WO2019080512A1 - 一种真空镀膜设备的工艺气体流量的调整方法和系统 - Google Patents

一种真空镀膜设备的工艺气体流量的调整方法和系统

Info

Publication number
WO2019080512A1
WO2019080512A1 PCT/CN2018/091148 CN2018091148W WO2019080512A1 WO 2019080512 A1 WO2019080512 A1 WO 2019080512A1 CN 2018091148 W CN2018091148 W CN 2018091148W WO 2019080512 A1 WO2019080512 A1 WO 2019080512A1
Authority
WO
WIPO (PCT)
Prior art keywords
process gas
gas
vacuum
flow rate
flow
Prior art date
Application number
PCT/CN2018/091148
Other languages
English (en)
French (fr)
Inventor
马峥
Original Assignee
君泰创新(北京)科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 君泰创新(北京)科技有限公司 filed Critical 君泰创新(北京)科技有限公司
Priority to CN201880001493.7A priority Critical patent/CN109983156A/zh
Priority to US16/021,312 priority patent/US20190127837A1/en
Priority to EP18180749.6A priority patent/EP3476974A1/en
Priority to JP2018125091A priority patent/JP2019081945A/ja
Priority to KR1020180075644A priority patent/KR20190047583A/ko
Publication of WO2019080512A1 publication Critical patent/WO2019080512A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/513Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using plasma jets

