WO2019080366A1 - 薄膜型液化天然气船用绝热箱及其构造方法 - Google Patents

薄膜型液化天然气船用绝热箱及其构造方法

Info

Publication number
WO2019080366A1
WO2019080366A1 PCT/CN2018/070130 CN2018070130W WO2019080366A1 WO 2019080366 A1 WO2019080366 A1 WO 2019080366A1 CN 2018070130 W CN2018070130 W CN 2018070130W WO 2019080366 A1 WO2019080366 A1 WO 2019080366A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat insulating
plywood
polyurethane foam
box
insulating box
Prior art date
Application number
PCT/CN2018/070130
Other languages
English (en)
French (fr)
Inventor
张洪斌
孙小伟
蔡志祥
韦越
吴敏
位元元
谢燕萍
陶冉
Original Assignee
上海交通大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海交通大学 filed Critical 上海交通大学
Publication of WO2019080366A1 publication Critical patent/WO2019080366A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B25/00Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby
    • B63B25/02Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods
    • B63B25/08Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid
    • B63B25/12Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed
    • B63B25/16Load-accommodating arrangements, e.g. stowing, trimming; Vessels characterised thereby for bulk goods fluid closed heat-insulated
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B71/00Designing vessels; Predicting their performance

Definitions

  • the invention belongs to the technical field of liquefied natural gas ships, in particular to a thin film type liquefied natural gas marine thermal insulation box and a construction method thereof.
  • Natural gas is mainly composed of methane, which emits less sulfur dioxide and nitrogen oxides and is a clean energy source.
  • Liquefied natural gas refers to a low-temperature, colorless, transparent liquid that is cooled by cooling natural gas whose main component is methane to about -163 ° C. Since the volume of natural gas is only about 1/600 of that in the gaseous state, it can be greatly Improve transportation efficiency.
  • the LNG carrier is the main means of transport for LNG maritime transport. It is a high-tech, difficult and high value-added ship.
  • the LNG Ship Cargo Maintenance System (CCS) is designed for the storage and transportation of ultra-low temperature LNG.
  • the special system built is the core unit of the LNG ship.
  • the temperature difference between the LNG cargo and the external environment is as high as 200 °C. Therefore, a large amount of environmental heat flows into the tank through the cargo maintenance system, causing the cargo LNG to evaporate into a gaseous state, causing loss of goods on the one hand.
  • the evaporation of a large amount of liquefied natural gas into a gaseous state causes the pressure in the cabin to rise, which is harmful to the safety of the ship. Therefore, the performance of the liquefied natural gas ship's adiabatic maintenance system is important.
  • the cargo maintenance system (CCS) in LNG ships is divided into GTT film type, MOSS spherical tank type and IHI SPB type.
  • the GTT film type is the most widely used cargo maintenance system in LNG vessels currently under construction, including MARK. III, NO96 and CS-1 three forms and their improved.
  • MARK III, NO96 and CS-1 three forms and their improved.
  • LNG vessels using the GTT film-type cargo maintenance system most of the cargo maintenance systems in the form of MARK III and NO96 are used.
  • the cargo maintenance system in the form of NO96 disclosed in the prior art uses a plywood insulated box filled with expanded perlite or glass wool as a liquefied natural gas ship adiabatic maintenance system.
  • the insulation box is divided into two layers: the main layer and the second layer.
  • the thickness of the main layer insulation box is 170 ⁇ 250mm; the thickness of the sub-layer insulation box is 300mm, and the sub-layer insulation box is bonded to the inner wall of the hull.
  • the insulation box is divided into three layers.
  • the main layer is a glass wool filled insulation box, and the sublayer is divided into the middle layer and the first layer.
  • the third layer, the middle layer is a glass wool filled insulation box, and the third layer is a rigid polyurethane foam board.
  • the heat insulating box is mainly filled with glass wool, and the thermal conductivity, water absorption rate and water vapor passing rate are relatively high, It is beneficial to further reduce the daily evaporation rate of liquefied natural gas in LNG vessels; 2.
  • the thermal insulation performance of glass wool after water absorption is greatly reduced, which directly leads to an increase in the daily evaporation rate of liquefied natural gas; 3.
  • the thickness of the insulating box prepared by glass wool filling is large and reduced.
  • the small liquefied natural gas loading space is not conducive to the reduction of transportation costs; 4
  • the glass wool filling preparation of the insulation box is multi-layer, the construction and installation cycle is relatively long, which is not conducive to the reduction of construction and installation costs.
  • the Chinese Patent Application Publication No. CN1439839 discloses a method of manufacturing a heat insulating box for a liquefied natural gas transportation vessel.
  • the automatic ordering machine setting method proposed by the method makes each binding step continuously executed in an effective order, shortening the manufacturing cycle, but does not solve the problems of high water absorption rate, high water vapor transmission rate, and high thermal conductivity of the glass wool.
  • Chinese Patent Application Publication No. CN106516017A discloses an adiabatic system for a B-type cargo tank of a liquefied natural gas carrier and a method of constructing the same.
  • the composite thermal insulation plate prepared by the method enhances the dimensional stability of the thermal insulation box, can avoid the problem of the thermal insulation layer breaking off, but the thermal insulation performance is not greatly improved, and the lower daily evaporation rate cannot be satisfied, and the thermal insulation performance is used. Material manufacturing costs are still high.
