WO2019078737A1 - Método para la fabricación de transformadores trifásicos modulares de núcleo triangular con yugos en y - Google Patents

Método para la fabricación de transformadores trifásicos modulares de núcleo triangular con yugos en y Download PDF

Info

Publication number
WO2019078737A1
WO2019078737A1 PCT/PE2017/000027 PE2017000027W WO2019078737A1 WO 2019078737 A1 WO2019078737 A1 WO 2019078737A1 PE 2017000027 W PE2017000027 W PE 2017000027W WO 2019078737 A1 WO2019078737 A1 WO 2019078737A1
Authority
WO
WIPO (PCT)
Prior art keywords
base
cylinder
cuts
core
oblique
Prior art date
Application number
PCT/PE2017/000027
Other languages
English (en)
French (fr)
Other versions
WO2019078737A8 (es
Inventor
Anibal Eduardo ISMODES CASCÓN
Oscar Antonio MELGAREJO PONTE
Original Assignee
Pontifica Universidad Católica Del Perú
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pontifica Universidad Católica Del Perú filed Critical Pontifica Universidad Católica Del Perú
Publication of WO2019078737A1 publication Critical patent/WO2019078737A1/es
Publication of WO2019078737A8 publication Critical patent/WO2019078737A8/es

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/245Magnetic cores made from sheets, e.g. grain-oriented
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/26Fastening parts of the core together; Fastening or mounting the core on casing or support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/34Special means for preventing or reducing unwanted electric or magnetic effects, e.g. no-load losses, reactive currents, harmonics, oscillations, leakage fields
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present invention pertains to the technological field of the processes or apparatuses for the manufacture and / or assembly of three-phase electrical transformers.
  • a method has been developed to manufacture three-phase transformers of the type with triangular core and yokes in Y, with the benefit that the method allows to implement a modular construction of the transformers.
  • This implementation allows to assemble the nucleus in a simpler and faster way than other methods of the same technological field, also, unlike other antecedents, such as those referred to spatially symmetric transducers type delta, the invention allows the construction of transformers of greater electrical power, that could even exceed 10,000 kVA of electric power transmission capacity.
  • the proposal is also advantageous with regard to the processing of transformers for easy transfer, that is, from the factory to the place of destination (this would be difficult in the conventional way), since their modules can be transported separately and then its assembly would take place at the destination point.
  • Figure 1 Set of ferromagnetic plates of equal dimensions arranged one above the other.
  • Figure 2. Parts of the block armed with ferromagnetic plates and forming the orthohedron.
  • Figure 3. Location of the cross sections.
  • Figure 4. Location of the oblique cuts.
  • Figure 5 Selection of the groups of plates in the shape of a heptahedron and a trapezoidal prism.
  • Figure 6. Measures of rectangular plates and their cuts.
  • Figure 7. Measurements of the plates with different widths and their cuts.
  • Figure 8. Square and circular section for each embodiment of the nucleus.
  • Figure 9. Y-arrangement of the yokes for each embodiment of the core.
  • Figure 10. Y-yokes and trapezoidal prisms to form a nucleus.
  • FIG. 1 Side views of the "C” columns.
  • Figure 12. Isometric view of the implemented core.
  • Figure 13. Isometric view of part of the armed core (left) with the yoke on the lid (right).
  • Figure 14 Isometric view of the implemented transformer.
  • Figure 5. Results of the vacuum test at nominal voltage, prototype 600 VA. DETAILED DESCRIPTION OF THE INVENTION
  • the method for the fabrication of modular three-phase transformers with a triangular core and Y-yokes consists of the following steps:
  • the first step is carried out by stacking ferromagnetic plates to form a ortohedron.
  • the number of plates to be stacked depends on the value of A since the thickness of the plates must be considered, which is between 0.23 and 0.7mm.
  • the next step consists in the execution of the cuts, being preferable the use of cutting by wire by EDM, or cut with a grinder.
  • Said cuts are of two types: transversal (perpendicular) and oblique.
  • transversal cuts are made, perpendicular to the upper face (1) and to the lower face (2) of the block of plates; two cuts on the left side (9) of the block of plates and two on the right side (10).
  • the cuts on the left side are made through the upper face (1) and the lower face (2) from the center of the upper left (5) and lower left (6) edges.
  • a cut concludes by directing the cutting element towards the front face (3) and the other towards the back face (4).
  • the cuts on the right side are made through the upper face (1) and the lower face (2) from the center of the upper right (7) and lower right (8) edges.
  • a cut concludes by directing the cutting element towards the front face (3) and the other towards the back face (4).
  • the cuts are made with an opening angle of 120 ° degrees poicada side of the block.
  • the oblique cuts are made perpendicularly across the front (3) and back (4) with an inclination angle 45 ° each. Two oblique cuts are made, one on the left side of the block of plates and the other on the right side.
  • the left oblique section has a left upper end (11) that, in the case of square section transformers, 1.08A units of the left upper edge (5) will be spaced apart;
  • the right oblique section presents a right upper end (12) which, in the case of square section transformers, will also be distanced 1 .08A units from the right upper edge (7).
