装置横截面剖视图;
图6A是实施例1骨固定针的锥形偏心针尖结构示意图;
图6B是图6A所示锥形偏心针尖轴向转动90°视角结构示意图;
图7A是图6A所示锥形偏心针尖横向示意图;
图7B是图7A所示锥形偏心针尖轴向转动180°视角示意图;
图7C是图7A所示锥形偏心针尖轴向转动90°视角示意图;
图7D是图7A所示锥形偏心针尖纵向前端面示意图;
图8是实施例2无绳驱动器结构示意图;
图9A是实施例2套管式超细径骨固定针A型结构示意图;
图9B是实施例2套管式超细径骨固定针B型结构示意图;
图10A是实施例2助力套管结构示意图;
图10B是实施例2助力套管远端紧箍螺纹结构示意图;
图10C是实施例2助力套管远端紧箍螺帽结构示意图;
图10D是实施例2助力套管和刚性连接装置结构示意图;
图10E是实施例2内置骨固定针A型针结构示意图;
图10F是实施例2内置骨固定针B型针结构示意图;
图11示出了放置在动物骨外科固定装置前面的小鼠后肢,并且示出有通过腘窝处的定位针 孔。
图12示出了小鼠后肢,通过腘窝处的定位针和其爪和膝部区域处的弹性绷带绳固定。
图13示出了配备有套管骨固定针单元的迷你无绳驱动电机。
图14示出了迷你无绳驱动电机驱动带有的套管骨固定针刺入到远端胫骨中。
图15示出了已经穿入远端胫骨的套管骨固定针单元,其中移除了迷你无绳驱动电机。
图16示出了可拆卸的固定球已经被拆除,从而将助力套管从骨固定针部分释放。
图17示出了脱离了助力套管的骨固定针已经插入骨组织中,并且针尖已经穿透小鼠胫骨,骨固定针根端螺纹部分尚未入骨。
图18示出了使用持针钳推送及旋拉后骨固定针根端螺纹部分已完全锚定在骨组织中的。
图19示出了三个骨固定针螺纹端部就位并且锚定于胫骨远侧。
图20示出了三个另外的骨固定针螺纹端部锚定就位于胫骨近侧。
图21示出了移除弹性绷带捆扎绳。
图22示出了移除腘窝定位固定针。
图23示出了移除动物骨外科固定装置的小鼠后肢。
图24示出了移除动物骨外科固定装置的小鼠后肢转动90°视角。
图25示出了伸出皮肤的骨固定针外段已经朝向中心弯曲成框架。
图26示出了已经施加有光固化可流动复合物,而后被LED固化灯固化成形。
图27示出了使用本发明套管式超细径骨固定针在小鼠胫骨节段性骨缺损骨外固定手术中的应用示意图。
图28示出了使用刚性外固定架的小鼠胫骨骨折手术示意图。
图29示出了使用柔性外固定架的小鼠胫骨骨折手术示意图。
图30示出了使用本发明套管式超细径骨固定针在小鼠股骨节段性骨缺损骨外固定手术中的应用示意图。
图31示出了使用本发明套管式超细径骨固定针在临床手掌骨骨折外固定手术中的应用示意图。
附图标记:套管式超细径骨固定针100,骨固定针102,偏心针尖104,针尖大锥形面104a/b,针尖小锥形面104c,根段螺纹106,适配座112,陶瓷结节114,助力套管116,夹持臂118,刚性塑胶球120,适配头124,驱动电机122,触键开关126,电机握柄128,Ⅱ型无绳驱动电机200,Ⅱ型针202,Ⅱ型针针尖螺纹208,Ⅱ型针适配腔210,Ⅱ型针适配座212,Ⅱ型针套管214,套管紧箍螺纹216,套管紧箍螺帽218,锥形内螺纹220,骨外科固定装置300,骨外科定位夹具302,定位针孔304,定位针306,弹性绷带绳308,光固化可流动复合材料310,骨外固定架400,万向固定夹402,掌骨骨折404,固定架横杆406。
具体实施方式
下面结合附图对本发明套管式超细径骨固定针作详细说明。
实施例1
如图1-7D所示的套管式超细径骨固定针100,包括助力套管116和内置于助力套管内的超细径骨固定针102。骨固定针102直径为0.3mm。
助力套管116一端设有与驱动电机122转子适配头124连接的适配座112。骨固定针102装载于助力套管116内,通过助力套管116远端的夹持臂118和可拆卸的刚性塑胶球120刚性连结;夹持臂118和可拆卸的刚性塑胶球120绑定骨固定针102与助力套管116为刚性一体,并锁定限制骨固定针102的针尖端伸出助力套管116的长度为6mm,以保证伸出的针尖能够有足够的机械强度而满足经皮电动钻进入骨的硬度要求。
助力套管116分为三个主要部分:近端适配座部分、中心套管部分和远端卡扣臂部分。助力套管116既是一种易于使用的运载工具,又为封装的超细径骨固定针102提供强度,使手术操作员能够将超细径骨固定针102电动驱动到坚硬的物体(例如,该实施例动物骨组织中)而不会弯曲或折损。如图2所示,助力套管116近端适配座112与连接电机转子的适配头124为圆台形设计,适配头124与适配座112采用插拔连接。手术过程中超细径骨固定针与电机转子嵌入式耦合连接,操作人员手持电机握柄128,拇指控制触键开关126,即可方便使用电机驱动工具实施骨固定针经皮穿刺自攻钻进入骨。
