JP2017075636A - メンブレン型液化ガスタンク防熱壁用の断熱パネル - Google Patents

メンブレン型液化ガスタンク防熱壁用の断熱パネル Download PDF

Info

Publication number
JP2017075636A
JP2017075636A JP2015202891A JP2015202891A JP2017075636A JP 2017075636 A JP2017075636 A JP 2017075636A JP 2015202891 A JP2015202891 A JP 2015202891A JP 2015202891 A JP2015202891 A JP 2015202891A JP 2017075636 A JP2017075636 A JP 2017075636A
Authority
JP
Japan
Prior art keywords
heat insulation
heat insulating
liquefied gas
resin particle
cotton
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015202891A
Other languages
English (en)
Inventor
寺西 孝一郎
Koichiro Teranishi
孝一郎 寺西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FOOMUTEKKU KK
Original Assignee
FOOMUTEKKU KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FOOMUTEKKU KK filed Critical FOOMUTEKKU KK
Priority to JP2015202891A priority Critical patent/JP2017075636A/ja
Publication of JP2017075636A publication Critical patent/JP2017075636A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

【課題】耐久性良く安定して高い断熱性能が持続するメンブレン型液化ガスタンク防熱壁用の断熱パネルとする。【解決手段】断熱パネル1の外側を覆う箱型外殻2を設けると共に、この箱型外殻の内部を、その合板製の天板2aと底板2bに通じるように仕切る複数の仕切り壁3を設け、この仕切り壁で仕切られた空間のそれぞれの底板上に真空断熱材4を敷設し、この真空断熱材の上に流動性のある発泡樹脂粒層5を設け、この発泡樹脂粒層の上に綿状繊維層6を設け、この綿状繊維層は、その圧縮状態が、常温で非圧縮状態の体積100%に対して体積比10〜70%の圧縮状態であるように、天板に圧接させて設けた船舶のメンブレン型液化ガスタンクの防熱壁用断熱パネルとする。極低温条件でも発泡樹脂粒層と綿状繊維層とは常に隙間なく接し、樹脂粒5aは真空断熱材の周囲を隙間なく埋める。【選択図】図1

