WO2019078300A1 - Curable resin composition, varnish, prepreg, cured product, laminate and copper-clad laminate - Google Patents

Curable resin composition, varnish, prepreg, cured product, laminate and copper-clad laminate Download PDF

Info

Publication number
WO2019078300A1
WO2019078300A1 PCT/JP2018/038852 JP2018038852W WO2019078300A1 WO 2019078300 A1 WO2019078300 A1 WO 2019078300A1 JP 2018038852 W JP2018038852 W JP 2018038852W WO 2019078300 A1 WO2019078300 A1 WO 2019078300A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
resin composition
curable resin
group
mass
Prior art date
Application number
PCT/JP2018/038852
Other languages
French (fr)
Japanese (ja)
Inventor
一貴 松浦
政隆 中西
窪木 健一
Original Assignee
日本化薬株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本化薬株式会社 filed Critical 日本化薬株式会社
Priority to JP2019512853A priority Critical patent/JP6515255B1/en
Priority to CN201880064594.9A priority patent/CN111164127A/en
Publication of WO2019078300A1 publication Critical patent/WO2019078300A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/24Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs
    • C08J5/241Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres
    • C08J5/244Impregnating materials with prepolymers which can be polymerised in situ, e.g. manufacture of prepregs using inorganic fibres using glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/16Nitrogen-containing compounds
    • C08K5/34Heterocyclic compounds having nitrogen in the ring
    • C08K5/3412Heterocyclic compounds having nitrogen in the ring having one nitrogen atom in the ring
    • C08K5/3415Five-membered rings
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/34Condensation polymers of aldehydes or ketones with monomers covered by at least two of the groups C08L61/04, C08L61/18 and C08L61/20

Definitions

  • the present invention relates to a curable resin composition containing a maleimide resin and a benzoxazine resin, a varnish, a prepreg, a cured product, and a laminate or a copper-clad laminate.
  • maleimide resin and benzo useful in insulating materials for electric and electronic parts, semiconductor sealing material applications, laminates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc.
  • the present invention relates to a curable resin composition containing an oxazine resin and a cured product thereof.
  • epoxy resins which are thermosetting resins
  • epoxy resins By curing with a variety of curing agents, epoxy resins, which are thermosetting resins, generally become cured products excellent in mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc. It is used in a wide range of fields such as paints, laminates, molding materials, casting materials, and sealing materials. In recent years, with the expansion of the field of use of laminates on which electrical and electronic components are mounted, the required characteristics have been broadened and advanced.
  • Patent Document 2 describes that a mixture of a benzoxazine resin having a bisphenol F skeleton and a maleimide resin is used to improve heat resistance.
  • desmear treatment for removing such resin smear is essential. Desmear treatment is performed, for example, using a permanganate such as potassium permanganate.
  • Patent Document 2 the technology described in Patent Document 2 is not sufficient to obtain the characteristics of the dielectric loss tangent.
  • the amount of resin smear removed by desmear treatment (desmear etching amount) is large, deformation of a hole, peeling of copper foil and the like occur, which causes a decrease in conduction reliability, so to reduce the amount of desmear etching
  • chemical resistance (acid resistance, alkali resistance and desmear liquid resistance) is required.
  • the present invention has been made in view of such a situation, and is excellent in solvent solubility, and a cured product thereof is a maleimide resin excellent in heat resistance, thermal decomposition characteristics, water absorption characteristics, dielectric characteristics, and chemical resistance.
  • An object of the present invention is to provide a curable resin composition containing a benzoxazine resin, a varnish, a prepreg, a cured product, and a laminate or a copper-clad laminate.
  • a curable resin composition containing a maleimide resin and a benzoxazine resin of a specific structure is excellent in solvent solubility, and the cured product has heat resistance, thermal decomposition characteristics, water absorption characteristics, and dielectric properties. It has been found that the properties and chemical resistance are excellent, and the present invention has been completed.
  • n is an average value of the number of repetitions and represents a real number of 1 to 10.
  • R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group If .R 3 ⁇ R 7 represent either a group is present in plural, each of R 3 ⁇ R 7 is optionally being the same or different .
  • R 9, R 10 each independently represent a hydrogen atom Or an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group, and when a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be identical to each other The dotted line may indicate that a benzene ring may be formed.
  • the curable resin composition of the present invention is excellent in solvent solubility, and the cured product is excellent in heat resistance, thermal decomposition characteristics, water absorption characteristics, dielectric characteristics, chemical resistance, and so on. It is useful for laminates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc.
  • the curable resin composition of the present invention contains a maleimide resin (A).
  • the maleimide resin (A) used in the present invention is a compound containing one or more maleimide groups in the molecule, and known compounds can be used. For example, aliphatic / alicyclic maleimide resin, aromatic maleimide resin and the like can be mentioned.
  • maleimide resin (A) used in the present invention include N-methyl maleimide, N-ethyl maleimide, N-propyl maleimide, N-hexyl maleimide, N-cyclohexyl maleimide, maleimide carboxylic acid, N-phenyl maleimide, Polyfunctional maleimide compounds obtained by the reaction of N-methylphenyl maleimide, 3,4,4'-triaminodiphenylmethane, triaminophenol etc.
  • polyaminopolymaleimide resin obtained by adding aromatic diamine to these polymaleimides can be used.
  • the novolac type maleimide resin since the novolac type maleimide resin has a molecular weight distribution, it has high varnish stability and is suitable for kneading with the benzoxazine resin. These may be commercially available ones and can also be produced using known methods.
  • a plurality of R 21 s independently exist and represent an alkyl group having 1 to 10 carbon atoms or an aromatic group, a represents 0 to 4 and b represents 0 to 3 N a is the average value of the number of repetitions and represents a real number of 1 to 5.
  • A is an alkylene group or alkylidene group having 1 to 5 carbon atoms, an ether group, a sulfide group, a sulfonyl group, a ketone group, a single bond
  • R 22 is present each independently represent a hydrogen atom , An aliphatic hydrocarbon group of 1 to 5 carbon atoms or a halogen atom.
  • R 23 s independently exist and represent an alkyl group having 1 to 10 carbon atoms or an aromatic group, a represents 0 to 4 and b represents 0 to 3 N b is an average value of the number of repetitions and represents a real number of 0.01 to 8.
  • Z represents an organic group having 1 to 8 carbon atoms.
  • the GPC measurement in the present invention was performed under the following conditions.
  • the maleimide resin used in the present invention is preferably an aromatic maleimide compound, more preferably a polymaleimide represented by the above formulas (2) to (4), benzenedialdehyde and aniline from the viewpoint of heat resistance and thermal decomposition characteristics.
  • Polymaleimide polymaleimide obtained by condensation with Moreover, polyamino polymaleimide resin which made aromatic diamine be added to these polymaleimide can also be used.
  • maleimide resins may be used alone or in combination of two or more.
  • An aromatic maleimide resin and an aliphatic maleimide resin may be used in combination.
  • an aromatic maleimide resin is particularly preferable in terms of heat resistance (glass transition point) and / or elastic modulus, and a combination with a maleimide resin having two or more functional groups in one molecule is preferable.
  • the maleimide resin used in the present invention can be one having a melting point or a softening point. When it has a melting point, 200 ° C. or less is preferable, and when it has a softening point, it is preferable that it is 150 ° C. or less. If the melting point or the softening point is too high, the possibility of gelation increases during mixing, which is not preferable.
  • the curable resin composition of the present invention contains a benzoxazine resin (B) represented by the following formula (1).
  • n is an average value of the number of repetitions, and represents a real number of 1 to 10.
  • R 1 to R 8 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group.
  • R 9 and R 10 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group.
  • each R 9 s and R 10 s may be the same as or different from each other.
  • the dotted line represents that a benzene ring may be formed.
  • the alkyl group having 1 to 8 carbon atoms represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is not limited to any of linear, branched or cyclic alkyl group, and specific examples thereof Examples include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, sec-butyl, n-pentyl, n-hexyl, n -Heptyl group, cyclopentyl group, cyclohexyl group etc. may be mentioned, and it is preferable that it is a linear or branched alkyl group having 1 to 8 carbon atoms, and is a linear or branched alkyl group having 1 to 4 carbon atoms It is more preferable that
  • the aryl group represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon, and specific examples thereof include a phenyl group and biphenyl. Groups, naphthyl groups, anthryl groups, phenanthryl groups, pyrenyl groups and benzopyrenyl groups.
  • the alkoxy group represented by R 9 and R 10 in the formula (1) is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, sec- Examples thereof include butoxy, n-pentoxy, n-hexyloxy, n-heptyloxy, cyclopentoxy and cyclohexyloxy groups, etc., and it is a linear or branched alkoxy group having 1 to 8 carbon atoms It is preferably, and more preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
  • R 1 to R 8 in the formula (1) are preferably each independently a hydrogen atom, a halogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, each independently having a hydrogen atom or a bromine atom. Or a linear alkyl group having 1 to 4 carbon atoms is more preferable, and a hydrogen atom is even more preferable.
  • R 9 and R 10 in the formula (1) each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, an allyl group, a linear or branched chain having 1 to 4 carbon atoms It is preferably a chain alkoxy group, more preferably a hydrogen atom, a methyl group, a phenyl group, an allyl group or a methoxy group, and still more preferably a hydrogen atom.
  • n represents the average value of the number of repetitions, and is usually a real number of 1 to 10, preferably a real number of 1 to 5.
  • the value of n can be calculated from the value of weight average molecular weight obtained by measurement of gel permeation chromatography (GPC). Specifically, it is calculated by the following formula.
  • GPC gel permeation chromatography
  • benzoxazine resin represented by the formula (1) one having a bonding position of two methylene groups bonded to the biphenyl structure in the formula (1) is 4,4 ′, that is, in the following formula (5) More preferred are the benzoxazine resins represented.
  • N and R 1 to R 10 in the formula (5) have the same meanings as n and R 1 to R 10 in the formula (1).
  • the dotted line represents that a benzene ring may be formed.