圆柱形的助力套管116,其内径稍大于骨固定针102尾段根部凸起针表面的根段螺纹106直径(例如,在该实施例中助力套管为22G规格。可根据骨固定针的直径选择不同规格)。助力套管116几乎包被骨固定针102的4/5,同时在两者之间留有空间(可以填充空气)。如图3A、图5B所示,助力套管116在其远端处设有卡扣式夹持臂118。助力套管远端部向前延伸出两臂以过渡到夹持臂118,延伸的夹持臂118自身向外再向内形成突出的夹持臂合围,刚性塑胶球120被固定于夹持臂形成的合围空间内,见图4A、4B、5A、5B、5C、5D。
临时绑定骨固定针102的刚性连结装置除了采用刚性塑胶球120,也可以采用诸如金属环卡扣或螺旋紧固件等其他结构。夹持臂118和刚性塑胶球120提供了防止骨固定针102滑动的刚性连接,能将骨固定针102粘固到助力套管116而成一体。刚性塑胶球120限定骨固定针102仅伸出助力套管116及夹持臂118外部的长度为6mm(该长度可根据骨固定针的直径以及骨骼部位进行调节),确保骨固定针102具有足够的强度以穿透骨组织而不会弯曲或折损。
可移除的刚性塑胶球120由刚性但质脆的材料(可以是刚性塑胶,也可以是陶瓷、有机玻璃或者光敏凝胶等)形成。在骨固定针102的针尖部分穿透骨组织之后,可以通过使用诸如弯角的鼻钳之类的工具将刚性塑胶球120挤压开裂,使助力套管端部的夹持臂118彻底张开,骨固定针102从助力套管116中脱离,骨固定针102在圆柄持针钳推送和旋拉作用下针根段螺纹106旋入骨组织。夹持臂118有一定的延伸后折弯成凸形来夹持合围刚性塑胶球120,其目的是:1、为诸如弯曲的鼻钳之类的工具提供额外的自由空间和凹陷区以方便挤压固定球。2、提供了一定的陶瓷或刚性塑胶注塑粘结误差范围,使得可拆卸粘结材料注塑粘结时不会进入助力套管116腔内而导致助力套管不易脱离骨固定针。3、突出的刚性塑胶球120还可用作钻骨进针时的到位止动标记,以帮助手术操作者测量骨固定针进骨穿透的距离。
骨固定针102可以制成多种直径以满足临床的要求。在本实施例中使用30G规格,但可以更小或更大。针可以由不锈钢硬化金属或钛镍合金制成。如图3B和3C所示,骨固定针102从远端针尖到尾段螺纹前有一个光滑的外表面,有助于确保针体更容易进入骨组织,同时避免缠绕穿刺经过的附近的皮肤和肌肉。在骨固定针的近端尾部设有根段螺纹106,根段螺纹凸出表面,能保持骨固定针牢固地固定在骨组织中,即使动物手术后有充足的运动,也不易产生松动。
如图6A、6B、7A、7B、7C、7D所示,骨固定针102的针尖为锥形不对称三角刃偏心尖针尖。偏心针尖104由两个等同的大锥形面和一个小1/3的小锥形面组成,分别为针尖大锥形面104a,针尖大锥形面104b和针尖小锥形面104c,它们形成彼此相对的锐角直边。这种多个不相等的扁平锥形表面,形成了不等中心的锐利的三角刃偏心尖,如图7D针尖的偏心率为70%,电动钻骨每圈周而复始行进中针尖产生可测量的摆动或弹跳,从而产生更大的冲击力,有助于三角刃边缘在每次旋转时提供更强大的切割力,同时通过产生更多的摆动间隙来减少摩擦过热。
待伸出助力套管116的骨固定针102针尖段刺穿目标骨后,拆除助力套管远端的刚性连结装置(刚性塑胶球120),移除助力套管116,最后通过专用圆柄持针钳推送和旋拉至骨固定针尾部的根段螺纹106旋入锚定骨基质中。
实施例2
如图8-10所示的Ⅱ型套管式超细径骨固定针,包括Ⅱ型针套管214和内置的Ⅱ型针202。Ⅱ型针202直径为0.5mm。
如图8、9A、9B所示,Ⅱ型针套管214一端设有与驱动电机转子连接的Ⅱ型针适配座212,Ⅱ型针适配座为六棱柱形状,与无绳电机的Ⅱ型针适配腔210相匹配。Ⅱ型针202装载于Ⅱ型针套管214内,通过Ⅱ型针套管214远端的套管紧箍螺纹216和套管紧箍螺帽218刚性连结。
如图10A、10B、10C、10D所示,Ⅱ型针套管214远端口分成三个等分,并做梯形瓣延伸,三个梯形瓣上设有套管紧箍螺纹216。当三个梯形延伸瓣在设计有锥形内螺纹220的套管紧箍螺帽218的拧紧挤压下,内置的Ⅱ型针202被固定锁死,同样起到与本发明实施例1中刚性塑胶球的相同作用。对于临床应用来说,骨固定针可有多种类型可选(还可以在固定针的中间段设置凸起螺纹、或通体设置螺纹)。如图9B和图10F所示,在骨固定针的针体前端针尖处设有Ⅱ型针针尖螺纹208。
实施例3
本实施例用于解释本发明套管式超细径骨固定针在小鼠胫骨外固定手术中的使用方法和流程。
如图11-30所示是利用本发明套管式超细径骨固定针建立小鼠胫骨股骨外固定架模型示意图。
如图11所示,将小鼠固定于骨外科固定装置300,小鼠后肢放置在动物骨外科定位夹具302前面的标准体位,并且示出有可通过解剖位置腘窝处穿针定位的定位针孔304。