Definitions

  • the present application relates to, but is not limited to, the field of solar cell preparation technology, and in particular, but not limited to, a method and system for adjusting a process gas flow rate of a vacuum coating apparatus.
  • CVD Chemical Vapor Deposition
  • PECVD Plasma Enhanced Chemical Vapor Deposition
  • the working principle of the PECVD equipment is to place two parallel electrode plates with a certain spacing in a vacuum environment, one of which is connected to the RF power source and the other electrode plate is grounded to generate an RF electric field between the two electrode plates.
  • the substrate to be coated is placed between the two electrode plates; the coating process gas enters between the two electrode plates, and is excited into a plasma under the action of the RF electric field, and the plasma reacts with the surface of the substrate to be on the surface of the substrate.
  • a film is formed.
  • the invention provides a method and a system for adjusting a process gas flow rate of a vacuum coating device, which are used for avoiding abrasion of various vacuum coating equipment, types of process gases and gas flowmeters when preparing a plurality of vacuum coating equipments.
  • the difference is easy to cause the consistency of product specifications and the decrease of the pass rate, which can reduce the production cost of the product and improve the production efficiency and quality of the product.
  • a method for adjusting a process gas flow rate of a vacuum coating apparatus comprising:
  • the process program is executed as the flow rate control value of the process gas, and if the determination result is no, the corrected flow rate value is used as the flow rate control value of the process gas.
  • vacuum coating apparatus refers to a vacuum coating apparatus in which a process gas participates in a coating reaction.
  • the method may further include:
  • the proportional relationship of the various process gases in the execution of the process sequence is determined based on the ratio between the flow control values of the various process gases.
  • the determining a flow coefficient of the process gas relative to the reference gas may include:
  • a ratio of the process gas timing time to the reference gas timing time is used as a flow coefficient of the process gas relative to the reference gas.
  • acquiring the reference gas timing time or the process gas timing time may include the following steps:
  • acquiring the reference gas timing time or the process gas timing time may further include the following steps:
  • the suction valve is opened, and the vacuum chamber is evacuated until the background vacuum is reached, and the suction valve is closed.
  • the reference gas may be any one of the process gases.
  • the reference gas may be any of the following gases: argon, hydrogen, oxygen, and silane.
  • the method may further include: determining whether a flow coefficient of the process gas relative to the reference gas is in a range of 0.8 to 1.2, and if the determination result is no, repairing the device or resetting the process parameter Until the re-determined flow coefficient of the process gas relative to the reference gas is in the range of 0.8 to 1.2.
  • the vacuum coating apparatus may be a PECVD apparatus or a CVD apparatus.
  • the present application also provides a process gas flow rate adjustment system for a vacuum coating apparatus, the system comprising: a setting unit, a flow coefficient determining unit, a flow rate correcting unit, and a flow adjusting unit;
  • the setting unit is configured to obtain a flow rate set value of the process gas and select a reference gas
  • the flow coefficient determining unit is configured to determine a flow coefficient of the process gas relative to the reference gas
  • the flow correction unit is configured to calculate a corrected flow rate value of the process gas according to the flow rate set value and the flow rate coefficient;
  • the flow rate adjusting unit is configured to determine whether the corrected flow rate value is greater than a maximum value of the gas flow meter range of the vacuum coating device, and if the determination result is yes, an overrange alarm is performed, and the maximum value of the gas flow meter range is used
  • the flow rate control value of the process gas is used to execute a process program, and if the determination result is no, the corrected flow rate value is used as a flow rate control value of the process gas.
  • the flow coefficient determining unit may include: a first timing module and a second timing module;
  • the first timing module is configured to time the reference gas timing time required for the vacuum chamber of the vacuum coating apparatus to reach a second set vacuum degree from a first set vacuum degree;
  • the second timing module is configured to perform, for the process gas, a process chamber timing time required for the vacuum chamber of the vacuum coating apparatus to reach the second set vacuum degree from the first set vacuum degree Timing.
  • the flow coefficient determining unit may further include: a vacuum degree setting unit;
  • the vacuum degree setting unit is configured to set the first set vacuum degree and the second set vacuum degree.
  • system may further include: a control module and a calculation module;
  • the control module is configured to open a vacuum valve of the vacuum chamber, exhaust the gas in the vacuum chamber to a background vacuum; and, after the vacuum chamber reaches the background vacuum, close the chamber
  • An exhaust valve that opens an inflation valve of the reference gas or the process gas and inflates the vacuum chamber at a set flow rate
  • the calculation module is configured to determine a flow coefficient of the process gas relative to the reference gas by calculating a ratio of the process gas timing time to the reference gas time.
  • the vacuum coating apparatus may be a PECVD apparatus or a CVD apparatus.
  • the present application provides a method and system for adjusting a process gas flow rate of a vacuum coating apparatus, which determines a flow control value of a process gas by determining a flow coefficient of a process gas relative to a reference gas and a corrected flow value, which can avoid the present
  • a process gas flow rate of a vacuum coating apparatus which determines a flow control value of a process gas by determining a flow coefficient of a process gas relative to a reference gas and a corrected flow value, which can avoid the present
  • FIG. 1 is a flow chart of a method for adjusting a process gas flow rate of a vacuum coating apparatus provided by the present application
  • FIG. 2 is a flowchart of a method for determining a flow coefficient according to an embodiment of the present application
  • FIG. 3 is a flow chart of a method for determining timing time provided by an embodiment of the present application.
  • the present invention provides a method and a system for adjusting a process gas flow rate of a vacuum coating apparatus.
  • the flow rate control value of the process gas is determined by the flow coefficient of the process gas relative to the reference gas and the corrected flow rate value, thereby avoiding the existing multiple vacuum coatings.
  • the frequency of the vacuum coating device, the environment, and other devices used in conjunction with the vacuum coating device, such as gas flow meters, are likely to cause consistency in product specifications and a decrease in the yield. It can reduce the production cost of the product and improve the production efficiency and quality of the product.
  • FIG. 1 is a flow chart of a method for adjusting a process gas flow rate of a vacuum coating apparatus according to an embodiment of the present application, the method comprising the following steps:
  • the corrected flow rate of the process gas may be equal to the product of the flow rate set value of the process gas and the flow coefficient. Different reference gases are used and the values of the flow coefficients obtained are also different.
  • the method can also include determining, by the ratio between the flow control values of the various process gases, a proportional relationship of various process gases in the execution of the process.
  • the vacuum coating apparatus controls the proportional relationship of various process gases in the process of performing the coating process by the flow control value of various process gases, that is, to perform various processes in the process program.
  • the ratio of the flow rates of the process gases is equal to the ratio between the flow control values of the various process gases.
  • the flow rate set value and the flow coefficient of the process gas are calculated to obtain corrected flow values of various process gases, and the flow rate control values of the various process gases are determined by the corrected flow rate value and the gas flow meter range corresponding to the process gas, and then the The vacuum coating device controls the proportional relationship of various process gases in the vacuum chamber by the flow control value to achieve uniform coating effect of multiple vacuum coating devices.
  • the determining the flow coefficient of the process gas relative to the reference gas may include the following steps:
