WO2019080275A1 - Procédé d'optimisation dynamique et de commande de fréquence pour chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence - Google Patents

Procédé d'optimisation dynamique et de commande de fréquence pour chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence

Info

Publication number
WO2019080275A1
WO2019080275A1 PCT/CN2017/115117 CN2017115117W WO2019080275A1 WO 2019080275 A1 WO2019080275 A1 WO 2019080275A1 CN 2017115117 W CN2017115117 W CN 2017115117W WO 2019080275 A1 WO2019080275 A1 WO 2019080275A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
frequency
heat pump
water heater
expansion valve
Prior art date
Application number
PCT/CN2017/115117
Other languages
English (en)
Chinese (zh)
Inventor
徐言生
徐旭雁
余华明
张鸣
张超
温春华
翁雁归
Original Assignee
顺德职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺德职业技术学院 filed Critical 顺德职业技术学院
Publication of WO2019080275A1 publication Critical patent/WO2019080275A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H9/00Details
    • F24H9/20Arrangement or mounting of control or safety devices
    • F24H9/2007Arrangement or mounting of control or safety devices for water heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/385Control of expansion valves of heat pumps

Definitions

  • the invention relates to a heat pump water heater control method, in particular to a frequency optimization and control method for a variable frequency jet heat pump heat pump water heater.
  • Jet augmentation technology is an effective way to solve the heat and energy efficiency ratio of air source heat pump water heaters in low temperature environment.
  • variable frequency jet heat pump heat pump water heaters have gradually begun to be applied. Since the compressor operating frequency of the variable frequency jet heat pump heat pump has a great influence on the energy efficiency ratio of the heat pump water heater during operation, the Chinese patent document discloses a "frequency adjustment and control method for the variable frequency jet heat pump heat pump water heater", the publication number of which is CN104633942 A, which can dynamically adjust the operating frequency of the inverter compressor according to the user's heat demand and the outdoor temperature of the heat pump water heater and the temperature of the water tank; the basic principle is that the instantaneous energy efficiency ratio of the heat pump water heater is as close as possible to the operation at every moment during the whole operation process.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a frequency dynamic optimization and control method for a variable frequency jet heat pump heat pump water heater, which can dynamically adjust the frequency conversion compressor according to the user's heat demand and the outdoor temperature of the heat pump water heater and the temperature of the water tank.
  • the frequency at the same time adjust the opening of the main electronic expansion valve and the auxiliary electronic expansion valve of the refrigeration system, so that the total energy consumption of the heat pump water heater during the whole operation process is minimized, thereby achieving the purpose of energy saving.
  • the present invention is achieved by a frequency dynamic optimization and control method for a variable frequency jet heat pump heat pump, and the variable frequency jet heat pump heat pump includes a compressor, an exhaust temperature sensor, a controller, and a water tank temperature sensor.
  • the heat pump water heater dynamically optimizes the working frequency of the compressor during the whole operation process, and at the same time The opening degree of the main electronic expansion valve and the auxiliary electronic expansion valve of the refrigeration system is controlled accordingly, so that the total energy consumption of the heat pump water heater is minimized during operation; the dynamic frequency optimization adjustment method of the working frequency of the compressor and the main electronic expansion valve and the auxiliary electronic expansion valve
  • the opening control method is as follows:
  • Equation I E (T 1 , T 2 , f); According to the relationship I, the expression II of the total heating amount Q in the whole running time t of the heat pump water heater can be obtained:
  • the controller dynamically adjusts the main according to the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank, and the operating frequency f of the compressor according to the opening combination table of the main electronic expansion valve and the auxiliary electronic expansion valve.
  • the opening of the electronic expansion valve and the auxiliary electronic expansion valve is a configurable parameter that specifies the opening of the electronic expansion valve and the auxiliary electronic expansion valve.
  • the controller detects the outdoor ambient temperature T 1 , the current actual water temperature T 2 of the water tank, the specific time t 0 at which the user sets the water, and the set water temperature T of the water tank, and sets the lowest frequency f d of the compressor.
  • the initial value is 30 Hz, and the initial value of the highest frequency f g of the compressor 1 is 80 Hz;
  • the controller calculates the time t s between the current time and the specific water use time t 0 set by the user, and calculates the water temperature of the water tank to reach the set temperature T according to the expression II, the expression IV and the calculation formula VI.
  • the required time t j such as
  • the time at which the compressor starts to start is delayed, and the delay time is calculated by compression.