如图12所示,把小鼠后肢定位在动物骨外科固定装置上,并通过腘窝解剖位置由25G注射器针头作为定位针306穿过定位针孔304而标准定位,其爪部和膝部区域处由弹性绷带绳308固定。
如图13所示,是配备有套管式超细径骨固定针单元100的迷你无绳驱动电机122。
如图14所示,用迷你无绳驱动电机驱动骨固定针钻入到远端胫骨中。操作人员手持电机握柄128,拇指控制触键开关126,即可方便使用驱动电机122实施骨固定针经皮穿刺自攻钻进入骨。
如图15所示,已经穿入远端胫骨的套管式超细径骨固定针100,已脱离移除了迷你无绳驱动电机。
如图16所示,可拆卸的刚性塑胶球120已经被拆除,助力套管116已从骨固定针102部分移除。
如图17所示,脱离了助力套管的骨固定针102已经插入骨组织中,并且针尖已经穿透小鼠胫骨,骨固定针的尾部根端显露出了根段螺纹106。
如图18所示,使用专用圆柄持针钳推送旋拉后,骨固定针的根端螺纹106部分已完全锚定在骨组织中,而骨固定针102前段部分已经穿出皮肤。
如图19所示,连续三个骨固定针螺纹端部就位并且锚定于胫骨远侧段。
如图20所示,另外三个骨固定针螺纹端部就位锚定于胫骨近侧段。
如图21所示,六根骨固定针穿刺锚定就位,并移除弹性绷带捆扎绳。
如图22所示,再移除掉腘窝定位固定用的注射器针头。
如图23所示,是移除了骨外科固定装置300后的锚定有六根骨固定针的小鼠后肢。
如图24所示,是移除了动物骨外科固定装置300的锚定有六根骨固定针的小鼠后肢转动90°视角后的位置。
如图25所示,已经将伸出皮肤的六根骨固定针远端使用折弯钳彼此朝向小鼠胫骨中间段折弯搭桥成框,构成胫骨外固定架的基形。
如图26所示,是已经施加有光固化可流动复合物310在六根骨固定针搭成的桥形连接框 上,而后被LED固化灯固化成一体的刚性骨外固定架。
如图27所示,是小鼠胫骨节段性骨缺损骨外固定手术示意图。六个骨固定针穿透小鼠胫骨并根部锚定到位;锚钉的骨固定针外部段彼此平行朝胫骨中心向弯曲;以形成六根针连肩搭桥;搭桥采用光固化可流动复合材料涂裹填充;复合材料用LED灯固化;进行3.5mm的节段缺损去骨;骨缺损处植入接种有细胞的人工材料填充;几周后外固定架的固化部分被贴近固化体切断固定针后卸除;然后拔除所有剩余的骨固定针针脚。
如图28所示,是使用本发明实施例1套管式超细径骨固定针刚性外固定架的小鼠胫骨骨折手术示意图。六个针穿透小鼠胫骨;两头各三根针外部段彼此平行向中心弯曲形成连肩搭桥;用断骨器产生胫骨断裂;采用光固化可流动复合材料涂裹填充搭桥;复合材料用LED灯固化;几周后外固定架的固化部分被切断针后移除;然后拔除所有剩余的针脚。
如图29所示,是使用本发明实施例1套管式超细径骨固定针柔性外固定架的小鼠胫骨骨折手术示意图。六个针穿透小鼠胫骨;三个远端针和三个近端针分别以各自端的三根针平行地朝彼此向弯曲,以形成两个端部簇搭桥;再将它们各自涂上光固化可流动复合材料并用LED灯固化;放置二根弹性销并分别连接两头两个簇,通过光固化可流动复合材料分别连接固化二端的各左端和右端各一个位点;右侧弹性销用于连接两个簇的右端面,但暂时仅固化近端;左侧弹性销用于连接两个簇的左端面,但暂时仅固化远端;这两个弹性销注意放置粘固平行,以此作为完整骨断裂前的定位参考;然后使用断骨器将骨折断,这使得两个本平行的弹性销会相对移位;重新对位弹性销于骨断裂前的粘固平行位置,即返回到完整骨时的位相;再将弹性销两端簇未粘固的两个点通过复合材料连结并固化;几周后外固定架的固化部分被切断并移除;最后拔除所有剩余的针脚。
如图30所示,是小鼠股骨节段性骨缺损骨外固定手术示意图。六个针穿透小鼠股骨;锚针外部段彼此平行朝中心向弯曲;以形成六根针连肩搭桥;搭桥采用光固化可流动复合材料涂裹填充;复合材料用LED灯固化;进行3.5mm的节段缺损去骨;骨缺损处植入接种有细胞的人工材料填充;几周后外固定架的固化部分被切断针后移除;然后拔除所有剩余的固定针脚。
实施例4
如图31所示,是使用本发明实施例2套管式超细径骨固定针的临床掌骨骨折外固定手术示意图。六根II型针202分别穿透锚定掌骨和指骨;通过在掌骨骨折404处的近心与远心骨折段经皮穿刺锚放钢针;锚针皮外节段使用万向固定夹402与固定架横杆406彼此连接固定,构成一体化的外固定架;应用连接杆固定夹装置调节骨折应力对位,完成以多细针应力组合及外固定架一体化的多关节骨骨折的骨外固定目的。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现;因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (8)

