WO2019080541A1 - 一种光伏组件检测装置及方法 - Google Patents

一种光伏组件检测装置及方法

Info

Publication number
WO2019080541A1
WO2019080541A1 PCT/CN2018/094946 CN2018094946W WO2019080541A1 WO 2019080541 A1 WO2019080541 A1 WO 2019080541A1 CN 2018094946 W CN2018094946 W CN 2018094946W WO 2019080541 A1 WO2019080541 A1 WO 2019080541A1
Authority
WO
WIPO (PCT)
Prior art keywords
photovoltaic module
detecting device
detected
light source
module detecting
Prior art date
Application number
PCT/CN2018/094946
Other languages
English (en)
French (fr)
Inventor
刘林
李涛
曾静
连重炎
黄显艺
胡超
舒毅
Original Assignee
米亚索乐装备集成(福建)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 米亚索乐装备集成(福建)有限公司 filed Critical 米亚索乐装备集成(福建)有限公司
Priority to US16/076,306 priority Critical patent/US20210184628A1/en
Priority to AU2018213979A priority patent/AU2018213979A1/en
Publication of WO2019080541A1 publication Critical patent/WO2019080541A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • H02S50/15Testing of PV devices, e.g. of PV modules or single PV cells using optical means, e.g. using electroluminescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/8803Visual inspection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/66Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light electrically excited, e.g. electroluminescence
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/10Measuring as part of the manufacturing process
    • H01L22/12Measuring as part of the manufacturing process for structural parameters, e.g. thickness, line width, refractive index, temperature, warp, bond strength, defects, optical inspection, electrical measurement of structural dimensions, metallurgic measurement of diffusions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02SGENERATION OF ELECTRIC POWER BY CONVERSION OF INFRARED RADIATION, VISIBLE LIGHT OR ULTRAVIOLET LIGHT, e.g. USING PHOTOVOLTAIC [PV] MODULES
    • H02S50/00Monitoring or testing of PV systems, e.g. load balancing or fault identification
    • H02S50/10Testing of PV devices, e.g. of PV modules or single PV cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present application relates to the field of photovoltaic cell processing, and in particular, to a photovoltaic module detecting device and method.
  • CIGS Small Thin Film Battery CuInxGa(1-x)Se2
  • its application range is more and more extensive.
  • CIGS can be deposited on stainless steel substrate and can be packaged into flexible components with light weight. , can be bent features.
  • CIGS thin film solar cells have encountered many difficulties in actual production.
  • the thickness of CIGS deposited stainless steel substrate is only 50um, and the total thickness after coating is not 55um. After the large-area coating is completed, whether it is subsequent cutting.
  • it is easy to cause the corners to bend, and this bending is extremely disadvantageous for the components, especially the flexible components, because the packaging materials are all polymer plastic, and the thickness is very thin.
  • the bending of the corner of the battery can easily pierce it, resulting in subsequent wet leakage test and reliability test failure, greatly reducing the production yield of the component and increasing the risk of component use. Therefore, the cell sheet bent at the corner portion can be found and picked out before the package is laminated, which can greatly reduce the defective rate of production; in actual production, the battery sheet needs to undergo a series welding (ie, series) process before packaging.
  • a series welding ie, series
  • the new corners may be bent during the string welding process, so the inspection after the string welding is particularly important.
  • the purpose of the present application includes providing a photovoltaic module detecting apparatus and method for improving at least one of the above problems, capable of quickly inspecting a defective defective battery, and ensuring safety of an operator.
  • the present application provides a photovoltaic module detecting device, which includes:
  • the light source and the projection display unit are respectively disposed on opposite sides of the photovoltaic module to be detected, and the projection display unit is configured to display a projection of the photovoltaic component to be detected after being irradiated by the light source.
  • the projection display unit comprises: a blackboard.
  • the projection display unit comprises: a projection screen.
  • the projection display unit comprises: a display screen.
  • the light source is a linear light source.
  • the light-emitting side of the light source is provided with a convex lens.
  • the light source comprises a plurality of LED strips, and the light emitted by the plurality of LED strips is parallel light.
  • the light source further includes a lamp cover, the lamp cover is mounted outside the plurality of LED strips, and the light emitted by the light source is perpendicular to the photovoltaic module to be detected.
  • the photovoltaic module detecting device further includes: a detecting platform configured to support the light-emitting component to be detected and transparent, the light source is located below the detecting platform, and the projection display unit is located at the Above the detection platform.
  • the detection platform includes a table of tempered ultra-clear glass, a plurality of legs configured to support the table.
  • the leg is provided with a roller and a locking mechanism configured to lock the roller.
  • the photovoltaic module detecting device further includes a positioning unit disposed on the detecting platform and configured to fix the photovoltaic module to be detected.
  • the positioning unit comprises a positioning clip.
  • the photovoltaic module detecting device further includes a conveying unit configured to convey the photovoltaic module to be detected onto the detecting platform.
  • the photovoltaic module detecting device further includes an inductor and a controller, the inductor and the conveying unit are respectively connected to the controller, and the inductor is disposed in the The detection platform is configured to sense the position of the photovoltaic component to be inspected.
  • the inductor is configured to send a position signal obtained by sensing the to-be-detected photovoltaic component to the controller; the controller is configured to adjust the delivery according to the position signal
  • the working state of the unit includes a motion state and a stop state.
  • the transport unit includes a motor and a conveyor belt on which the photovoltaic module to be inspected is placed, and the motor is configured to drive the conveyor belt for transport.
  • the present application also provides a photovoltaic module detecting method, which is applied to the foregoing photovoltaic component detecting device; the method includes:
  • the illumination of the light source is such that the projection of the photovoltaic component to be detected is on the projection display unit, and the projection portion corresponding to the corner bending region of the photovoltaic component to be detected will have bright spots or bright spots.
  • the defective photovoltaic component can be selected accurately and quickly;
