WO2019080278A1 - Procédé d'optimisation et de commande dynamiques d'un chauffe-eau à pompe à chaleur à compression à deux étages à fréquence variable à deux étages - Google Patents

Procédé d'optimisation et de commande dynamiques d'un chauffe-eau à pompe à chaleur à compression à deux étages à fréquence variable à deux étages

Info

Publication number
WO2019080278A1
WO2019080278A1 PCT/CN2017/115120 CN2017115120W WO2019080278A1 WO 2019080278 A1 WO2019080278 A1 WO 2019080278A1 CN 2017115120 W CN2017115120 W CN 2017115120W WO 2019080278 A1 WO2019080278 A1 WO 2019080278A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency
low
temperature
heat pump
water heater
Prior art date
Application number
PCT/CN2017/115120
Other languages
English (en)
Chinese (zh)
Inventor
吴治将
李锡宇
李东洺
王斯焱
徐言生
彭莺
陈妙阳
Original Assignee
顺德职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺德职业技术学院 filed Critical 顺德职业技术学院
Publication of WO2019080278A1 publication Critical patent/WO2019080278A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/227Temperature of the refrigerant in heat pump cycles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H4/00Fluid heaters characterised by the use of heat pumps
    • F24H4/02Water heaters
    • F24H4/04Storage heaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/156Reducing the quantity of energy consumed; Increasing efficiency
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/10Control of fluid heaters characterised by the purpose of the control
    • F24H15/174Supplying heated water with desired temperature or desired range of temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/212Temperature of the water
    • F24H15/223Temperature of the water in the water storage tank
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/258Outdoor temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/20Control of fluid heaters characterised by control inputs
    • F24H15/281Input from user
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H15/00Control of fluid heaters
    • F24H15/30Control of fluid heaters characterised by control outputs; characterised by the components to be controlled
    • F24H15/375Control of heat pumps
    • F24H15/38Control of compressors of heat pumps