  • the benzoxazine resin represented by the formula (1) of the present invention can be prepared, for example, by using an aniline compound represented by the formula (6), a phenol compound represented by the formula (7) and an aldehyde compound as raw materials. It can be synthesized by a known method represented by the following reaction formula. Although formaldehyde is described as an example of the aldehyde compound in the reaction formula, paraformaldehyde or benzaldehyde may be used.
  • N and R 1 to R 8 in the formula (6) have the same meanings as n and R 1 to R 8 in the formula (1), and the preferred range is also the same.
  • R 9 and R 10 in the formula (7) have the same meanings as R 9 and R 10 in the formula (1), and the preferred range is also the same.
  • the dotted line represents that a benzene ring may be formed.
  • the feed ratio of the phenol compound is preferably 0.5 to 1.2 moles, and more preferably 0.75 to 1.1 moles with respect to 1 mole of the amino group of the aniline compound.
  • the preparation ratio of the aldehyde compound is preferably 1.7 to 4.3 moles, and more preferably 1.8 to 4.2 moles relative to 1 mole of the phenol compound.
  • the reaction may be carried out in a solvent or without solvent.
  • the solvent that can be used for the reaction is not particularly limited as long as it can dissolve the starting compound, and for example, methyl ethyl ketone, toluene, 1-propanol, 2-propanol, 1-butanol, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene Examples thereof include glycol monoethyl ether and ethylene glycol monobutyl ether. These solvents may be used alone or in combination.
  • the reaction temperature is preferably 60 ° C. or higher.
  • the reaction time is not particularly limited, and may be selected while confirming the progress of the reaction by confirming the residual amount of the raw material used for the reaction.
  • the benzoxazine resin can be obtained by removing the condensed water generated during the synthesis, the remaining raw materials, the solvent, etc. under reduced pressure after completion of the synthesis, but since it has self-polymerizability, it is at 160 ° C. or less Vacuum distillation is preferred.
  • the benzoxazine resin (B) used in the present invention can be one having a melting point or a softening point. When it has a melting point, 200 ° C. or less is preferable, and when it has a softening point, it is preferable that it is 150 ° C. or less. If the melting point or the softening point is too high, the possibility of gelation increases during mixing, which is not preferable.
  • n in the structural formula of the specific example has the same meaning as n in formula (1).
  • the benzoxazine resin contained in the curable resin composition of the present invention has self-curing (meaning that it can be ring-opening polymerized (cured) without other components such as a curing agent and a polymerization catalyst). That is, in addition to the fact that a curing catalyst and the like are not required at the time of curing, no by-products are generated in the polymerization process, and a polymer (cured product) with high dimensional stability without voids can be obtained.
  • the conditions for the self-curing are preferably 200 ° C. or more and several tens minutes to several hours or so.
  • the compounding ratio of the benzoxazine resin to the maleimide resin in the curable resin composition of the present invention is not particularly limited, but 0.1 to 100 parts by mass of the maleimide resin with respect to 10 parts by mass of the benzoxazine resin Is more preferably 1 to 75 parts by mass, particularly preferably 5 to 50 parts by mass.
  • the curable resin composition of the present invention can be blended with a curing catalyst, a flame retardant, a filler, an additive and the like as required.
  • the curing catalyst is not particularly limited, and known catalysts can be used. Specific examples thereof include metal complex catalysts, phosphine compounds, compounds having phosphonium salts, aromatic amine compounds, inorganic acids, inorganic bases, organic acids and organic bases.
  • metal complex catalyst generally known ones can be used.
  • metal naphthenic acid salts such as cobalt, zinc, chromium, copper, iron, manganese, nickel, titanium, acetylacetonate, salts of derivatives thereof, organic acid salts such as various carboxylate alkoxides, etc. You may mix and use.
  • Organic acid salts, chlorides, phosphates, phosphites, hypophosphites, nitrates and the like alone or in mixtures thereof may also be mentioned as an example of the metal complex catalyst.
  • phosphine compounds alkyl phosphines such as ethyl phosphine and propyl phosphine, primary phosphines such as phenyl phosphine; dialkyl phosphines such as dimethyl phosphine and diethyl phosphine, secondary phosphines such as diphenyl phosphine, methyl phenyl phosphine and ethyl phenyl phosphine; trimethyl Trialkyl phosphines such as phosphine, triethyl phosphine, tributyl phosphine, trioctyl phosphine, tricyclohexyl phosphine, triphenyl
  • Examples of the compound having a phosphonium salt include compounds having a tetraphenyl phosphonium salt, an alkyltriphenyl phosphonium salt and the like, and specifically, tetraphenyl phosphonium thiocyanate, tetraphenyl phosphonium tetra-p-methylphenyl borate, butyl triphenyl And phosphonium thiocyanate.
  • Examples of the aromatic amine compound include tertiary amines and imidazoles.
  • 2-ethyl-4-methylimidazole 2-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, 2- Undecylimidazole, 2-Heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4 -Methyl-5-hydroxymethylimidazole, 1-vinyl-2-methylimidazole, 1-propyl-2-methylimidazole, 2-isopropylimidazole, 1-cyanomethyl-2-methyl-imidazole, 1-cyanoethyl-2-ethyl- 4-Methylimidazole 1-cyanoethyl-2-undecyl imidazole, 1-cyanoethyl-2-phenylimidazole, diazabicycloundecene,
  • inorganic acids inorganic bases, organic acids and organic bases, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, sodium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, formic acid, acetic acid, citric acid, oxalic acid P-toluenesulfonic acid, benzoic acid, phenol, allylphenol, methallylphenol, thiophenol, pyridine, trialkylamine, diazabicycloundecene, histidine and imidazoles, etc.
  • hydrochloric acid, p-toluenesulfonic acid Benzoic acid, phenol and thiophenol are preferred, and p-toluenesulfonic acid and 2-ethyl-4-methylimidazole are more preferred.
  • the compounding amount of these curing catalysts may be appropriately selected depending on the type and effects thereof, but is preferably 0.001 parts by mass or more and 10 parts by mass or less, and more preferably 100 parts by mass of the curable resin composition. It is 0.01 parts by mass or more and 5 parts by mass or less, particularly preferably 0.05 parts by mass or more and 3 parts by mass or less.
  • flame retardant examples include bromine compounds, phosphorus compounds, chlorine compounds, metal hydroxides and antimony compounds.
  • the filler include fumed silica, calcined silica, precipitated silica, crushed silica, fused silica, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, Wax clay, kaolin clay, calcined clay, carbon black, polyamide resin, silicone resin, polytetrafluoroethylene, polybutadiene and its modified product, modified product of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluorocarbon resin, etc. And organic or inorganic fillers of various forms. These fillers may be used alone or in combination of two or more.
  • the additive include surface treatment agents, reaction retarders, coloring materials, antistatic agents, antiaging agents, antioxidants, and the like.
  • a silane coupling agent etc. are mentioned as a specific example of a surface treating agent.
  • Specific examples of the reaction retarder include compounds such as alcohols, and examples of anti-aging agents include compounds such as hindered phenols.
  • antioxidant butyl hydroxytoluene (BHT), butyl hydroxy anisole (BHA) etc. are mentioned, for example.
  • coloring materials include titanium oxide, zinc oxide, ultramarine blue, bengala, lithopone, inorganic pigments such as lead, cadmium, iron, cobalt, aluminum, hydrochloride and sulfate; azo pigments, phthalocyanine pigments, quinacridone pigments, quinacridones Quinone pigment, dioxazine pigment, anthrapyrimidine pigment, anthanthrone pigment, indanthrone pigment, flavanthrone pigment, perylene pigment, perinone pigment, diketopyrrolopyrrole pigment, quinonaphthalone pigment, anthraquinone pigment, thioindigo pigment, benzimidazolone pigment, iso Examples thereof include indoline pigments, organic pigments such as carbon black, and the like.
  • the antistatic agent generally include quaternary ammonium salts; hydrophilic compounds such as polyglycols and ethylene oxide derivatives, and the like.
  • the curable resin composition of the present invention preferably further contains a cyanate ester resin.
  • the curable resin composition of the present invention by further containing a cyanate ester resin, enables curing at a lower temperature without using the above-mentioned curing catalyst.
  • the catalyst since the catalyst is expensive, it is preferable from the viewpoint of cost to cure the curable resin composition without adding the catalyst.
  • the reliability of the resulting cured product such as heat resistance and mechanical strength is affected.
  • metal complex catalysts often used for benzoxazine resins, cyanate ester resins, and maleimide resins, which incorporate metal ion components may cause corrosion in electronic material applications.
  • the cyanate ester resin that can be used in the curable resin composition of the present invention is not particularly limited as long as it is a known cyanate ester resin, and for example, novolac type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol E type cyanate ester Resin, bisphenol type cyanate ester resin such as tetramethyl bisphenol F type cyanate ester resin; naphthol aralkyl type cyanate ester resin obtained by reaction of naphthol aralkyl type phenol resin with cyanogen halide; dicyclopentadiene type cyanate ester resin; biphenyl Alkyl-type cyanate ester resins, polycondensates of phenols with various aldehydes, polymers of phenols with various diene compounds, and phenols with ketones Cyanate ester resin obtained by reacting a condensate and polycondensates of bisphenols and various aldehydes such as cyanogen
  • phenols examples include phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, dihydroxybenzene, alkyl substituted dihydroxybenzene and dihydroxynaphthalene.
  • aldehydes include formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde and cinnamaldehyde.
  • Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinyl norbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene and the like.
  • Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone and the like.
  • novolac type cyanate ester resins and naphthol aralkyl type cyanate ester resins are preferable, and novolac type cyanate ester resins are more preferable.
  • the crosslink density of the obtained cured product is increased, and not only the heat resistance is improved, but also by the improvement of the benzene concentration, excellent thermal decomposition characteristics and flame retardancy can be expected.
  • These may be used alone or in combination of two or more.
  • the lower limit value of the compounding amount is preferably 0.1 parts by mass, more preferably 1 with respect to 10 parts by mass of the benzoxazine resin from the viewpoint of heat resistance. It is part by weight, particularly preferably 3 parts by weight.
  • the upper limit value of the compounding amount is preferably 100 parts by mass, more preferably 50 parts by mass, and particularly preferably 30 parts by mass with respect to 10 parts by mass of the benzoxazine resin.