  • the next step consists in the selection of the groups of plates that form two heptahedrons (13) and a trapezoidal prism (14), since these blocks are not enough to form the transformer core, it is necessary to repeat the cutting steps with two blocks of additional plates, with the same dimensions as the first. After this, six groups of plates in the shape of heptahedrons and three groups of plates shaped like a trapezoidal prism are obtained.
  • the next step consists of the assembly of the core, which is carried out with the individual assembly of each column, using a pair of heptahedrons (13) and a trapezoidal prism (14), so that the lateral sides of said trapezoidal prism ( 14) join with the lateral sides of each heptahedron (13), forming a "C", this is also repeated for the other two columns.
  • the three columns are joined, so that they form a single body spaced symmetrically, the next step is the location of a base (17) and a cover (18) at each end of the core, then the coils are located in each column and finally , axial fastening elements (19) are added which hold the base (17) and the cover (18) by means of screws or other adjustment elements.
  • a second way of assembling the core is carried out by first forming a yoke on the base (17) and a yoke on the lid (18), placing the trapezoidal prisms (14) on top of each heptahedron (13) of the yoke of the base (17), so that the side faces of each heptahedron (13) coincide with one of the faces of the trapezoidal prisms (14), the next consists of locating the corresponding coils in each column, then overlapping the lid yoke (18) and the axial fastening elements (19) that hold the base (17) and the lid (1 8) by screws or other adjustment elements are added.
  • each heptahedron (13), can present a posterior cross section, from the upper side to the lower face thereof, so that, forming the yokes in Y, the union of three heptahedrons forms a hollow space (15) which allows the passage of a central support element (16).
  • the base (7) and the cover (18) there are holes for locating the fastening elements (16, 19) and also, there are stops (20) for adjusting and supporting the yokes. If transverse cuts are not made, the yokes can be attached to the covers by other mechanical means using three bolts placed externally.
  • the lid (18) admits the insertion of gripping elements, such as handles, handlebars or hooks.
  • Steps for carrying out the invention from plates with different width measurements (circular section)
  • the referential measures of the cylinders are 1.12 A radius; In addition, they are positioned so that the flat surface of one of their end plates rests on a smooth horizontal surface.
  • the number of plates to be stacked depends on the value of "A" since it has to be considered the thickness of them, which is between 0.23 and 0.7mm.
  • Two oblique cuts are made that perpendicularly cross the horizontal edges of the plates, with an angle of inclination 45 ° each cut, a cut is made on the left side and the other, on the right side, the left oblique cut has a left upper end that is distanced to 0.68A units from the upper end of the left base; similarly, the right oblique cut presents a right upper end that is spaced at 0.68A units from the upper end of the right base; and, groups of ferromagnetic plates are selected that form two polyhedral cylinders and an oblique truncated cylinder for each cut cylinder, so that six ferromagnetic pieces are obtained to assemble.
  • the core annado is carried out with the individual assembly of each column of the transformer, using a pair of polyhedral cylinders and an oblique truncated cylinder, so that the lateral sides of said oblique truncated cylinder join with the lateral sides of each cylinder polyhedral, forming a "C", also, the three columns are joined, so that they form a single body spaced symmetrically, to which is added the coils of the transformer in each column.
  • a second way to perform the construction of this type of transformer is obtained by assembling the core by first forming a yoke on the base (17) and a yoke on the lid (18), placing the oblique truncated cylinders on top of each polyhedral cylinder of the yoke. the base (17), so that the lateral faces of each polyhedral cylinder coincide with one of the sides of the oblique truncated cylinders, the next consists in locating the corresponding coils in each column, then the cap yoke is superimposed (18). ) and the central fastening element (16) and the axial fastening elements (19) that hold the base (17) and the cover (18) by screws are added.
  • each polyhedral cylinder can be made a posterior cross section, perpendicularly crossing the flat surfaces of the plates, so that, the union of three polyhedral cylinders forms a hollow space (15) for the entry of a means of restraint.
  • the base (17) and the lid (18) there are holes to locate the fastening elements (16, 19) and also, there are stops (20) to adjust and hold the yokes. If transverse cuts are not made, the yokes can be attached to the covers by other mechanical means using three bolts placed externally. insertion of gripping elements, such as handles, handlebars

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)

Abstract

Método para la fabricación de transformadores trifásicos moduladores de núcleo triangular con yugos en Y, que consta de las etapas de: apilado de planchas ferromagnéticas formando tres columnas de sección cuadrada o escalonada, cortes transversales en inglete a 45° y oblicuos de las aristas en los extremos formando una columna trapezoidal y dos piezas con forma de heptaedro con una arista a 120°, ensamblaje de dichas piezas formando una base con forma de estrella y las respectivas columnas, montaje de las bobinas en cada columna, cierre del núcleo triangular con medios de sujeción verticales.