Definitions

  • the invention relates to a heat pump water heater control method, in particular to a frequency optimization and control method for a two-stage variable frequency two-stage compression heat pump water heater.
  • the two-stage compression heat pump water heater can produce high temperature hot water at a lower outdoor ambient temperature.
  • Both low-pressure compressors and high-pressure compressors use variable-frequency compressors with two-stage inverter two-stage compression heat pump water heaters for higher heat regulation and energy efficiency ratio.
  • the Chinese patent announces the invention patent of “control method for a variable-frequency two-stage compression heat pump water heater”.
  • the invention patent number is ZL201410759807.3, which can dynamically adjust the working frequency of the low-pressure compressor and the intermediate temperature of the heat pump according to the user's heat demand and the outdoor temperature of the heat pump water heater and the temperature of the water tank; the basic principle is to make the heat pump water heater throughout The instantaneous energy efficiency ratio at each moment in the operation process is as close as possible to the optimal energy efficiency ratio under the operating conditions, that is, the higher the instantaneous energy efficiency ratio at each moment, the total heat pump water heater under the condition of obtaining the same total heating capacity. The lower the energy consumption; however, this conclusion is established on the condition that the instantaneous heat generation of the heat pump must be equal throughout the operation.
  • the frequency regulation method of the low-pressure stage compressor of the variable-frequency two-stage heat pump water heater proposed in the aforementioned patent document is still To be optimized, that is, in the frequency optimization process of the low-pressure compressor of the variable-frequency two-stage heat pump water heater, it is necessary to consider the change of the instantaneous heat generation to minimize the total energy consumption of the heat pump water heater during the whole operation process.
  • the two-stage variable frequency two-stage compression heat pump water heater also has a coupling problem between the operating frequency of the low-pressure stage compressor and the operating frequency of the high-pressure stage compressor.
  • the object of the present invention is to overcome the deficiencies of the prior art to provide a two-stage variable frequency two-stage compression heat pump water heater frequency dynamic optimization and control method, which can dynamically adjust the low voltage according to the user's heat demand and the outdoor temperature of the heat pump water heater and the temperature of the water tank.
  • the operating frequency of the inverter compressor is adjusted according to the optimal intermediate temperature of the heat pump water heater refrigeration system.
  • the operating frequency of the high-pressure inverter compressor is minimized, so that the total energy consumption of the heat pump water heater is minimized and the energy saving effect is achieved.
  • the present invention is achieved by the present invention, which is a frequency dynamic optimization and control method for a two-stage variable frequency two-stage compression heat pump water heater, and the two-stage variable frequency two-stage compression heat pump water heater comprises a low-voltage inverter compressor and a low-pressure compressor.
  • Exhaust gas temperature sensor high pressure stage variable frequency compressor, high pressure stage compressor exhaust temperature sensor, controller, water tank sensor, water tank, condenser, high pressure stage electronic expansion valve, intercooler temperature sensor, intercooler, low voltage level electronics Expansion valve, evaporator and outdoor temperature sensor; characterized in that the operating frequency of the low-pressure stage inverter compressor and the high-pressure stage inverter compressor is dynamically optimized during the whole operation of the heat pump water heater, so that the total energy consumption of the heat pump water heater during the whole operation process is minimized.
  • the dynamic optimization adjustment method of the operating frequency of the low-voltage inverter compressor and the high-voltage inverter compressor is as follows:
  • the controller detects the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank, calculates the optimal intermediate temperature T 3 according to the relationship I, and adjusts the operating frequency f b of the high-voltage inverter compressor to detect the intermediate temperature sensor.
  • the actual intermediate temperature approaches the value of the calculated optimum intermediate temperature T 3 .
  • the relationship VI is simplified to obtain a simplified adjustment method of the operating frequency of the temperature-segment, non-continuous low-voltage stage inverter compressor, and the high-voltage inverter compressor
  • the working frequency is adjusted accordingly, as follows:
  • the controller detects the outdoor ambient temperature T 1 , the current actual water temperature T 2 of the water tank, the specific water time t 0 set by the user, and the set water temperature T of the water tank, and sets the lowest frequency of the low-pressure stage inverter compressor.
  • the initial value of f d is 30 Hz, and the initial value of the highest frequency f g of the low-voltage inverter compressor is 80 Hz;
  • the controller calculates the time t s between the current time and the specific water time t 0 set by the user, and calculates the water temperature of the water tank to reach the set temperature T according to the expression III, the expression V and the calculation formula VII. It takes time t j , such as
  • the start time of the machine and the high-voltage inverter compressor the delay time is calculated according to the low-voltage inverter compressor always running at 30Hz frequency; if t s -t j ⁇ -5min, the lowest frequency of the low-voltage inverter compressor f d is calculated again by increasing 1 Hz every time until
  • the low-voltage inverter compressor operates at the upper protection frequency;
  • the upper limit protection frequency is generally 100 Hz;
  • the controller detects the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank, calculates the optimal intermediate temperature T 3 according to the relationship I, and adjusts the operating frequency f b of the high-voltage inverter compressor to detect the intermediate temperature sensor.
  • the actual intermediate temperature approaches the value of the calculated optimum intermediate temperature T 3 .
  • the initial value of the lowest frequency f d of the low-voltage stage inverter compressor ranges from 10 to 40 Hz, and the initial value of the highest frequency f g ranges from 60 to 100 Hz.
  • the low-voltage inverter compressor and the high-voltage inverter compressor can be an AC inverter compressor or a DC speed compressor.
  • the main advantage of the invention is that the two-stage variable frequency two-stage compression heat pump water heater dynamically optimizes the working frequency of the low-pressure compressor and the high-pressure compressor during the whole operation process, so that the total energy consumption of the whole operation process is minimized. .
  • FIG. 1 is a schematic diagram of a two-stage variable frequency two-stage compression heat pump water heater system according to the present invention.
  • the two-stage variable frequency two-stage compression heat pump water heater includes a low-pressure stage variable frequency compressor, a low-pressure stage compressor exhaust temperature sensor 2, a high-pressure stage inverter compressor 3, a high-pressure stage compressor exhaust temperature sensor 4, a controller 5, and a water tank sensor 6 , water storage tank 7, condenser 8, high-pressure stage electronic expansion valve 9, intercooler temperature sensor 10, intercooler temperature sensor 11, low-pressure stage electronic expansion valve 12, evaporator 13 and outdoor temperature sensor 14; low-voltage stage variable frequency compression
  • the dynamic optimization adjustment method of the operating frequency of the machine 1 and the high-voltage inverter compressor 3 is as follows:
  • the controller 5 detects the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank 7, calculates the optimal intermediate temperature T 3 according to the relationship I, and adjusts the operating frequency f b of the high-voltage stage inverter 3 to make the middle
  • the actual intermediate temperature detected by the temperature sensor 11 approaches the value of the calculated optimum intermediate temperature T 3 .
  • the relationship VI is simplified to obtain a simplified adjustment method for the operating frequency of the temperature-segment, non-continuous low-voltage inverter compressor 1, and the high-voltage inverter compressor 3
  • the working frequency is adjusted accordingly, as follows:
  • the controller 5 detects the outdoor ambient temperature T 1 , the current actual water temperature T 2 of the water tank 7, the specific water time t 0 set by the user, and the set water temperature T of the water tank 7, and sets the low-pressure stage inverter compressor
  • the initial value of the lowest frequency f d of 1 is 30 Hz, and the initial value of the highest frequency f g of the low-voltage inverter compressor 1 is 80 Hz;
  • the controller 5 calculates the time t s between the current time and the specific water time t 0 set by the user, and calculates the water temperature of the water tank 7 to reach the set temperature T according to Expression III, Expression V and Calculation Formula VII.
  • the running time t j such as
  • Compressor 1 maintains a fixed frequency and will be based on 80 Hz each time The high 1Hz is calculated again until the requirement is met; if the calculated operating frequency of the low-voltage inverter compressor 1 is greater than the operating upper limit protection frequency of the low-pressure compressor 1 set by the heat pump water heater, the low-voltage inverter compressor 1 is pressed according to the upper limit. Protection frequency operation; the upper protection frequency is generally 100Hz;
  • the controller 5 detects the outdoor ambient temperature T 1 , the actual temperature T 2 of the water tank 7, calculates the optimal intermediate temperature T 3 according to the relationship I, and adjusts the operating frequency f b of the high-voltage stage inverter 3 to make the middle
  • the actual intermediate temperature detected by the temperature sensor 11 approaches the value of the calculated optimal intermediate temperature T 3 ;
  • the lower limit protection frequency of the operating frequency f b of the high-voltage stage inverter 3 is 20 Hz, and the upper limit protection frequency is 100 Hz, that is, when When the operating frequency f b of the high-voltage stage inverter 3 is required to be lower than 20 Hz, it is operated at 20 Hz, and when it is higher than 100 Hz, it is operated at 100 Hz.
  • the initial value of the lowest frequency f d of the low-voltage stage inverter compressor 1 ranges from 10 to 40 Hz, and the initial value of the highest frequency f g ranges from 60 to 100 Hz.
  • the low-voltage stage inverter compressor 1 and the high-voltage stage inverter compressor 3 may both be an AC variable frequency compressor or a DC speed control compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