  • the object of the present invention is to provide a thin film type liquefied natural gas marine thermal insulation box and a construction method thereof for solving the problem of improving the daily evaporation rate and the installation and installation period of the liquefied natural gas maintenance system of the liquefied natural gas carrier. Long, high moisture absorption of glass wool, high water vapor transmission rate and other issues.
  • a first aspect of the present invention provides a film type liquefied natural gas marine thermal insulation box, comprising a plywood and a rigid polyurethane foam board;
  • the heat insulating box is a layer of heat insulating box, the upper surface of the heat insulating box is covered with a dense metal film, and the heat insulating box is directly connected with the bottom plate of the ship through the adhesive resin rope.
  • the dense metal film is a dense metal film welded by Invar or 9% nickel steel;
  • the heat insulating box has a size of 1200 mm ⁇ 1000 mm (length ⁇ width);
  • the thickness of the heat insulating box is 470 mm to 550 mm; preferably 530 mm;
  • the plywood is a birch birch
  • the non-branched portion of the trunk is cut into a single piece, and then hot pressed by a step of coating, forming a blank, and the thickness is 10 mm to 20 mm; preferably 12 mm;
  • the rigid polyurethane foam board has a density of 35 kg/m 3 to 50 kg/m 3 ;
  • the preparation raw material of the rigid polyurethane foam board comprises a polyether polyol, an isocyanate
  • the size of the rigid polyurethane foam board is 1125 mm ⁇ 925 mm (length ⁇ width);
  • the rigid polyurethane foam board has a thickness of 400 mm to 480 mm; preferably 455 mm;
  • a glass wool or aerogel felt is filled between the plywood and the rigid polyurethane foam board.
  • a second aspect of the present invention provides a method for constructing a thin film type liquefied natural gas marine thermal insulation box, comprising the following steps:
  • Step 1 cutting the board, cutting the plywood and the rigid polyurethane foam board;
  • Step 2 drilling, drilling holes on the cut plywood
  • Step 3 Open a T-shaped groove on the plywood panel
  • Step 4 Assembling, the plywood cut in the assembly step 1 is a plywood assembly box, and the cut rigid polyurethane foam board is embedded in the interior of the plywood assembly box, and the glass wool is embedded in the gap between the rigid polyurethane foam board and the plywood assembly box.
  • aerogel felt installed plywood panel and covered with dense metal film, fixed plywood panel to get insulated box;
  • Step 5 The heat insulating box obtained in the step 4 is bonded to the inner shell of the ship through a viscous resin rope, and the glass wool or aerogel mat is embedded in the gap between the heat insulating box and the heat insulating box.
  • the present invention has the following beneficial effects:
  • the rigid polyurethane foam board in the technical solution of the present invention does not need to prepare a high-density or glass-reinforced foam board to meet the requirements of the insulation system for the strength of the heat insulating material, and only uses the low-density rigid polyurethane foam board as the heat insulation. Materials; reduced raw material costs and manufacturing process costs;
  • a low-density rigid polyurethane foam board is used, and the density thereof is lower than the density of the glass wool in the conventional heat insulating box, so that the obtained film type liquefied natural gas marine heat insulating box has a lighter overall weight. , greatly reducing transportation costs;
  • the thin film type liquefied natural gas marine thermal insulation box of the present invention obtained by using the low-density rigid polyurethane foam board of the present invention has a thermal conductivity and a water absorption rate which are much smaller than the thermal conductivity and water absorption value of the conventional glass wool thermal insulation box.
  • the water vapor transmission rate is also relatively lower than the water vapor transmission rate of the conventional glass wool insulation box. Therefore, the membrane type liquefied natural gas marine thermal insulation box of the invention greatly reduces the daily evaporation rate of the liquefied natural gas tank of the liquefied natural gas carrier and improves the thermal insulation system. Long-term service stability;
  • the film type liquefied natural gas marine thermal insulation box of the invention simplifies the traditional three-layer insulation box into one layer, the manufacturing and installation process is greatly simplified, the manufacturing and installation cycle is shortened, the construction and installation cycle is reduced, and the installation cost is reduced; It is conducive to expanding the loading space of LNG, reducing transportation costs and improving transportation efficiency.
  • the film type liquefied natural gas marine thermal insulation box is optimized by low-density rigid polyurethane foam board and plywood, and the traditional three-layer thermal insulation box is simplified into one layer, and the thermal conductivity and water absorption rate of the obtained thermal insulation box are obtained.
  • the water vapor transmission rate is better than the traditional glass wool three-layer insulation box of the prior art, which reduces the daily evaporation rate of the LNG tank of the LNG ship, improves the long-term service stability of the adiabatic system, simplifies the construction and installation process, and reduces the
  • the overall insulation box weight increases the loading space, thus reducing construction, installation and transportation costs, and improving transportation efficiency and safety.
  • FIG. 1 is a perspective exploded view showing the structure of a heat insulating box according to Embodiment 1 of the present invention
  • Figure 2 is an enlarged schematic view of the bore 4 of Figure 1;
  • 1 plywood panel 1 rigid polyurethane foam board; 2 rigid polyurethane foam board; 3 plywood assembly box; 4 drilling; 5 adhesive resin rope; 6 hull inner shell; Glass cloth.
  • the invention provides a film type liquefied natural gas marine thermal insulation box, which comprises a plywood and a rigid polyurethane foam board;