Description

MÉTODO PARA LA FABRICACIÓN DE TRANSFORMADORES TRIFÁSICOS MODULARES DE NÚCLEO TRIANGULAR CON YUGOS EN Y
CAMPO TECNOLÓGICO
La presente invención pertenece al campo tecnológico de los procedimientos o aparatos para la fabricación y/o montaje de transformadores eléctricos trifásicos.
ESTADO DE LA TÉCNICA
El concepto de transformador triangular, simétrico espacialmente, es conocido desde fines del siglo XIX. Ya en los años 40 se presentaron patentes al respecto, como, por ejemplo: US2401952, US4588971 .
A partir de los primeros años del presente siglo, se ha comenzado a comercializar con éxito los denominados transformadores trifásicos de núcleo triangular con yugos en D, también conocidos como Three-dimensional wound core transforméis o como triangular wound core Transforméis, algunos ejemplos los podemos encontrar en las patentes: US5202664, US 20030090355. Una variante de los anteriores, son los transformadores con núcleos de forma triangular en delta, como, por ejemplo: US20150235752, US20160005536. Otra variante son los transformadores de núcleo triangular con yugos en Y, los que, en comparación con los transformadores convencionales de tres columnas, poseen una estructura con las siguientes ventajas: durante su funcionamiento, sus corrientes de vacío presentan mayor simetría, lo que se traduce en un menor gasto energético; presentan menores pérdidas por dispersión de su flujo magnético, lo cual también repercute en el ahorro energético; y, trabajan mejor con cargas desbalanceadas. Sin embargo, estos transformadores todavía presentan problemas referidos a su complejidad de fabricación y a la falta de procedimientos que permitan ensamblarlos y desensamblarlos de forma eficiente, lo cual, posiblemente, ha evitado que se encuentren propuestas exitosas en el mercado. BREVE DESCRIPCIÓN DE LA INVENCIÓN
Se ha desarrollado un método para fabricar transformadores trifásicos del tipo con núcleo triangular y yugos en Y, con el beneficio que el método permite implementar una construcción modular de los transformadores. Dicha nplementación permite armar el núcleo de manera más sencilla y rápida que otros métodos del mismo campo tecnológico, asimismo, a diferencia de otros antecedentes, como los referidos a transfonnadores simétricos espacialmente tipo delta, la invención permite ta construcción de transformadores de mayor potencia eléctrica, que incluso podrían superar los 10000 kVA de capacidad de transmisión de energía eléctrica.
En ese sentido, la propuesta también es ventajosa en lo que se refiere a la elaboración de transformadores para fácil traslado, es decir, desde la fábrica al lugar de destino (esto resultaría difícil de la forma convencional), ya que sus módulos se pueden transportar por separado y luego su ensamble se realizaría en el punto de destino.
Otra ventaja es que el montaje y desmontaje para labores de reparación o mantenimiento resultaría más simple que en los transfonnadores trifásicos de núcleo triangular divulgados en otras patentes.
En un laboratorio se han realizado pruebas en prototipos de 600 VA de capacidad de transmisión de potencia, obteniéndose los resultados de la figura 15. En los resultados se observa que las corrientes de vacío difieren en menos de 3mA y que la potencia de vacío es 5.04W, es decir, es baja.
BREVE DESCRIPCIÓN DE LAS FIGURAS
Figura 1. Conjunto de planchas ferromagnéticas de iguales dimensiones dispuestas unas sobre otras.
Figura 2. Partes del bloque armado con planchas ferromagnéticas y formando el ortoedro. Figura 3. Ubicación de los cortes transversales. Figura 4. Ubicación de los cortes oblicuos.
Figura 5. Selección de los grupos de planchas con forma de heptaedro y prisma trapezoidal. Figura 6. Medidas de las planchas rectangulares y sus cortes. Figura 7. Medidas de las planchas con distintas anchuras y sus cortes. Figura 8. Sección cuadrada y circular para cada realización del núcleo. Figura 9. Arreglo en Y de los yugos para cada realización del núcleo. Figura 10. Yugos en Y y prismas trapezoidales para formar un núcleo.
Figura 1 1. Vistas laterales de las columnas en "C".
Figura 12. Vista isométrica del núcleo implementado. Figura 13. Vista isométrica de parte del núcleo armado (izquierda) con el yugo en la tapa (derecha).
Figura 14. Vista isométrica del transformador implementado. Figura 5. Resultados de la prueba de vacío a tensión nominal, prototipo 600 VA. DESCRIPCIÓN DETALLADA DE LA INVENCIÓN
El método para la fabricación de transformadores trifásicos modulares de núcleo triangular con yugos en Y, consiste en los siguientes pasos:
• Apilar planchas ferromagnéticas rectangulares para formar un ortoedro (con planchas con las mismas dimensiones), o un cilindro (con planchas con distintas medidas de anchura).
• Realizar cortes transversales y oblicuos del ortoedro o cilindro, según sea el caso.
• Seleccionar los grupos de planchas que formen determinadas formas poliédricas.
· Empaquetar dichas formas poliédricas para formar bloques compactos.