Description

この発明は、液化天然ガスの運搬用船舶に設置されるメンブレン型液化ガスタンクの防熱壁用の断熱パネルに関する。
一般に、液化天然ガス(以下、LNGと略記する。)は、比重が0.5未満という軽量の物性のため、船などに所定重量を積載するためには比較的大きな容量のタンクを必要とする。
またLNGは、大気圧よりも僅かに大きな蒸気圧であり−163℃という極低温の沸点を有する液体であるから、その輸送や貯蔵のために用いるタンクには、極度の低温に耐えると共に熱負荷にも耐える強度ある防熱壁を必要とする。
このようなLNGなどの極低温の液体を大量に海上輸送する運搬船用タンクの代表的な型式として、船体構造から独立させて設ける独立型タンクの他に、メンブレン(薄膜)型タンクが周知である。
図4、5に示すように、液化天然ガス運搬用船舶のメンブレン型タンクTは、船体Bの内殻8に、二重デッキ構造となるように一次防熱壁10および二次防熱壁11からなる二重の防熱壁を設置し、船体Bの内殻8にLNGの荷重をできるだけ分散させ、できるだけ大きなタンク容量を確保しつつ安全に保冷してLNGを貯蔵できる構造である。
一次防熱壁10は、ガラス繊維強化硬質ポリウレタンフォームからなる断熱パネル12に合板13を重ねて接着一体化したものであり、断熱パネル12は、例えばガラス繊維強化硬質ポリウレタンフォーム(PUF)を断熱層とし、必要に応じて片面または両面をアルミニウム箔とガラスクロスを重ねた積層体からなる障壁材14と一体化した複合体を形成している(特許文献1)。
このような液化天然ガスの搬送用船舶では、長距離を搬送中に気化ガス率(BOR)を充分に抑制するように、断熱性を充分に確保する必要があり、断熱パネルの厚みとしては、例えば270mmまたは530mmの厚みを要するが、その厚みをあまり大きくすると、タンクの容量がそれだけ小さくなって、却って搬送効率が低下してしまう。
そのため、タンクの容量をできるだけ大きく保ちながらBOG発生量をできるだけ少なくするように、タンクの断熱パネルの断熱効率を向上させ、しかも断熱パネルの厚みを薄くできるように、断熱パネルの断熱性を改善する必要がある。
液化天然ガスの搬送用船舶の断熱パネルの断熱性を改善するため、真空断熱材を内部に有する断熱パネルが知られている(特許文献2)。
上記した真空断熱材は、通気性のあるグラスウール等の断熱材を芯材とし、それを多層ラミネートフィルムで真空封止したものであり、例えばウレタンフォームの5〜10倍の断熱性を有するものもある。
また、LNG等の低温液化ガスを貯蔵する二重殻地上低温タンクには、内槽とこれを囲う外槽の間の空間に、保冷材として粒状のパーライトを充填することが知られている(特許文献3)。
特許第4751666号公報 特開2010−249174号公報 特開2011−106501号公報
しかし、前記した真空断熱材を内部に有する断熱パネルは、内部で真空断熱材を覆うフィルムが破損して真空性が失われると、急激に断熱性能が低下する。真空断熱材は、外側が比較的損傷しやすいラミネートフィルムで包まれているので、周囲のものとあまり強く接触しない状態に設置することが好ましく、隙間なく断熱パネル内に敷設することは容易ではない。そのため、断熱パネルに真空断熱材を用いる場合、本来の真空断熱材の有する優れた断熱性を充分に発揮させることは困難であった。
また、断熱壁内の隙間を埋める素材として、粒状のパーライトが知られているが、パーライトは、比較的硬質であるから真空断熱材を覆う多層ラミネートの樹脂フィルムに接していると、振動や熱収縮などによる摺動によって、樹脂フィルムを損傷する恐れがある。
このように、海上の搬送時の振動や温度差の大きい外部環境の下で、極低温の液体ガスの断熱のために用いられる液化天然ガスの搬送用船舶のタンクの断熱パネルにおいて、熱収縮や熱膨張にも充分に耐えるように、真空断熱材を用いて断熱性を高めることは困難であった。
そこで、この発明の課題は上記した問題点を解決し、真空断熱材の優れた断熱特性を発揮させながら、その外側のフィルムの損傷を確実に防止できるようにし、耐久性良く安定して高い断熱性能が持続するメンブレン型液化ガスタンク防熱壁用の断熱パネルとすることである。
上記の課題を解決するために、この発明では、液化ガスを搬送する船舶のメンブレン型液化ガスタンクの防熱壁用断熱パネルにおいて、この断熱パネルは、表面を覆う箱型外殻を有し、この箱型外殻の内部を天板と底板に通じるように仕切る複数の仕切り壁を設け、この仕切り壁で仕切られた空間のそれぞれの前記底板上に真空断熱材を敷設し、この真空断熱材の上に流動性のある発泡樹脂粒層を設け、この発泡樹脂粒層の上に綿状繊維層を前記天板に圧接させて圧縮状態に設けたことを特徴とするメンブレン型液化ガスタンクの防熱壁用断熱パネルとしたのである。