  • the curable resin composition of the present invention may contain copolymer components such as epoxy resin, phenol resin, melamine resin, unsaturated polyester resin, polyimide resin, polyamide resin, polyurethane resin and the like. These copolymerization components may be used alone or in combination of two or more. Among these copolymerization components, it is preferable to blend an epoxy resin having reactivity with a phenolic hydroxyl group generated in the resin composition by heating, and a phenol resin, and it is particularly preferable to blend an epoxy resin.
  • copolymer components such as epoxy resin, phenol resin, melamine resin, unsaturated polyester resin, polyimide resin, polyamide resin, polyurethane resin and the like. These copolymerization components may be used alone or in combination of two or more. Among these copolymerization components, it is preferable to blend an epoxy resin having reactivity with a phenolic hydroxyl group generated in the resin composition by heating, and a phenol resin, and it is particularly preferable to blend an
  • the epoxy resin which can be blended is not particularly limited as long as it is a compound having at least one epoxy group, and examples thereof include bisphenol A, bisphenol F, bisphenol S, hexahydrobisphenol A, tetramethylbisphenol A, pyrocatechol, resorcinol, A glycidyl ether type obtained by the reaction of an epichlorohydrin with a polyphenol such as cresol novolak, phenol novolak, tetrabromobisphenol A, trihydroxybiphenyl, bisresorcinol, bisphenol hexafluoroacetone, tetramethyl bisphenol F, bixylenol, dihydroxynaphthalene, etc .; Glycerin, neopentyl glycol, ethylene glycol, propylene glycol, butylene glycol, hexi Polyglycidyl ether type obtained by the reaction of epichlorohydrin with aliphatic polyhydric alcohol such as glycol, polyethylene
  • Glycidyl amine type and epoxidized polyolefin, glycidyl hydantoin, glycidyl alkyl hydantoin, triglycidyl cyanurate and the like. From the viewpoint of heat resistance improvement, novolac type epoxy and glycidyl amine type epoxy resins are preferable.
  • the curable resin composition of the present invention can also be used as a varnish dissolved in a solvent.
  • the use of a varnish is a preferred embodiment in that handling of the curable resin composition is facilitated.
  • a solvent which can be used for the varnish of the present invention toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dioxane, 1-propanol, 2-propanol, 1-butanol, 1, -butanol
  • 4-dioxane, ethylene glycol ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, etc. may be mentioned, any solvent capable of dissolving the curable resin composition of the present invention may be used without particular limitation.
  • Can. The above-described additives and optional components may be blended into the varnish of the present invention as required.
  • the varnish containing the curable resin composition of the present invention is applied to various substrates, and the solvent is removed (dried) at a temperature of 150 ° C. or less, for example, and then treated at a high temperature of 200 ° C. or more
  • the base materials such as a glass nonwoven fabric
  • the varnish of this invention can also be set as fiber reinforced materials, such as a laminated board and a copper clad laminated board, using the prepreg obtained.
  • Synthesis Example 1 In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 559 parts by mass of aniline and 500 parts by mass of toluene were charged, and 167 parts by mass of 35% hydrochloric acid was dropped over 1 hour at room temperature. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the toluene which was the organic layer was returned to the system for dehydration.
  • composition example 2 In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 59 parts by mass of the aniline resin obtained in Synthesis Example 1, 28 parts by mass of phenol and 90 parts by mass of toluene were added, and the temperature was raised to 60 ° C. Then, 49 parts by mass of an aqueous solution of formaldehyde was added over 60 minutes. Thereafter, the temperature was raised to 80 ° C., and reaction was performed for 8 hours.
  • composition example 3 In the same manner as in Synthesis Example 1 except that 28 parts by mass of phenol was changed to 34 parts by mass of allylphenol, 98 parts by mass of benzoxazine resin was obtained. The softening point of the obtained benzoxazine resin was 91 ° C., and the melt viscosity was 0.5 Pa ⁇ s (150 ° C.). It was confirmed by 1 H-NMR analysis that the obtained benzoxazine resin is represented by the following formula (10). The results of 1 H-NMR are shown in FIG.
  • composition example 4 In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 372 parts by mass of aniline and 200 parts by mass of toluene were charged, and 146 parts by mass of 35% hydrochloric acid was added dropwise over 1 hour at room temperature. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the toluene which was the organic layer was returned to the system for dehydration.
  • composition example 5 In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 147 parts by mass of maleic anhydride and 300 parts by mass of toluene are charged and heated to azeotropically cool water and toluene After that, only toluene which is an organic layer was returned to the system for dehydration. Next, a resin solution prepared by dissolving 195 parts by mass of the aromatic aniline resin (a1) obtained in Synthesis Example 4 in 195 parts by mass of N-methyl-2-pyrrolidone is kept for 1 hour while maintaining the inside of the system at 80 to 85 ° C. It dripped over.
  • the reaction is carried out at the same temperature for 2 hours, 3 parts by mass of p-toluenesulfonic acid is added, and the condensed water and toluene which are azeotroped under reflux conditions are cooled and separated to obtain toluene as an organic layer.
  • the reaction was carried out for 20 hours while dehydrating the solution.
  • 120 parts by mass of toluene was added and water washing was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, and heating was performed to remove water from the system by azeotropic distillation.
  • the reaction solution was concentrated to obtain 281 parts by mass of solid maleimide resin (A1).
  • the softening point of the obtained maleimide resin was 108 ° C.
  • Example 1 45 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 54 parts by mass of maleimide resin (manufactured by KAI / AI Kasei Co., Ltd., product name: BMI) are blended, and after kneading at 150 ° C., a curing catalyst is obtained One part by weight of 18% Octopus Zn (manufactured by Hope Pharmaceutical Co., Ltd.) was added and cured under the curing conditions of 200 ° C. ⁇ 2 hours to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 2 A cured product of the present invention was obtained in the same manner as Example 1, except that the maleimide resin (manufactured by KAI / AI Kasei Co., Ltd. product name: BMI) was changed to the maleimide resin obtained in Synthesis Example 5.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 3 A cured product of the present invention was obtained in the same manner as in Example 1 except that the benzoxazine resin obtained in Synthesis Example 2 was changed to the benzoxazine resin obtained in Synthesis Example 3. The measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 4 55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 44 parts by mass of maleimide resin (manufactured by KAI / AI Kasei Co., Ltd., product name: BMI) are blended, and after kneading at 150 ° C., a curing catalyst is obtained One part by weight of 18% Octopus Zn (manufactured by Hope Pharmaceutical Co., Ltd.) was added and cured under the curing conditions of 200 ° C. ⁇ 2 hours to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 5 A cured product of the present invention was prepared in the same manner as in Example 4 except that the curing catalyst was changed from 18% Octopus Zn (manufactured by Hope Pharmaceuticals Co., Ltd.) to 2-ethyl 4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.). Obtained.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 6 55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 45 parts by mass of maleimide resin (manufactured by KAI / AI Kasei Co., Ltd., product name: BMI) are blended, and after kneading at 150 ° C., 200 ° C. ⁇ 2 It was cured under the curing conditions of time + 230 ° C. ⁇ 2 hours to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 7 55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 45 parts by mass of bis-3-ethyl-5-methyl-4-maleimidophenylmethane (manufactured by Kei Ikasei Co., Ltd., product name: BMI-70) After blending in parts and kneading at 150 ° C., curing was carried out under the curing conditions of 200 ° C. ⁇ 2 hours + 230 ° C. ⁇ 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 8 55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (manufactured by KAI / AI KASEI CO., LTD., Product name: BMI-80) 45 parts by mass of K) were kneaded at 150 ° C., and then cured under the curing conditions of 200 ° C. ⁇ 2 hours + 230 ° C. ⁇ 2 hours to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 1.
  • Example 9 50 parts by mass of the benzoxazine resin obtained in Synthesis Example 2, 50 parts by mass of the maleimide resin obtained in Synthesis Example 5, 0.5 parts by mass of 18% Octopus Zn (manufactured by Hope Pharmaceutical Co., Ltd.), 100 parts by mass of MEK Parts were added and the mixture was stirred under reflux at 30 ° C. to form a varnish of the present invention.
  • the obtained varnish was impregnated into glass cloth (product name: 1031 NT-105, manufactured by Arisawa Mfg. Co., Ltd.), dried in an oven at 80 ° C., and additionally dried at 150 ° C. to obtain a prepreg of the present invention.
  • Example 10 10 parts by mass of the benzoxazine resin obtained in Synthesis Example 2, 30 parts by mass of the maleimide resin obtained in Synthesis Example 5, 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) 60 parts by mass) were mixed while heating and melting at 120 ° C. to obtain a benzoxazine-maleimido-cyanate ester resin composition.
  • MDSC measurement was performed to confirm the curing behavior of the obtained resin composition. The results of the MDSC measurement are shown in FIG. Further, the obtained resin composition was transfer molded under the conditions of 200 ° C. and a molding pressure of 50 kg / cm 2 , and the molded body was post-cured at 220 ° C. to obtain a cured product of the present invention.
  • the measurement results of the physical properties of the cured product are shown in Table 3.
  • Example 1 A cured product was obtained in the same manner as in Example 4, except that the benzoxazine resin obtained in Synthesis Example 2 was changed to a bisphenol F-type benzoxazine resin (manufactured by Shikoku Kasei Co., Ltd.). The measurement results of the physical properties of the cured product are shown in Table 1.
  • Comparative example 2 65 parts by mass of bisphenol A type epoxy resin (product name: JER-828, manufactured by Mitsubishi Chemical Corporation), 50 parts by mass of phenol novolac (product name: H-1, manufactured by Meiwa Kasei Co., Ltd.), 2-ethyl 0.5 parts by mass of -4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.), 70 parts by mass of MEK and 30 parts by mass of methyl cellosolve were added, and the mixture was stirred under reflux at 30 ° C. to prepare a varnish.
  • the varnish was impregnated into glass cloth (product name: 1031 NT-105, manufactured by Arisawa Seisakusho Co., Ltd.), dried in an oven at 80 ° C., and additionally dried at 150 ° C. to obtain a prepreg.
