WO2019080276A1 - Procédé d'optimisation et de commande de fréquence de chauffage dynamique pour chauffe-eau à pompe à chaleur à compression à deux étages et à fréquence variable à deux étages - Google Patents

Procédé d'optimisation et de commande de fréquence de chauffage dynamique pour chauffe-eau à pompe à chaleur à compression à deux étages et à fréquence variable à deux étages

Info

Publication number
WO2019080276A1
WO2019080276A1 PCT/CN2017/115118 CN2017115118W WO2019080276A1 WO 2019080276 A1 WO2019080276 A1 WO 2019080276A1 CN 2017115118 W CN2017115118 W CN 2017115118W WO 2019080276 A1 WO2019080276 A1 WO 2019080276A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
frequency
low
heat pump
stage
Prior art date
Application number
PCT/CN2017/115118
Other languages
English (en)
Chinese (zh)
Inventor
吴治将
李东洺
李锡宇
王斯焱
徐言生
彭莺
陈妙阳
Original Assignee
顺德职业技术学院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 顺德职业技术学院 filed Critical 顺德职业技术学院
Publication of WO2019080276A1 publication Critical patent/WO2019080276A1/fr

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B30/00Heat pumps
    • F25B30/02Heat pumps of the compression type
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B7/00Compression machines, plants or systems, with cascade operation, i.e. with two or more circuits, the heat from the condenser of one circuit being absorbed by the evaporator of the next circuit
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/021Inverters therefor