  • the heat insulating box is a layer of heat insulating box, and the upper surface of the heat insulating box is covered with a dense metal film welded by Yinwa steel or 9% nickel steel, and the heat insulating box is directly connected to the bottom plate of the ship through the adhesive resin rope;
  • the plywood is assembled into a plywood assembly box, the interior is embedded with a rigid polyurethane foam board, and the aerogel felt or glass wool is filled between the plywood assembly box and the rigid polyurethane foam board;
  • the rigid polyurethane foam board is a low density rigid polyurethane foam board having a density of 35 kg/m 3 to 50 kg/m 3 .
  • the size of the heat insulating box is 1200 mm ⁇ 1000 mm (length ⁇ width);
  • the thickness of the heat insulating box is 470 mm to 550 mm;
  • the thickness of the heat insulating box is 530 mm;
  • the plywood is a birch birch
  • the non-branched portion of the trunk is cut into a single piece, and then hot-pressed by a step of coating, forming a blank, and the thickness is 12 mm;
  • the plywood assembly box includes 4 to 12 holes; the diameter of the hole is 20 to 40 mm;
  • the plywood assembly box includes 8 holes; the diameter of the hole is 30 mm;
  • the rigid polyurethane foam board has a density of 35 kg/m 3 to 45 kg/m 3 ;
  • the preparation raw material of the rigid polyurethane foam board comprises a polyether polyol, an isocyanate
  • the rigid polyurethane foam board is prepared by using a polyether polyol and an isocyanate under the action of an auxiliary agent such as a foaming agent, a catalyst and a foam stabilizer;
  • the size of the rigid polyurethane foam board is 1125 mm ⁇ 925 mm (length ⁇ width);
  • the rigid polyurethane foam board has a thickness of 400 mm to 480 mm;
  • the rigid polyurethane foam board has a thickness of 455 mm;
  • the plywood assembly box and the rigid polyurethane foam board are filled with glass wool;
  • the plywood assembly box and the rigid polyurethane foam board are filled with an aerogel felt;
  • the film type liquefied natural gas marine thermal insulation box is filled with glass wool between the heat insulating box and the heat insulating box in the hull;
  • the film type liquefied natural gas marine thermal insulation box is filled with an aerogel felt between the heat insulating box and the heat insulating box in the hull.
  • the invention provides a method for constructing a membrane type liquefied natural gas marine thermal insulation box, comprising the following steps:
  • Step 1 cutting the board, cutting the plywood and the rigid polyurethane foam board into a required size
  • Step 2 drilling, drilling a hole with a diameter of 30 mm on the cut plywood, and pasting with a glass cloth so that the inert gas (nitrogen) can smoothly pass through the heat insulating box;
  • Step 3 Open a T-shaped groove on the plywood panel
  • Step 4 Assembling, the plywood cut in the assembly step 1 is a plywood assembly box, and the cut rigid polyurethane foam board is embedded in the interior of the plywood assembly box, and the glass wool is embedded in the gap between the rigid polyurethane foam board and the plywood assembly box.
  • aerogel felt install plywood panel, cover the plywood panel with dense metal film welded by Invar or 9% nickel steel, and fix the plywood panel with the connector to obtain the insulation box;
  • Step 5 The heat insulating box obtained in the step 4 is bonded to the inner shell of the ship through a viscous resin rope, and the glass wool or aerogel mat is embedded in the gap between the heat insulating box and the heat insulating box.
  • the film type liquefied natural gas marine heat insulation box of the present embodiment comprises a plywood panel 1, a rigid polyurethane foam board 2, a plywood assembly box 3, and includes four vertical faces of the plywood assembly box 3. 2 holes 4; the assembled insulation box is fixedly bonded to the hull 6 by the adhesive resin rope 5;
  • the drilled hole 4 is pasted with a glass cloth 7;
  • the surface of the plywood panel on the insulation box is covered with a dense metal film welded by Invar or 9% nickel steel; the size of the insulation box is 1200 mm ⁇ 1000 mm ⁇ 530 mm (length ⁇ width ⁇ thickness).
  • the construction method includes the following steps:
  • the non-branched portion of the trunk of the birch with the birch is cut into a single piece, and then subjected to hot pressing to obtain a plywood with a thickness of 12 mm;
  • the rigid polyurethane foam board is prepared by the polyether polyol and the isocyanate under the action of a foaming agent, a catalyst and a foam stabilizer, and has a density of 35-45 kg/m 3 and a thickness of 455 mm;
  • the plywood and the rigid polyurethane foam board are cut into the required size, and two holes with a diameter of 30 mm are drilled on the four side plates of the plywood, and are pasted with a glass cloth so that the inert gas (nitrogen gas) can be used. Smoothly pass the insulation box; open a T-shaped groove on the plywood panel;
  • the above-mentioned cut and drilled plywood is assembled into a plywood assembly box, and the cut rigid polyurethane foam board is embedded in the interior of the plywood assembly box, and the glass wool is embedded in the gap between the rigid polyurethane foam board and the plywood assembly box, and the plywood panel is installed. Covering the plywood panel with a dense metal film of Invar steel, and fixing the plywood panel with a connector to obtain the heat insulating box;
  • the heat insulating box assembled as described above is bonded to the inner shell of the ship through a viscous resin rope, and the glass wool is embedded in the gap between the heat insulating box and the heat insulating box.
  • the membrane type liquefied natural gas marine thermal insulation box installed on the LNG ship has an evaporation rate of not more than 0.1%, which has better performance of preventing liquefied natural gas evaporation loss; meanwhile, the membrane type liquefied natural gas marine insulation of the present embodiment
  • the light weight, short installation period and large loading space reduce raw material cost, construction cost and transportation cost, and improve transportation efficiency and safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