  • Four sheets of the obtained prepreg are laminated and sandwiched between copper foils (product name: CF-T9FZ-HTE-18, manufactured by Fukuda Metal Foil Division Co., Ltd.), and subjected to 200 ° C ⁇ 2 hours + 230 ° C ⁇ 2 hours vacuum press It hardened on the hardening conditions of, and obtained the copper-clad laminate board.
  • the obtained copper-clad laminate was attached to a 25% iron (III) chloride solution to obtain a laminate in which the copper-clad laminate was dissolved.
  • the obtained laminate was subjected to the acid resistance test, the alkali resistance test, and the etching grade measurement for the desmear solution. The results are shown in Table 2.
  • the obtained cured product was measured under the following conditions. ⁇ Heat resistance> -Measurement of Tg (temperature at maximum of tan ⁇ ) was performed by DMA measurement.
  • Measuring device Dynamic viscoelasticity measuring instrument TA-instruments, Q-800 Measurement temperature: 30 to 350 ° C Heating rate: 2 ° C / min
  • Sample size Width 5 mm ⁇ length 50 mm ⁇ thickness 0.8 mm ⁇ Dielectric constant and dielectric loss tangent> -Measurement was performed by a cavity resonator perturbation method using a cavity resonator.
  • Measurement device Cavity resonator Agilent Technologies, Inc.
  • Measurement method Measurement at 1 GHz according to JIS K6991 Measurement mode: Cavity resonator perturbation method Measurement temperature: 25 ° C.
  • the obtained laminate was measured under the following conditions.
  • ⁇ Acid resistance test> ⁇ Adjust hydrochloric acid specified in JIS K 8576 to an aqueous solution with a concentration of 3 ⁇ 0.2 wt% and a temperature of 40 ⁇ 2 ° C, immerse the sample for 24 hours, remove it, and immediately wash in running water for 20 ⁇ 10 minutes, Check for swelling or discoloration of the dry, clean sample.
  • ⁇ Alkali resistance test> -Adjust sodium hydroxide specified in JIS K 8576 to an aqueous solution with a concentration of 3 ⁇ 0.2 wt% and a temperature of 40 ⁇ 2 ° C, immerse the sample for 24 hours, and then immediately take out it for 20 ⁇ 10 minutes in running water.
  • the curing behavior of the resin composition obtained in Example 10 and Comparative Examples 4 and 5 was measured under the following conditions. ⁇ Hardening behavior> The heat of curing was observed by MDSC measurement. Measuring device: Q-2000 TA Instruments Co. Measuring temperature: 25 to 330 ° C Heating rate: 3 ° C / min Measurement mode: MDSC measurement
  • Tg 1st First measurement result
  • Tg 2nd After completion of the first measurement, the sample heated to 350 ° C. is cooled to room temperature and re-measured result ⁇ Tg: (Tg 2nd)-(Tg 1st)
  • Comparative Example 1 was good in heat resistance, but failed in other characteristics.
  • the curable resin compositions (Examples 1 to 8) of the present invention showed excellent results in all of the heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics.
  • Comparative Example 3 did not dissolve in MEK generally used in the field of substrates, whereas Example 9 had good solubility in MEK and was excellent in processability to laminates.
  • Example 9 was excellent in chemical resistance, and showed a result of being more excellent in the resistance to desmear liquid than Comparative Example 2 which is a general epoxy laminate.
  • Example 10 adds a benzoxazine resin of the present invention, although a cyanate ester resin is not added. And promoting the polymerization of the maleimide resin. Furthermore, from the results in Table 3, it was confirmed that the benzoxazine-maleimido-cyanate ester resin composition of the present invention hardly causes a change in ⁇ Tg and cures under the condition of 220 ° C. Moreover, the cured product was excellent in heat resistance and showed excellent results as compared with the composition of BT resin known as a low dielectric material. Since Example 10 is cured without a catalyst and is excellent in heat resistance and low dielectric property, industrial applicability is high.
  • the curable resin composition of the present invention is excellent in solvent solubility, and a cured product excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics, water absorption characteristics, and chemical resistance can be obtained. It is useful for sealing material applications, laminates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc.

Abstract

Provided is a curable resin composition that exhibits excellent solubility in solvents and enables the achievement of a cured product which has excellent heat resistance, thermal decomposition characteristics, dielectric characteristics, water absorption characteristics and chemical resistance, and which is suitable for a fiber-reinforced composite material that is used in printed wiring boards for electronic devices or in the field of aerospace. A curable resin composition which contains (A) a maleimide resin and (B) a benzoxazine resin that is represented by formula (1). (In formula (1), n represents the average of the numbers of repetitions, which is a real number of 1-10; each of R1-R8 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1-8 carbon atoms or an aryl group; in cases where there are a plurality of each of the R3-R7 moieties, the R3-R7 moieties may be the same as or different from each other, respectively; each of R9 and R10 independently represents a hydrogen atom, an alkyl group having 1-8 carbon atoms, an aryl group, an allyl group or an alkoxy group; in cases where there are a plurality of each of the R9 and R10 moieties, the R9 and R10 moieties may be the same as or different from each other, respectively; and the dotted lines indicate that a benzene ring may be formed.)

Description

硬化性樹脂組成物、ワニス、プリプレグ、硬化物、及び、積層板または銅張積層板Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
 本発明はマレイミド樹脂とベンゾオキサジン樹脂を含有する硬化性樹脂組成物、ワニス、プリプレグ、硬化物、及び、積層板または銅張積層板に関する。詳しくは、電気電子部品用絶縁材料、半導体封止材料用途、積層板(プリント配線板、ビルドアップ基板など)、CFRPを始めとする各種複合材料、接着剤、塗料等において有用なマレイミド樹脂とベンゾオキサジン樹脂を含有する硬化性樹脂組成物及びそれらの硬化物に関する。 The present invention relates to a curable resin composition containing a maleimide resin and a benzoxazine resin, a varnish, a prepreg, a cured product, and a laminate or a copper-clad laminate. Specifically, maleimide resin and benzo useful in insulating materials for electric and electronic parts, semiconductor sealing material applications, laminates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc. The present invention relates to a curable resin composition containing an oxazine resin and a cured product thereof.
 熱硬化性樹脂であるエポキシ樹脂は種々の硬化剤で硬化させることにより、一般的に機械的性質、耐水性、耐薬品性、耐熱性、電気的性質などに優れた硬化物となり、接着剤、塗料、積層板、成形材料、注型材料、封止材料などの幅広い分野に利用されている。近年、電気・電子部品を搭載する積層板はその利用分野の拡大により、要求特性が広範かつ高度化している。 By curing with a variety of curing agents, epoxy resins, which are thermosetting resins, generally become cured products excellent in mechanical properties, water resistance, chemical resistance, heat resistance, electrical properties, etc. It is used in a wide range of fields such as paints, laminates, molding materials, casting materials, and sealing materials. In recent years, with the expansion of the field of use of laminates on which electrical and electronic components are mounted, the required characteristics have been broadened and advanced.
 近年、特にパワー半導体の高機能化に伴い、次世代デバイスとしてSiC(炭化珪素)やGaN(窒化ガリウム)などのワイドバンドギャップデバイスが注目されている。SiCやGaNパワー半導体デバイスを用いると小型化による省スペース化や、大幅な損失低減が可能となるため、SiCやGaNデバイスの早期普及が望まれている。しかしながら、その特性を引き出すための駆動温度は200℃以上(250℃付近)と高いため、周辺材料の耐久性が十分でなく、この駆動条件に耐えうる樹脂材料の開発が求められている(特許文献1)。そのため、このような用途においては200℃以上の耐熱性(ガラス転移温度)だけでなく、熱安定性も重要視され、200℃付近から熱分解が始まるエポキシ樹脂の使用は困難とされている。 In recent years, with the advancement of power semiconductors in particular, wide band gap devices such as SiC (silicon carbide) and GaN (gallium nitride) have attracted attention as next-generation devices. The use of SiC and GaN power semiconductor devices enables space saving due to miniaturization and a significant loss reduction, and therefore the early spread of SiC and GaN devices is desired. However, since the driving temperature for extracting the characteristics is as high as 200 ° C. or higher (around 250 ° C.), the durability of the peripheral materials is not sufficient, and development of a resin material that can withstand this driving condition is required (Patent Literature 1). Therefore, not only the heat resistance (glass transition temperature) of 200 ° C. or more but also the thermal stability are regarded as important in such applications, and it is considered difficult to use an epoxy resin whose thermal decomposition starts from around 200 ° C.
 更に、近年特に注目されているのはこれら電子デバイスにおける高速通信化である。高周波基板はもとより、スマートフォンやタブレットの情報通信量が非常に多くなり、いかに早く多くの情報を伝えるかということが重要となってきている。高速通信化はパッケージ基板に対して重要なファクターとなることから誘電特性、特に誘電正接が重要視される。一般のエポキシ樹脂硬化物(樹脂のみ)の誘電正接は0.02~0.04(1GHzでの測定)であるのに対し、要求されている誘電正接は0.009以下であり、誘電正接の特性も満たす材料の開発が急務となっている。 Furthermore, in recent years, high-speed communication in these electronic devices has attracted particular attention. The amount of information communication of smartphones and tablets has become extremely large as well as high frequency substrates, and it has become important how quickly to transmit a lot of information. Since high speed communication is an important factor for the package substrate, dielectric characteristics, in particular, dielectric loss tangent is regarded as important. While the dielectric loss tangent of a common epoxy resin cured product (resin only) is 0.02 to 0.04 (measured at 1 GHz), the required dielectric loss tangent is 0.009 or less, and the dielectric loss tangent is There is an urgent need to develop materials that also meet the characteristics.
 そこで、耐熱性の高いマレイミド樹脂と強靭性の高いベンゾオキサジン樹脂を配合する検討が行われている。特許文献2ではビスフェノールF骨格のベンゾオキサジン樹脂とマレイミド樹脂の混合物を用いて、耐熱性を向上させることについて記載されている。 Therefore, studies are being made to blend a highly heat resistant maleimide resin and a highly tough benzoxazine resin. Patent Document 2 describes that a mixture of a benzoxazine resin having a bisphenol F skeleton and a maleimide resin is used to improve heat resistance.