上記した構成の断熱パネルによると、仕切り壁で仕切られた空間のそれぞれの底板上に真空断熱材が敷設されている。この真空断熱材は、個別の大きさ(全長や全幅等の長さ)にミリ単位のバラつきがあるので、底板上に敷設された状態の真空断熱材の周囲には、仕切り壁や箱型外殻との間に隙間を生じやすいが、真空断熱材の周囲の隙間に流動性のある発泡樹脂粒が侵入するから、上記した隙間が埋められて真空断熱材とその周囲に充分な断熱性が得られる。
流動性のある発泡樹脂粒は、通常、ラミネートフィルムで真空包装された真空断熱材の表面とほぼ同様の硬さの樹脂製であるので、真空断熱材に圧接して振動や熱膨張差によって摺動しても傷つけ難く、真空断熱材の優れた断熱特性を発揮させながら、その外側のフィルムの損傷を防止できる。
特に上記の発泡樹脂粒層が、発泡ポリスチレン樹脂粒層である場合には、真空断熱材を包む気密性フィルムを、軟らかい発泡ポリスチレン樹脂粒が接しても傷つけないので、真空断熱材の優れた断熱特性を安定して長期間発揮させながら、その外側のフィルムの損傷を確実に防止でき、より長期間安定して高い断熱性能が持続するメンブレン型液化ガスタンク防熱壁用の断熱パネルとなる。
また、流動性のある発泡樹脂粒の上には、綿状繊維層を前記天板に圧接させて設け、この綿状繊維層の圧縮状態は、常温で非圧縮状態の体積100%に対して、体積比10〜70%の圧縮状態であるので、発泡樹脂粒が−100℃を下回るような極低温になっても、比較的大きく熱収縮する発泡樹脂粒層の層厚の減少を補い、圧縮状態の綿状繊維層の体積の弾性的復元力によって、発泡樹脂粒層と綿状繊維層とは隙間なく接するようにするから、底板に敷設された真空断熱材の上方にも常に確実に所期される断熱性を維持できる。
このような綿状繊維層は、グラスウール層を採用すると、低熱伝導率であると共に弾性圧縮状態から元の体積に復元力も高くて好ましい。
この発明は、断熱パネルの箱型外殻の内部を仕切る複数の仕切り壁を設け、仕切られた空間のそれぞれに真空断熱材を敷設し、その上に発泡樹脂粒層、綿状繊維層を天板に圧接させて圧縮状態に設けたので、綿状繊維層の体積の弾性的復元力によって、発泡樹脂粒層と綿状繊維層とは常に隙間なく接することができ、真空断熱材の優れた断熱特性を発揮させながら、その外側のフィルムの損傷を確実に防止できるようになり、安定して高い断熱性能が持続するメンブレン型液化ガスタンク防熱壁用の断熱パネルとなる利点がある。
実施形態の一部を切り欠いて示す斜視図 図1の要部を拡大して示す説明図 実施形態の使用状態を示す斜視図 従来例のメンブレン型液化ガスタンクの防熱壁用断熱パネルの斜視図 (a)液化天然ガス搬送用船舶の説明図、(b)メンブレン型液化ガスタンクを示す液化天然ガス搬送用船舶の断面図
この発明の実施形態を、添付図面に基づいて以下に説明する。
図1〜3に示すように、実施形態は、LNGなどの液化ガスを搬送する船舶のメンブレン型液化ガスタンクの防熱壁用断熱パネル1であって、断熱パネル1の外側を覆う箱型外殻2を設けると共に、この箱型外殻2の内部に、天板2aと底板2bに通じるように仕切る複数の仕切り壁3を設け、この仕切り壁3で仕切られた空間のそれぞれの底板2b上に真空断熱材4を敷設し、この真空断熱材4の上に流動性のある発泡樹脂粒層5を設け、この発泡樹脂粒層5の上に綿状繊維層6を設け、この綿状繊維層6は、常温で非圧縮状態の体積100%に対して体積比10〜70%の圧縮状態であるように、天板2aに圧接させて設けたものである。
図1に示すように、断熱パネル1の外側を覆う箱型外殻2は、合板などの木質性素材、または強度や断熱性を高めるために樹脂や金属や繊維を複合的に用いた複合素材で形成される周知の箱型形状であり、通常、図示したように方形状の箱型に設けられる。
断熱パネル1の箱型外殻2の内部空間は、複数の仕切り壁3によって、天板2aと底板2bに通じる空間が形成されるように仕切られる。仕切り壁3は、箱型外殻2の対向する2つの側板2cの間に均等な間隔で複数並行に形成することが、仕切られた空間(以下、セルと称する。)に長方体状の真空断熱材4を複数直列するように並べて敷設しやすいので好ましい。また、真空断熱材4が、長方体以外の立体形状である場合には、その形状に合わせて敷設しやすいセル形状となるように仕切り壁3を設ければよい。
この発明に用いる真空断熱材4は、所要の断熱性能を有するものであれば、周知のものを採用することができる。因みに、真空断熱材の一般的な構造は、通気性のあるグラスウール等の繊維や無機質粉末にバインダーを付着させて圧縮成形して得られる多孔質成形体を芯材とし、それを多層ラミネートフィルムなどのガスバリア性フィルムで減圧封止されたものであり、好ましくは、封止する際に、芯材内部の空気を二酸化炭素や窒素ガスで置換してから真空状態にして熱シールしたものである。このように製造された真空断熱材は、液化ガス中のような極低温環境でも内部からの放出ガスがなく、外部からガスの侵入のない優れた品質の真空断熱材になる。
ガスバリア性フィルムは、ポリエチレン、ポリエチレンテレフタレート、ポリプロピレンなどからなる熱可塑性樹脂フィルムに、アルミニウムなどの金属をコーティングしてガスバリア性を持たせたラミネートフィルムなどを採用することができる。