  • a ratio of the process gas timing time to the reference gas timing time is used as a flow coefficient of the process gas relative to the reference gas.
  • acquiring the reference gas timing time or the process gas timing time may include the following steps:
  • S10 Start timing when the vacuum chamber reaches the first set vacuum, until the vacuum chamber reaches the second set vacuum stop timing, and obtain the obtained timing time as the reference gas timing. Time or time of the process gas.
  • the background vacuum refers to the degree of vacuum achieved when the gas in the vacuum chamber is exhausted as much as possible to prevent the subsequent introduced process gas from being affected by the gas previously present in the vacuum chamber.
  • the first set vacuum degree and the second set vacuum degree can be manually set.
  • the degree of vacuum can also be replaced by pressure.
  • the start of the process gas timing is: when the process gas is introduced to start the timing when the vacuum chamber reaches the first set pressure value
  • the end of the process gas timing time is: continue to enter the process The gas ends when the vacuum chamber reaches the second set pressure value.
  • Obtaining the reference gas timing time or the process gas timing time may further include the following steps:
  • the method can also include determining a flow coefficient of the various process gases of the vacuum coating apparatus using the same reference gas to ensure that the ratio of various process gases in the process sequence is performed.
  • the flow coefficients of the same reference gas can be determined for each process gas, so that each process gas uses the same reference to control the flow rate, thereby avoiding the influence of the selection of different reference gases on the flow coefficient.
  • the reference gas may be any one of the process gases used in the vacuum coating apparatus, or may be any of the following gases: argon, hydrogen, oxygen, and silane.
  • the reference gas is typically selected within the range of process gases actually required for the coating process.
  • the method may further include: determining whether a flow coefficient of the process gas relative to the reference gas is in a range of 0.8 to 1.2, and if the determination result is no, repairing the device or resetting the process parameter until the re-determined
  • the flow coefficient of the process gas relative to the reference gas is in the range of 0.8 to 1.2.
  • the flow coefficient of each process gas in the vacuum coating device can be periodically tested and stored, and the data can be passed through Data analysis of each process gas flow system determines the working state of the gas flow meter and vacuum coating equipment to ensure the quality of the product.
  • the relevant process gas flow rate Alarms are issued to prevent large quantities of scrap or substandard products from appearing.
  • the flow coefficient is not in the range of 0.8 to 1.2, it is necessary to check the equipment to check whether the hardware of the equipment is damaged, or whether other devices connected to the device are damaged, such as measuring the pressure device, the flow meter, etc., if the equipment hardware is correct. , to see if the operation is wrong, or the device software is incorrect.
  • the vacuum coating apparatus is a vacuum coating apparatus in which a process gas participates in a coating reaction, and may be, for example, a PECVD apparatus or a CVD apparatus.
  • the present application provides a method for adjusting a process gas flow rate of a vacuum coating device, which determines a flow rate control value of a process gas by determining a flow coefficient of a process gas and a corrected flow rate value, thereby avoiding multiple existing vacuum coating devices
  • a process gas flow rate of a vacuum coating device which determines a flow rate control value of a process gas by determining a flow coefficient of a process gas and a corrected flow rate value
  • the application also provides a process gas flow adjustment system for a vacuum coating apparatus, comprising: a setting unit, a flow coefficient determining unit, a flow rate correcting unit, and a flow adjusting unit.
  • the setting unit is configured to obtain a flow rate set value of the process gas and select a reference gas.
  • the flow coefficient determining unit is configured to determine a flow coefficient of the process gas relative to the reference gas.
  • the flow rate modifying unit is configured to calculate a corrected flow rate value of the process gas based on the flow rate set value and the flow rate coefficient.
  • the flow rate adjusting unit is configured to determine whether the corrected flow rate value is greater than a maximum value of the gas flow meter range of the vacuum coating device, and if the determination result is yes, an overrange alarm is performed, and the maximum value of the gas flow meter range is used
  • the flow rate control value of the process gas is used to execute a process program, and if the determination result is no, the corrected flow rate value is used as a flow rate control value of the process gas.
  • the flow coefficient determining unit may include: a first timing module and a second timing module.
  • the first timing module is configured to time the reference gas timing time required for the vacuum chamber of the vacuum coating apparatus to reach a second set vacuum from a first set vacuum.
  • the second timing module is configured to perform, for the process gas, a process chamber timing time required for the vacuum chamber of the vacuum coating apparatus to reach the second set vacuum degree from the first set vacuum degree Timing.
  • the flow coefficient determining unit may further include: a vacuum degree setting unit.
  • the vacuum degree setting unit is configured to set the first set vacuum degree and the second set vacuum degree.
  • the system can also include: a control module and a computing module.
  • the control module is configured to open an air suction valve of the vacuum chamber to exhaust the gas in the vacuum chamber to a background vacuum; the control module is further configured to close the air suction valve, open the reference gas or An inflation valve of the process gas and inflating the vacuum chamber at a set flow rate.
  • the calculation module is configured to determine a flow coefficient of the process gas relative to the reference gas by calculating a ratio of the process gas timing time to the reference gas timing time.
  • the process gas flow adjustment system of the vacuum coating apparatus may include a mechanical part (valve, for example, an exhaust valve, an inflation valve), an electrical control part (eg, a programmable logic controller ( Programmable Logic Controller (PLC), computer, etc.) and computer programs written to the programmable controller or computer through a computer.
  • a mechanical part valve, for example, an exhaust valve, an inflation valve
  • an electrical control part eg, a programmable logic controller ( Programmable Logic Controller (PLC), computer, etc.
  • PLC Programmable Logic Controller
  • the programmable logic controller or the computer of the electrical control part controls the valve to be turned on or off according to the set parameter sequence to obtain the timing of the corresponding gas; the flow coefficient is calculated by the programmable logic controller or the computer of the electrical control part;
  • the corrected flow value is loaded onto the uniform process parameters for individual correction.
  • the vacuum coating apparatus is a vacuum coating apparatus in which a process gas participates in a coating reaction, and may be, for example, a PECVD apparatus or a CVD apparatus.
  • the present application provides a process gas flow rate adjustment system for a vacuum coating device, which determines a flow coefficient of a process gas relative to the reference gas by a flow coefficient determination unit to obtain a flow control value of the process gas, thereby avoiding existing multiple
  • a process gas flow rate adjustment system for a vacuum coating device which determines a flow coefficient of a process gas relative to the reference gas by a flow coefficient determination unit to obtain a flow control value of the process gas, thereby avoiding existing multiple
  • computer storage medium includes volatile and nonvolatile, implemented in any method or technology for storing information, such as computer readable instructions, data structures, program modules or other data. Sex, removable and non-removable media.
  • Computer storage media includes, but is not limited to, RAM, ROM, EEPROM, flash memory or other memory technology, CD-ROM, digital versatile disc (DVD) or other optical disc storage, magnetic cartridge, magnetic tape, magnetic disk storage or other magnetic storage device, or may Any other medium used to store the desired information and that can be accessed by the computer.
  • communication media typically includes computer readable instructions, data structures, program modules, or other data in a modulated data signal, such as a carrier wave or other transport mechanism, and can include any information delivery media. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)