 また、パッケージの製造に用いられるプリント配線板において、異なる層の導体パターン同士の導通を行うために、ドリル加工やレーザ加工による穴あけが行われているが、この穴あけの際に穴の内部に樹脂スミアが発生する。そのため、このような樹脂スミアを除去するためのデスミア処理が必須である。デスミア処理は、例えば、過マンガン酸カリウム等の過マンガン酸塩を用いて行われている。 Moreover, in the printed wiring board used for the manufacture of a package, in order to conduct between conductor patterns of different layers, drilling is performed by drilling or laser processing, but resin is formed inside the hole at the time of this drilling. Smear occurs. Therefore, desmear treatment for removing such resin smear is essential. Desmear treatment is performed, for example, using a permanganate such as potassium permanganate.
日本国特開2017-128782号公報Japanese Unexamined Patent Publication No. 2017-128782 日本国特開2012-97207号公報Japan JP 2012-97207
 しかしながら、特許文献2に記載の技術では、誘電正接の特性について充分に満足の得られるものではない。
 また、デスミア処理で除去される樹脂スミアの量(デスミアエッチング量)が多いと穴の変形や銅箔のはがれなどが発生し、導通信頼性低下の原因となるため、デスミアエッチング量を少なくするために、耐薬品性(耐酸、耐アルカリ性及びデスミア液耐性)が必要となる。
 本発明は、この様な状況に鑑みてなされたものであり、溶剤溶解性に優れ、その硬化物が耐熱性、熱分解特性、吸水特性、誘電特性、耐薬品性に優れた、マレイミド樹脂とベンゾオキサジン樹脂を含有する硬化性樹脂組成物、ワニス、プリプレグ、硬化物、及び、積層板または銅張積層板を提供することを目的とする。
However, the technology described in Patent Document 2 is not sufficient to obtain the characteristics of the dielectric loss tangent.
In addition, when the amount of resin smear removed by desmear treatment (desmear etching amount) is large, deformation of a hole, peeling of copper foil and the like occur, which causes a decrease in conduction reliability, so to reduce the amount of desmear etching In addition, chemical resistance (acid resistance, alkali resistance and desmear liquid resistance) is required.
The present invention has been made in view of such a situation, and is excellent in solvent solubility, and a cured product thereof is a maleimide resin excellent in heat resistance, thermal decomposition characteristics, water absorption characteristics, dielectric characteristics, and chemical resistance. An object of the present invention is to provide a curable resin composition containing a benzoxazine resin, a varnish, a prepreg, a cured product, and a laminate or a copper-clad laminate.
 本発明者らは鋭意検討した結果、マレイミド樹脂と特定構造のベンゾオキサジン樹脂を含有する硬化性樹脂組成物が、溶剤溶解性に優れ、その硬化物が耐熱性、熱分解特性、吸水特性、誘電特性、耐薬品性に優れることを見出し、本発明を完成するに至った。 As a result of intensive investigations, the present inventors found that a curable resin composition containing a maleimide resin and a benzoxazine resin of a specific structure is excellent in solvent solubility, and the cured product has heat resistance, thermal decomposition characteristics, water absorption characteristics, and dielectric properties. It has been found that the properties and chemical resistance are excellent, and the present invention has been completed.
 即ち、本発明は、
[1]マレイミド樹脂(A)、及び下記式(1)で表されるベンゾオキサジン樹脂(B)を含有する硬化性樹脂組成物、
That is, the present invention
[1] A curable resin composition containing a maleimide resin (A) and a benzoxazine resin (B) represented by the following formula (1),
Figure JPOXMLDOC01-appb-C000002
Figure JPOXMLDOC01-appb-C000002
(式(1)中、nは繰り返し数の平均値であり、1~10の実数を表す。R~Rはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基又はアリール基のいずれかを表す。R~Rがそれぞれ複数存在する場合、それぞれのR~Rは互いに同一であっても異なっていてもよい。R、R10はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アリール基、アリル基又はアルコキシ基のいずれかを表す。R、R10がそれぞれ複数存在する場合、それぞれのR、R10は互いに同一であっても異なっていてもよい。点線はベンゼン環が形成されていてもよいことを表す。) (In formula (1), n is an average value of the number of repetitions and represents a real number of 1 to 10. R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group If .R 3 ~ R 7 represent either a group is present in plural, each of R 3 ~ R 7 is optionally being the same or different .R 9, R 10 each independently represent a hydrogen atom Or an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group, and when a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be identical to each other The dotted line may indicate that a benzene ring may be formed.)
[2]前記式(1)におけるR~Rが水素原子である前項[1]に記載の硬化性樹脂組成物、
[3]前記マレイミド樹脂(A)として芳香族マレイミド樹脂及び脂肪族マレイミド樹脂から選ばれる1種以上の樹脂を含有する前項[1]又は[2]に記載の硬化性樹脂組成物、
[4]さらにシアネートエステル樹脂を含有する前項[1]乃至[3]のいずれか一項に記載の硬化性樹脂組成物、
[5]前項[1]乃至[4]のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物、
[6]前項[1]乃至[4]のいずれか一項に記載の硬化性樹脂組成物を溶媒に溶かしたワニス、
[7]前項[6]に記載のワニスを基材に含浸させてなるプリプレグ、
[8]前項[7]に記載のプリプレグを硬化してなる硬化物、
[9]前項[7]に記載のプリプレグを使用して得られる積層板または銅張積層板、
に関するものである。
[2] The curable resin composition according to the preceding item [1], wherein R 1 to R 8 in the formula (1) are hydrogen atoms,
[3] The curable resin composition according to the above [1] or [2], which contains one or more resins selected from aromatic maleimide resin and aliphatic maleimide resin as the maleimide resin (A).
[4] The curable resin composition according to any one of [1] to [3], further containing a cyanate ester resin,
[5] A cured product obtained by curing the curable resin composition according to any one of the above items [1] to [4],
[6] A varnish obtained by dissolving the curable resin composition according to any one of the above items [1] to [4] in a solvent,
[7] A prepreg obtained by impregnating a base material with the varnish according to the preceding item [6],
[8] A cured product obtained by curing the prepreg according to the previous item [7],
[9] A laminate or a copper-clad laminate obtained by using the prepreg according to the preceding paragraph [7],
It is about
 本発明の硬化性樹脂組成物は溶剤溶解性に優れ、その硬化物が耐熱性、熱分解特性、吸水特性、誘電特性、耐薬品性に優れるため電気電子部品用絶縁材料、半導体封止材料用途、積層板(プリント配線板、ビルドアップ基板など)、CFRPを始めとする各種複合材料、接着剤、塗料等に有用である。 The curable resin composition of the present invention is excellent in solvent solubility, and the cured product is excellent in heat resistance, thermal decomposition characteristics, water absorption characteristics, dielectric characteristics, chemical resistance, and so on. It is useful for laminates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc.
合成例2で得られたベンゾオキサジン樹脂のH-NMR分析の結果を示す。The results of 1 H-NMR analysis of the benzoxazine resin obtained in Synthesis Example 2 are shown. 合成例3で得られたベンゾオキサジン樹脂のH-NMR分析の結果を示す。The results of 1 H-NMR analysis of the benzoxazine resin obtained in Synthesis Example 3 are shown. 実施例10、比較例4及び5の樹脂組成物のMDSC測定結果を示す。The MDSC measurement result of the resin composition of Example 10, Comparative Example 4 and 5 is shown.
 本発明の硬化性樹脂組成物はマレイミド樹脂(A)を含有する。
 本発明で用いられるマレイミド樹脂(A)は、マレイミド基を分子中に1個以上含有する化合物であり、公知のものを使用することができる。例えば、脂肪族/脂環族マレイミド樹脂、芳香族マレイミド樹脂等が挙げられる。
 本発明に用いられるマレイミド樹脂(A)の具体例としては、N-メチルマレイミド、N-エチルマレイミド、N-プロピルマレイミド、N-ヘキシルマレイミド、N-シクロヘキシルマレイミド、マレイミドカルボン酸、N-フェニルマレイミド、N-メチルフェニルマレイミド、3,4,4’-トリアミノジフェニルメタン、トリアミノフェノールなどと無水マレイン酸との反応で得られる多官能マレイミド化合物、トリス-(4-アミノフェニル)-ホスフェート、トリス(4-アミノフェニル)-ホスフェート、トリス(4-アミノフェニル)-チオホスフェートと無水マレイン酸との反応で得られるマレイミド化合物、トリス(4-マレイミドフェニル)メタン等のトリスマレイミド化合物、ビス(3,4-ジマレイミドフェニル)メタン、テトラマレイミドベンゾフェノン、テトラマレイミドナフタレン、トリエチレンテトラミンと無水マレイン酸との反応で得られるマレイミド等のテトラマレイミド化合物、フェノールノボラック型マレイミド樹脂、イソプロピリデンビス(フェノキシフェニルマレイミド)フェニルマレイミドアラルキル樹脂、式(2)で表されるビフェニレン型フェニルマレイミドアラルキル樹脂、式(3)又は式(4)で表されるポリマレイミドで表されるポリマレイミド、ベンゼンジアルデヒドとアニリンとの縮合により得られるポリアニリンのポリマレイミド等である。また、これらのポリマレイミドに芳香族のジアミンを付加させたポリアミノポリマレイミド樹脂を用いることもできる。更にノボラック型のマレイミド樹脂は分子量分布を有するためワニス安定性が高く、ベンゾオキサジン樹脂との混練に適している。これらは市販のものを使用してもよく、公知の方法も用いて製造することもできる。
The curable resin composition of the present invention contains a maleimide resin (A).
The maleimide resin (A) used in the present invention is a compound containing one or more maleimide groups in the molecule, and known compounds can be used. For example, aliphatic / alicyclic maleimide resin, aromatic maleimide resin and the like can be mentioned.