  • the machine is always calculated by running at 30Hz; if t s -t j ⁇ -5min, the compressor minimum frequency f d is increased by 1Hz each time until it reaches
  • the heat pump water heater maintains a fixed frequency during the whole operation. It will be calculated again on the basis of 80 Hz and increased by 1 Hz each time until the requirements are met. If the calculated operating frequency of the compressor is greater than that of the heat pump water heater Set the operating limit of the compressor Frequency, upper frequency is generally protected 100Hz, the compressor is protected by the upper frequency operation;
  • the controller dynamically adjusts the main according to the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank, and the operating frequency f of the compressor according to the opening combination table of the main electronic expansion valve and the auxiliary electronic expansion valve.
  • the opening of the electronic expansion valve and the auxiliary electronic expansion valve is a configurable parameter that specifies the opening of the electronic expansion valve and the auxiliary electronic expansion valve.
  • the initial value of the lowest frequency f d of the compressor ranges from 10 to 40 Hz
  • the initial value of the highest frequency f g of the compressor ranges from 60 to 100 Hz.
  • the compressor is an AC variable frequency compressor or a DC variable speed compressor.
  • variable frequency jet heat pump heat pump water heater dynamically optimizes the working frequency of the compressor during the whole operation process, and simultaneously opens the main and auxiliary electronic expansion valve with the optimal energy efficiency ratio as the target. Control is performed to minimize the total energy consumption throughout the operation.
  • FIG. 1 is a schematic diagram of a variable frequency jet heat pumping heat pump water heater system according to the present invention.
  • the variable frequency jet heat pump heat pump water heater includes an inverter compressor 1, an exhaust temperature sensor 2, a controller 3, a water tank temperature sensor 4, a water storage tank 5, a condenser 6, a auxiliary electronic expansion valve 7, an economizer 8, and a main electronic expansion valve 9.
  • the dynamic frequency optimization adjustment method of the compressor 1 of the heat pump water heater and the opening degree control method of the main electronic expansion valve 9 and the auxiliary electronic expansion valve 7 of the refrigeration system are as follows:
  • the controller 3 During operation of the heat pump water heater, the controller 3 according to the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank 5 and the operating frequency f of the compressor 1, according to the main electronic expansion valve 9 and the auxiliary electronic expansion valve 7 of the refrigeration system
  • the opening degree combination table a dynamically adjusts the opening degrees of the main electronic expansion valve 9 and the auxiliary electronic expansion valve 7.
  • the relationship V is simplified to obtain a simplified temperature and non-continuous compressor 1 operating frequency simplified adjustment method, and the main electronic expansion valve of the refrigeration system 9 And the opening degree of the auxiliary electronic expansion valve 7 is controlled accordingly, and the specific method is as follows:
  • the controller 3 detects the outdoor ambient temperature T 1 , the current water temperature T 2 of the water tank 5, the specific water time t 0 set by the user, and the set water temperature T of the water tank 5, and sets the lowest frequency of the compressor 1.
  • the initial value of f d is 30 Hz, and the initial value of the highest frequency f g of the compressor 1 is 80 Hz;
  • the controller 3 calculates the time t s between the current time and the specific water time t 0 set by the user, and calculates the water temperature of the water tank 5 to reach the set temperature T according to the expression II, the expression IV and the calculation formula VI.
  • the running time t j such as
  • the delay time is calculated by the compressor 1 always running at 30Hz; if t s -t j ⁇ -5min, the lowest frequency f d of the compressor 1 is increased by 1Hz each time until the
  • the heat pump water heater maintains a fixed frequency during the whole operation, and will be calculated again on the basis of 80Hz, and then increased by 1Hz each time until the requirement is met;
  • the obtained compressor 1 has a working frequency greater than that set by the heat pump water heater.
  • the upper limit protection frequency of the machine 1 is generally 100 Hz, and the compressor 1 operates at the upper limit protection frequency;
  • the heat pump water heater controller 3 expands according to the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank 5, and the operating frequency f of the compressor 1, according to the main electronic expansion valve 9 and auxiliary electron expansion of the refrigeration system.
  • the opening degree combination table a of the valve 7 dynamically adjusts the opening degrees of the main electronic expansion valve 9 and the auxiliary electronic expansion valve 7.
  • the initial value of the lowest frequency f d of the compressor 1 ranges from 10 to 40 Hz, and the initial value of the highest frequency f g of the compressor 1 ranges from 60 to 100 Hz.
  • the compressor 1 is an AC variable frequency compressor or a DC variable speed compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