  1. 套管式超细径骨固定针,其特征在于,所述套管式超细径骨固定针包括助力套管和内置于助力套管内的超细径骨固定针,助力套管一端设有与驱动电机转子连接的适配座,另一端设有可拆卸的刚性连接装置,助力套管与骨固定针通过刚性连接装置相固定,刚性连接装置限制骨固定针的针尖端伸出助力套管一定长度。
  2. 根据权利要求1所述的套管式超细径骨固定针,其特征在于,所述骨固定针直径小于0.8mm。
  3. 根据权利要求1所述的套管式超细径骨固定针,其特征在于,所述适配座为空心圆台形状。
  4. 根据权利要求1所述的套管式超细径骨固定针,其特征在于,所述骨固定针的针尖为三刃锥形同心针尖或三刃锥形偏心针尖。
  5. 根据权利要求1所述的套管式超细径骨固定针,其特征在于,所述刚性连接装置为刚性塑胶球,助力套管端部设有夹持臂,刚性塑胶球被围合于夹持臂中,骨固定针从刚性塑胶球中心穿过。
  6. 根据权利要求1所述的套管式超细径骨固定针,其特征在于,所述刚性连接装置为套管紧箍螺帽,套管紧箍螺帽内设有锥形内螺纹,助力套管端部形成三等分的梯形瓣,梯形瓣上设有紧箍螺纹。
  7. 根据权利要求1所述的套管式超细径骨固定针,其特征在于,所述骨固定针针尖表面光洁锋利,针体表面光滑,根部设有凸出表面的根段螺纹。
  8. 根据权利要求1所述的套管式超细径骨固定针,其特征在于,所述骨固定针在针体前端针尖处设有针尖螺纹。
PCT/CN2018/110870 2017-10-23 2018-10-18 套管式超细径骨固定针 WO2019080769A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762575706P 2017-10-23 2017-10-23
US62/575,706 2017-10-23
CN201811202846.8A CN109692055B (zh) 2017-10-23 2018-10-16 套管式超细径骨固定针
CN201811202846.8 2018-10-16