Specific examples of the maleimide resin (A) used in the present invention include N-methyl maleimide, N-ethyl maleimide, N-propyl maleimide, N-hexyl maleimide, N-cyclohexyl maleimide, maleimide carboxylic acid, N-phenyl maleimide, Polyfunctional maleimide compounds obtained by the reaction of N-methylphenyl maleimide, 3,4,4'-triaminodiphenylmethane, triaminophenol etc. with maleic anhydride, tris- (4-aminophenyl) -phosphate, tris (4) -Aminophenyl) -phosphate, a maleimide compound obtained by the reaction of tris (4-aminophenyl) -thiophosphate with maleic anhydride, a trismaleimide compound such as tris (4-maleimidophenyl) methane, bis (3,4-) Dimaleimidophenyl) Methane, tetramaleimide benzophenone, tetramaleimide naphthalene, tetramaleimide compounds such as maleimide obtained by reaction of triethylenetetramine and maleic anhydride, phenol novolac maleimide resin, isopropylidene bis (phenoxyphenyl maleimide) phenyl maleimide aralkyl resin, formula (2) Biphenylene type phenylmaleimide aralkyl resin represented by (2), polymaleimide represented by polymaleimide represented by formula (3) or formula (4), polyaniline of polyaniline obtained by condensation of benzenedialdehyde and aniline Maleimide and the like. Also, polyaminopolymaleimide resin obtained by adding aromatic diamine to these polymaleimides can be used. Further, since the novolac type maleimide resin has a molecular weight distribution, it has high varnish stability and is suitable for kneading with the benzoxazine resin. These may be commercially available ones and can also be produced using known methods.
Figure JPOXMLDOC01-appb-C000003
Figure JPOXMLDOC01-appb-C000003
(式(2)中、複数存在するR21はそれぞれ独立して存在し、炭素数1~10のアルキル基もしくは芳香族基を表す。aは0~4を表し、bは0~3を表す。naは繰り返し数の平均値であり、1~5の実数を表す。) (In the formula (2), a plurality of R 21 s independently exist and represent an alkyl group having 1 to 10 carbon atoms or an aromatic group, a represents 0 to 4 and b represents 0 to 3 N a is the average value of the number of repetitions and represents a real number of 1 to 5.)
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000004
(式(3)中、Aは炭素数1~5のアルキレン基若しくはアルキリデン基、エーテル基、スルフィド基、スルホニル基、ケトン基、単結合を表し、R22はそれぞれ独立して存在し、水素原子、炭素数1~5の脂肪族炭化水素基又はハロゲン原子を表す。) (In the formula (3), A is an alkylene group or alkylidene group having 1 to 5 carbon atoms, an ether group, a sulfide group, a sulfonyl group, a ketone group, a single bond, R 22 is present each independently represent a hydrogen atom , An aliphatic hydrocarbon group of 1 to 5 carbon atoms or a halogen atom.)
Figure JPOXMLDOC01-appb-C000005
Figure JPOXMLDOC01-appb-C000005
(式(4)中、複数存在するR23はそれぞれ独立して存在し、炭素数1~10のアルキル基もしくは芳香族基を表す。aは0~4を表し、bは0~3を表す。nは繰り返し数の平均値であり、0.01~8の実数を表す。Zは1~8の炭素原子を有する有機基を表す。) (In the formula (4), a plurality of R 23 s independently exist and represent an alkyl group having 1 to 10 carbon atoms or an aromatic group, a represents 0 to 4 and b represents 0 to 3 N b is an average value of the number of repetitions and represents a real number of 0.01 to 8. Z represents an organic group having 1 to 8 carbon atoms.)
 なお、式(2)のna及び式(4)のnの値はゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量の値から算出することが出来る。具体的には下記計算式により算出する。
a=[(重量平均分子量)-(na=1体の分子量)]÷[(na=2体の分子量)-(na=1体の分子量)]+1
=[(重量平均分子量)-(n=0体の分子量)]÷[(n=1体の分子量)-(n=0体の分子量)]+1
 なお、本発明におけるGPC測定は下記条件にて行った。
カラム:Shodex KF-603、KF-602.5、KF-602、KF-601x2
連結溶離液:テトラヒドロフラン
流速:0.5ml/min.
カラム温度:40℃
検出:RI(示差屈折検出器)
Note that equation (2) the value of n a and n b of formula (4) can be calculated from the value of the weight-average molecular weight determined by measurement of gel permeation chromatography (GPC). Specifically, it is calculated by the following formula.
n a = [(weight average molecular weight) - (molecular weight of n a = 1 body)] ÷ [(molecular weight of n a = 2 body) - (molecular weight of n a = 1 body)] + 1
n b = [(weight average molecular weight)-(n b = 0 molecular weight)] ÷ [(n b = 1 molecular weight)-(n b = 0 molecular weight)] + 1
The GPC measurement in the present invention was performed under the following conditions.
Column: Shodex KF-603, KF-602.5, KF-602, KF-601x2
Coupling eluent: tetrahydrofuran flow rate: 0.5 ml / min.
Column temperature: 40 ° C
Detection: RI (differential refraction detector)
 本発明に用いられるマレイミド樹脂としては、耐熱性、熱分解特性の観点から、芳香族マレイミド化合物が好ましく、更に好ましくは上記式(2)~(4)で示されるポリマレイミド、ベンゼンジアルデヒドとアニリンとの縮合により得られるポリアニリンのポリマレイミドである。また、これらのポリマレイミドに芳香族ジアミンを付加させたポリアミノポリマレイミド樹脂を用いることもできる。 The maleimide resin used in the present invention is preferably an aromatic maleimide compound, more preferably a polymaleimide represented by the above formulas (2) to (4), benzenedialdehyde and aniline from the viewpoint of heat resistance and thermal decomposition characteristics. Polymaleimide polymaleimide obtained by condensation with Moreover, polyamino polymaleimide resin which made aromatic diamine be added to these polymaleimide can also be used.
 これらのマレイミド樹脂は1種を単独で用いてもよく、2種以上を併用して用いてもよい。芳香族マレイミド樹脂と脂肪族マレイミド樹脂を併用して用いてもよい。
 本発明においては特に耐熱性(ガラス転移点)および/または弾性率の面から芳香族マレイミド樹脂が好ましく、官能基を一分子中に2つ以上有するマレイミド樹脂との組み合わせが好ましい。
These maleimide resins may be used alone or in combination of two or more. An aromatic maleimide resin and an aliphatic maleimide resin may be used in combination.
In the present invention, an aromatic maleimide resin is particularly preferable in terms of heat resistance (glass transition point) and / or elastic modulus, and a combination with a maleimide resin having two or more functional groups in one molecule is preferable.
 本発明において用いられるマレイミド樹脂は融点または軟化点を有するものを用いることができる。融点を有する場合は200℃以下が好ましく、また軟化点を有する場合は150℃以下であることが好ましい。融点や軟化点が高温すぎる場合、混合の際にゲル化の可能性が高くなるため好ましくない。 The maleimide resin used in the present invention can be one having a melting point or a softening point. When it has a melting point, 200 ° C. or less is preferable, and when it has a softening point, it is preferable that it is 150 ° C. or less. If the melting point or the softening point is too high, the possibility of gelation increases during mixing, which is not preferable.
 本発明の硬化性樹脂組成物は下記式(1)で表されるベンゾオキサジン樹脂(B)を含有する。 The curable resin composition of the present invention contains a benzoxazine resin (B) represented by the following formula (1).
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000006
 式(1)中、nは繰り返し数の平均値であり、1~10の実数を表す。R~Rはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基又はアリール基のいずれかを表す。R~Rがそれぞれ複数存在する場合、それぞれのR~Rは互いに同一であっても異なっていてもよい。R、R10はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アリール基、アリル基又はアルコキシ基のいずれかを表す。R、R10がそれぞれ複数存在する場合、それぞれのR、R10は互いに同一であっても異なっていてもよい。点線はベンゼン環が形成されていてもよいことを表す。 In the formula (1), n is an average value of the number of repetitions, and represents a real number of 1 to 10. Each of R 1 to R 8 independently represents a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group. When a plurality of R 3 to R 7 exist, each of R 3 to R 7 may be the same as or different from each other. R 9 and R 10 each independently represent a hydrogen atom, an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group. When a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be the same as or different from each other. The dotted line represents that a benzene ring may be formed.
 式(1)のR~R、及びR、R10が表す炭素数1~8のアルキル基とは、直鎖、分岐鎖又は環状のアルキル基の何れにも限定されず、その具体例としてはメチル基、エチル基、n-プロピル基、iso-プロピル基、n-ブチル基、iso-ブチル基、tert-ブチル基、sec-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、シクロペンチル基及びシクロヘキシル基等が挙げられるが、炭素数1~8の直鎖又は分岐鎖のアルキル基であることが好ましく、炭素数1~4の直鎖又は分岐鎖のアルキル基であることがより好ましい。 The alkyl group having 1 to 8 carbon atoms represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is not limited to any of linear, branched or cyclic alkyl group, and specific examples thereof Examples include methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, tert-butyl, sec-butyl, n-pentyl, n-hexyl, n -Heptyl group, cyclopentyl group, cyclohexyl group etc. may be mentioned, and it is preferable that it is a linear or branched alkyl group having 1 to 8 carbon atoms, and is a linear or branched alkyl group having 1 to 4 carbon atoms It is more preferable that
 式(1)のR~R、及びR、R10が表すアリール基とは、芳香族炭化水素から水素原子を一つ除いた残基であり、その具体例としてはフェニル基、ビフェニル基、ナフチル基、アンスリル基、フェナンスリル基、ピレニル基及びベンゾピレニル基等が挙げられる。 The aryl group represented by R 1 to R 8 and R 9 and R 10 in the formula (1) is a residue obtained by removing one hydrogen atom from an aromatic hydrocarbon, and specific examples thereof include a phenyl group and biphenyl. Groups, naphthyl groups, anthryl groups, phenanthryl groups, pyrenyl groups and benzopyrenyl groups.