L'invention concerne un procédé d'optimisation dynamique et de commande de la fréquence d'un chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence. Le chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence comprend un compresseur de conversion de fréquence (1), un dispositif de commande de capteur de température d'échappement (2), un capteur de température de réservoir d'eau (4), un réservoir d'eau (5), un condenseur (6), un détendeur électronique auxiliaire (7), un économiseur (8), un détendeur électronique principal (9), un évaporateur (10) et un capteur de température extérieure (11). Le procédé d'optimisation dynamique et de commande est caractérisé en ce que, dans l'ensemble du processus de fonctionnement du chauffe-eau à pompe à chaleur, la fréquence de travail du compresseur de conversion de fréquence (1) est optimisée de manière dynamique et réglée, pendant ce temps, les degrés d'ouverture du détendeur électronique principal (9) et du détendeur électronique auxiliaire (7) d'un système de réfrigération sont commandés de manière correspondante, et la consommation d'énergie totale dans l'ensemble du processus de fonctionnement du chauffe-eau à pompe à chaleur est minimale. Le procédé d'optimisation dynamique et de commande présente les effets bénéfiques principaux suivants : la fréquence de travail du compresseur de conversion de fréquence (1) est optimisée de manière dynamique dans l'ensemble du processus de fonctionnement du chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence, pendant ce temps, les degrés d'ouverture du détendeur électronique principal (9) et du détendeur électronique auxiliaire (7) sont commandés avec le rapport d'efficacité énergétique optimal comme cible, et la consommation d'énergie totale dans l'ensemble du processus de fonctionnement est minimale.
PCT/CN2017/115117 2017-10-27 2017-12-08 Procédé d'optimisation dynamique et de commande de fréquence pour chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence WO2019080275A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711021862.2A CN107763857A (zh) 2017-10-27 2017-10-27 变频喷气增焓热泵热水器频率动态优化及控制方法
CN201711021862.2 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019080275A1 true WO2019080275A1 (fr) 2019-05-02

Family

ID=61270674

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115117 WO2019080275A1 (fr) 2017-10-27 2017-12-08 Procédé d'optimisation dynamique et de commande de fréquence pour chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence

Country Status (2)

Country Link
CN (1) CN107763857A (fr)
WO (1) WO2019080275A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115077131A (zh) * 2022-04-29 2022-09-20 浙江中广电器集团股份有限公司 一种装有经济器的空气源热泵系统及排气温度控制方法
CN115307352A (zh) * 2022-08-16 2022-11-08 四川长虹空调有限公司 一种补气增焓热泵系统的双电子膨胀阀控制方法
CN117454821A (zh) * 2023-11-15 2024-01-26 广东工业大学 一种基于陶瓷电容器温升的用电频率计算方法及系统

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109916090B (zh) * 2018-11-29 2022-10-18 青岛经济技术开发区海尔热水器有限公司 热泵热水器控制方法及热泵热水器

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104633942A (zh) * 2014-12-12 2015-05-20 顺德职业技术学院 变频喷气增焓热泵热水器频率调节及控制方法
JP2015113996A (ja) * 2013-12-09 2015-06-22 リンナイ株式会社 給湯装置
CN204830557U (zh) * 2015-08-04 2015-12-02 吕瑞强 适用于低温环境的高效空气源热泵系统
CN205783233U (zh) * 2016-05-18 2016-12-07 深圳市派沃新能源科技股份有限公司 一种超低温复叠式供暖机组