» Montar dichos bloques para formar el núcleo del transformador. Las dimensiones del ortoedro o del cilindro dependen de las necesidades de transmisión de energía, asimismo, las ecuaciones básicas de electromagnetismo de Maxwell permiten hacer los cálculos correspondientes. A continuación, se presentará dos alternativas para la ejecución de la invención.
Pasos para realizar la invención a partir de planchas rectangulares (sección cuadrada)
El primer paso se lleva a cabo apilando planchas ferromagnéticas hasta formar un ortoedro. Las dimensiones del ortoedro dependen de la potencia eléctrica que se desee transmitir y se pueden calcular tomando como referencia las dimensiones típicas de los núcleos tipo E I, utilizados en la fabricación de los núcleos de transformador convencionales. De acuerdo a la invención, para un transformador de ancho y altura de A unidades, se requerirá que el ortoedro de sección cuadrada tenga un largo de 7.16A unidades, por ejemplo, para un transfonnador de 3kVA potencia de este tipo, le corresponde una sección de A = 60mm. El número de planchas a apilar depende del valor de A ya que se tiene que considerar el espesor de las mismas, que se encuentra entre 0.23 y 0.7mm. Al terminar de formar el ortoedro, este se asegura mecánicamente, de modo que una de sus caras con más área descanse sobre una superficie horizontal lisa.
El siguiente paso consiste en la ejecución de los cortes, siendo preferente la utilización del corte por hilo por electroerosión (EDM), o corte con esmeriladora. Dichos cortes son de dos tipos: transversales (perpendiculares) y oblicuos.
En total se realizan cuatro cortes transversales, perpendiculares a la cara superior (1) y a la cara inferior (2) del bloque de planchas; dos cortes en el lado izquierdo (9) del bloque de planchas y dos, en el lado derecho (10). Los cortes del lado izquierdo se realizan atravesando la cara superior (1 ) y la cara inferior (2) desde el centro de las aristas superior izquierda (5) e inferior izquierda (6). Un corte concluye dirigiendo el elemento de corte hacia la cara frontal (3) y el otro, hacia la cara posterior (4). Los cortes del lado derecho se realizan atravesando la cara superior (1 ) y la cara inferior (2) desde el centro de las aristas superior derecha (7) e inferior derecha (8). Un corte concluye dirigiendo el elemento de corte hacia la cara frontal (3) y el otro, hacia la cara posterior (4). Los cortes se realizan con un ángulo de apertura de 120° grados poicada lado del bloque. Los cortes oblicuos se realizan atravesando perpendicularmente la cara frontal (3) y posterior (4) con un ángulo de inclinación 45° cada uno. Se realizan dos cortes oblicuos, uno al lado izquierdo del bloque de planchas y el otro, al lado derecho. El corte oblicuo izquierdo presenta un extremo superior izquierdo (1 1 ) que, en el caso de los transformadores de sección cuadrada, estará distanciado 1.08A unidades de la arista superior izquierda (5); de un modo similar, el corte oblicuo derecho presenta un extremo superior derecho (12) que, en el caso de los transformadores de sección cuadrada, también estará distanciado 1 .08A unidades de la arista superior derecha (7). El siguiente paso consiste en la selección de los grupos de planchas que formen dos heptaedros (13) y un prisma trapezoidal (14), como estos bloques no son suficientes para formar el núcleo del transformador, es necesario volver a repetir los pasos de corte con dos bloques de planchas adicionales, con las mismas dimensiones que el primero. Posterior a esto, se obtienen seis grupos de planchas con forma de heptaedros y tres grupos de planchas con forma de prisma trapezoidal.
El siguiente paso consiste en el armado del núcleo, que se lleva a cabo con el armado individual de cada columna, utilizando un par de heptaedros (13) y un prisma trapezoidal (14), de modo que los lados laterales de dicho prisma trapezoidal (14) se unan con los lados laterales de cada heptaedro (13), formando una "C", esto también se repite para las otras dos columnas. Las tres columnas se unen, de modo que formen un solo cuerpo espaciado simétricamente, el siguiente paso es la ubicación de una base (17) y una tapa (18) en cada extremo del núcleo, luego se ubican las bobinas en cada columna y finalmente, se añaden elementos de sujeción axial (19) que sujetan la base (17) y la tapa (18) mediante tornillos u otros elementos de ajuste. Una segunda forma de armar el núcleo se lleva a cabo formando primero un yugo en la base (17) y un yugo en la tapa (18), colocar los prismas trapezoidales (14) encima de cada heptaedro (13) del yugo de la base (17), de modo que las caras laterales de cada heptaedro (13) coincidan con una de las caras de los prismas trapezoidales (14), lo siguiente consiste en ubicar las bobinas correspondientes en cada columna, luego se sobrepone el yugo de la tapa (18) y se añaden los elementos de sujeción axial (19) que sujetan la base (17) y la tapa (1 8) mediante tornillos u otros elementos de ajuste. Cabe señalar que cada heptaedro (13), puede presentar un corte transversal posterior, desde la cara superior hasta la cara inferior del mismo, de modo que, al formar los yugos en Y, la unión de tres heptaedros forma un espacio hueco ( 15) que permite el paso de un elemento de sujeción central (16). Del mismo modo, en la base ( 7) y la tapa (18) se encuentran orificios para ubicar los elementos de sujeción (16, 19) y también, se encuentran topes (20) para ajustar y sostener los yugos. Si no se realizan cortes transversales, los yugos pueden sujetarse a las tapas por otros medios mecánicos utilizando tres pernos colocados exteriormente.