一种薄膜型液化天然气船用绝热箱及其构造方法,组成包括胶合板(1)和硬质聚氨酯泡沫板(2);绝热箱为一层绝热箱,绝热箱上表面覆有致密金属薄膜,绝热箱通过粘性树脂绳(5)与船体内底壳(6)直接相连。构造方法包括切板、钻孔、开T型槽、组装和粘接。本发明采用低密度硬质聚氨酯泡沫板和胶合板优化组装,降低了液化天然气船的液化天然气舱的日蒸发率,提高了绝热系统长期服役稳定性,同时将多层绝热箱简化为一层,减轻了整体绝热箱重量,扩大了装载空间,降低了建造、安装、运输成本,提高了运输效率及安全性。

Description

薄膜型液化天然气船用绝热箱及其构造方法
技术领域
本发明属于液化天然气船技术领域,特别涉及一种薄膜型液化天然气船用绝热箱及其构造方法。
背景技术
天然气(NG)主要成分为甲烷,燃烧时释放的二氧化硫和氮氧化物较少,属于清洁能源。液化天然气(LNG)是指将主要成分为甲烷的天然气冷却至约-163℃而凝结成的低温无色、透明的液体,由于天然气液化后体积仅约为气态下的1/600,因此可大大提高运输效率。液化天然气船则是液化天然气海上运输的主要运输工具,是一种高技术、高难度和高附加值的船舶,液化天然气船中货物维护系统(CCS)是专门为储存和运输超低温液化天然气而设计建造的特殊系统,是液化天然气船的核心装置。液化天然气船在航行中时,液化天然气货物与外界环境的温差高达近200℃,因此会有大量的环境热量通过货物维护系统流入舱内,导致货物液化天然气蒸发为气态,一方面造成货物损失,另一方面大量的液化天然气蒸发为气态导致船舱内的压力升高,危害船舶的航行安全。因此,液化天然气船的绝热维护系统的性能是及其重要的。
目前,液化天然气船中货物维护系统(CCS)分为GTT薄膜型、MOSS球罐型和IHI的SPB型三种。GTT薄膜型是目前在建的液化天然气船中应用最多的货物维护系统,包括MARK III、NO96和CS-1三种形式及其改进型。在采用GTT薄膜型货物维护系统的液化天然气船中,大部分采用MARK III和NO96形式的货物维护系统。
现有技术中公开的NO96形式的货物维护系统采用膨胀珍珠岩或玻璃棉填充的胶合板绝热箱作为液化天然气船绝热维护系统。绝热箱分为主层和次层两层,主层绝热箱厚度为170~250mm;次层绝热箱厚度为300mm,次层绝热箱与船壳内壁粘合在一起。为了降低液化天然气船中液化天然气的日蒸发率,对NO96形式的货物维护系统进行了改进,将绝热箱分为三层,主层为玻璃棉填充的绝热箱,次层分为中间层和第三层,中间层为玻璃棉填充的绝热箱,第三层为硬质聚氨酯泡沫板,虽然在一定程度上降低了液化天然气船绝热维护系统中液化天然气的日蒸发率,取得了一定的进步。但在现有公开的技术中液化天然气船绝热维护系统在使用中仍然存在诸多不足之处,包括:1、绝热箱主要为玻璃棉填充,导热系数、吸水率和水蒸气通过率比较高,不利于进一步降低液化天然气船中液化天然气的日蒸发率;2、吸水后的玻璃棉绝热性能大幅下降,直接导致液化天然气的日蒸发率升高;3、玻璃棉填充制备的绝热箱厚度大,减小了液化天然气的装载空间,不利于运输成本的降低;4、玻璃棉填充制备的绝热箱为多层,建造和安装周期相对较长,不利于建造安装成本的降低。
在其他公开的现有技术文献中,公开号为CN1439839的中国专利申请公开了一种液化天然气运输船舶专用绝热箱的制造方法。该方法提出的自动订箱机设置方法使得各个装订步骤以有效的顺序连续执行,缩短了制造周期,但是并没有解决玻璃棉存在的吸水率高、水蒸气通过率高、导热系数大等问题。公开号为CN106516017A的中国专利申请公开了一种液化天然气船B型液货舱的绝热系统及其构造方法。该方法制备的复合绝热板增强了绝热箱尺寸稳定性,可以避免绝热层破坏脱落的问题,但是绝热性能并没有很大的提高,仍无法满足更低日蒸发率的要求,而且使用的绝热性能材料制造成本仍然较高。
因此,针对液化天然气船中绝热维护系统进一步的提高绝热性能,解决传统绝热系统中存在的日蒸发率较高、安装周期长、玻璃棉吸水率高、水蒸气通过率高等缺陷是目前亟待解决的问题。
发明内容
鉴于现有技术的上述缺陷,本发明的目的在于提供一种薄膜型液化天然气船用绝热箱及其构造方法,以解决改善液化天然气船的液化天然气维护系统存在的日蒸发率较高、建造安装周期长、玻璃棉吸水率高、水蒸气通过率高等问题。
为实现上述目的,本发明第一方面提供了一种薄膜型液化天然气船用绝热箱,组成包括胶合板和硬质聚氨酯泡沫板;
其中,所述绝热箱为一层绝热箱,绝热箱上表面覆有致密金属薄膜,绝热箱通过粘性树脂绳与船体内底板直接相连。