Abstract

一种真空镀膜设备的工艺气体流量的调整方法,包括:获得工艺气体的流量设定值,并选择基准气体;确定工艺气体相对于基准气体的流量系数;根据工艺气体的流量设定值和流量系数计算得到工艺气体的修正流量值;判断工艺气体的修正流量值是否大于用于控制工艺气体流量的气体流量计的量程最大值,如果判断结果为是,则超量程报警,并以气体流量计的量程最大值作为工艺气体的流量控制值来执行工艺程序,如果判断结果为否,以修正流量值作为工艺气体的流量控制值。还提供了一种真空镀膜设备的工艺气体流量的调整系统。

Description

一种真空镀膜设备的工艺气体流量的调整方法和系统 技术领域
本申请涉及但不限于太阳能电池制备技术领域,尤其涉及但不限于一种真空镀膜设备的工艺气体流量的调整方法和系统。
背景技术
随着气相沉积技术的不断发展,化学气相沉积(Chemical Vapor Deposition,CVD)技术和等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)技术越来越多的应用于光伏行业中,主要用于各种膜层的制备,尤其对于非晶硅,硅锗以及微晶硅非晶硅叠层和多种薄膜太阳能电池起到关键作用。
PECVD设备的工作原理是:将两块相互平行且具有一定间距的电极板置于真空环境中,其中一块电极板接射频电源,另一块电极板接地,使两块电极板之间产生射频电场。将需要镀膜的基材放置于两块电极板间;使镀膜工艺气体进入两块电极板之间,在射频电场的作用下激发成为等离子体,等离子体和基材表面发生反应从而在基材表面形成薄膜。
PECVD设备中的影响产品质量的工艺参数有很多种,主要有温度,压力,等离子体的功率密度以及参与反应的工艺气体的种类和流量大小。其中工艺气体的种类和流量大小影响最终形成的膜层类型及结构。在工业生产的过程中,期望使多台PECVD设备持续稳定地运行工艺得到近似的镀膜效果从而保证产品规格的一致性以及产品的合格率。多台PECVD设备即使硬件配置相同,由于使用频次、安装运行环境的不同,经过一段时间的使用也会使工艺参数逐渐产生差异。尤其是控制工艺气体流量的气体质量流量计。由于质量流量计受安装的环境,温度,及使用情况的影响较大,即使是应用于同类型的PECVD设备中并设置相同的气体流量值也会产生不同的镀膜效果。在CVD设备中进行的CVD技术也存在类似的问题。如何控制同一个工艺参数在不同特性的真空镀膜设备上得到稳定近似的结果,从而保证产品规格的一致性和合格率,其具有重要的研究意义。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请提供一种真空镀膜设备的工艺气体流量的调整方法和系统,用于避免现有多台真空镀膜设备在制备膜层时,由于各真空镀膜设备磨损、工艺气体的种类和气体流量计的差异,易造成产品规格的一致性和合格率降低的问题,可降低产品的生产成本,提高产品的生产效率和质量。
本申请提供以下技术方案:
一种真空镀膜设备的工艺气体流量的调整方法,所述方法包括:
获得工艺气体的流量设定值,并选择基准气体;
确定所述工艺气体相对于所述基准气体的流量系数;
根据所述工艺气体的流量设定值和所述流量系数计算得到所述工艺气体的修正流量值;
判断所述工艺气体的修正流量值是否大于用于控制所述工艺气体流量的气体流量计的量程最大值,如果判断结果为是,则超量程报警,并以所述气体流量计的量程最大值作为所述工艺气体的流量控制值来执行工艺程序,如果判断结果为否,以所述修正流量值作为所述工艺气体的流量控制值。
在本申请中,术语“真空镀膜设备”指的是在其中发生工艺气体参与镀膜反应的真空镀膜设备。
在示例性实施例中,所述方法还可以包括:
根据各种工艺气体的所述流量控制值之间的比值,来确定执行工艺程序中的各种工艺气体的比例关系。
在示例性实施例中,所述确定所述工艺气体相对于所述基准气体的流量系数可以包括:
获取所述基准气体使真空镀膜设备的真空腔室从第一设定真空度达到第二设定真空度时所需的基准气体计时时间;
获取所述工艺气体使所述真空镀膜设备的真空腔室从所述第一设定真空 度达到所述第二设定真空度时所需的工艺气体计时时间;
将所述工艺气体计时时间与所述基准气体计时时间的比值作为所述工艺气体相对于所述基准气体的流量系数。
在示例性实施例中,获取所述基准气体计时时间或所述工艺气体计时时间可以包括以下步骤:
开启真空腔室的抽气阀,将所述真空腔室内的气体抽尽至达到本底真空度;
关闭所述抽气阀,开启所述基准气体或工艺气体的充气阀,并对所述真空腔室进行充气;
在所述真空腔室达到所述第一设定真空度时开始计时,直至所述真空腔室达到所述第二设定真空度停止计时,将得到的计时时间作为所述基准气体计时时间或所述工艺气体计时时间。
在示例性实施例中,获取所述基准气体计时时间或所述工艺气体计时时间还可以包括以下步骤:
在所述真空腔室达到所述第二设定真空度时,关闭所述充气阀;
开启所述抽气阀,将所述真空腔室抽气至达到所述本底真空度后关闭所述抽气阀。
在示例性实施例中,所述基准气体可以为所述工艺气体中的任一种。
在示例性实施例中,所述基准气体可以为以下气体中的任一种:氩气、氢气、氧气和硅烷。
在示例性实施例中,所述方法还可以包括:判断所述工艺气体相对于所述基准气体的流量系数是否在0.8至1.2范围内,如果判断结果为否,则检修设备或重新设置工艺参数,直至重新确定的所述工艺气体相对于所述基准气体的流量系数处于0.8至1.2范围内。
在示例性实施例中,所述真空镀膜设备可以为PECVD设备或CVD设备。
本申请还提供一种真空镀膜设备的工艺气体流量的调整系统,所述系统 包括:设定单元、流量系数确定单元、流量修正单元和流量调整单元;
所述设定单元配置为获得工艺气体的流量设定值,并选择基准气体;
所述流量系数确定单元配置为确定所述工艺气体相对于所述基准气体的流量系数;
所述流量修正单元配置为根据所述流量设定值和所述流量系数计算得到所述工艺气体的修正流量值;
所述流量调整单元配置为判断所述修正流量值是否大于所述真空镀膜设备的气体流量计量程最大值,如果判断结果为是,则超量程报警,并以所述气体流量计量程最大值作为所述工艺气体的流量控制值来执行工艺程序,如果判断结果为否,以所述修正流量值作为所述工艺气体的流量控制值。
在示例性实施例中,所述流量系数确定单元可以包括:第一计时模块和第二计时模块;
所述第一计时模块配置为对所述基准气体使所述真空镀膜设备的真空腔室从第一设定真空度达到第二设定真空度时所需的基准气体计时时间进行计时;
所述第二计时模块配置为对所述工艺气体使所述真空镀膜设备的真空腔室从所述第一设定真空度达到所述第二设定真空度时所需的工艺气体计时时间进行计时。
在示例性实施例中,所述流量系数确定单元还可以包括:真空度设定单元;