  • the optical detection method of the present application can improve the convenience of non-destructive testing of the corner bending of the photovoltaic component to be detected, and the detection accuracy is high, and the detection speed is fast, for upward Both the downward bending and the downward bending can accurately detect and ensure the safety of the operator;
  • the removal of the defective components of the photovoltaic module greatly improves the production yield of the final product assembled by the photovoltaic module, and reduces the bad scrap.
  • the loss caused by the product reduces the safety hazard of the product, and also reduces the customer's complaints due to product reliability and service life.
  • FIG. 1 is a schematic structural diagram of a photovoltaic module detecting device according to an embodiment of the present application
  • FIG. 2 is a flow chart of a method for detecting a photovoltaic module according to an embodiment of the present application.
  • FIG. 3 is a flowchart of a method for detecting a photovoltaic component according to an embodiment of the present application.
  • 1-light source 11-LED light bar, 12-light cover, 2-detection platform, 21-counter, 22-leg,
  • 3-projection display unit 4-photovoltaic component to be detected; 5-convex lens; 6-roller;
  • the embodiment of the present application provides a photovoltaic component detecting device.
  • the photovoltaic component detecting device includes: a light source 1 and a projection display unit 3 .
  • the light source 1 and the projection display unit 3 are respectively disposed on the opposite side of the photovoltaic module 4 to be detected.
  • the projection display unit 3 is configured to display a projection of the photovoltaic module 4 to be detected after being illuminated by the light source 1.
  • the photovoltaic component to be inspected may comprise one or more battery sheets.
  • the photovoltaic module detecting device provided by the embodiment of the present invention is irradiated by the light source 1 so that the projection of the photovoltaic module 4 to be detected is displayed on the projection display unit 3, and the projection of the corner portion of the photovoltaic module 4 to be detected is abnormal, and
  • the projected image has an amplification effect, so that the operator can accurately and quickly identify the corner bending condition, and then select the defective photovoltaic component; the application adopts the optical detection method to improve the angle of the photovoltaic component to be detected.
  • the removal greatly improves the production yield of the final product assembled by the photovoltaic module, reduces the loss caused by the bad scrap, reduces the safety hazard when the product is used, and reduces the customer's reliability and service life. The resulting complaint.
  • the entire test device In order to prevent the external light from interfering with the test light and affecting the judgment of the spot or the spot, during the test, the entire test device needs to be in the dark box or in the dark room.
  • the projection display unit 3 comprises a blackboard.
  • the projection display unit 3 can be implemented in various manners, and can also be a projection screen, a display screen, or the like.
  • the light source 1 may be a linear light source, that is, the light source 1 may be an elongated light source, and the number of the light sources may be one or more.
  • the light source 1 comprises a plurality of LED strips 11, and the light emitted by the plurality of LED strips 11 is parallel light. It is also possible to use an ordinary light source 1, such as an incandescent lamp, an energy saving lamp, or the like.
  • the color of the light emitted by the light source may be white light or light of other colors, which will not be repeated here.
  • the light source 1 further comprises a lamp cover 12, the lamp cover 12 is mounted on the outside of the plurality of LED light bars 11, and the light emitted by the light source is perpendicular to the photovoltaic module 4 to be detected.
  • the function of the lamp cover 12 is to effectively utilize the light source 1 to increase the brightness of the light source 1 so that the direction of illumination of the light source 1 is vertically upward, that is, the light emitted by the LED light bar 11 through the lamp cover 12 is parallel light, and the light emitted by the light source 1 is vertical.
  • the photovoltaic module 4 is to be detected, so that the projection of the photovoltaic module 4 to be detected is accurately displayed on the projection display unit 3, which is convenient for the operator to check.
  • the role of the blackboard is to better observe the high-definition projection, improve the recognition and judgment. The accuracy.
  • the convex lens 5 may be disposed on the light outgoing side of a light source such as a light bar.
  • the photovoltaic module detecting device further comprises a detecting platform 2 configured to support the light-emitting component 4 to be detected and transmitted, the light source 1 is located below the detecting platform 2, and the projection display unit 3 is located above the detecting platform 2.
  • the projection display unit 3 can be suspended in the dark box or at the top of the dark room.
  • the height of the projection display unit to be suspended can be set to be adjustable.
  • the projection display unit 3 can also be supported by the bracket in the dark box or the bottom of the dark room. The height of the bracket can be set to be adjustable.
  • the detection platform 2 includes a table 21 of tempered ultra-clear glass, a plurality of legs 22 configured to support the table 21.
  • a roller 6 and a locking mechanism 7 configured to lock the roller 6 may be provided on the leg.
  • the locking mechanism 7 is also a locking wheel mechanism. In FIG. 2, only the locking mechanism 7 is simply illustrated. It should not be regarded as a limitation. In practice, other mechanisms capable of locking the wheel can also be used.
  • the light source 1 is installed under the detection platform 2, and mainly provides a high-brightness parallel light for detecting the photovoltaic module 4 to be detected.
  • a projection of the edge of the photovoltaic module 4 to be detected appears on the blackboard above the detection platform 2, and the corresponding projection of the photovoltaic component 4 to be detected with the corner bent will have a bright spot or a bright spot, thereby being easily found according to the position of the bright spot.
  • the photovoltaic module 4 to be inspected is replaced by hand or mechanically.
  • the photovoltaic module detecting device further comprises a positioning unit 8 disposed on the detecting platform 2 and configured to fix the photovoltaic module 4 to be detected.
  • the photovoltaic module detection device further comprises a transport unit 9 configured to deliver the photovoltaic module 4 to be detected onto the detection platform 2.
  • the photovoltaic module detecting device further includes a sensor 110 and a controller 100.
  • the sensor 110 and the transport unit 9 are respectively connected to the controller 100.
  • the sensor 110 is disposed on the detecting platform 2 and configured to be configured.
  • the position of the photovoltaic module 4 to be inspected is sensed.