进一步地,所述致密金属薄膜为殷瓦钢或9%镍钢焊接而成的致密金属薄膜;
进一步地,所述绝热箱尺寸为1200mm×1000mm(长×宽);
进一步地,所述绝热箱的厚度为470mm~550mm;优选530mm;
进一步地,所述胶合板为寒带桦木,选取树干中心无节枝的部分切成单片后,再经涂胶、组坯等步骤热压而成,厚度为10mm~20mm;优选12mm;
进一步地,所述硬质聚氨酯泡沫板密度为35 kg/m3~50 kg/m3
进一步地,所述硬质聚氨酯泡沫板的制备原材料包括聚醚多元醇、异氰酸酯;
进一步地,所述硬质聚氨酯泡沫板的尺寸为1125mm×925mm(长×宽);
进一步地,所述硬质聚氨酯泡沫板的厚度为400 mm ~480mm;优选455mm;
进一步地,所述薄膜型液化天然气船用绝热箱中,胶合板与硬质聚氨酯泡沫板之间填充有玻璃棉或气凝胶毡。
本发明第二方面提供了一种薄膜型液化天然气船用绝热箱的构造方法,包括以下步骤:
步骤1、切板,将胶合板和硬质聚氨酯泡沫板进行切割;
步骤2、钻孔,在切割后的胶合板上钻孔;
步骤3、在胶合板面板上开T型槽;
步骤4、组装,组装步骤1中切割的胶合板为胶合板组装箱,将切割好的硬质聚氨酯泡沫板嵌入胶合板组装箱内部,在硬质聚氨酯泡沫板与胶合板组装箱之间的缝隙中嵌入玻璃棉或气凝胶毡,安装胶合板面板并覆盖致密金属薄膜,固定胶合板面板得到绝热箱;
步骤5、将步骤4得到的绝热箱通过粘性树脂绳粘接在船体内壳上,将玻璃棉或气凝胶毡嵌入绝热箱与绝热箱之间的缝隙中。
与现有技术相比,本发明具有如下的有益效果:
1、本发明提供的薄膜型液化天然气船用绝热箱,胶合板承载压力,硬质聚氨酯泡沫板嵌在胶合板组合箱中并未受到应力作用,只起绝热作用。因此,本发明技术方案中的硬质聚氨酯泡沫泡沫板不需要制备出高密度或者玻纤增强型泡沫板来满足绝热系统对绝热材料强度的要求,而只采用低密度硬质聚氨酯泡沫板作为绝热材料;降低了原料成本以及制造工艺成本;
2、本发明的薄膜型液化天然气船用绝热箱中,采用低密度硬质聚氨酯泡沫板,其密度低于传统绝热箱中玻璃棉的密度,因此得到的薄膜型液化天然气船用绝热箱整体重量更轻,大大降低了运输成本;
3、采用的本发明厚度的低密度硬质聚氨酯泡沫板得到的本发明的薄膜型液化天然气船用绝热箱,其导热系数和吸水率远小于传统玻璃棉绝热箱的导热系数和吸水率值,其水蒸气通过率也相对低于传统玻璃棉绝热箱的水蒸气通过率值,因此本发明薄膜型液化天然气船用绝热箱,大大降低了液化天然气船的液化天然气舱的日蒸发率,提高了绝热系统长期服役稳定性;
4、本发明的薄膜型液化天然气船用绝热箱将传统三层绝热箱简化为一层,制造和安装工序大大简化,同时制造和安装周期缩短,降低了建造和安装周期,降低了安装成本;有利于扩大液化天然气的装载空间,降低运输成本,提高运输效率。
综上所述,本发明的薄膜型液化天然气船用绝热箱,采用低密度硬质聚氨酯泡沫板和胶合板优化组装,将传统三层绝热箱简化为一层,得到的绝热箱的导热系数、吸水率以及水蒸气通过率均优于现有技术传统玻璃棉三层绝热箱,降低了液化天然气船的液化天然气舱的日蒸发率,提高了绝热系统长期服役稳定性;简化了建造安装工序,减轻了整体绝热箱重量,扩大了装载空间,因此降低了建造、安装、运输成本,提高了运输效率及安全性。
附图说明
图1 是本发明实施例1的绝热箱结构的立体分解示意图;
图2 是图1中钻孔4的放大示意图;
其中, 1 胶合板面板;2 硬质聚氨酯泡沫板;3 胶合板组装箱;4 钻孔;5 粘性树脂绳;6 船体内壳;7 玻璃布。
具体实施方式
下面进一步结合具体实施方式对本发明技术方案进一步阐述,应理解,实施方式只是为了举例说明本发明,而非以任何形式限制发明的范围。
本发明提供的一种薄膜型液化天然气船用绝热箱,组成包括胶合板和硬质聚氨酯泡沫板;
其中,所述绝热箱为一层绝热箱,绝热箱上表面覆有由殷瓦钢或9%镍钢焊接而成的致密金属薄膜,绝热箱通过粘性树脂绳与船体内底板直接相连;
所述胶合板组装为胶合板组装箱,内部嵌入硬质聚氨酯泡沫板,胶合板组装箱与硬质聚氨酯泡沫板之间填充气凝胶毡或玻璃棉;
所述硬质聚氨酯泡沫板为低密度硬质聚氨酯泡沫板,密度为35 kg/m3~50 kg/m3
在本发明较优的实施方式中,所述绝热箱的尺寸为1200mm×1000mm(长×宽);
在本发明较优的实施方式中,所述绝热箱的厚度为470mm~550mm;
在本发明较优的实施方式中,所述绝热箱的厚度为530mm;
在本发明较优的实施方式中,所述胶合板为寒带桦木,选取树干中心无节枝的部分切成单片后,再经涂胶、组坯等步骤热压而成,厚度为12mm;