所述真空度设定单元配置为设定所述第一设定真空度和所述第二设定真空度。
在示例性实施例中,所述系统还可以包括:控制模块和计算模块;
所述控制模块配置为开启真空腔室的抽气阀,将所述真空腔室内的气体抽尽至达到本底真空度;并且,待所述真空腔室达到所述本底真空度后关闭所述抽气阀,开启所述基准气体或所述工艺气体的充气阀,并以设定流量对所述真空腔室进行充气;
所述计算模块配置为通过计算所述工艺气体计时时间与所述基准气体计 时时间的比值来确定所述工艺气体相对于所述基准气体的流量系数。
在示例性实施例中,所述真空镀膜设备可以为PECVD设备或CVD设备。
本申请提供一种真空镀膜设备的工艺气体流量的调整方法和系统,所述方法通过确定工艺气体相对于基准气体的流量系数和修正流量值,来确定工艺气体的流量控制值,其可避免现有多台真空镀膜设备在制备膜层时,由于各真空镀膜设备磨损、工艺气体的种类和气体流量计的差异,易造成产品规格的一致性和合格率降低的问题,可降低产品的生产成本,提高产品的生产效率和质量。
本申请的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得更加清楚,或者通过实施本申请而了解。本申请的目的和其他优点可通过在说明书以及权利要求书中所特别指出的结构来实现和获得。
附图概述
附图用来提供对本申请技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本申请的技术方案,并不构成对本申请技术方案的限制。为了更清楚地说明本申请的具体实施例,下面将对实施例中所需要使用的附图作简单地介绍。
图1:是本申请提供的一种真空镀膜设备的工艺气体流量的调整方法的流程图;
图2:是本申请实施例提供一种流量系数的确定方法的流程图;
图3:是本申请实施例提供的一种计时时间的确定方法的流程图。
详述
为了使本技术领域的人员更好地理解本申请实施例的方案,下面结合附图对本申请的实施例作进一步的详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
在附图的流程图示出的步骤可以在诸如一组计算机可执行指令的计算机 系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
本申请提供一种真空镀膜设备的工艺气体流量的调整方法和系统,通过工艺气体相对于基准气体的流量系数和修正流量值,来确定工艺气体的流量控制值,可避免现有多台真空镀膜设备在制备膜层时,由于真空镀膜设备使用的频率,环境,以及与真空镀膜设备配套使用的其它装置,如气体流量计等磨损程度,易造成产品规格的一致性和合格率降低的问题,可降低产品的生产成本,提高产品的生产效率和质量。
图1为根据本申请一实施例的一种真空镀膜设备的工艺气体流量的调整方法的流程图,该方法包括以下步骤:
S1:获得工艺气体的流量设定值,并选择基准气体;
S2:确定所述工艺气体相对于所述基准气体的流量系数;
S3:根据所述工艺气体的流量设定值和所述流量系数计算得到所述工艺气体的修正流量值;
S4:判断所述工艺气体的修正流量值是否大于用于控制所述工艺气体流量的气体流量计的量程最大值,如果判断结果为是,则超量程报警,并以所述气体流量计的量程最大值作为所述工艺气体的流量控制值来执行工艺程序,如果判断结果为否,以所述修正流量值作为所述工艺气体的流量控制值。
所述工艺气体的修正流量值可以等于所述工艺气体的流量设定值与所述流量系数的乘积。选用不同的基准气体,得到的流量系数的值也不相同。
所述方法还可以包括:通过各种工艺气体的所述流量控制值之间的比值,来确定执行工艺程序中的各种工艺气体的比例关系。
在实际应用中,所述真空镀膜设备通过各种工艺气体的所述流量控制值来控制执行工艺程序中的各种工艺气体在镀膜过程中的比例关系,即,使执行工艺程序中的各种工艺气体的流量的比值等于各种工艺气体的所述流量控制值之间的比值。采用同一种所述基准气体来确定所述真空镀膜设备的各种工艺气体相对于所述基准气体的流量系数,为使其它真空镀膜设备中能够达到上述真空镀膜设备的镀膜效果,可以根据各种工艺气体的流量设定值和流 量系数计算得到各种工艺气体的修正流量值,由修正流量值和与该工艺气体对应的气体流量计量程来确定各种工艺气体的流量控制值,进而所述真空镀膜设备通过所述流量控制值控制真空腔室内的各种工艺气体的比例关系,以实现多台真空镀膜设备镀膜效果一致性。
如图2所示,所述确定所述工艺气体相对于所述基准气体的流量系数可以包括以下步骤:
S5:获取所述基准气体使所述真空镀膜设备的真空腔室从第一设定真空度达到第二设定真空度时所需的基准气体计时时间;
S6:获取所述工艺气体使所述真空镀膜设备的真空腔室从所述第一设定真空度达到所述第二设定真空度时所需的工艺气体计时时间;
S7:将所述工艺气体计时时间与所述基准气体计时时间的比值作为所述工艺气体相对于所述基准气体的流量系数。
如图3所示,获取所述基准气体计时时间或所述工艺气体计时时间可以包括以下步骤:
S8:开启真空腔室的抽气阀,将所述真空腔室内的气体抽尽至达到本底真空度;
S9:关闭所述抽气阀,开启所述基准气体或工艺气体的充气阀,并对所述真空腔室进行充气;
S10:在所述真空腔室达到所述第一设定真空度时开始计时,直至所述真空腔室达到所述第二设定真空度停止计时,将得到的计时时间作为所述基准气体计时时间或所述工艺气体计时时间。
本底真空度指将真空腔室内的气体尽可能抽尽时达到的真空度,以避免后续通入的工艺气体被之前存在于真空腔室内的气体影响。第一设定真空度和第二设定真空度可通过人工设定。也可将真空度替换为压力,比如,工艺气体计时时间的开始为:通入工艺气体使真空腔室达到第一设定压力值时开始计时,工艺气体计时时间的结束为:继续通入工艺气体使真空腔室达到第二设定压力值时结束计时。
获取所述基准气体计时时间或所述工艺气体计时时间还可以包括以下步 骤:
S11:在所述真空腔室达到所述第二设定真空度时,关闭所述充气阀;
S12:开启所述抽气阀,将所述真空腔室抽气至达到所述本底真空度后关闭所述抽气阀。
该方法还可以包括:采用同一种基准气体来确定所述真空镀膜设备的各种工艺气体的流量系数,以确保执行工艺程序中的各种工艺气体的比例。在调整过程中,可对各种工艺气体都进行相对于同一基准气体的流量系数的确定,以使各工艺气体采用同一基准来控制流量,避免出现因选择不同基准气体而对流量系数造成的影响。
在实际应用中,所述基准气体可以为所述真空镀膜设备使用的所述工艺气体中的任一种,也可为以下气体中的任一种:氩气、氢气、氧气和硅烷。基准气体一般在镀膜工艺实际需求的工艺气体范围内进行选择。