  • the inductor 110 can be an infrared ranging sensor or an ultrasonic ranging sensor.
  • the sensor 110 and the transport unit 9 may be wiredly connected to the controller 100 or may be wirelessly connected to the controller 100. Therefore, the controller 100 is only separately illustrated in FIG. 2, and the sensor 110 and the transport unit are not explicitly illustrated. 9 is connected to the line of the controller 100.
  • the senor may be configured to send a position signal obtained by sensing the photovoltaic component to be detected to the controller; the controller may be configured to adjust an operation state of the delivery unit according to the position signal; the working state includes a motion state and a stop state.
  • the controller may determine, according to the position signal sent by the sensor, whether the conveying unit transmits the photovoltaic module to be detected to a specific position on the detection platform, and if so, the controller adjusts the conveying unit from the motion state to the stop state; if not, the control The device continues to keep the transport unit in motion until the photovoltaic module to be inspected is transferred to a particular location on the test platform.
  • the controller 100 is also connected to the positioning unit 8, and may be a wired connection or a wireless communication connection.
  • the transport unit 9 includes a motor 92 and a conveyor belt 91 on which the photovoltaic module 4 to be inspected is placed, the motor 92 being configured to drive conveyor belt transport.
  • the motor 92 can be controlled by the controller 100 to drive the conveyor belt 91.
  • the controller 100 transmits a signal to the controller 100, and the controller 100
  • the control motor 92 stops the transmission, and the positioning unit 8 is fixed to fix the photovoltaic module 4 to be detected; the positioning unit 8 realizes a plurality of positioning structures, such as a positioning clip, or a structure configured to be blocked at both ends of the photovoltaic module 4 to be detected.
  • the photovoltaic module 4 to be inspected is placed on the table 21 and the branch.
  • the table 21 is a water platform surface, and the area of the table surface is larger than the area of the photovoltaic module 4 to be inspected, so that the photovoltaic module 4 to be inspected is placed at a good level.
  • Fig. 1 also shows a light source 1 consisting of two parallel LED strips 11 and a lampshade 12, which are housed on the outside of the two LED strips 11.
  • the light source 1 is disposed on one side of the photovoltaic module 4 to be detected, and the projection display unit 3 is disposed on the other side of the photovoltaic module 4 to be detected. As shown in FIG. 1 , the light source 1 is disposed on the lower side of the photovoltaic module 4 to be detected, and the projection display The unit 3 is disposed on the upper side of the photovoltaic module 4 to be detected, and both are at a certain distance from the photovoltaic module 4 to be detected.
  • the projection display unit can display the projection of the photovoltaic module 4 to be detected after the illumination of the light source 1.
  • the above is only a simple implementation manner of a photovoltaic module detecting device.
  • the embodiment in FIG. 1 should not be regarded as a limitation, and the structure of the photovoltaic module detecting device can be flexibly adjusted according to requirements.
  • the form of the detecting platform may not be limited to a rectangular supporting table and four legs, and the form of the supporting table, the number of legs, and the form may also be flexibly set.
  • the detection platform for supporting the photovoltaic module to be detected may not be provided, and the photovoltaic component to be detected may be fixed by other means such as a card slot, and only the light source and the projection display unit are respectively located on opposite sides of the photovoltaic component to be detected, and the projection is performed.
  • the display unit can display the projection of the photovoltaic component to be detected after being irradiated by the light source.
  • the photovoltaic module detecting device may further include a conveying unit (conveyor belt and motor) for transmitting the photovoltaic module to be detected, etc., so that the conveying unit conveys the photovoltaic module to be detected to the light source.
  • a designated area with the projection display unit which is the position at which the photovoltaic module to be inspected is detected.
  • an inductor such as a position sensor can be provided to sense the position of the photovoltaic component to be detected, and to ensure that the photovoltaic component to be detected is located on a designated area.
  • the embodiment of the present application further provides a photovoltaic module detecting method, which is applied to any of the foregoing photovoltaic component detecting devices; see a photovoltaic component detecting method flow shown in FIG. Figure, the method includes the following steps:
  • Step S302 illuminating the photovoltaic module to be detected by the light source of the photovoltaic module detecting device;
  • Step S304 displaying, by the projection display unit of the photovoltaic module detecting device, a projection of the photovoltaic component to be detected after being irradiated by the light source.
  • Step S306 Determine whether the photovoltaic component to be detected is bent according to the above projection.
  • the projection of a normal photovoltaic component ie, an unbent photovoltaic component
  • the projection of the bent photovoltaic component can be predetermined, and if the projection of the photovoltaic component to be detected coincides with the projection of the bent photovoltaic component, it indicates that the photovoltaic component to be inspected is bent.
  • the method for detecting a photovoltaic module provided by the embodiment of the present application is such that the projection of the photovoltaic component to be detected is displayed on the projection display unit by the illumination of the light source, and the projection of the corner portion of the photovoltaic component to be detected is abnormal, and the projected image is displayed.
  • the utility model has the amplification effect, so that the operator can accurately and quickly identify the corner bending condition, and then select the defective photovoltaic module; the application adopts the above optical component detection method to improve the corner bending of the photovoltaic component to be detected.
  • the convenience of non-destructive testing of the corner bend of the photovoltaic module to be detected can be improved, and the detection accuracy is high, the detection speed is fast, and the two cases can be accurate for both upward and downward bending.
  • the inspection ensures the safety of the operator; in addition, the removal of the defective components of the photovoltaic module greatly improves the production yield of the final product assembled by the photovoltaic module, reduces the loss caused by the bad scrap, and reduces the safety of the product. Hidden dangers also reduce complaints caused by customer reliability and service life.