Finalmente, la tapa (18) admite la inserción de elementos de agarre, como mangos, manubrios o ganchos.
Pasos para realizar la invención a partir de planchas con distintas medidas de anchura (sección circular) Para este caso las medidas referenciales de los cilindros son radio de 1.12 A unidades; y, largo de 6.36A unidades, además, se posicionan de modo que la superficie plana de una de sus planchas de los extremos descanse sobre una superficie horizontal lisa. Nuevamente, el número de planchas a apilar depende del valor de "A" ya que se tiene que considerar el espesor de las mismas, que se encuentra entre 0.23 y 0.7mm. Al terminar de formar el cilindro, este se asegura mecánicamente, de modo que la superficie plana de una de las planchas de los extremos, descanse sobre una superficie horizontal lisa.
Se realizan cuatro cortes transversales perpendiculares a las superficies planas de cada cilindro, dos cortes en el lado izquierdo y dos en el lado derecho, los cortes del lado izquierdo se realizan atravesando las superficies planas desde el extremo superior de la base izquierda y el extremo inferior de la base izquierda, un corte concluye dirigiendo el elemento de corte hacia el lado frontal del cilindro y el otro, hacia el lado posterior del cilindro, los cortes del lado derecho se realizan atravesando las superficies planas desde el extremo superior de la base derecha y el extremo inferior de la base derecha, un corte concluye dirigiendo el elemento de corte hacia el lado frontal del cilindro y el otro, hacia el lado posterior del cilindro, asimismo, dichos cortes se realizan con un ángulo de apertura de 120° grados por cada lado del cilindro. Se realizan dos cortes oblicuos que atraviesan perpendicularmente los bordes horizontales de las planchas, con un ángulo de inclinación 45° cada corte, un corte se realiza al lado izquierdo y el otro, al lado derecho, el corte oblicuo izquierdo presenta un extremo superior izquierdo que está distanciado a 0.68A unidades del extremo superior de la base izquierda; de un modo similar, el corte oblicuo derecho presenta un extremo superior derecho que está distanciado a 0.68A unidades del extremo superior de la base derecha; y, se seleccionan grupos de planchas ferromagnéticas que forman dos cilindros poliédricos y un cilindro truncado oblicuo por cada cilindro cortado, de modo que se obtienen seis piezas ferromagnéticas para ensamblar. El annado del núcleo se lleva a cabo con el armado individual de cada columna del transformador, utilizando un par de cilindros poliédricos y un cilindro truncado oblicuo, de modo que los lados laterales de dicho cilindro truncado oblicuo se unan con los lados laterales de cada cilindro poliédrico, formando una "C", asimismo, las tres columnas se unen, de modo que formen un solo cuerpo espaciado simétricamente, al que se le añade las bobinas del transformador en cada columna.
Una segunda forma de realizar la construcción de este tipo de transformador se obtiene armando el núcleo formando primero un yugo en la base (17) y un yugo en la tapa (18), colocar los cilindros truncados oblicuos encima de cada cilindro poliédrico del yugo de la base (17), de modo que las caras laterales de cada cilindro poliédrico coincidan con una de las caras de los cilindros truncados oblicuos, lo siguiente consiste en ubicar las bobinas correspondientes en cada columna, luego se sobrepone el yugo de la tapa (18) y se añaden el elemento de sujeción central (16) y los elementos de sujeción axial (19) que sujetan la base (17) y la tapa (18) mediante tornillos.
Como en el caso anterior, a cada cilindro poliédrico se le puede realizar un corte transversal posterior, atravesando perpendicularmente las superficies planas de ¡as planchas, de modo que, la unión de tres cilindros poliédricos forma un espacio hueco (15) para el ingreso de un medio de sujeción. Del mismo modo, en la base (17) y la tapa (18) se encuentran orificios para ubicar los elementos de sujeción (16, 19) y también, se encuentran topes (20) para ajustar y sostener los yugos. Si no se realizan cortes transversales, los yugos pueden sujetarse a las tapas por otros medios mecánicos utilizando tres pernos colocados exteriormente. inserción de elementos de agarre, como mangos, manubrios