このような真空断熱材4は、上述のようにガスバリア性フィルムで減圧封止する必要があるので、外側の一部に突き出るフランジ状(突縁)の封止部4a(図2参照)が形成されるが、この部分にはあまり断熱性を期待できず、さらに、封止部4aは、形成される大きさ(寸法)にバラつきがあるので、予めそのバラつきを考慮して、真空断熱材4は、前記仕切られた空間(セル)に余裕をもって収まるように、隣り合う仕切り壁3同士の間、または仕切り壁3と側板2cとの間隔より少し小さめの幅であるものを採用する。
図1、2に示す真空断熱材4は、2段に重ね、各セル内の底板2b上に敷設している。
そして、各セル内の真空断熱材4の上方空間には、多数の発泡樹脂粒5aを充填することにより、流動性のある発泡樹脂粒層5を重ねて設け、発泡樹脂粒5aは、真空断熱材4の周囲の仕切り壁3などとの隙間にも侵入させて断熱性を高めている。
発泡樹脂粒5aは、真空断熱材4のガスバリア性フィルムと同等以下の硬さの比較的軟質な樹脂材を採用して略球形に形成されたものであり、発泡させて内部に空気などの独立気泡を含んでいることにより、優れた断熱性を有している。樹脂材の種類としては、例えば、ポリスチレン、ポリウレタン、ポリオレフィン(ポリエチレン やポリプロピレンなど)、シリコーン、ポリ塩化ビニルも使用可能であるが、通常、発泡ポリスチレン樹脂粒は、この発明に適用できるものである。
発泡に用いるガスの種類としては、タンク内の液化ガスと反応性がなく、防爆性を有し、その他の問題も生じないガスであって、例えば二酸化炭素や窒素ガスなどの不活性ガスを使用することが好ましい。
このような発泡樹脂粒は、例えば、合成樹脂と発泡剤および発泡助剤などから予備発泡ビーズを製造するなど、ビーズ法により30〜50倍程度の体積に発泡した略球形の粒子であって、直径1〜10mm程度のものを流動性のある発泡樹脂粒として採用することが、所期した程度に隙間を埋めるために好ましいものである。
そして、発泡樹脂粒層5の上に綿状繊維層6を設けており、その素材としては、グラスウール、ロックウールなどがあり、グラスウールは、ガラス短繊維からなり、ロックウールは、安山岩や玄武岩や蛇紋岩などを溶融し、繊維状にしたものであり、いずれも綿状の素材である。
上記したグラスウールの熱伝導率は、例えば0.03〜0.05であり、ロックウールの熱伝導率は、例えば0.038である。グラスウールは、常温常圧で元の体積を100%として、100%未満の体積比10%まで圧縮しても元の体積に復元可能であり、ロックウールは、常温常圧で元の体積を100%として、100%未満の体積比30%まで圧縮しても元の体積に復元可能である。
このような綿状繊維層6は、常温で非圧縮状態の体積100%に対し、体積比10〜70%の圧縮状態であるように天板2aに圧接するまで充填して設けることが好ましい。常温常圧での体積に比べて10%未満の圧縮状態では、圧縮によって繊維が塑性変形して弾性復帰力が低下する場合があり、また予想される発泡樹脂粒層の熱収縮量以上に弾性復帰させる必要がないからである。また、常温常圧での体積に比べて70%を超える圧縮状態では、繊維の弾性変形量が小さく、発泡樹脂粒層が熱収縮した際に発生した隙間を埋めるために必要な復元弾性力が充分に得られない場合があるからである。
図3および図5に示すように、上記のようにして製造された断熱パネル1、1´は、それぞれ厚さと仕切り壁3の配置が異なるが、いずれも船体Bの内側に、メンブレン型液化ガスタンクTの二重デッキ構造となるように重ねて、一次防熱壁および二次防熱壁からなる二重の防熱壁を構成するように用いられる。
図3に示したメンブレン型液化ガスタンクの防熱壁は、仕切り壁3の方向が交差するように配置した2種類の断熱パネル1、1´を用い、それらを一体に重ねて設け、また各断熱パネル1、1´の上面に熱収縮率の小さいニッケル(36%程度)を含む鋼板7を被覆している。なお、図3、4中の符号8は、船体の内殻であり、符号9は浮陸調整と絶縁のためのロープ状樹脂である。
このように実施形態の断熱パネル1は、仕切られた空間のそれぞれに真空断熱材4を敷設し、その上に発泡樹脂粒層5、綿状繊維層6を圧縮状態であるように天板2aに圧接させ、これによって圧縮状態の綿状繊維層6の体積の弾性的復元力によって、極低温条件でも発泡樹脂粒層5と綿状繊維層6とは常に隙間なく接することができる。また樹脂粒5aは、真空断熱材4の周囲を隙間なく埋めているから、真空断熱材4の優れた断熱特性を充分に発揮し、ガスバリア性フィルムの損傷も防止できるようになり、安定して高い断熱性能が持続するメンブレン型液化ガスタンク防熱壁用の断熱パネルになっている。
1 、12 断熱パネル
2 箱型外殻
2a 天板
2b 底板
2c 側板
3 仕切り壁
4 真空断熱材
4a 封止部
5 発泡樹脂粒層
5a 発泡樹脂粒
6 綿状繊維層
7 鋼板
8 内殻
9 ロープ状樹脂
10 一次防熱壁
11 二次防熱壁
13 合板
14 障壁材
B 船体
T メンブレン型液化ガスタンク