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Photovoltaic Devices (AREA)
  • Geophysics And Detection Of Objects (AREA)

Abstract

本申请公开了一种光伏组件检测装置及方法,该光伏组件检测装置包括光源和投影显示单元,光源与投影显示单元分别设置在待检测光伏组件的相对两侧,投影显示单元用于显示经光源照射后的待检测光伏组件的投影。本申请提供的光伏组件检测装置及方法,通过光源照射,使得待检测光伏组件的投影在投影显示单元上显示,待检测光伏组件的角部弯折也一同清楚的显示出来,从而可以准确快速的对次品光伏组件进行挑选;另外,光伏组件次品的去除,大大提高了由光伏组件组装的最终产品的生产良率,降低了不良报废带来的损失,降低了产品使用时的安全隐患。

Description

一种光伏组件检测装置及方法
相关申请的交叉引用
本申请要求于2017年10月25日提交中国专利局的申请号为201721386957.X,名称为“一种光伏组件检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及光伏电池加工领域,尤其涉及一种光伏组件检测装置及方法。
背景技术
随着CIGS(太阳能薄膜电池CuInxGa(1-x)Se2)薄膜太阳能电池技术的不断发展,其应用范围越来越广泛,CIGS可以沉积到不锈钢衬底上,可封装成柔性组件,其具有重量轻,可弯折的特点。但是CIGS薄膜太阳能电池在实际生产中却遇到了不少困难,CIGS沉积的不锈钢衬底,其厚度仅50um,镀膜后其总厚度也不到55um,大面积镀膜完成后,无论是后续的裁切还是真空打包、运输过程中,都极易导致其角部弯折,而这种弯折对组件来说是极其不利的,尤其是柔性组件,因其封装材料均为高分子塑料,且厚度非常薄,电池片角部的弯折可轻易的将其刺穿,导致后续的湿漏电测试、可靠性测试失效,大大降低了组件的生产良率,增加了组件使用风险。所以,将角部弯折的电池片在封装层压前将其发现并挑出可大大降低生产的不良率;而在实际生产中,电池片封装前需要经过串焊(也即,串联)工序,而串焊过程中也可能导致新的角部弯折,所以,电池片串焊后的检查就尤为重要了。
而目前所采用的电池片检测方式有两种,一是借助手电筒用肉眼观察 电池片角部,看是否出现弯折,这种方式很难发现轻微弯折的电池片,且检查的速度极慢,大大降低了生产效率;二是用手指触摸电池片的两边,这种方式虽能发现轻微的弯折,但只能发现向上弯折的电池,且尖锐的角部容易划伤手指,威胁工人的人身安全。
申请内容
本申请的目的包括,提供一种光伏组件检测装置及方法,以改善上述问题中的至少一个问题,能够快速检查弯折的次品电池,且保证操作人员的安全。
本申请提供了一种光伏组件检测装置,所述光伏组件检测装置包括:
光源和投影显示单元,所述光源与所述投影显示单元分别设置在待检测光伏组件的相对两侧,所述投影显示单元配置成显示经所述光源照射后的待检测光伏组件的投影。
在本发明的一种实施方式中,所述投影显示单元包括:黑板。
在本发明的一种实施方式中,所述投影显示单元包括:投影幕布。
在本发明的一种实施方式中,所述投影显示单元包括:显示屏。
在本发明的一种实施方式中,所述光源为线形光源。
在本发明的一种实施方式中,所述光源的出光侧设置有凸透镜。
在本发明的一种实施方式中,所述光源包括多个LED灯条,多个所述LED灯条发出的光为平行光。
在本发明的一种实施方式中,所述光源还包括灯罩,所述灯罩罩装在多个所述LED灯条外侧,且所述光源发出的光线垂直于待检测光伏组件。
在本发明的一种实施方式中,所述光伏组件检测装置还包括:配置成支撑待检测光伏组件且透光的检测平台,所述光源位于所述检测平台下方,所述投影显示单元位于所述检测平台上方。
在本发明的一种实施方式中,所述检测平台包括钢化超白玻璃的台面,多根配置成支撑所述台面的支腿。
在本发明的一种实施方式中,所述支腿上设置有滚轮,以及配置成锁 紧所述滚轮的锁止机构。
在本发明的一种实施方式中,所述光伏组件检测装置还包括定位单元,所述定位单元设置在所述检测平台上,配置成固定待检测光伏组件。
在本发明的一种实施方式中,所述定位单元包括定位夹。
在本发明的一种实施方式中,所述光伏组件检测装置还包括输送单元,配置成将待检测光伏组件输送至所述检测平台上。
在本发明的一种实施方式中,所述光伏组件检测装置还包括感应器与控制器,所述感应器、所述输送单元分别与所述控制器连接,且所述感应器设置在所述检测平台上,配置成感应待检测光伏组件的位置。
在本发明的一种实施方式中,所述感应器配置成向所述控制器发送经感应所述待检测光伏组件得到的位置信号;所述控制器配置成根据所述位置信号调整所述输送单元的工作状态;所述工作状态包括运动状态和停止状态。
在本发明的一种实施方式中,所述输送单元包括电机和输送带,待检测光伏组件放置在所述输送带上,且所述电机配置成驱动所述输送带传送。
本申请还提供了一种光伏组件检测方法,所述方法应用于前述光伏组件检测装置;所述方法包括:
通过所述光伏组件检测装置的光源照射待检测光伏组件;
通过所述光伏组件检测装置的投影显示单元显示经所述光源照射后的所述待检测光伏组件的投影;
根据所述投影判断所述待检测光伏组件是否弯折。