Claims

REIVINDICACIONES
Un método para la fabricación de transformadores trifásicos de núcleo triangular, que comprende los siguientes pasos:
apilar planchas ferromagnéticas rectangulares con iguales dimensiones para formar tres ortoedros;
realizar cortes transversales y oblicuos a los ortoedros;
seleccionar grupos de planchas ferromagnéticas que formen determinadas formas poliédricas;
ensamblar las formas poliédricas para formar el núcleo del transformador;
ubicar las bobinas del transformador en las columnas del núcleo; y,
colocar medios de sujeción en el núcleo;
CARACTERIZADO PORQUE:
las medidas de los ortoedros son ancho y altura de A unidades; y, largo de 7.16A unidades, además, los ortoedros se posicionan de modo que la superficie plana de una de sus planchas de los extremos descanse sobre una superficie horizontal lisa;
se realizan cuatro cortes transversales perpendiculares a la cara superior (1 ) y a la cara inferior (2) de cada ortoedro, dos cortes en el lado izquierdo (9) y dos en el lado derecho (10), los cortes del lado izquierdo se realizan atravesando la cara superior ( 1 ) y la cara inferior (2) desde el centro de las aristas superior izquierda (5) e inferior izquierda (6), un corte concluye dirigiendo el elemento de corte hacia la cara frontal (3) y el otro, hacia la cara posterior (4), los cortes del lado derecho se realizan atravesando la cara superior (1) y la cara inferior (2) desde el centro de las aristas superior derecha (7) e inferior derecha (8), un corte concluye dirigiendo el elemento de corte hacia la cara frontal (3) y el otro, hacia la cara posterior (4), asimismo, dichos cortes se realizan con un ángulo de apertura de 120° grados por cada lado del ortoedro;
se realizan dos cortes oblicuos que atraviesan perpendicularmente la cara frontal (3) y posterior (4) de cada ortoedro, con un ángulo de inclinación 45° cada corte, un corte se realiza al lado izquierdo y el otro, al lado derecho, el corte oblicuo izquierdo presenta un extremo superior izquierdo (1 1) que está distanciado a 1.08A unidades de la arista superior izquierda (5); de un modo similar, el corte oblicuo derecho presenta un extremo superior derecho ( 12) que está distanciado 1.08A unidades de la arista superior derecha (7); y, se seleccionan grupos de planchas ferromagnéticas que forman dos heptaedros (13) y un prisma trapezoidal (14) por cada ortoedro cortado, de modo que se obtienen seis piezas ferromagnéticas para ensamblar.
El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a la reivindicación 1, CARACTERIZADO PORQUE, el armado del núcleo se lleva a cabo con el armado individual de cada columna del transformador, utilizando un par de heptaedros (13) y un prisma trapezoidal (14), de modo que los lados laterales de dicho prisma trapezoidal (14) se unan con los lados laterales de cada heptaedro (13), formando una "C", asimismo, las tres columnas se unen, de modo que formen un solo cueipo espaciado simétricamente, al que se le añade las bobinas del transformador en cada columna.
El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a la reivindicación l , CARACTERIZADO PORQUE, a cada heptaedro (13) se le realiza un corte transversal posterior, desde la cara superior hasta la cara inferior del mismo, de modo que, la unión de tres heptaedros forma un espacio hueco (15) para el ingreso de un medio de sujeción.
El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a la reivindicación 1 y 3, CARACTERIZADO PORQUE, los medios de sujeción son un elemento de sujeción central (16), elementos de sujeción axial (19), una base (17), una tapa
(18) , topes (20) y tornillos; de modo que el elemento de sujeción central (16) se inserta en el espacio hueco (15) y se ajusta en la base (17) o la tapa (18); los elementos de sujeción axial
(19) se insertan en orificios presentes en la base ( 7) y la tapa (18);y, los topes (20) se ubican en la base ( 17) y la tapa (18) para ajustar y sostener a los yugos.
El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a las reivindicaciones 1, 3 y 4, CARACTERIZADO PORQUE, el armado del núcleo del transformador se lleva a cabo formando primero un yugo en la base (17) y un yugo en la tapa (18), colocar los prismas trapezoidales (14) encima de cada heptaedro (13) del yugo de la base (17), de modo que las caras laterales de cada heptaedro (13) coincidan con una de las caras de los prismas trapezoidales (14), lo siguiente consiste en ubicar ¡as bobinas correspondientes en cada columna, luego se sobrepone el yugo de la tapa (18) y se añaden el elemento de sujeción central (16) y los elementos de sujeción axial (19) que sujetan la base (17) y la tapa (18) mediante tornillos.
6. Un método para la fabricación de transformadores trifásicos de núcleo triangular, que comprende los siguientes pasos:
apilar planchas ferromagnéticas rectangulares con diferentes dimensiones para formar tres cilindros;