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015113996A (ja) * 2013-12-09 2015-06-22 リンナイ株式会社 給湯装置
CN104633942A (zh) * 2014-12-12 2015-05-20 顺德职业技术学院 变频喷气增焓热泵热水器频率调节及控制方法
CN204830557U (zh) * 2015-08-04 2015-12-02 吕瑞强 适用于低温环境的高效空气源热泵系统
CN205783233U (zh) * 2016-05-18 2016-12-07 深圳市派沃新能源科技股份有限公司 一种超低温复叠式供暖机组

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115077131A (zh) * 2022-04-29 2022-09-20 浙江中广电器集团股份有限公司 一种装有经济器的空气源热泵系统及排气温度控制方法
CN115307352A (zh) * 2022-08-16 2022-11-08 四川长虹空调有限公司 一种补气增焓热泵系统的双电子膨胀阀控制方法
CN117454821A (zh) * 2023-11-15 2024-01-26 广东工业大学 一种基于陶瓷电容器温升的用电频率计算方法及系统
CN117454821B (zh) * 2023-11-15 2024-04-02 广东工业大学 一种基于陶瓷电容器温升的用电频率计算方法及系统

Also Published As

Publication number Publication date
CN107763857A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
WO2019080275A1 (fr) Procédé d'optimisation dynamique et de commande de fréquence pour chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence
US11585561B2 (en) Control method and device for air conditioning system and air conditioning system
CN104613651B (zh) 变频空气源热泵热水器频率调节方法
CN108626923B (zh) 一种空调系统的控制结构以及控制方法
CN104633942A (zh) 变频喷气增焓热泵热水器频率调节及控制方法
CN107120799B (zh) 一种水系统多联机控制方法及系统
CN104501421B (zh) 一种变频双级压缩热泵热水器的控制方法
WO2020062598A1 (fr) Appareil et procédé de commande de fonctionnement pour unité à division multiple d'eau et support et système de climatisation à division multiple d'eau
CN107655246A (zh) 一种有效防止排气过低的双电子膨胀阀控制系统及方法
CN110715466A (zh) 一种多联式空调系统及其控制方法
CN106765890B (zh) 用于空调控制的方法及空调
CN104534759B (zh) 一种排气辅助控制电子膨胀阀的方法
WO2023045287A1 (fr) Système de pompe à chaleur à divisions multiples et procédé de commande associé, et support de stockage lisible par ordinateur
CN108626778B (zh) 一种节能的变频采暖热泵的控制方法
CN107401806A (zh) 中央空调冷冻站内主机及冷冻泵综合能效提升控制方法
CN103452608B (zh) 一种用于凝结水系统的控制装置和控制方法
US20220282892A1 (en) Multi-parallel carbon dioxide heat pump control method based on target load control
Wang et al. Variable-speed technology used in power plants for better plant economics and grid stability
WO2019080276A1 (fr) Procédé d'optimisation et de commande de fréquence de chauffage dynamique pour chauffe-eau à pompe à chaleur à compression à deux étages et à fréquence variable à deux étages
CN107906760A (zh) 变频热泵热水器压缩机频率动态优化方法
CN111322673A (zh) 一种油泵及其控制方法
WO2019080277A1 (fr) Procédé d'optimisation de fréquence destiné à un compresseur de chauffage dynamique de chauffe-eau à pompe à chaleur à fréquence variable
CN107883571B (zh) 变频双级压缩热泵热水器频率动态优化及控制方法
CN107560179A (zh) 变频喷气增焓热泵热水器动态加热压缩机频率优化方法
WO2019080278A1 (fr) Procédé d'optimisation et de commande dynamiques d'un chauffe-eau à pompe à chaleur à compression à deux étages à fréquence variable à deux étages

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929563

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929563

Country of ref document: EP

Kind code of ref document: A1