本申请提供的光伏组件检测装置及方法,通过光源照射,使得待检测光伏组件的投影在投影显示单元上,待检测光伏组件的角部弯折区对应的投影部分将会出现亮点或亮斑,从而可以准确快速的对次品光伏组件进行挑选;本申请采用光学检测方法,可提高待检测光伏组件的角部弯折的无损检测的方便性,且检测准确度高,检测速度快,对于向上和向下弯折两种情况都能准确的检测,且保证了操作人员的安全;另外,光伏组件次品的去除,大大提高了由光伏组件组装的最终产品的生产良率,降低了不良 报废带来的损失,降低了产品使用时的安全隐患,同时也降低了顾客因产品可靠性及使用寿命问题而导致的投诉。
附图说明
图1为本申请实施例提供的光伏组件检测装置的结构示意图;
图2为本申请实施例提供的光伏组件检测方法流程图。
图3为本申请实施例提供的光伏组件检测方法流程图。
附图标记说明:
1-光源,11-LED灯条,12-灯罩,2-检测平台,21-台面,22-支腿,
3-投影显示单元,4-待检测光伏组件;5-凸透镜;6-滚轮;
7-锁止机构;8-定位单元;9-输送单元;91-输送带;92-电机;
100-控制器;110-感应器。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
如图1所示,本申请实施例提供了一种光伏组件检测装置,光伏组件检测装置包括:光源1、投影显示单元3,光源1与投影显示单元3分别设置在待检测光伏组件4的相对两侧,投影显示单元3配置成显示经光源1照射后的待检测光伏组件4的投影。其中,待检测光伏组件可以包含有一个或多个电池片。
本申请实施例提供的光伏组件检测装置,通过光源1照射,使得待检测光伏组件4的投影在投影显示单元3上显示,待检测光伏组件4的角部弯折区域显示的投影会异常,而且投影后的图像具有放大作用,从而使得操作人员可以准确快速的对角部弯折的情况进行识别,进而对次品光伏组 件进行挑选;本申请采用光学检测方法,可提高待检测光伏组件的角部弯折的无损检测的方便性,且检测准确度高,检测速度快,对于向上和向下弯折两种情况都能准确的检测,且保证了操作人员的安全;另外,光伏组件次品的去除,大大提高了由光伏组件组装的最终产品的生产良率,降低了不良报废带来的损失,降低了产品使用时的安全隐患,同时也降低了顾客因产品可靠性及使用寿命问题而导致的投诉。
为了防止外界自然光对测试光的干扰,影响对光斑或光点的判断,测试过程中,整个测试装置需处于暗箱内或暗室内。
在本发明的一种实施方式中,投影显示单元3包括黑板。投影显示单元3的实现方式有多种,还可以是投影幕布、显示屏等。
在本发明的一种实施方式中,光源1可以为线性光源,也即,光源1可以为长条状光源,光源的数量可以为一个或多个。
在本发明的一种实施方式中,光源1包括多个LED灯条11,多个所述LED灯条11发出的光为平行光。也可以采用普通光源1,如白炽灯、节能灯等。上述光源发出的光的颜色可以为白光,也可以为其他颜色的光,这里就不再一一赘述。
在本发明的一种实施方式中,光源1还包括灯罩12,灯罩12罩装在多个LED灯条11外侧,且光源发出的光线垂直于待检测光伏组件4。
其中,灯罩12的作用是为了有效的利用光源1,提高光亮度,使得光源1照射的方向竖直向上,即LED灯条11经过灯罩12发出的光为平行光,且光源1发出的光线垂直于待检测光伏组件4,从而便于待检测光伏组件4的投影准确显示到投影显示单元3上,便于操作人员进行检查,黑板的作用是为了更好的观察高清晰的投影,提高辨识度和判断的准确性。
在本发明的一种实施方式中,为了使得光源1发出光向竖直向上方向发射,如图2所示,可以在诸如灯条等光源的出光侧设置凸透镜5。
在本发明的一种实施方式中,光伏组件检测装置还包括配置成支撑待检测光伏组件4且透光的检测平台2,光源1位于检测平台2下方,投影显示单元3位于检测平台2上方。投影显示单元3可以悬挂在暗箱内或暗室内的顶部,投影显示单元被悬挂的高度可以设置为可调,当然投影显示单元3也可以被设置的暗箱内或暗室内的底部的支架支撑起来,支架的高 度可以设置为可调的。
在本发明的一种实施方式中,检测平台2包括钢化超白玻璃的台面21,多根配置成支撑台面21的支腿22。
为了便于检测平台2的移动,如图2所示,支腿上可以设置滚轮6以及配置成将滚轮6锁止的锁止机构7。锁止机构7也即为锁轮机构,在图2中仅是简单示意出锁止机构7,不应当被视为限制,在实际应用中也可以采用其它能够锁轮的机构。
其中,光源1安装在检测平台2下方,主要为待检测光伏组件4的检测提供一束高亮度的平行光,当光线向上透过检测平台2照射到待检测光伏组件4的边缘时,将在检测平台2上方的黑板上出现待检测光伏组件4边缘的投影,而角部弯折的待检测光伏组件4其对应的投影将出现亮点或亮斑,以此便可轻易的根据亮点的位置找到该待检测光伏组件4,并手工或机械将其换掉。
在本发明的一种实施方式中,光伏组件检测装置还包括定位单元8,定位单元8设置在检测平台2上,配置成固定待检测光伏组件4。在本发明的一种实施方式中,光伏组件检测装置还包括输送单元9,配置成将待检测光伏组件4输送至检测平台2上。
在本发明的一种实施方式中,光伏组件检测装置还包括感应器110与控制器100,感应器110、输送单元9分别与控制器100连接,感应器110设置在检测平台2上,配置成感应待检测光伏组件4的位置。具体的,该感应器110可以为红外测距传感器或超声波测距传感器等。具体的,感应器110与输送单元9可以与控制器100有线连接,也可以与控制器100无线通信连接,因此在图2中仅单独示意出控制器100,未明确示意感应器110、输送单元9与控制器100的线连接。