Publications (1)

Publication Number Publication Date
WO2019080769A1 true WO2019080769A1 (zh) 2019-05-02

Family

ID=66229726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/110870 WO2019080769A1 (zh) 2017-10-23 2018-10-18 套管式超细径骨固定针

Country Status (2)

Country Link
CN (1) CN109692055B (zh)
WO (1) WO2019080769A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110974392A (zh) * 2019-11-21 2020-04-10 杭州华迈医疗器械有限公司 一种超细骨固定针用夹具
CN111839654B (zh) * 2020-07-24 2022-05-20 中南大学湘雅医院 一种导向定位型电动骨钻
CN111839653B (zh) * 2020-07-24 2022-05-20 中南大学湘雅医院 一种可连续进针型电动骨钻
CN112120773A (zh) * 2020-10-06 2020-12-25 王培林 一种用于骨横向搬移手术的套管外固定针
CN113599592A (zh) * 2021-08-09 2021-11-05 中国人民解放军总医院第八医学中心 一种胸腔智能抽液机
CN115349933A (zh) * 2022-08-23 2022-11-18 杭州华迈医疗科技有限公司 牵张成骨器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654023A (zh) * 2004-02-11 2005-08-17 株式会社中西 医用机头及其切割工具
EP1598023A2 (en) * 2004-05-19 2005-11-23 Nakanishi Inc. Medical handpiece
JP2008132041A (ja) * 2006-11-27 2008-06-12 Ishifuku Metal Ind Co Ltd 医療用回転切削器具のアタッチメント
CN201602827U (zh) * 2010-03-17 2010-10-13 山东省立医院 骨科导航专用空心钻
CN203802552U (zh) * 2014-04-15 2014-09-03 闫军 骨折复位提拉针
WO2014142948A1 (en) * 2013-03-15 2014-09-18 Vidacare Corporation Intraosseous device handles, systems, and methods