realizar cortes transversales y oblicuos a los cilindros;
seleccionar grupos de planchas ferromagnéticas que formen determinadas formas poliédricas;
ensamblar las formas poliédricas para formar el núcleo del transformador;
ubicar las bobinas del transformador en las columnas del núcleo; y,
colocar medios de sujeción en el núcleo;
CARACTERIZADO PORQUE:
las medidas de los cilindros son radio de 1 .129A unidades; y, largo de 6.36A unidades, además. Los cilindros se posicionan de modo que la superficie plana de una de sus planchas de los extremos descanse sobre una superficie horizontal lisa;
se realizan cuatro cortes transversales perpendiculares a las superficies planas de cada cilindro, dos cortes en el lado izquierdo y dos en el lado derecho, los cortes del lado izquierdo se realizan atravesando las superficies planas desde el extremo superior de la base izquierda y el extremo inferior de la base izquierda, un corte concluye dirigiendo el elemento de corte hacia el lado frontal del cilindro y el otro, hacia el lado posterior del cilindro, los cortes del lado derecho se realizan atravesando las superficies planas desde el extremo superior de la base derecha y el extremo inferior de la base derecha, un corte concluye dirigiendo el elemento de corte hacia el lado frontal del cilindro y el otro, hacia el lado posterior del cilindro, asimismo, dichos cortes se realizan con un ángulo de apertura de 120° grados por cada lado del cilindro;
se realizan dos cortes oblicuos, en cada cilindro, que atraviesan perpendicularmente los bordes horizontales de las planchas, con un ángulo de inclinación 45° cada corte, un corte se realiza al lado izquierdo y el otro, al lado derecho, el corte oblicuo izquierdo presenta un extremo superior izquierdo que está distanciado a 0.68A unidades del extremo superior de la base izquierda; de un modo similar, el corte oblicuo derecho presenta un extremo superior derecho que está distanciado a 0.68A unidades del extremo superior de la base derecha; y, se seleccionan grupos de planchas ferromagnéticas que forman dos cilindros poliédricos y un cilindro truncado oblicuo por cada cilindro cortado, de modo que se obtienen seis piezas ferromagnéticas para ensamblar. 7. El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a la reivindicación 6, CARACTERIZADO PORQUE, el armado del núcleo se lleva a cabo con el armado individual de cada columna del transformador, utilizando un par de cilindros poliédricos y un cilindro truncado oblicuo, de modo que los lados laterales de dicho cilindro truncado oblicuo se unan con los lados laterales de cada cilindro poliédrico, formando una "C", asimismo, las tres columnas se unen, de modo que formen un solo cuerpo espaciado simétricamente, al que se le añade las bobinas del transformador en cada columna.
8. El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a la reivindicación 6, CARACTERIZADO PORQUE, a cada cilindro poliédrico se le realiza un corte transversal posterior, atravesando perpendicularmente las superficies planas de las planchas, de modo que, la unión de tres cilindros poliédricos forma un espacio hueco (15) para el ingreso de un medio de sujeción.
9. El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a la reivindicación 6 y 8, CARACTERIZADO PORQUE, los medios de sujeción son un elemento de sujeción central (16), elementos de sujeción axial (19), una base (17), una tapa
(18) , topes (20) y tornillos; de modo que el elemento de sujeción central (16) se inserta en el espacio hueco ( 15) y se ajusta en la base (17) o la tapa (18); los elementos de sujeción axial
(19) se insertan en orificios presentes en la base (17) y la tapa (18); y, los topes (20) se ubican en la base (17) y la tapa (18) para ajustar y sostener a los yugos.
10. El método para la fabricación de transformadores trifásicos de núcleo triangular, de acuerdo a las reivindicaciones 6, 8 y 9, CARACTERIZADO PORQUE, el armado del núcleo del transformador se lleva a cabo formando primero un yugo en la base (17) y un yugo en la tapa (18), colocar los cilindros truncados oblicuos encima de cada cilindro poliédrico del yugo de la base (17), de modo que las caras laterales de cada cilindro poliédrico coincidan con una de las caras de los cilindros truncados oblicuos, lo siguiente consiste en ubicar las bobinas correspondientes en cada columna, luego se sobrepone el yugo de la tapa (18) y se añaden el elemento de sujeción central (16) y los elementos de sujeción axial (19) que sujetan la base (17) y la tapa (18) mediante tornillos.
PCT/PE2017/000027 2017-10-17 2017-11-17 Método para la fabricación de transformadores trifásicos modulares de núcleo triangular con yugos en y WO2019078737A1 (es)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PE002281-2017/DIN 2017-10-17
PE0022812017 2017-10-17