 式(1)のR、R10が表すアルコキシ基とは、メトキシ基、エトキシ基、n-プロポキシ基、iso-プロポキシ基、n-ブトキシ基、iso-ブトキシ基、tert-ブトキシ基、sec-ブトキシ基、n-ペントキシ基、n-ヘキシルオキシ基、n-ヘプチルオキシ基、シクロペントキシ基及びシクロヘキシルオキシ基等が挙げられるが、炭素数1~8の直鎖又は分岐鎖のアルコキシ基であることが好ましく、炭素数1~4の直鎖又は分岐鎖のアルコキシ基であることがより好ましい。 The alkoxy group represented by R 9 and R 10 in the formula (1) is a methoxy group, an ethoxy group, an n-propoxy group, an iso-propoxy group, an n-butoxy group, an iso-butoxy group, a tert-butoxy group, sec- Examples thereof include butoxy, n-pentoxy, n-hexyloxy, n-heptyloxy, cyclopentoxy and cyclohexyloxy groups, etc., and it is a linear or branched alkoxy group having 1 to 8 carbon atoms It is preferably, and more preferably a linear or branched alkoxy group having 1 to 4 carbon atoms.
 式(1)のR~Rとしては、それぞれ独立に水素原子、ハロゲン原子又は炭素数1~4の直鎖若しくは分岐鎖のアルキル基であることが好ましく、それぞれ独立に水素原子、臭素原子又は炭素数1~4の直鎖のアルキル基であることがより好ましく、水素原子であることが更に好ましい。 R 1 to R 8 in the formula (1) are preferably each independently a hydrogen atom, a halogen atom, or a linear or branched alkyl group having 1 to 4 carbon atoms, each independently having a hydrogen atom or a bromine atom. Or a linear alkyl group having 1 to 4 carbon atoms is more preferable, and a hydrogen atom is even more preferable.
 式(1)のR、R10としては、それぞれ独立に水素原子、炭素数1~4の直鎖若しくは分岐鎖のアルキル基、フェニル基、アリル基、炭素数1~4の直鎖若しくは分岐鎖のアルコキシ基であることが好ましく、水素原子、メチル基、フェニル基、アリル基、メトキシ基であることがより好ましく、水素原子であることが更に好ましい。 R 9 and R 10 in the formula (1) each independently represent a hydrogen atom, a linear or branched alkyl group having 1 to 4 carbon atoms, a phenyl group, an allyl group, a linear or branched chain having 1 to 4 carbon atoms It is preferably a chain alkoxy group, more preferably a hydrogen atom, a methyl group, a phenyl group, an allyl group or a methoxy group, and still more preferably a hydrogen atom.
 式(1)のnは繰り返し数の平均値を表し、通常1~10の実数であり、好ましくは1~5の実数である。nの値はゲルパーミエーションクロマトグラフィー(GPC)の測定により求められた重量平均分子量の値から算出することが出来る。具体的には下記計算式により算出する。
n=[(重量平均分子量)-(n=1体の分子量)]÷[(n=2体の分子量)-(n=1体の分子量)]+1
 なお、本発明におけるGPC測定は下記条件にて行った。
カラム:Shodex KF-603、KF-602.5、KF-602、KF-601x2
連結溶離液:テトラヒドロフラン
流速:0.5ml/min.
カラム温度:40℃
検出:RI(示差屈折検出器)
In the formula (1), n represents the average value of the number of repetitions, and is usually a real number of 1 to 10, preferably a real number of 1 to 5. The value of n can be calculated from the value of weight average molecular weight obtained by measurement of gel permeation chromatography (GPC). Specifically, it is calculated by the following formula.
n = [(weight average molecular weight)-(n = 1 molecular weight of one body)] ÷ [(n = 2 molecular weight of two body)-(n = 1 molecular weight of one body) +1
The GPC measurement in the present invention was performed under the following conditions.
Column: Shodex KF-603, KF-602.5, KF-602, KF-601x2
Coupling eluent: tetrahydrofuran flow rate: 0.5 ml / min.
Column temperature: 40 ° C
Detection: RI (differential refraction detector)
 また、式(1)で表されるベンゾオキサジン樹脂としては、式(1)中のビフェニル構造に結合する二つのメチレン基の結合位置が4,4’であるもの、即ち下記式(5)で表されるベンゾオキサジン樹脂がより好ましい。 Further, as the benzoxazine resin represented by the formula (1), one having a bonding position of two methylene groups bonded to the biphenyl structure in the formula (1) is 4,4 ′, that is, in the following formula (5) More preferred are the benzoxazine resins represented.
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000007
 式(5)におけるn及びR~R10は前記式(1)におけるn及びR~R10と同じ意味を表す。点線はベンゼン環が形成されていてもよいことを表す。 N and R 1 to R 10 in the formula (5) have the same meanings as n and R 1 to R 10 in the formula (1). The dotted line represents that a benzene ring may be formed.
 本発明の式(1)で表されるベンゾオキサジン樹脂は、例えば、式(6)で表されるアニリン化合物、式(7)で表されるフェノール化合物、及びアルデヒド化合物を原料に用いて、以下の反応式で表される公知の方法で合成することができる。尚、反応式中にはアルデヒド化合物の一例としてホルムアルデヒドを記載したが、パラホルムアルデヒドやベンズアルデヒド等を用いてもよい。 The benzoxazine resin represented by the formula (1) of the present invention can be prepared, for example, by using an aniline compound represented by the formula (6), a phenol compound represented by the formula (7) and an aldehyde compound as raw materials. It can be synthesized by a known method represented by the following reaction formula. Although formaldehyde is described as an example of the aldehyde compound in the reaction formula, paraformaldehyde or benzaldehyde may be used.
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000008
 式(6)におけるn及びR~Rは前記式(1)におけるn及びR~Rと同じ意味を表し、好ましい範囲も同じである。 N and R 1 to R 8 in the formula (6) have the same meanings as n and R 1 to R 8 in the formula (1), and the preferred range is also the same.
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000009
 式(7)におけるR、R10は前記式(1)におけるR、R10と同じ意味を表し、好ましい範囲も同じである。点線はベンゼン環が形成されていてもよいことを表す。 R 9 and R 10 in the formula (7) have the same meanings as R 9 and R 10 in the formula (1), and the preferred range is also the same. The dotted line represents that a benzene ring may be formed.
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000010
 フェノール化合物の仕込み比率は、アニリン化合物のアミノ基1モルに対して0.5~1.2モルであることが好ましく、0.75~1.1モルであることがより好ましい。また、アルデヒド化合物の仕込み比率は、フェノール化合物1モルに対して1.7~4.3モルであることが好ましく、1.8~4.2モルであることがより好ましい。
 反応は溶媒中で行っても無溶媒で行ってもよい。反応に用い得る溶媒は原料化合物を溶解し得るものであれば特に限定されず、例えばメチルエチルケトン、トルエン、1-プロパノール、2-プロパノール、1-ブタノール、1,4-ジオキサン、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル及びエチレングリコールモノブチルエーテル等が挙げられる。これらの溶剤は一種で用いてもよく、混合して用いてもよい。
 反応温度は60℃以上が好ましい。反応時間は特に限定されず、反応に用いた原料の残存量を確認することで反応の進行状況を見極めながら選択すればよい。
 溶媒を用いた場合は、合成時に発生した縮合水、残存原料及び溶媒等を合成終了後に減圧下で除去することによりベンゾオキサジン樹脂を得ることができるが、自己重合性を有するため160℃以下での減圧蒸留が好ましい。
The feed ratio of the phenol compound is preferably 0.5 to 1.2 moles, and more preferably 0.75 to 1.1 moles with respect to 1 mole of the amino group of the aniline compound. Further, the preparation ratio of the aldehyde compound is preferably 1.7 to 4.3 moles, and more preferably 1.8 to 4.2 moles relative to 1 mole of the phenol compound.
The reaction may be carried out in a solvent or without solvent. The solvent that can be used for the reaction is not particularly limited as long as it can dissolve the starting compound, and for example, methyl ethyl ketone, toluene, 1-propanol, 2-propanol, 1-butanol, 1,4-dioxane, ethylene glycol monomethyl ether, ethylene Examples thereof include glycol monoethyl ether and ethylene glycol monobutyl ether. These solvents may be used alone or in combination.
The reaction temperature is preferably 60 ° C. or higher. The reaction time is not particularly limited, and may be selected while confirming the progress of the reaction by confirming the residual amount of the raw material used for the reaction.
When a solvent is used, the benzoxazine resin can be obtained by removing the condensed water generated during the synthesis, the remaining raw materials, the solvent, etc. under reduced pressure after completion of the synthesis, but since it has self-polymerizability, it is at 160 ° C. or less Vacuum distillation is preferred.
 本発明において用いられるベンゾオキサジン樹脂(B)は融点または軟化点を有するものを用いることができる。融点を有する場合は200℃以下が好ましく、また軟化点を有する場合は150℃以下であることが好ましい。融点や軟化点が高温すぎる場合、混合の際にゲル化の可能性が高くなるため好ましくない。 The benzoxazine resin (B) used in the present invention can be one having a melting point or a softening point. When it has a melting point, 200 ° C. or less is preferable, and when it has a softening point, it is preferable that it is 150 ° C. or less. If the melting point or the softening point is too high, the possibility of gelation increases during mixing, which is not preferable.
 以下に本発明の式(1)で表されるベンゾオキサジン樹脂の具体例を記載するが、本発明はこれらの具体例に限定されるものではない。尚、具体例の構造式中のnは式(1)におけるnと同じ意味を表す。 Specific examples of the benzoxazine resin represented by the formula (1) of the present invention will be described below, but the present invention is not limited to these specific examples. Incidentally, n in the structural formula of the specific example has the same meaning as n in formula (1).
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000014
 本発明の硬化性樹脂組成物に含まれるベンゾオキサジン樹脂は、自己硬化性(硬化剤や重合触媒等の他の成分なしに開環重合(硬化)し得ることを意味する)を有する。即ち、硬化させる際に硬化触媒等が必要ないことに加え、重合過程において副生成物が発生しないので、ボイドのない寸法安定性の高い重合物(硬化物)を得ることができる。自己硬化の条件は、好ましくは200℃以上で数十分~数時間程度である。 The benzoxazine resin contained in the curable resin composition of the present invention has self-curing (meaning that it can be ring-opening polymerized (cured) without other components such as a curing agent and a polymerization catalyst). That is, in addition to the fact that a curing catalyst and the like are not required at the time of curing, no by-products are generated in the polymerization process, and a polymer (cured product) with high dimensional stability without voids can be obtained. The conditions for the self-curing are preferably 200 ° C. or more and several tens minutes to several hours or so.