所述方法还可以包括:判断所述工艺气体相对于所述基准气体的流量系数是否在0.8至1.2范围内,如果判断结果为否,则检修设备或重新设置工艺参数,直至重新确定的所述工艺气体相对于所述基准气体的流量系数处于0.8至1.2范围内。为了更好地控制各种工艺气体的气体流量,使其流量系数稳定在0.8至1.2范围内,可通过定期对所述真空镀膜设备中的各工艺气体的流量系数进行测试并存储该数据,通过各工艺气体流量系统的数据分析对气体流量计、真空镀膜设备的工作状态进行判断,以确保产品的质量,当某个工艺气体对应的流量系数变化较大或不在正常范围内时相关工艺气体流量计进行报警提示,防止大量废品或不合格产品出现。
当流量系数不在0.8至1.2范围内时,需要检修设备,查看设备硬件是否有损,或连接在设备上的其他装置是否有损,例如测量压力装置、流量计等是否有损,若设备硬件无误,则查看是否操作有误,或设备软件部分有误。
所述真空镀膜设备为在其中发生工艺气体参与镀膜反应的真空镀膜设备,例如,可以为PECVD设备或CVD设备。
可见,本申请提供一种真空镀膜设备的工艺气体流量的调整方法,该方法通过确定工艺气体的流量系数和修正流量值,来确定工艺气体的流量控制 值,可避免现有多台真空镀膜设备在制备膜层时,由于工艺气体的种类、各真空镀膜设备磨损,和气体流量计的差异,易造成产品规格的一致性和合格率降低的问题,可降低产品的生产成本,提高产品的生产效率和质量。
本申请还提供一种真空镀膜设备的工艺气体流量的调整系统,包括:设定单元、流量系数确定单元、流量修正单元和流量调整单元。所述设定单元配置为获得工艺气体的流量设定值,并选择基准气体。所述流量系数确定单元配置为确定所述工艺气体相对于所述基准气体的流量系数。所述流量修正单元配置为根据所述流量设定值和所述流量系数计算得到所述工艺气体的修正流量值。所述流量调整单元配置为判断所述修正流量值是否大于所述真空镀膜设备的气体流量计量程最大值,如果判断结果为是,则超量程报警,并以所述气体流量计量程最大值作为所述工艺气体的流量控制值来执行工艺程序,如果判断结果为否,以所述修正流量值作为所述工艺气体的流量控制值。
所述流量系数确定单元可以包括:第一计时模块和第二计时模块。所述第一计时模块配置为对所述基准气体使所述真空镀膜设备的真空腔室从第一设定真空度达到第二设定真空度时所需的基准气体计时时间进行计时。所述第二计时模块配置为对所述工艺气体使所述真空镀膜设备的真空腔室从所述第一设定真空度达到所述第二设定真空度时所需的工艺气体计时时间进行计时。
所述流量系数确定单元还可以包括:真空度设定单元。所述真空度设定单元配置为设定所述第一设定真空度和所述第二设定真空度。
该系统还可以包括:控制模块和计算模块。所述控制模块配置为开启真空腔室的抽气阀,将所述真空腔室内的气体抽尽至达到本底真空度;所述控制模块还配置为关闭所述抽气阀,开启基准气体或工艺气体的充气阀,并以设定流量对所述真空腔室进行充气。所述计算模块配置为通过计算所述工艺气体计时时间与所述基准气体计时时间的比值来确定所述工艺气体相对于所述基准气体的流量系数。
在示例性实施例中,本申请提供的真空镀膜设备的工艺气体流量的调整系统可以包括机械部分(阀门,例如,抽气阀、充气阀)、电气控制部分(例如,可编程逻辑控制器(Programmable Logic Controller,PLC)、电脑等) 和通过电脑写入可编程控制器或电脑中的计算机程序。其中,电气控制部分的可编程逻辑控制器或电脑按照设定好的参数顺序控制阀门开启或关闭以获得相应气体的计时时间;通过电气控制部分的可编程逻辑控制器或电脑计算出流量系数;通过电气控制部分的可编程逻辑控制器或电脑执行正常的工艺时将修正流量值加载到统一的工艺参数上进行个体修正。
所述真空镀膜设备为在其中发生工艺气体参与镀膜反应的真空镀膜设备,例如,可以为PECVD设备或CVD设备。
可见,本申请提供一种真空镀膜设备的工艺气体流量的调整系统,通过流量系数确定单元确定工艺气体相对于所述基准气体的流量系数,以获得工艺气体的流量控制值,可避免现有多台真空镀膜设备在制备膜层时,由于各真空镀膜设备磨损、工艺气体的种类和气体流量计的差异,易造成产品规格的一致性和合格率降低的问题,可降低产品的生产成本,提高产品的生产效率和质量。
本公开内容是本申请实施例的原则的示例,并非对本申请作出任何形式上或实质上的限定,或将本申请限定到具体的实施方案。对本领域的技术人员而言,很显然本申请实施例的技术方案的要素、方法和系统等,可以进行变动、改变、改动、演变,而不背离如上所述的本申请的实施例、技术方案的,如权利要求中所定义的原理、精神和范围。这些变动、改变、改动、演变的实施方案均包括在本申请的等同实施例内,这些等同实施例均包括在本申请的由权利要求界定的范围内。虽然可以许多不同形式来使本申请实施例具体化,但此处详细描述的是本申请的一些实施方案。此外,本申请的实施例包括此处所述的各种实施方案的一些或全部的任意可能的组合,也包括在本申请的由权利要求界定的范围内。
以上公开内容规定为说明性的而不是穷尽性的。对于本领域技术人员来说,本说明书会暗示许多变化和可选择方案。所有这些可选择方案和变化旨在被包括在本权利要求的范围内,其中术语“包括”意思是“包括,但不限于”。在此完成了对本申请可选择的实施方案的描述。本领域技术人员可认识到此处所述的实施方案的其它等效变换,这些等效变换也为由附于本文的权利要求所包括。
本领域普通技术人员可以理解,上文中所公开方法中的全部或某些步骤、系统、装置中的功能模块/单元可以被实施为软件、固件、硬件及其适当的组合。在硬件实施方式中,在以上描述中提及的功能模块/单元之间的划分不一定对应于物理组件的划分;例如,一个物理组件可以具有多个功能,或者一个功能或步骤可以由若干物理组件合作执行。某些组件或所有组件可以被实施为由处理器,如数字信号处理器或微处理器执行的软件,或者被实施为硬件,或者被实施为集成电路,如专用集成电路。这样的软件可以分布在计算机可读介质上,计算机可读介质可以包括计算机存储介质(或非暂时性介质)和通信介质(或暂时性介质)。如本领域普通技术人员公知的,术语计算机存储介质包括在用于存储信息(诸如计算机可读指令、数据结构、程序模块或其他数据)的任何方法或技术中实施的易失性和非易失性、可移除和不可移除介质。计算机存储介质包括但不限于RAM、ROM、EEPROM、闪存或其他存储器技术、CD-ROM、数字多功能盘(DVD)或其他光盘存储、磁盒、磁带、磁盘存储或其他磁存储装置、或者可以用于存储期望的信息并且可以被计算机访问的任何其他的介质。此外,本领域普通技术人员公知的是,通信介质通常包含计算机可读指令、数据结构、程序模块或者诸如载波或其他传输机制之类的调制数据信号中的其他数据,并且可包括任何信息递送介质。