Definitions

  • the invention relates to a heat pump water heater control method, in particular to a dynamic heating frequency optimization and control method for a two-stage variable frequency two-stage compression heat pump water heater.
  • the two-stage compression heat pump water heater can produce high temperature hot water at a lower outdoor ambient temperature.
  • Both low-pressure compressors and high-pressure compressors use variable-frequency compressors with two-stage inverter two-stage compression heat pump water heaters for higher heat regulation and energy efficiency ratio.
  • the Chinese patent announces “a control method for dynamic heating of a variable-frequency two-stage compression heat pump water heater”.
  • the patent number is the invention patent of ZL201410759807.3; it can adjust the working frequency of the low-pressure compressor and the intermediate temperature of the heat pump according to the heat demand of the user and the outdoor ambient temperature of the heat pump water heater and the temperature of the water tank; the basic principle is to make the heat pump water heater run through the whole process.
  • the instantaneous energy efficiency ratio at each moment is as close as possible to the optimal energy efficiency ratio under the operating conditions, that is, the higher the instantaneous energy efficiency ratio at each moment, and the total energy consumption of the heat pump water heater during the whole operation process under the condition of obtaining the same total heating capacity.
  • the smaller, but the conclusion is that the instantaneous heat transfer of the heat pump must be equal throughout the operation.
  • the frequency regulation of the low-pressure compressor of the variable-frequency two-stage heat pump water heater proposed in the aforementioned patent document
  • the method still needs to be optimized, that is, in the process of optimizing the frequency of the low-pressure compressor of the variable-frequency two-stage heat pump water heater, it is also necessary to consider the change of the instantaneous heat generation to minimize the total energy consumption of the heat pump water heater during the whole operation process.
  • the existing two-stage variable frequency two-stage heat pump water heater compressor frequency adjustment method is mainly based on a stable heating mode.
  • the water in the water tank is closed and heated, that is, the water tank does not discharge hot water during the process.
  • the water temperature is always rising.
  • the water tank will be replenished with cold water from the outside.
  • the water temperature in the water tank will continuously decrease.
  • the water temperature of the water tank is a dynamic process of first falling and then rising, that is, dynamic heating, the US Department of Energy.
  • the relevant standards for energy efficiency testing of heat pump water heaters are also based on dynamic heating.
  • the heat pump water heater has the lowest total energy consumption during the entire operation process.
  • the object of the present invention is to overcome the deficiencies of the prior art and provide a dynamic heating frequency optimization and control method for a variable frequency two-stage compression heat pump water heater, which can be based on the outdoor environmental temperature of the heat pump water heater, the temperature of the water tank and the water consumption of the user.
  • the optimal intermediate temperature adjusts the operating frequency of the high-pressure stage inverter compressor to minimize the total energy consumption of the heat pump water heater during the entire operation process, thereby achieving energy saving purposes.
  • the present invention is achieved by the present invention, which is a dynamic heating frequency optimization and control method for a two-stage variable frequency two-stage compression heat pump water heater, and the two-stage variable frequency two-stage compression heat pump water heater includes a low-voltage inverter compressor and low-voltage compression.
  • the two-stage variable frequency two-stage compression heat pump water heater performs dynamic heating operation, that is, the heat pump water heater performs heating operation simultaneously during the user's use of hot water, during the whole dynamic heating operation
  • the optimal adjustment method of the operating frequency of the low-voltage inverter compressor and the high-voltage inverter compressor is as follows:
  • the controller detects the outdoor ambient temperature T O and the actual temperature T of the water tank, and calculates the optimal intermediate temperature T 3 according to the relationship I, and adjusts the operating frequency f b of the high-voltage stage inverter compressor to detect the intermediate temperature sensor.
  • the actual intermediate temperature approaches the value of the calculated optimal intermediate temperature T 3 ;
  • the frequency range for stable operation of the inverter compressor is generally 20 Hz-100 Hz. For each temperature range obtained according to formula III, a temperature range of less than 20 Hz occurs in the actual operating frequency g i of the low-voltage inverter compressor.
  • the operating frequency of the inverter compressor is operated at 20 Hz; if there is a temperature range greater than 100 Hz, the operating frequency of the low-voltage inverter compressor in this temperature section is operated at 100 Hz; similarly, the operating frequency requirement of the high-voltage inverter compressor is less than 20 Hz. Run at 20Hz, when required to be greater than 100Hz, run at 100Hz.
  • the low-voltage inverter compressor and the high-voltage inverter compressor can be an AC inverter compressor or a DC speed compressor.
  • the main advantage of the invention is that the two-stage variable frequency two-stage compression heat pump water heater optimizes the working frequency of the low-pressure stage inverter compressor and the high-pressure stage compressor during the whole dynamic heating operation, so that the whole operation process is always Minimal energy consumption.
  • FIG. 1 is a schematic diagram of a two-stage variable frequency two-stage compression heat pump water heater system according to an embodiment of the present invention
  • FIG. 2 is a schematic view showing the temperature change of the water tank during the dynamic heating process of the two-stage variable frequency two-stage compression heat pump water heater according to the present invention.
  • the two-stage variable frequency two-stage compression heat pump water heater includes a low-pressure stage inverter compressor, a low-pressure stage inverter compressor exhaust temperature sensor 2, a high-pressure stage inverter compressor 3, and a high-pressure stage compressor exhaust temperature sensor.
  • the controller 5 the water tank sensor 6, the water tank 7, the condenser 8, the high-pressure stage electronic expansion valve 9, the intercooler temperature sensor 10, the intercooler 11, the low-pressure stage electronic expansion valve 12, the evaporator 13 and the outdoor temperature sensor 14; As shown in Fig.
  • the dynamic heating process of the heat pump water heater is as follows: at the beginning, the water temperature of the water tank 7 is the set upper limit temperature T S , and when the user starts using the hot water from time t 1 , the water tank will replenish the cold water from the outside, and the water temperature in the water tank 7 starts. Lower, the heat pump water heater also starts heating operation. Since the heat of the hot water is greater than the heat of the heat pump, the water temperature in the water tank 7 continues to decrease.
  • Two-stage variable frequency two-stage compression heat pump water heater dynamic heating frequency optimization and control method two-stage variable frequency two-stage compression heat pump water heater including low-voltage stage inverter compressor 1, low-pressure stage compressor exhaust temperature sensor 2, high-voltage stage inverter compressor 3, high voltage Stage compressor exhaust temperature sensor 4, controller 5, water tank sensor 6, water tank 7, condenser 8, high pressure stage electronic expansion valve 9, intercooler temperature sensor 10, intercooler 11, low pressure stage electronic expansion valve 12, The evaporator 13 and the outdoor temperature sensor 14; the two-stage variable frequency two-stage compression heat pump water heater performs dynamic heating operation, that is, the heat pump water heater simultaneously performs heating operation during the hot water process of the user, and the low-voltage stage frequency conversion compression during the whole dynamic heating operation process
  • the operating frequency of the machine 1 and the high-voltage stage inverter 3 is optimally adjusted to minimize the total energy consumption of the heat pump water heater throughout the operation process; the operating frequency optimization adjustment methods of the low-pressure stage inverter 1 and the high-voltage stage inverter 3 are as follows:
  • the actual outdoor temperature T O is corrected tank section 7 corresponding to each temperature low-pressure stage compressor inverter operating frequency f i 1 segment; the actual operating conditions
  • the operating frequency of the low-pressure stage inverter compressor 1 is operated according to the actual operating frequency g i calculated by the formula III;
  • the controller 5 detects the outdoor ambient temperature T O , the actual temperature T of the water tank 7, calculates the optimum intermediate temperature T 3 according to the relationship I, and adjusts the operating frequency f b of the high-voltage stage inverter 3 to make the intermediate temperature
  • the actual intermediate temperature detected by the sensor 11 approaches the value of the calculated optimal intermediate temperature T 3 ;
  • the frequency range of the stable operation of the inverter compressor is generally 20 Hz-100 Hz. For each temperature range obtained according to formula III, a temperature range of less than 20 Hz appears in the actual operating frequency g i of the low-voltage inverter compressor 1 .
  • the operating frequency of the low-voltage inverter compressor 1 is operated at 20 Hz; if a temperature range greater than 100 Hz occurs, the operating frequency of the low-voltage inverter compressor 1 is operated at 100 Hz; similarly, the operating frequency of the high-voltage inverter 3 It is required to run at 20 Hz when it is less than 20 Hz, and at 100 Hz when it is required to be greater than 100 Hz.
  • the low-voltage stage inverter compressor 1 and the high-voltage stage inverter compressor 3 may both be an AC inverter compressor or a DC speed-regulating compressor.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