Claims (4)

  1. 液化ガスを搬送する船舶のメンブレン型液化ガスタンクの防熱壁用断熱パネルにおいて、
    この断熱パネルは、表面を覆う箱型外殻を有し、この箱型外殻の内部を天板と底板に通じるように仕切る複数の仕切り壁を設け、この仕切り壁で仕切られた空間のそれぞれの前記底板上に真空断熱材を敷設し、この真空断熱材の上に流動性のある発泡樹脂粒層を設け、この発泡樹脂粒層の上に綿状繊維層を前記天板に圧接させて圧縮状態に設けたことを特徴とするメンブレン型液化ガスタンクの防熱壁用断熱パネル。
  2. 上記綿状繊維層の圧縮状態が、常温で非圧縮状態の体積100%に対し、体積比10〜70%の圧縮状態である請求項1に記載のメンブレン型液化ガスタンクの防熱壁用断熱パネル。
  3. 上記発泡樹脂粒層が、発泡ポリスチレン樹脂粒層である請求項1または2に記載のメンブレン型液化ガスタンクの防熱壁用断熱パネル。
  4. 上記綿状繊維層が、グラスウール層である請求項1〜3のいずれかに記載のメンブレン型液化ガスタンクの防熱壁用断熱パネル。
JP2015202891A 2015-10-14 2015-10-14 メンブレン型液化ガスタンク防熱壁用の断熱パネル Pending JP2017075636A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015202891A JP2017075636A (ja) 2015-10-14 2015-10-14 メンブレン型液化ガスタンク防熱壁用の断熱パネル