Claims (14)

  1. 一种真空镀膜设备的工艺气体流量的调整方法,所述方法包括:
    获得工艺气体的流量设定值,并选择基准气体;
    确定所述工艺气体相对于所述基准气体的流量系数;
    根据所述工艺气体的流量设定值和所述流量系数计算得到所述工艺气体的修正流量值;
    判断所述工艺气体的修正流量值是否大于用于控制所述工艺气体流量的气体流量计的量程最大值,如果判断结果为是,则超量程报警,并以所述气体流量计的量程最大值作为所述工艺气体的流量控制值来执行工艺程序,如果判断结果为否,以所述修正流量值作为所述工艺气体的流量控制值。
  2. 根据权利要求1所述的真空镀膜设备的工艺气体流量的调整方法,所述方法还包括:
    根据各种工艺气体的所述流量控制值之间的比值,来确定执行工艺程序中的各种工艺气体的比例关系。
  3. 根据权利要求1或2所述的真空镀膜设备的工艺气体流量的调整方法,其中,所述确定所述工艺气体相对于所述基准气体的流量系数包括:
    获取所述基准气体使真空镀膜设备的真空腔室从第一设定真空度达到第二设定真空度时所需的基准气体计时时间;
    获取所述工艺气体使所述真空镀膜设备的真空腔室从所述第一设定真空度达到所述第二设定真空度时所需的工艺气体计时时间;
    将所述工艺气体计时时间与所述基准气体计时时间的比值作为所述工艺气体相对于所述基准气体的流量系数。
  4. 根据权利要求3所述的真空镀膜设备的工艺气体流量的调整方法,其中,获取所述基准气体计时时间或所述工艺气体计时时间包括以下步骤:
    开启真空腔室的抽气阀,将所述真空腔室内的气体抽尽至达到本底真空度;
    关闭所述抽气阀,开启所述基准气体或所述工艺气体的充气阀,并对 所述真空腔室进行充气;
    在所述真空腔室达到所述第一设定真空度时开始计时,直至所述真空腔室达到所述第二设定真空度停止计时,将得到的计时时间作为所述基准气体计时时间或所述工艺气体计时时间。
  5. 根据权利要求4所述的真空镀膜设备的工艺气体流量的调整方法,其中,获取所述基准气体计时时间或所述工艺气体计时时间还包括以下步骤:
    在所述真空腔室达到所述第二设定真空度时,关闭所述充气阀;
    开启所述抽气阀,将所述真空腔室抽气至达到所述本底真空度后关闭所述抽气阀。
  6. 根据权利要求1至5中任一项所述的真空镀膜设备的工艺气体流量的调整方法,其中,所述基准气体为所述工艺气体中的任一种。
  7. 根据权利要求1至6中任一项所述的真空镀膜设备的工艺气体流量的调整方法,其中,所述基准气体为以下气体中的任一种:氩气、氢气、氧气和硅烷。
  8. 根据权利要求1至7中任一项所述的真空镀膜设备的工艺气体流量的调整方法,所述方法还包括:判断所述工艺气体相对于所述基准气体的流量系数是否在0.8至1.2范围内,如果判断结果为否,则检修设备或重新设置工艺参数,直至重新确定的所述工艺气体相对于所述基准气体的流量系数处于0.8至1.2范围内。
  9. 根据权利要求1至8中任一项所述的真空镀膜设备的工艺气体流量的调整方法,其中,真空镀膜设备为PECVD设备或CVD设备。
  10. 一种真空镀膜设备的工艺气体流量的调整系统,所述系统包括:设定单元、流量系数确定单元、流量修正单元和流量调整单元;
    所述设定单元配置为获得工艺气体的流量设定值,并选择基准气体;
    所述流量系数确定单元配置为确定所述工艺气体相对于所述基准气体的流量系数;
    所述流量修正单元配置为根据所述流量设定值和所述流量系数计算 得到所述工艺气体的修正流量值;
    所述流量调整单元配置为判断所述修正流量值是否大于真空镀膜设备的气体流量计量程最大值,如果判断结果为是,则超量程报警,并以所述气体流量计量程最大值作为所述工艺气体的流量控制值来执行工艺程序,如果判断结果为否,以所述修正流量值作为所述工艺气体的流量控制值。
  11. 根据权利要求10所述的真空镀膜设备的工艺气体流量的调整系统,其中,所述流量系数确定单元包括:第一计时模块和第二计时模块;
    所述第一计时模块配置为对所述基准气体使所述真空镀膜设备的真空腔室从第一设定真空度达到第二设定真空度时所需的基准气体计时时间进行计时;
    所述第二计时模块配置为对所述工艺气体使所述真空镀膜设备的真空腔室内从所述第一设定真空度达到所述第二设定真空度时所需的工艺气体计时时间进行计时。
  12. 根据权利要求11所述的真空镀膜设备的工艺气体流量的调整系统,其中,所述流量系数确定单元还包括:真空度设定单元;
    所述真空度设定单元配置为设定所述第一设定真空度和所述第二设定真空度。
  13. 根据权利要求11或12所述的真空镀膜设备的工艺气体流量的调整系统,所述系统还包括:控制模块和计算模块;
    所述控制模块配置为开启真空腔室的抽气阀,将所述真空腔室内的气体抽尽至达到本底真空度;并且,待所述真空腔室达到所述本底真空度后关闭所述抽气阀,开启所述基准气体或所述工艺气体的充气阀,并以设定流量对所述真空腔室进行充气;
    所述计算模块配置为通过计算所述工艺气体计时时间与所述基准气体计时时间的比值来确定所述工艺气体相对于所述基准气体的流量系数。
  14. 根据权利要求10至13中任一项所述的真空镀膜设备的工艺气体流量的调整系统,其中,真空镀膜设备为PECVD设备或CVD设备。
PCT/CN2018/091148 2017-10-27 2018-06-13 一种真空镀膜设备的工艺气体流量的调整方法和系统 WO2019080512A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880001493.7A CN109983156A (zh) 2017-10-27 2018-06-13 一种真空镀膜设备的工艺气体流量的调整方法和系统
US16/021,312 US20190127837A1 (en) 2017-10-27 2018-06-28 Method and system of adjusting process gas flow of vacuum coating equipment
EP18180749.6A EP3476974A1 (en) 2017-10-27 2018-06-29 Method and system of adjusting process gas flow of vacuum coating equipment
JP2018125091A JP2019081945A (ja) 2017-10-27 2018-06-29 真空コーティング装置のプロセスガス流量の調整方法及びシステム
KR1020180075644A KR20190047583A (ko) 2017-10-27 2018-06-29 진공코팅장치의 공정 기체 유량의 조절 방법 및 시스템

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711024922.6A CN107779846A (zh) 2017-10-27 2017-10-27 一种pecvd设备的工艺气体流量的调整方法和系统
CN201711024922.6 2017-10-27

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/021,312 Continuation US20190127837A1 (en) 2017-10-27 2018-06-28 Method and system of adjusting process gas flow of vacuum coating equipment

Publications (1)

Publication Number Publication Date
WO2019080512A1 true WO2019080512A1 (zh) 2019-05-02