La présente invention concerne un procédé d'optimisation et de commande dynamiques de la fréquence d'un chauffe-eau à pompe à chaleur à compression à deux étages à fréquence variable à deux étages, comprenant un compresseur à fréquence variable à étage basse pression (1), un capteur de température de gaz d'échappement de compresseur d'étage basse pression (2), un compresseur à fréquence variable d'étage haute pression (3), un capteur de température de gaz d'échappement de compresseur d'étage haute pression (4), un dispositif de commande (5), un capteur de réservoir d'eau (6), un réservoir de stockage d'eau (7), un condenseur (8), une vanne de détente électrique d'étage haute pression (9), un capteur de température de refroidisseur intermédiaire (10), un refroidisseur intermédiaire (11), une vanne de détente électrique d'étage basse pression (12), un évaporateur (13) et un capteur de température externe (14) ; le chauffe-eau à pompe à chaleur optimise et régule de façon dynamique la fréquence de travail du compresseur à fréquence variable d'étage basse pression (1) et le compresseur à fréquence variable d'étage haute pression (3) pendant la totalité du processus de fonctionnement de façon à réduire au minimum la consommation d'énergie totale du chauffe-eau à pompe à chaleur pendant la totalité du processus de fonctionnement.
PCT/CN2017/115120 2017-10-27 2017-12-08 Procédé d'optimisation et de commande dynamiques d'un chauffe-eau à pompe à chaleur à compression à deux étages à fréquence variable à deux étages WO2019080278A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711021478.2A CN107906752B (zh) 2017-10-27 2017-10-27 双级变频双级压缩热泵热水器频率动态优化及控制方法
CN201711021478.2 2017-10-27

Publications (1)

Publication Number Publication Date
WO2019080278A1 true WO2019080278A1 (fr) 2019-05-02