Un procédé d'optimisation et de commande de fréquence de chauffage dynamique pour un chauffe-eau à pompe à chaleur à compression à deux étages et fréquence variable à deux étages permet l'optimisation et le réglage, pendant toute l'opération de chauffage dynamique, les fréquences de fonctionnement d'un compresseur à fréquence variable à étage basse-pression et d'un compresseur à fréquence variable à étage haute pression, la segmentation et le réglage de la fréquence de fonctionnement du compresseur à étage basse pression (1), permettant aux fréquences de fonctionnement segmentées du compresseur à fréquence variable d'étage basse pression (1) dans diverses plages de température d'être distribuées d'une manière de progression arithmétique, de telle sorte que la consommation d'énergie totale du chauffe-eau à pompe à chaleur pendant toute l'opération est réduite au minimum. Lorsque la condition de fonctionnement réelle du chauffe-eau à pompe à chaleur s'écarte d'une condition de fonctionnement de référence, la fréquence de fonctionnement segmentée du compresseur à fréquence variable à étage basse pression (1) correspondant à chaque plage de température d'un réservoir d'eau (7) est corrigé en fonction de la température extérieure réelle.
PCT/CN2017/115118 2017-10-27 2017-12-08 Procédé d'optimisation et de commande de fréquence de chauffage dynamique pour chauffe-eau à pompe à chaleur à compression à deux étages et à fréquence variable à deux étages WO2019080276A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201711021851.4 2017-10-27
CN201711021851.4A CN107763872A (zh) 2017-10-27 2017-10-27 双级变频双级压缩热泵热水器动态加热频率优化及控制方法

Publications (1)

Publication Number Publication Date
WO2019080276A1 true WO2019080276A1 (fr) 2019-05-02

Family

ID=61271455

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115118 WO2019080276A1 (fr) 2017-10-27 2017-12-08 Procédé d'optimisation et de commande de fréquence de chauffage dynamique pour chauffe-eau à pompe à chaleur à compression à deux étages et à fréquence variable à deux étages

Country Status (2)