在本发明较优的实施方式中,所述胶合板组装箱包括4~12个钻孔;钻孔直径为20~40mm;
在本发明较优的实施方式中,所述胶合板组装箱包括8个钻孔;钻孔直径为30mm;
在本发明较优的实施方式中,所述硬质聚氨酯泡沫板密度为35 kg/m3~45 kg/m3
在本发明较优的实施方式中,所述硬质聚氨酯泡沫板的制备原材料包括聚醚多元醇、异氰酸酯;
在本发明较优的实施方式中,所述硬质聚氨酯泡沫板是由聚醚多元醇与异氰酸酯在发泡剂、催化剂和泡沫稳定剂等助剂作用下制得;
在本发明较优的实施方式中,所述硬质聚氨酯泡沫板的尺寸为1125mm×925mm(长×宽);
在本发明较优的实施方式中,所述硬质聚氨酯泡沫板的厚度为400 mm ~480mm;
在本发明较优的实施方式中,所述硬质聚氨酯泡沫板的厚度为455mm;
在本发明较优的实施方式中,所述薄膜型液化天然气船用绝热箱中,胶合板组装箱与硬质聚氨酯泡沫板之间填充为玻璃棉;
在本发明较优的实施方式中,所述薄膜型液化天然气船用绝热箱中,胶合板组装箱与硬质聚氨酯泡沫板之间填充为气凝胶毡;
在本发明较优的实施方式中,所述薄膜型液化天然气船用绝热箱,在船体中的绝热箱与绝热箱之间填充为玻璃棉;
在本发明较优的实施方式中,所述薄膜型液化天然气船用绝热箱,在船体中的绝热箱与绝热箱之间填充为气凝胶毡。
本发明提供的一种薄膜型液化天然气船用绝热箱的构造方法,包括以下步骤:
步骤1、切板,将胶合板和硬质聚氨酯泡沫板进行切割成需要的尺寸;
步骤2、钻孔,在切割后的胶合板上钻直径为30mm的孔,用玻璃布粘贴,以便惰性气体(氮气)能顺利通过绝热箱;
步骤3、在胶合板面板上开T型槽;
步骤4、组装,组装步骤1中切割的胶合板为胶合板组装箱,将切割好的硬质聚氨酯泡沫板嵌入胶合板组装箱内部,在硬质聚氨酯泡沫板与胶合板组装箱之间的缝隙中嵌入玻璃棉或气凝胶毡,安装胶合板面板,在胶合板面板上覆盖殷瓦钢或9%镍钢焊接而成的致密金属薄膜,将胶合板面板用连接器固定得到绝热箱;
步骤5、将步骤4得到的绝热箱通过粘性树脂绳粘接在船体内壳上,将玻璃棉或气凝胶毡嵌入绝热箱与绝热箱之间的缝隙中。
下面结合实施例对本发明的技术方案作详细说明:本实施例在以本发明技术方案为前提下进行实施,给出了详细的实施方式和具体的操作过程,但本发明的保护范围不限于下述的实施例。
实施例1
如图1所示,本实施例的薄膜型液化天然气船用绝热箱的组成包括胶合板面板1、硬质聚氨酯泡沫板2、胶合板组装箱3;在胶合板组装箱3的垂直的四个面上均包括2个钻孔4;组装的绝热箱通过粘性树脂绳5与船体内壳6相固定粘结;
如图2所示,钻孔4上用玻璃布7粘贴;
所述绝热箱上胶合板面板表面覆有由殷瓦钢或9%镍钢焊接而成的致密金属薄膜;绝热箱尺寸为1200mm×1000mm×530mm(长×宽×厚)。
构造方法包括如下步骤:
取寒带桦木的树干中心无节枝的部分切成单片后,再经涂胶、组坯等步骤热压得到胶合板,厚度为12mm;
硬质聚氨酯泡沫板由聚醚多元醇与异氰酸酯在发泡剂、催化剂和泡沫稳定剂等助剂作用下制得的,密度为35-45 kg/m3,厚度为455mm;
将上述的胶合板和硬质聚氨酯泡沫板根据施工图,切割成需要的尺寸,在胶合板的4个侧板上均钻2个直径为30mm的孔,用玻璃布粘贴,以便惰性气体(氮气)能顺利通过绝热箱;在胶合板面板上开一个T型槽;
组装上述切割并钻孔的胶合板得胶合板组装箱,将切割好的硬质聚氨酯泡沫板嵌入胶合板组装箱内部,在硬质聚氨酯泡沫板与胶合板组装箱之间的缝隙中嵌入玻璃棉,安装胶合板面板,在胶合板面板上覆盖殷瓦钢致密金属薄膜,将胶合板面板用连接器固定得到所述绝热箱;
将上述组装得到的绝热箱通过粘性树脂绳粘接在船体内壳上,将玻璃棉嵌入绝热箱与绝热箱之间的缝隙中。
经检测,组装安装在液化天然气船上的薄膜型液化天然气船用绝热箱日的蒸发率不高于0.1%,具有更优异的防止液化天然气蒸发损失性能;同时,本实施例的薄膜型液化天然气船用绝热箱重量轻,安装周期短,装载空间大,降低了原料成本、建造成本以及运输成本,提高了运输效率及安全性。
以上详细描述了本发明的技术方案以及具体实施例。应当理解,本领域的普通技术人员无需创造性劳动就可以根据本发明的构思做出诸多修改和变化,例如,本发明的技术方案中绝热箱的尺寸的变化,胶合板上钻孔直径大小、钻孔个数的变化等。因此,凡本技术领域中依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验得到的技术方案,皆应在权利要求书所确定的保护范围内。