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9855087B2 (en) * 2014-08-04 2018-01-02 DePuy Synthes Products, LLC Methods and devices for spinal screw insertion
CN204655089U (zh) * 2015-03-30 2015-09-23 蔡鸿敏 一种骶髂螺钉导针的进针点维持及方向调整工具
CN207693651U (zh) * 2017-04-05 2018-08-07 许祖闪 股骨穿刺套管钻针
CN108095817A (zh) * 2018-02-05 2018-06-01 陈柏君 单针持骨器

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1654023A (zh) * 2004-02-11 2005-08-17 株式会社中西 医用机头及其切割工具
EP1598023A2 (en) * 2004-05-19 2005-11-23 Nakanishi Inc. Medical handpiece
JP2008132041A (ja) * 2006-11-27 2008-06-12 Ishifuku Metal Ind Co Ltd 医療用回転切削器具のアタッチメント
CN201602827U (zh) * 2010-03-17 2010-10-13 山东省立医院 骨科导航专用空心钻
WO2014142948A1 (en) * 2013-03-15 2014-09-18 Vidacare Corporation Intraosseous device handles, systems, and methods
CN203802552U (zh) * 2014-04-15 2014-09-03 闫军 骨折复位提拉针

Also Published As

Publication number Publication date
CN109692055B (zh) 2020-08-11
CN109692055A (zh) 2019-04-30

Similar Documents

Publication Publication Date Title
WO2019080769A1 (zh) 套管式超细径骨固定针
Heim et al. Internal fixation of small fractures: technique recommended by the AO-ASIF Group
JP2004509725A (ja) 上顎ディストラクタ
JP3701978B2 (ja) 外科用器具
CN110680426A (zh) 可循环使用的跟腱微创缝合器械及其新型缝合方式
CN204765873U (zh) 腔镜用经胸腔记忆合金肋骨接骨板
WO2013182062A1 (zh) 一种仿生弹性固定装置
TW201412283A (zh) 骨固定手術導引裝置
WO2016008062A1 (zh) 一种肱骨近端固定装置
Bennett Surgery of the avian beak
CN105142562B (zh) 兽医骨科工具箱
RU2385683C1 (ru) Способ репозиции переломов пяточной кости с большим смещением отломков
CN208905682U (zh) 用于髌骨骨折的张力带钢板
CN110801274A (zh) 一种盆骨前环内固定接骨板
RU2311148C1 (ru) Способ оперативного лечения переломов проксимального отдела плечевой кости
CN212466147U (zh) 后踝空心螺钉置入引导定位器
CN112587273B (zh) 动物股骨手术定位固定架
CN2185105Y (zh) 一种微型骨针
RU2524777C2 (ru) Способ закрытой репозиции переломов хирургической шейки плечевой кости с остеосинтезом пучком напряженных спиц
CN216148175U (zh) 拇外翻截骨矫形防滑加压固定装置
CN219250383U (zh) 记忆合金指掌骨内固定器
KR102254569B1 (ko) 족부 족관절 비골근 고리봉합 고정수술법을 안전하게 수행하기 위한 수술도구세트
RU205153U1 (ru) Устройство для оптимизации открытого накостного остеосинтеза
CN212816482U (zh) 一种用于桡骨远端骨折的针型锁定接骨板钉系统结构
CN203468726U (zh) 用于股骨颈骨折的内固定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18870231

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18870231

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18870231

Country of ref document: EP

Kind code of ref document: A1