Country Link
CN (1) CN107763872A (fr)
WO (1) WO2019080276A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109028573B (zh) * 2018-06-05 2020-09-01 广东芬尼克兹节能设备有限公司 热泵热水器压缩机工作频率控制方法及系统
CN111174388B (zh) * 2020-01-03 2020-12-15 珠海格力电器股份有限公司 一种运行控制方法、装置、存储介质及多联机系统
CN113251698A (zh) * 2021-04-29 2021-08-13 太原理工大学 适用于回收电厂余热的大温差多级压缩混合工质热泵系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147542A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
CN103836789A (zh) * 2012-11-22 2014-06-04 珠海格力电器股份有限公司 提高热泵热水机最高出水温度的方法
CN104501421A (zh) * 2014-12-12 2015-04-08 顺德职业技术学院 一种变频双级压缩热泵热水器的控制方法
CN104633942A (zh) * 2014-12-12 2015-05-20 顺德职业技术学院 变频喷气增焓热泵热水器频率调节及控制方法
CN106016760A (zh) * 2016-07-01 2016-10-12 顺德职业技术学院 自适应变频热泵热水采暖系统节能控制方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104613651B (zh) * 2014-12-12 2017-08-25 顺德职业技术学院 变频空气源热泵热水器频率调节方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005147542A (ja) * 2003-11-17 2005-06-09 Matsushita Electric Ind Co Ltd ヒートポンプ給湯装置
CN103836789A (zh) * 2012-11-22 2014-06-04 珠海格力电器股份有限公司 提高热泵热水机最高出水温度的方法
CN104501421A (zh) * 2014-12-12 2015-04-08 顺德职业技术学院 一种变频双级压缩热泵热水器的控制方法
CN104633942A (zh) * 2014-12-12 2015-05-20 顺德职业技术学院 变频喷气增焓热泵热水器频率调节及控制方法
CN106016760A (zh) * 2016-07-01 2016-10-12 顺德职业技术学院 自适应变频热泵热水采暖系统节能控制方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUANG JUAN ET AL.: "Experimental Study on variable Frequency Air Source Heat Pump Water Heater", CHIAN HOUSEHOLD APPLIANCE TECHNOLOGY CONFERENCE MEMOIRS, 8 November 2016 (2016-11-08) *

Also Published As

Publication number Publication date
CN107763872A (zh) 2018-03-06

Similar Documents

Publication Publication Date Title
CN104613651B (zh) 变频空气源热泵热水器频率调节方法
WO2019153887A1 (fr) Procédé et dispositif de commande de système de climatisation, et système de climatisation associé
CN104633942B (zh) 变频喷气增焓热泵热水器频率调节及控制方法
CN104501421B (zh) 一种变频双级压缩热泵热水器的控制方法
CN110715466A (zh) 一种多联式空调系统及其控制方法
WO2020062598A1 (fr) Appareil et procédé de commande de fonctionnement pour unité à division multiple d'eau et support et système de climatisation à division multiple d'eau
CN106871358A (zh) 空调器出风温度控制方法及装置
WO2019080276A1 (fr) Procédé d'optimisation et de commande de fréquence de chauffage dynamique pour chauffe-eau à pompe à chaleur à compression à deux étages et à fréquence variable à deux étages
CN108626778B (zh) 一种节能的变频采暖热泵的控制方法
CN107401806A (zh) 中央空调冷冻站内主机及冷冻泵综合能效提升控制方法
CN111006425B (zh) 一种基于目标负荷控制的多并联二氧化碳热泵控制方法
WO2019080275A1 (fr) Procédé d'optimisation dynamique et de commande de fréquence pour chauffe-eau à pompe à chaleur à injection de vapeur améliorée par conversion de fréquence
CN110567127A (zh) 一种空调频率控制方法和空调器
CN109539380B (zh) 一种热泵热水器压缩机频率控制方法
WO2019080277A1 (fr) Procédé d'optimisation de fréquence destiné à un compresseur de chauffage dynamique de chauffe-eau à pompe à chaleur à fréquence variable
CN107560179A (zh) 变频喷气增焓热泵热水器动态加热压缩机频率优化方法
CN107270583B (zh) 热泵机组的控制方法
CN107906760A (zh) 变频热泵热水器压缩机频率动态优化方法
CN111928410A (zh) 用于多联机空调机组的控制方法
CN107883571B (zh) 变频双级压缩热泵热水器频率动态优化及控制方法
CN110470076A (zh) 一种户式水机智能控制方法
CN110822634A (zh) 毛细管辐射空调制冷时压缩机的自适应动态控制方法
CN107289696B (zh) 节流阀的控制方法
CN111829149B (zh) 一种四管制热机组回收系统及其控制方法
CN107676973B (zh) 变频双级压缩热泵热水器动态加热频率优化及控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929939

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929939

Country of ref document: EP

Kind code of ref document: A1