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015202891A JP2017075636A (ja) 2015-10-14 2015-10-14 メンブレン型液化ガスタンク防熱壁用の断熱パネル

Publications (1)

Publication Number Publication Date
JP2017075636A true JP2017075636A (ja) 2017-04-20

Family

ID=58550101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015202891A Pending JP2017075636A (ja) 2015-10-14 2015-10-14 メンブレン型液化ガスタンク防熱壁用の断熱パネル

Country Status (1)

Country Link
JP (1) JP2017075636A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2555773A (en) * 2016-08-09 2018-05-16 Mgi Thermo Pte Ltd Insulation system
WO2019080366A1 (zh) * 2017-10-23 2019-05-02 上海交通大学 薄膜型液化天然气船用绝热箱及其构造方法
KR20220086508A (ko) 2020-12-16 2022-06-23 미쯔이 이앤에스 쉽빌딩 씨오., 엘티디. 액화 가스 탱크, 액화 가스 탱크 제조 방법 및 선박

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2555773A (en) * 2016-08-09 2018-05-16 Mgi Thermo Pte Ltd Insulation system
GB2555773B (en) * 2016-08-09 2019-06-12 Mgi Thermo Pte Ltd LNG Tank insulation system comprising polyurethane foam and impervious coating
WO2019080366A1 (zh) * 2017-10-23 2019-05-02 上海交通大学 薄膜型液化天然气船用绝热箱及其构造方法
KR20220086508A (ko) 2020-12-16 2022-06-23 미쯔이 이앤에스 쉽빌딩 씨오., 엘티디. 액화 가스 탱크, 액화 가스 탱크 제조 방법 및 선박

Similar Documents

Publication Publication Date Title
CN111316030B (zh) 包含抗对流覆盖条的密封隔热罐
CN111279116B (zh) 具有防对流的填充元件的密封且热隔离的容器
CN106536383B (zh) 隔热容器
JP6496748B2 (ja) 隅部におけるガスの流れを可能にする偏向要素を備えた密閉された断熱容器
CN106537022B (zh) 隔热容器和隔热结构体
JP7082662B2 (ja) 複数の領域を持つ密閉断熱タンク
JP2017075636A (ja) メンブレン型液化ガスタンク防熱壁用の断熱パネル
JP7142024B2 (ja) 補強断熱栓部を備えた密閉断熱タンク
KR20220045967A (ko) 패널간 단열하는 인서트들을 가진 밀봉되고 열적으로 단열하는 탱크의 벽을 제조하는 방법
JP2017172724A (ja) 断熱パネルおよび断熱構造
KR102535971B1 (ko) 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크
KR102168127B1 (ko) 액화가스 화물창의 단열시스템
KR20160035261A (ko) 독립형 lng 저장탱크 단열 시스템
KR102608691B1 (ko) 액화천연가스 저장탱크의 단열시스템
KR101433101B1 (ko) Lng 화물창의 단열 구조물
KR20150000855U (ko) 초저온 화물창 단열시스템의 단열박스 구조물
KR20210061327A (ko) 대류-방지 단열 씰을 구비한 밀봉 및 단열된 탱크
KR20110130882A (ko) 액화가스 저장탱크용 단열박스
US20220349523A1 (en) Sealed and thermally insulating tank having inter-panel insulating inserts
KR102525949B1 (ko) 멤브레인형 저장탱크의 단열시스템 및 이를 포함하는 멤브레인형 저장탱크
KR101843863B1 (ko) 독립형 저장탱크의 단열구조체 및 그 단열구조체의 제작방법
RU2812078C1 (ru) Герметичный и теплоизоляционный резервуар с антиконвекционными изоляционными уплотнениями
KR20200054535A (ko) Lng 저장탱크의 단열구조체 및 그 단열구조체의 제작방법
JP2018119634A (ja) 液化ガス貯蔵タンクの断熱構造
KR20210058688A (ko) 밀봉 및 단열 탱크