Family

ID=61842866

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115120 WO2019080278A1 (fr) 2017-10-27 2017-12-08 Procédé d'optimisation et de commande dynamiques d'un chauffe-eau à pompe à chaleur à compression à deux étages à fréquence variable à deux étages

Country Status (2)

Country Link
CN (1) CN107906752B (fr)
WO (1) WO2019080278A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201463389U (zh) * 2009-07-30 2010-05-12 天津商业大学 高压级补气的两级压缩蒸气式制冷系统
CN104501421A (zh) * 2014-12-12 2015-04-08 顺德职业技术学院 一种变频双级压缩热泵热水器的控制方法
JP2015148407A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 冷凍装置
WO2015158174A1 (fr) * 2014-04-15 2015-10-22 珠海格力电器股份有限公司 Dispositif de réfrigération
CN105962005A (zh) * 2016-05-09 2016-09-28 顺德职业技术学院 双级压缩式热泵真空冷冻干燥组合设备节能控制方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201463389U (zh) * 2009-07-30 2010-05-12 天津商业大学 高压级补气的两级压缩蒸气式制冷系统
JP2015148407A (ja) * 2014-02-07 2015-08-20 パナソニックIpマネジメント株式会社 冷凍装置
WO2015158174A1 (fr) * 2014-04-15 2015-10-22 珠海格力电器股份有限公司 Dispositif de réfrigération
CN104501421A (zh) * 2014-12-12 2015-04-08 顺德职业技术学院 一种变频双级压缩热泵热水器的控制方法
CN105962005A (zh) * 2016-05-09 2016-09-28 顺德职业技术学院 双级压缩式热泵真空冷冻干燥组合设备节能控制方法

Also Published As

Publication number Publication date
CN107906752A (zh) 2018-04-13
CN107906752B (zh) 2019-06-14

Similar Documents

Publication Publication Date Title
CN104613651B (zh) 变频空气源热泵热水器频率调节方法
US11585561B2 (en) Control method and device for air conditioning system and air conditioning system
CN104633942B (zh) 变频喷气增焓热泵热水器频率调节及控制方法
CN104501421B (zh) 一种变频双级压缩热泵热水器的控制方法
WO2019080275A1 (fr) Procédé d'optimisation dynamique et de commande de fréquence pour chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence
CN107120799A (zh) 一种水系统多联机控制方法及系统
CN112393482B (zh) 变频风冷冷水机组及其变工况启动控制方法
CN107246807B (zh) 用于电厂的高效可调整真空控制方法及系统
CN111006425B (zh) 一种基于目标负荷控制的多并联二氧化碳热泵控制方法
WO2019080276A1 (fr) Procédé d'optimisation et de commande de fréquence de chauffage dynamique pour chauffe-eau à pompe à chaleur à compression à deux étages et à fréquence variable à deux étages
CN110567127A (zh) 一种空调频率控制方法和空调器
CN107401806A (zh) 中央空调冷冻站内主机及冷冻泵综合能效提升控制方法
CN105444419B (zh) 空气能热水器的压缩机频率控制的方法及装置
WO2022127332A1 (fr) Chauffe-eau à pompe à chaleur, et son procédé de commande
CN107906760A (zh) 变频热泵热水器压缩机频率动态优化方法
WO2019080277A1 (fr) Procédé d'optimisation de fréquence destiné à un compresseur de chauffage dynamique de chauffe-eau à pompe à chaleur à fréquence variable
CN107461970B (zh) 一种具有蒸发式冷凝器的冷水机组控制方法
CN107270583B (zh) 热泵机组的控制方法
CN107883571B (zh) 变频双级压缩热泵热水器频率动态优化及控制方法
CN107560179A (zh) 变频喷气增焓热泵热水器动态加热压缩机频率优化方法
CN109990463B (zh) 一种变频太阳能热泵热水器控制方法及系统
CN107289696B (zh) 节流阀的控制方法
WO2019080278A1 (fr) Procédé d'optimisation et de commande dynamiques d'un chauffe-eau à pompe à chaleur à compression à deux étages à fréquence variable à deux étages
CN107676973B (zh) 变频双级压缩热泵热水器动态加热频率优化及控制方法
CN103344059B (zh) 二次节流中间完全冷却变流量双级压缩制冷系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17930014

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17930014

Country of ref document: EP

Kind code of ref document: A1