在实际应用时,上述感应器可配置成向控制器发送经感应待检测光伏组件得到的位置信号;控制器可配置成根据位置信号调整输送单元的工作状态;该工作状态包括运动状态和停止状态。诸如,控制器可以根据感应器发送的位置信号判断输送单元是否将待检测光伏组件传送至检测平台上的特定位置,如果是,控制器将输送单元由运动状态调整为停止状态;如果否,控制器继续令输送单元保持运动状态,直至待检测光伏组件传送至 检测平台上的特定位置。
在本发明的一种实施方式中,控制器100还与定位单元8连接,可以为有线连接或无线通信连接。在本发明的一种实施方式中,输送单元9包括电机92和输送带91,待检测光伏组件4放置在输送带91上,电机92配置成驱动输送带传送。
其中,本申请实施例中,可以通过控制器100控制电机92,对输送带91进行驱动,当感应器110探测到待检测光伏组件4到达适当位置时,向控制器100输送信号,控制器100控制电机92停止输送,同时控制定位单元8固定待检测光伏组件4;定位单元8实现定位结构有多种,如定位夹、或者位于待检测光伏组件4两端的配置成阻挡的结构等。
基于前述光伏组件检测装置的多种可实施方式,在此围绕图1详细阐述一种简单可行的光伏组件检测装置的具体实施方式,由图1可见,待检测光伏组件4放置于台面21和支腿22组成的检测平台2上,台面21为水平台面,且台面的面积大于待检测光伏组件4的面积,以便于较好的水平放置待检测光伏组件4。再如图1可见,支腿22的数量为四个,分别置于台面21的四个顶角处,以达到稳定支撑台面21的效果;支腿22的高度可以灵活设置,在此不进行限制。图1还示意处了2根平行的LED灯条11和灯罩12构成的光源1,灯罩12罩装在2根LED灯条11的外侧。在安装光伏组件检测装置的光源时,需要使LED灯条11透过灯罩12发出的光线垂直于待检测光伏组件4。光源1设置于待检测光伏组件4的一侧,投影显示单元3设置于待检测光伏组件4的另一侧,如图1所示,光源1设置于待检测光伏组件4的下侧,投影显示单元3设置于待检测光伏组件4的上侧,且都与待检测光伏组件4相距一定距离,投影显示单元可以显示光源1照射后的待检测光伏组件4的投影。
应当注意的是,以上仅为一种光伏组件检测装置的简单实施方式,在实际应用中,不应当将图1中的实施方案视为限制,可以根据需求而灵活调整光伏组件检测装置的结构,诸如,检测平台的形式可以不局限于矩形的支撑台面和四个支腿,支撑台面的形式、支腿的个数以及形式也可以灵活设置。此外,还可以不设置用于支撑待检测光伏组件的检测平台,采用诸如卡槽等其它方式固定待检测光伏组件,只需光源与投影显示单元分别 位于待检测光伏组件的相对两侧,且投影显示单元可显示经光源照射后的待检测光伏组件的投影即可。此外,如果光源与投影显示单元的位置固定,光伏组件检测装置还可以包括诸如用于传输待检测光伏组件的输送单元(输送带和电机)等,以使输送单元将待检测光伏组件输送至光源与投影显示单元之间的指定区域,该指定区域即为对待检测光伏组件进行检测的位置。进一步,还可以设置诸如位置传感器等感应器,可感应待检测光伏组件的位置,确保待检测光伏组件位于指定区域上。
在前述光伏组件检测装置的基础上,本申请实施例还提供了一种光伏组件检测方法,该方法应用于前述任一项光伏组件检测装置;参见图3所示的一种光伏组件检测方法流程图,该方法包括如下步骤:
步骤S302:通过光伏组件检测装置的光源照射待检测光伏组件;
步骤S304:通过光伏组件检测装置的投影显示单元显示经光源照射后的待检测光伏组件的投影。
步骤S306:根据上述投影判断待检测光伏组件是否弯折。
在一种实施方式中,可以预先确定正常的光伏组件(也即,未弯折的光伏组件)的投影,如果待检测光伏组件的投影与正常光伏组件的投影相异,则表明待检测光伏组件弯折。在另一种实施方式中,可以预先确定弯折的光伏组件的投影,如果待检测光伏组件的投影与弯折的光伏组件的投影一致,则表明待检测光伏组件弯折。
本申请实施例提供的光伏组件检测方法,通过光源照射,使得待检测光伏组件的投影在投影显示单元上显示,待检测光伏组件的角部弯折区域显示的投影会异常,而且投影后的图像具有放大作用,从而使得操作人员可以准确快速的对角部弯折的情况进行识别,进而对次品光伏组件进行挑选;本申请采用上述光学组件检测方法,可提高待检测光伏组件的角部弯折的无损检测的方便性,且检测准确度高,检测速度快,对于向上和向下弯折两种情况都能准确的检测,且保证了操作人员的安全;另外,光伏组件次品的去除,大大提高了由光伏组件组装的最终产品的生产良率,降低了不良报废带来的损失,降低了产品使用时的安全隐患,同时也降低了顾客因产品可靠性及使用寿命问题而导致的投诉。以上依据图式所示的实施例详细说明了本申请的构造、特征及作用效果,以上所述仅为本申请的较 佳实施例,但本申请不以图面所示限定实施范围,凡是依照本申请的构想所作的改变,或修改为等同变化的等效实施例,仍未超出说明书与图示所涵盖的精神时,均应在本申请的保护范围内。
工业实用性:
通过应用本申请的技术方案,可提高待检测光伏组件的角部弯折的无损检测的方便性,且检测准确度高,检测速度快,对于向上和向下弯折两种情况都能准确的检测,且保证了操作人员的安全;另外,光伏组件次品的去除,大大提高了由光伏组件组装的最终产品的生产良率,降低了不良报废带来的损失,降低了产品使用时的安全隐患,同时也降低了顾客因产品可靠性及使用寿命问题而导致的投诉。