Publications (2)

Publication Number Publication Date
WO2019078737A1 true WO2019078737A1 (es) 2019-04-25
WO2019078737A8 WO2019078737A8 (es) 2019-09-26

Family

ID=66172926

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/PE2017/000027 WO2019078737A1 (es) 2017-10-17 2017-11-17 Método para la fabricación de transformadores trifásicos modulares de núcleo triangular con yugos en y

Country Status (1)

Country Link
WO (1) WO2019078737A1 (es)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972054A (zh) * 2021-09-10 2022-01-25 保定天威集团特变电气有限公司 一种心柱与上轭铁的连接结构、安装方法及饼式电抗器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367927A (en) * 1943-03-27 1945-01-23 Westinghouse Electric & Mfg Co Three-phase transformer core
GB1217903A (en) * 1967-01-26 1971-01-06 Smit Nijmegen Electrotec Improvements in and relating to laminated magnetic core structures for large transformers or choke coils
WO2006105026A1 (en) * 2005-03-30 2006-10-05 Abb Technology Ag A transformer having a stacked core with a split leg and a method of making the same
WO2014167571A1 (en) * 2013-04-11 2014-10-16 U.T.T. Unique Transformer Technologies Ltd. Three-phase chokes and methods of manufacturing thereof
CN104637668A (zh) * 2015-02-03 2015-05-20 苏州翰为电气科技有限公司 一种电力设备用星型立体磁路铁心结构的制造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2367927A (en) * 1943-03-27 1945-01-23 Westinghouse Electric & Mfg Co Three-phase transformer core
GB1217903A (en) * 1967-01-26 1971-01-06 Smit Nijmegen Electrotec Improvements in and relating to laminated magnetic core structures for large transformers or choke coils
WO2006105026A1 (en) * 2005-03-30 2006-10-05 Abb Technology Ag A transformer having a stacked core with a split leg and a method of making the same
WO2014167571A1 (en) * 2013-04-11 2014-10-16 U.T.T. Unique Transformer Technologies Ltd. Three-phase chokes and methods of manufacturing thereof
CN104637668A (zh) * 2015-02-03 2015-05-20 苏州翰为电气科技有限公司 一种电力设备用星型立体磁路铁心结构的制造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113972054A (zh) * 2021-09-10 2022-01-25 保定天威集团特变电气有限公司 一种心柱与上轭铁的连接结构、安装方法及饼式电抗器
CN113972054B (zh) * 2021-09-10 2024-04-05 保定天威集团特变电气有限公司 一种心柱与上轭铁的连接结构、安装方法及饼式电抗器

Also Published As

Publication number Publication date
WO2019078737A8 (es) 2019-09-26

Similar Documents

Publication Publication Date Title
ES2544850T3 (es) Método para fabricar un transformador del núcleo triangular apilado
ES2222318T3 (es) Sistema de distribucion neumatica.
BR112018014509B1 (pt) Forma horizontal
WO2019078737A1 (es) Método para la fabricación de transformadores trifásicos modulares de núcleo triangular con yugos en y
ES2359116T3 (es) Procedimiento de fabricación de piezas polares de imanes de formación de imágenes por resonancia magnética nuclear.
ES2642401T3 (es) Separador de baldosas
ES2349602B1 (es) Viga porta - sopandas para el encofrado de forjados
EP4270074A2 (en) Positioning block, optical positioning system and method based on positioning block, and functional module
ES2569903T3 (es) Sistema de accionamiento magnético para un dispositivo de conmutación
ES2528123T3 (es) Núcleo magnético y uso de núcleo magnético para máquinas eléctricas
ES2278736T3 (es) Aparato de alineacion de botellas.
WO2009010608A1 (es) Dispositivo para la colocación en losas flotantes y su sistema de instalacíon
JP5582004B2 (ja) 伝熱管振れ防止バーの固定方法
WO2016020576A1 (es) Elementos constructivos modulares prefabricados y sistema constructivo modular que utiliza tales elementos
ES2705625T3 (es) Conjunto constructivo para la construcción de paredes y muros
RO117631B1 (ro) Set de elemente prefabricate pentru constructii
WO2006072644A1 (es) Dispositivo para formar cajas de cartón
ES2436050T3 (es) Electroimán para desplazar elementos tubulares
ES2677720T3 (es) Componente inductivo
EP3039197B1 (en) Drainage
EP2433858B1 (en) A modular system for realising chambers joined to one another
JPH10227130A (ja) 鋼板固定用治具
EP1920446B1 (en) Coil former
ES1061270U (es) Elevador de redondos de armaduras inferiores en encofrados.
ES1241389U (es) Panel de encofrado con forma de esquina

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928918

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928918

Country of ref document: EP

Kind code of ref document: A1