Claims (10)

  1. 一种薄膜型液化天然气船用绝热箱,其特征在于,组成包括胶合板和硬质聚氨酯泡沫板;
    其中,所述绝热箱为一层绝热箱,绝热箱上表面覆有致密金属薄膜,绝热箱通过粘性树脂绳与船体内底板直接相连。
  2. 根据权利要求1所述绝热箱,其特征在于,
    所述绝热箱的厚度为470mm~550mm;
    所述硬质聚氨酯泡沫板的厚度为400 mm ~480mm。
  3. 根据权利要求1所述绝热箱,其特征在于,
    所述绝热箱的尺寸为1200mm×1000mm;
    所述硬质聚氨酯泡沫板的尺寸为1125mm×925mm。
  4. 根据权利要求1所述绝热箱,其特征在于,
    所述胶合板为寒带桦木,选取树干中心无节枝的部分切成单片后,再经涂胶、组坯、热压而成,厚度为10mm~20mm。
  5. 根据权利要求1所述绝热箱,其特征在于,
    所述硬质聚氨酯泡沫板的制备原材料包括聚醚多元醇、异氰酸酯;
    所述硬质聚氨酯泡沫板密度为35 kg/m3~50 kg/m3
  6. 根据权利要求1所述绝热箱,其特征在于,
    所述薄膜型液化天然气船用绝热箱中,胶合板与硬质聚氨酯泡沫板之间填充有玻璃棉或气凝胶毡。
  7. 根据权利要求1所述绝热箱,其特征在于,
    所述绝热箱组成包括胶合板和硬质聚氨酯泡沫板;
    其中,所述绝热箱为一层绝热箱,绝热箱上表面覆有由殷瓦钢或9%镍钢焊接而成的致密金属薄膜,绝热箱通过粘性树脂绳与船体内底板直接相连;
    所述胶合板组装为胶合板组装箱,内部嵌入硬质聚氨酯泡沫板,胶合板组装箱与硬质聚氨酯泡沫板之间填充气凝胶毡或玻璃棉;
    所述硬质聚氨酯泡沫板为低密度硬质聚氨酯泡沫板,密度为35 kg/m3~45 kg/m3
  8. 根据权利要求7所述绝热箱,其特征在于,
    所述胶合板组装箱包括4~12个钻孔;钻孔直径为20~40mm;
    所述硬质聚氨酯泡沫板是由聚醚多元醇与异氰酸酯在发泡剂、催化剂和泡沫稳定剂等助剂作用下制得。
  9. 根据权利要求7所述绝热箱,其特征在于,
    所述薄膜型液化天然气船用绝热箱,在船体中的绝热箱与绝热箱之间填充为玻璃棉或气凝胶毡。
  10. 一种薄膜型液化天然气船用绝热箱的构造方法,包括以下步骤:
    步骤1、切板,将胶合板和硬质聚氨酯泡沫板进行切割;
    步骤2、钻孔,在切割后的胶合板上钻孔;
    步骤3、在胶合板面板上开T型槽;
    步骤4、组装,组装步骤1中切割的胶合板为胶合板组装箱,将切割好的硬质聚氨酯泡沫板嵌入胶合板组装箱内部,在硬质聚氨酯泡沫板与胶合板组装箱之间的缝隙中嵌入玻璃棉或气凝胶毡,安装胶合板面板并覆盖致密金属薄膜,固定胶合板面板得到绝热箱;
    步骤5、将步骤4得到的绝热箱通过粘性树脂绳粘接在船体内壳上,将玻璃棉或气凝胶毡嵌入绝热箱与绝热箱之间的缝隙中。
PCT/CN2018/070130 2017-10-23 2018-01-03 薄膜型液化天然气船用绝热箱及其构造方法 WO2019080366A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710993397.2A CN107792299B (zh) 2017-10-23 2017-10-23 薄膜型液化天然气船用绝热箱及其构造方法
CN201710993397.2 2017-10-23

Publications (1)

Publication Number Publication Date
WO2019080366A1 true WO2019080366A1 (zh) 2019-05-02

Family

ID=61533489

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/070130 WO2019080366A1 (zh) 2017-10-23 2018-01-03 薄膜型液化天然气船用绝热箱及其构造方法

Country Status (2)

Country Link
CN (1) CN107792299B (zh)
WO (1) WO2019080366A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109968700B (zh) * 2019-04-28 2020-09-08 上海交通大学 一种液化天然气船用聚氨酯绝缘箱的制造方法及制造系统
CN112498584A (zh) * 2020-10-30 2021-03-16 沪东中华造船(集团)有限公司 一种lng船、薄膜型围护系统