Family

ID=61431794

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/091148 WO2019080512A1 (zh) 2017-10-27 2018-06-13 一种真空镀膜设备的工艺气体流量的调整方法和系统

Country Status (4)

Country Link
JP (1) JP2019081945A (zh)
KR (1) KR20190047583A (zh)
CN (2) CN107779846A (zh)
WO (1) WO2019080512A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107779846A (zh) * 2017-10-27 2018-03-09 君泰创新(北京)科技有限公司 一种pecvd设备的工艺气体流量的调整方法和系统
CN109976143B (zh) * 2019-03-12 2021-09-21 广州市庆瑞电子科技有限公司 一种环境试验设备节能控制方法
CN111501027B (zh) * 2019-12-27 2022-01-21 清华大学无锡应用技术研究院 化学气相沉积设备流场均匀控制的方法
CN114281120B (zh) * 2021-12-27 2024-03-26 北京北方华创微电子装备有限公司 半导体工艺设备及腔室压力控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421512A (en) * 1987-07-16 1989-01-24 Nec Corp Gas mass flow rate control device
US5237523A (en) * 1990-07-25 1993-08-17 Honeywell Inc. Flowmeter fluid composition and temperature correction
CN102576231A (zh) * 2009-12-25 2012-07-11 株式会社堀场Stec 质量流量控制器系统
TW201439365A (zh) * 2013-01-31 2014-10-16 Tokyo Electron Ltd 原料氣體供給裝置、成膜裝置、原料氣體供給方法、及非暫時性記憶媒體
CN107779846A (zh) * 2017-10-27 2018-03-09 君泰创新(北京)科技有限公司 一种pecvd设备的工艺气体流量的调整方法和系统

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2694294B2 (ja) * 1989-04-30 1997-12-24 株式会社エステック マスフロメータおよびマスフローコントローラ
JP2885142B2 (ja) * 1995-08-16 1999-04-19 日本電気株式会社 真空処理装置及び真空処理装置への大気混入の検知方法
US6363958B1 (en) * 1999-05-10 2002-04-02 Parker-Hannifin Corporation Flow control of process gas in semiconductor manufacturing
JP5103983B2 (ja) * 2007-03-28 2012-12-19 東京エレクトロン株式会社 ガス供給方法、ガス供給装置、半導体製造装置及び記憶媒体
JP4598044B2 (ja) * 2007-10-29 2010-12-15 シーケーディ株式会社 流量検定故障診断装置、流量検定故障診断方法及び流量検定故障診断プログラム
JP5082989B2 (ja) * 2008-03-31 2012-11-28 日立金属株式会社 流量制御装置、その検定方法及び流量制御方法
WO2013125387A1 (ja) * 2012-02-23 2013-08-29 株式会社日立国際電気 基板処理システム、管理装置、及び表示方法
CN104404479B (zh) * 2014-12-04 2018-11-09 北京北方华创微电子装备有限公司 Cvd成膜工艺的膜厚调节优化方法
US10031007B2 (en) * 2015-09-16 2018-07-24 Tokyo Electron Limited Method of calculating output flow rate of flow rate controller
CN206515705U (zh) * 2016-12-30 2017-09-22 浙江新安化工集团股份有限公司 一种气体流量自动调整装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6421512A (en) * 1987-07-16 1989-01-24 Nec Corp Gas mass flow rate control device
US5237523A (en) * 1990-07-25 1993-08-17 Honeywell Inc. Flowmeter fluid composition and temperature correction
CN102576231A (zh) * 2009-12-25 2012-07-11 株式会社堀场Stec 质量流量控制器系统
TW201439365A (zh) * 2013-01-31 2014-10-16 Tokyo Electron Ltd 原料氣體供給裝置、成膜裝置、原料氣體供給方法、及非暫時性記憶媒體
CN107779846A (zh) * 2017-10-27 2018-03-09 君泰创新(北京)科技有限公司 一种pecvd设备的工艺气体流量的调整方法和系统

Also Published As

Publication number Publication date
CN109983156A (zh) 2019-07-05
CN107779846A (zh) 2018-03-09
JP2019081945A (ja) 2019-05-30
KR20190047583A (ko) 2019-05-08

Similar Documents

Publication Publication Date Title
WO2019080512A1 (zh) 一种真空镀膜设备的工艺气体流量的调整方法和系统
US9644796B2 (en) Methods for in-situ calibration of a flow controller
JP2020038678A (ja) プロセスチャンバに結合された流量コントローラをモニタする方法
CN109545701B (zh) 半导体器件的制造方法、记录介质及衬底处理装置
US20230144886A1 (en) Method of manufacturing semiconductor device, method of managing parts, and recording medium
US11355320B2 (en) Plasma processing apparatus and method for plasma processing
US20170004984A1 (en) Substrate transfer apparatus and substrate transfer method
US20150253762A1 (en) Integrated management system, management device, method of displaying information for substrate processing apparatus, and recording medium
CN101436069A (zh) 质量流量控制器的在线校验方法
JP2010251464A (ja) 真空処理装置
TW202303785A (zh) 用於使用虛擬計量來預測個別的層的膜厚度之系統和方法
EP3476974A1 (en) Method and system of adjusting process gas flow of vacuum coating equipment
US20210013012A1 (en) Performance calculation method and processing apparatus
CN113981415A (zh) 管式pecvd系统的流量计异常工作的确定方法及装置
US20160276147A1 (en) Silicon Nitride Film Forming Method and Silicon Nitride Film Forming Apparatus
CN102628165B (zh) 一种监控薄膜沉积过程异常的方法及系统
WO2003090271A1 (fr) Procede de formation de film
JP2019161121A (ja) 成膜装置のクリーニング方法、運用方法及び成膜装置
US11535931B2 (en) Method of manufacturing semiconductor device, method of managing parts, and recording medium
KR100934768B1 (ko) 내플라즈마 평가방법
KR20200141525A (ko) 기판 변형 검출 및 보정
JP6119400B2 (ja) 半導体製造装置及び半導体装置の製造方法
US20230178346A1 (en) Scanning radical sensor usable for model training
CN113862641A (zh) 一种原子层沉积前驱体用量的监测系统及其方法与应用
KR20240036467A (ko) 정보 처리 장치 및 파라미터 제어 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18869795

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18869795

Country of ref document: EP

Kind code of ref document: A1