Claims (18)

  1. 一种光伏组件检测装置,其特征在于,所述光伏组件检测装置包括:
    光源和投影显示单元,所述光源与所述投影显示单元分别设置在待检测光伏组件的相对两侧,所述投影显示单元配置成显示经所述光源照射后的待检测光伏组件的投影。
  2. 根据权利要求1所述的光伏组件检测装置,其特征在于,所述投影显示单元包括:黑板。
  3. 根据权利要求1所述的光伏组件检测装置,其特征在于,所述投影显示单元包括:投影幕布。
  4. 根据权利要求1所述的光伏组件检测装置,其特征在于,所述投影显示单元包括:显示屏。
  5. 根据权利要求1所述的光伏组件检测装置,其特征在于,所述光源为线形光源。
  6. 根据权利要求5所述的光伏组件检测装置,其特征在于,所述光源的出光侧设置有凸透镜。
  7. 根据权利要求5或6所述的光伏组件检测装置,其特征在于,所述光源包括多个LED灯条,多个所述LED灯条发出的光为平行光。
  8. 根据权利要求7所述的光伏组件检测装置,其特征在于,所述光源还包括灯罩,所述灯罩罩装在多个所述LED灯条外侧,且所述光源发出的光线垂直于待检测光伏组件。
  9. 根据权利要求1-8任一项所述的光伏组件检测装置,其特征在于,所述光伏组件检测装置还包括:配置成支撑待检测光伏组件且透光的检测平台,所述光源位于所述检测平台下方,所述投影显示单元位于所述检测平台上方。
  10. 根据权利要求9所述的光伏组件检测装置,其特征在于,所述检测平台包括钢化超白玻璃的台面,多根配置成支撑所述台面的支腿。
  11. 根据权利要求10所述的光伏组件检测装置,其特征在于,所述支腿上设置有滚轮,以及配置成锁紧所述滚轮的锁止机构。
  12. 根据权利要求9所述的光伏组件检测装置,其特征在于,所述光伏组件检测装置还包括定位单元,所述定位单元设置在所述检测平台上, 配置成固定待检测光伏组件。
  13. 根据权利要求12所述的光伏组件检测装置,其特征在于,所述定位单元包括定位夹。
  14. 根据权利要求12所述的光伏组件检测装置,其特征在于,所述光伏组件检测装置还包括输送单元,配置成将待检测光伏组件输送至所述检测平台上。
  15. 根据权利要求14所述的光伏组件检测装置,其特征在于,所述光伏组件检测装置还包括感应器与控制器,所述感应器、所述输送单元分别与所述控制器连接,且所述感应器设置在所述检测平台上,配置成感应待检测光伏组件的位置。
  16. 根据权利要求15所述的光伏组件检测装置,其特征在于,所述感应器配置成向所述控制器发送经感应所述待检测光伏组件得到的位置信号;所述控制器配置成根据所述位置信号调整所述输送单元的工作状态;所述工作状态包括运动状态和停止状态。
  17. 根据权利要求14所述的光伏组件检测装置,其特征在于,所述输送单元包括电机和输送带,待检测光伏组件放置在所述输送带上,且所述电机配置成驱动所述输送带传送。
  18. 一种光伏组件检测方法,其特征在于,所述方法应用于权利要求1至17任一项所述的光伏组件检测装置;所述方法包括:
    通过所述光伏组件检测装置的光源照射待检测光伏组件;
    通过所述光伏组件检测装置的投影显示单元显示经所述光源照射后的所述待检测光伏组件的投影;
    根据所述投影判断所述待检测光伏组件是否弯折。
PCT/CN2018/094946 2017-10-25 2018-07-09 一种光伏组件检测装置及方法 WO2019080541A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/076,306 US20210184628A1 (en) 2017-10-25 2018-07-09 Device and method for detecting a photovoltaic module
AU2018213979A AU2018213979A1 (en) 2017-10-25 2018-07-09 Device and method for detecting a photovoltaic module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721386957.X 2017-10-25
CN201721386957.XU CN207250461U (zh) 2017-10-25 2017-10-25 一种光伏组件检测装置