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439839A (zh) * 2002-02-22 2003-09-03 大宇造船海洋株式会社 液化天然气运输船舶专用绝热箱的制造方法
CN202137996U (zh) * 2011-07-19 2012-02-08 常州凯诺深冷科技工程有限公司 一种应用于液化天然气船的复合保温板
KR20130105181A (ko) * 2012-03-16 2013-09-25 에스티엑스조선해양 주식회사 엘엔지 선박용 단열박스의 제조방법
CN104802937A (zh) * 2015-04-23 2015-07-29 上海交通大学 液化天然气船独立液货舱绝热层系统及其构建方法
CN205642816U (zh) * 2016-05-06 2016-10-12 上海沪东造船阀门有限公司 适用于液化天然气船用超低温阀门的深冷试验箱
CN106516017A (zh) * 2016-12-21 2017-03-22 上海交通大学 液化天然气船b型液货舱的绝热系统及其构造方法
JP2017075636A (ja) * 2015-10-14 2017-04-20 株式会社フォームテック メンブレン型液化ガスタンク防熱壁用の断熱パネル

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2798902B1 (fr) * 1999-09-29 2001-11-23 Gaz Transport & Technigaz Cuve etanche et thermiquement isolante integree dans une structure porteuse de navire et procede de fabrication de caissons isolants destines a etre utilises dans cette cuve
FR2978748B1 (fr) * 2011-08-01 2014-10-24 Gaztransp Et Technigaz Cuve etanche et thermiquement isolante
KR101919167B1 (ko) * 2013-04-05 2018-11-16 현대중공업 주식회사 극저온 물질 운반선의 화물창
CN104443284B (zh) * 2014-10-24 2017-05-10 上海交通大学 液化天然气船b型独立液货舱绝热系统及其构造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1439839A (zh) * 2002-02-22 2003-09-03 大宇造船海洋株式会社 液化天然气运输船舶专用绝热箱的制造方法
CN202137996U (zh) * 2011-07-19 2012-02-08 常州凯诺深冷科技工程有限公司 一种应用于液化天然气船的复合保温板
KR20130105181A (ko) * 2012-03-16 2013-09-25 에스티엑스조선해양 주식회사 엘엔지 선박용 단열박스의 제조방법
CN104802937A (zh) * 2015-04-23 2015-07-29 上海交通大学 液化天然气船独立液货舱绝热层系统及其构建方法
JP2017075636A (ja) * 2015-10-14 2017-04-20 株式会社フォームテック メンブレン型液化ガスタンク防熱壁用の断熱パネル
CN205642816U (zh) * 2016-05-06 2016-10-12 上海沪东造船阀门有限公司 适用于液化天然气船用超低温阀门的深冷试验箱
CN106516017A (zh) * 2016-12-21 2017-03-22 上海交通大学 液化天然气船b型液货舱的绝热系统及其构造方法

Also Published As

Publication number Publication date
CN107792299B (zh) 2019-05-14
CN107792299A (zh) 2018-03-13

Similar Documents

Publication Publication Date Title
WO2009154428A2 (ko) 액화천연가스 화물창의 코너 패널
WO2018113406A1 (zh) 液化天然气船b型液货舱的绝热系统及其构造方法
CN110922095A (zh) 一种复合二氧化硅气凝胶毡的制备方法
WO2019080366A1 (zh) 薄膜型液化天然气船用绝热箱及其构造方法
WO2012015158A2 (ko) 액화 가스 수송 선박의 화물창
WO2013089359A1 (ko) 액화천연가스 저장탱크의 펌프타워 설치구조체 및 이의 제작방법
CN112303481A (zh) 一种用于液化天然气储存的a型陆用储罐
US20130122245A1 (en) Embedded conductor honeycomb core and sandwich panel incorporating same
CN112298457A (zh) 一种用于液化天然气储存的a型舱次屏蔽及其防护装置
CN103280472A (zh) 一种平流层浮空器用柔性网状太阳能电池阵
CN210911437U (zh) 一种多层复合式隔热保温装置
JP2006214458A (ja) メンブレン型液化天然ガスタンク用断熱性複合パネルおよびその製造方法
WO2020141619A1 (ko) 극저온 액화가스 운반선의 화물창 및 액화가스 연료용기의 멤브레인형 단열시스템
CN217562670U (zh) 一种抗冲击隔热结构、电池组及电池包
CN215061258U (zh) 一种用于液化天然气储存的a型陆用储罐
CN214535149U (zh) 热防护结构及应用热防护结构的设备
CN115416376A (zh) 一种耐高温高强度隔热垫块及其制备方法
CN114704763A (zh) 适用于陆上低温存储的薄膜储罐系统
CN210821297U (zh) 一种耐腐蚀易输运的真空绝热板用膜材
CN218506641U (zh) 一种长时效保温箱
JP2008093895A (ja) メンブレン型タンク用断熱性複合パネルの製造方法およびシート状障壁材のプリプレグ用積層基材
CN112555677A (zh) 一种大型低温卧式lng贮罐防漏热层压木支撑鞍座
CN112208170A (zh) 一种传热阻燃型石墨烯导热板及其制备方法
WO2019132535A1 (ko) 멤브레인 접합구조 및 상기 멤브레인 접합구조를 포함하는 액화가스 저장탱크
WO2023003240A1 (ko) 액화 수소 저장 탱크

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18871494

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18871494

Country of ref document: EP

Kind code of ref document: A1