Publications (1)

Publication Number Publication Date
WO2019080541A1 true WO2019080541A1 (zh) 2019-05-02

Family

ID=61883001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094946 WO2019080541A1 (zh) 2017-10-25 2018-07-09 一种光伏组件检测装置及方法

Country Status (4)

Country Link
US (1) US20210184628A1 (zh)
CN (1) CN207250461U (zh)
AU (1) AU2018213979A1 (zh)
WO (1) WO2019080541A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207250461U (zh) * 2017-10-25 2018-04-17 米亚索乐装备集成(福建)有限公司 一种光伏组件检测装置
CN109682305B (zh) * 2019-02-27 2024-04-05 厦门烟草工业有限责任公司 滤棒内爆珠轴向位置检测装置及方法
CN111900880A (zh) * 2020-07-08 2020-11-06 苏州康开电气有限公司 光电传输隔离电源
CN116106980B (zh) * 2023-04-13 2024-02-20 江苏时代新能源科技有限公司 缝隙检测装置以及缝隙检测方法
CN118090753B (zh) * 2024-04-17 2024-06-25 太原理工大学 一种基于视觉的激光打印光伏板极小缺陷检测装置及方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201540261U (zh) * 2009-06-18 2010-08-04 上海交大泰阳绿色能源有限公司 一种检查布纹钢化玻璃气泡的简易装置
CN103376255A (zh) * 2012-04-16 2013-10-30 苏州中导光电设备有限公司 太阳能多晶硅电池片表面缺陷与沾污检测设备
CN204789373U (zh) * 2015-05-29 2015-11-18 中建材浚鑫科技股份有限公司 太阳能电池组件自动检验架
CN205786394U (zh) * 2016-06-30 2016-12-07 合肥鑫晟光电科技有限公司 一种显示面板检测装置
CN207250461U (zh) * 2017-10-25 2018-04-17 米亚索乐装备集成(福建)有限公司 一种光伏组件检测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201540261U (zh) * 2009-06-18 2010-08-04 上海交大泰阳绿色能源有限公司 一种检查布纹钢化玻璃气泡的简易装置
CN103376255A (zh) * 2012-04-16 2013-10-30 苏州中导光电设备有限公司 太阳能多晶硅电池片表面缺陷与沾污检测设备
CN204789373U (zh) * 2015-05-29 2015-11-18 中建材浚鑫科技股份有限公司 太阳能电池组件自动检验架
CN205786394U (zh) * 2016-06-30 2016-12-07 合肥鑫晟光电科技有限公司 一种显示面板检测装置
CN207250461U (zh) * 2017-10-25 2018-04-17 米亚索乐装备集成(福建)有限公司 一种光伏组件检测装置

Also Published As

Publication number Publication date
US20210184628A1 (en) 2021-06-17
CN207250461U (zh) 2018-04-17
AU2018213979A1 (en) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2019080541A1 (zh) 一种光伏组件检测装置及方法
CN208043682U (zh) 一种导光板缺陷自动视觉检测装置
CN105527294A (zh) 一种背光源检测机
CN101539529A (zh) 基于led的小型水果在线检测光源系统
US20140055603A1 (en) Automatic optical inspection device
CN103528546A (zh) 一种检测浮法玻璃波纹度的装置和方法
CN105548217A (zh) 镀膜制品的外观检测装置及检测方法
CN205449819U (zh) 一种背光源检测机
CN110412044A (zh) 一种智能缺陷识别扫描仪及其使用方法
CN109342443A (zh) 视觉检测背光源及其视觉检测装置
CN202794060U (zh) 一种用于检测玻璃基板中缺陷的装置
CN204142654U (zh) 一种汽车镀膜玻璃镀膜前检验装置
CN205301202U (zh) 印刷品视觉检测装置
JP2005156200A (ja) 板ガラスの検査方法および板ガラスの検査装置
CN204021866U (zh) 一种汽车镀膜玻璃在线检验装置
KR101977243B1 (ko) 글라스 기판의 검사장치, 이를 이용한 검사방법 및 증착장치
CN203069526U (zh) 紫外光掩模板检测系统
CN204528610U (zh) 叠层检查装置
CN107068583B (zh) 太阳能电池板气泡检测装置及其检测方法
CN216386841U (zh) 一种保护膜外观缺陷检测装置
CN1987436B (zh) 基板检测设备及玻璃基板检测设备
CN202854062U (zh) 一种检测玻璃裂痕的操作台
CN104465438A (zh) 面板入料检验装置
CN202956348U (zh) 导光板印刷网点检测装置
CN209311346U (zh) 视觉检测背光源及其视觉检测装置

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018213979

Country of ref document: AU

Date of ref document: 20180709

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871390

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18871390

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871390

Country of ref document: EP

Kind code of ref document: A1