 一般的にC-O結合と比較してC-N結合は結合エネルギーが小さいため、C-N結合のほうが熱分解しやすいことが知られている。そこでNに隣接した分子骨格が高分子量であると遊離を防ぐと考えられる。したがって分子量の大きいフェノール化合物と分子量の小さいアニリン化合物から合成したベンゾオキサジン樹脂と比較して分子量の大きいアニリン樹脂と分子量の小さいフェノール化合物から合成したベンゾオキサジン樹脂の方がアニリンの遊離を防ぐ構造になるため、熱分解特性の向上が期待できる。 In general, it is known that a C—N bond is more likely to be thermally decomposed because a C—N bond has a smaller bonding energy than a C—O bond. Then, it is thought that liberation is prevented if the molecular skeleton adjacent to N is high molecular weight. Therefore, compared with a benzoxazine resin synthesized from a large molecular weight phenol compound and a small molecular weight aniline compound, the structure of the compound which prevents the release of aniline becomes the one synthesized from the large molecular weight aniline resin and the small molecular weight phenol compound. Therefore, the improvement of the thermal decomposition characteristics can be expected.
 本発明の硬化性樹脂組成物における、ベンゾオキサジン樹脂とマレイミド樹脂の配合量比については、特に限定されないが、ベンゾオキサジン樹脂10質量部に対し、マレイミド樹脂が0.1~100質量部であることが好ましく、更に好ましくは1~75質量部、特に好ましくは5~50質量部である。 The compounding ratio of the benzoxazine resin to the maleimide resin in the curable resin composition of the present invention is not particularly limited, but 0.1 to 100 parts by mass of the maleimide resin with respect to 10 parts by mass of the benzoxazine resin Is more preferably 1 to 75 parts by mass, particularly preferably 5 to 50 parts by mass.
 本発明の硬化性樹脂組成物は、必要に応じて硬化触媒、難燃剤、フィラー、添加剤等を配合することができる。
 硬化触媒としては特に限定されるものではなく、公知のものを用いることができる。具体的には、金属錯体触媒、ホスフィン化合物、ホスホニウム塩を有する化合物、芳香族アミン化合物、無機酸、無機塩基、有機酸及び有機塩基等が挙げられる。
 金属錯体触媒としては、一般に公知のものが使用できる。例えばコバルト、亜鉛、クロム、銅、鉄、マンガン、ニッケル、チタンなどの金属ナフテン酸塩、アセチルアセトナート、又その誘導体の塩、各種カルボン酸塩アルコキシド等の有機酸塩があり、これらを単独でも混合して使用しても良い。有機酸塩、塩化物、燐酸塩、亜燐酸塩、次亜燐酸塩、硝酸塩などの単独、または、それらの混合物等も金属錯体触媒の一例として挙げられる。
 ホスフィン化合物としては、エチルホスフィン、プロピルホスフィン等のアルキルホスフィン、フェニルホスフィン等の1級ホスフィン;ジメチルホスフィン、ジエチルホスフィン等のジアルキルホスフィン、ジフェニルホスフィン、メチルフェニルホスフィン、エチルフェニルホスフィン等の2級ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン、トリオクチルホスフィン等のトリアルキルホスフィン、トリシクロヘキシルホスフィン、トリフェニルホスフィン、アルキルジフェニルホスフィン、ジアルキルフェニルホスフィン、トリベンジルホスフィン、トリトリルホスフィン、トリ-p-スチリルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン、トリ-4-メチルフェニルホスフィン、トリ-4-メトキシフェニルホスフィン、トリ-2-シアノエチルホスフィン等の3級ホスフィン等が挙げられる。
 ホスホニウム塩を有する化合物としては、テトラフェニルホスホニウム塩、アルキルトリフェニルホスホニウム塩等を有する化合物が挙げられ、具体的には、テトラフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムテトラ-p-メチルフェニルボレート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。
 芳香族アミン化合物としては、3級アミンやイミダゾール類が挙げられ、具体的には、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2,4-ジメチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-ビニル-2-メチルイミダゾール、1-プロピル-2-メチルイミダゾール、2-イソプロピルイミダゾール、1-シアノメチル-2-メチル-イミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、1-シアノエチル-2-フェニルイミダゾール、ジアザビシクロウンデセン、ヒスチジン等が挙げられる。
 無機酸、無機塩基、有機酸及び有機塩基等としては、塩酸、硫酸、硝酸、リン酸、ホウ酸、水酸化ナトリウム、水酸化カルシウム、炭酸ナトリウム、炭酸カリウム、ギ酸、酢酸、クエン酸、シュウ酸、p-トルエンスルホン酸、安息香酸、フェノール、アリルフェノール、メタリルフェノール、チオフェノール、ピリジン、トリアルキルアミン、ジアザビシクロウンデセン、ヒスチジン及びイミダゾール類等が挙げられ、塩酸、p-トルエンスルホン酸、安息香酸、フェノール、チオフェノールが好ましく、p-トルエンスルホン酸及び2-エチル-4-メチルイミダゾールがより好ましい。これらの添加剤は一種のみを用いても、二種以上を併用してもよい。
 これら硬化触媒の配合量は、その種類や効果によって適正選択すればよいが、硬化性樹脂組成物100質量部に対して、好ましくは0.001質量部以上10質量部以下であり、さらに好ましくは0.01質量部以上5質量部以下、特に好ましくは0.05質量部以上3質量部以下である。
The curable resin composition of the present invention can be blended with a curing catalyst, a flame retardant, a filler, an additive and the like as required.
The curing catalyst is not particularly limited, and known catalysts can be used. Specific examples thereof include metal complex catalysts, phosphine compounds, compounds having phosphonium salts, aromatic amine compounds, inorganic acids, inorganic bases, organic acids and organic bases.
As the metal complex catalyst, generally known ones can be used. For example, metal naphthenic acid salts such as cobalt, zinc, chromium, copper, iron, manganese, nickel, titanium, acetylacetonate, salts of derivatives thereof, organic acid salts such as various carboxylate alkoxides, etc. You may mix and use. Organic acid salts, chlorides, phosphates, phosphites, hypophosphites, nitrates and the like alone or in mixtures thereof may also be mentioned as an example of the metal complex catalyst.
As phosphine compounds, alkyl phosphines such as ethyl phosphine and propyl phosphine, primary phosphines such as phenyl phosphine; dialkyl phosphines such as dimethyl phosphine and diethyl phosphine, secondary phosphines such as diphenyl phosphine, methyl phenyl phosphine and ethyl phenyl phosphine; trimethyl Trialkyl phosphines such as phosphine, triethyl phosphine, tributyl phosphine, trioctyl phosphine, tricyclohexyl phosphine, triphenyl phosphine, alkyl diphenyl phosphine, dialkyl phenyl phosphine, tribenzyl phosphine, tri tolyl phosphine, tri-p-styryl phosphine, tris ( 2,6-Dimethoxyphenyl) phosphine, tri-4-methylphenyl phosphi , Tri-4-methoxyphenyl phosphine, tertiary phosphines such as tri-2-cyanoethyl phosphine, and the like.
Examples of the compound having a phosphonium salt include compounds having a tetraphenyl phosphonium salt, an alkyltriphenyl phosphonium salt and the like, and specifically, tetraphenyl phosphonium thiocyanate, tetraphenyl phosphonium tetra-p-methylphenyl borate, butyl triphenyl And phosphonium thiocyanate.
Examples of the aromatic amine compound include tertiary amines and imidazoles. Specifically, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, 2- Undecylimidazole, 2-Heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4 -Methyl-5-hydroxymethylimidazole, 1-vinyl-2-methylimidazole, 1-propyl-2-methylimidazole, 2-isopropylimidazole, 1-cyanomethyl-2-methyl-imidazole, 1-cyanoethyl-2-ethyl- 4-Methylimidazole 1-cyanoethyl-2-undecyl imidazole, 1-cyanoethyl-2-phenylimidazole, diazabicycloundecene, histidine and the like.
As inorganic acids, inorganic bases, organic acids and organic bases, hydrochloric acid, sulfuric acid, nitric acid, phosphoric acid, boric acid, sodium hydroxide, calcium hydroxide, sodium carbonate, potassium carbonate, formic acid, acetic acid, citric acid, oxalic acid P-toluenesulfonic acid, benzoic acid, phenol, allylphenol, methallylphenol, thiophenol, pyridine, trialkylamine, diazabicycloundecene, histidine and imidazoles, etc., hydrochloric acid, p-toluenesulfonic acid Benzoic acid, phenol and thiophenol are preferred, and p-toluenesulfonic acid and 2-ethyl-4-methylimidazole are more preferred. These additives may be used alone or in combination of two or more.
The compounding amount of these curing catalysts may be appropriately selected depending on the type and effects thereof, but is preferably 0.001 parts by mass or more and 10 parts by mass or less, and more preferably 100 parts by mass of the curable resin composition. It is 0.01 parts by mass or more and 5 parts by mass or less, particularly preferably 0.05 parts by mass or more and 3 parts by mass or less.
 難燃剤の具体例としては、臭素化合物、リン化合物、塩素化合物、金属水酸化物、アンチモン化合物等が挙げられる。 Specific examples of the flame retardant include bromine compounds, phosphorus compounds, chlorine compounds, metal hydroxides and antimony compounds.
 フィラーの具体例としては、ヒュームドシリカ、焼成シリカ、沈降シリカ、粉砕シリカ、溶融シリカ、ケイソウ土、酸化鉄、酸化亜鉛、酸化チタン、酸化バリウム、酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、炭酸亜鉛、ろう石クレー、カオリンクレー、焼成クレー、カーボンブラック、ポリアミド樹脂、シリコーン樹脂、ポリテトラフロロエチレン、ポリブタジエン及びこの変性物、アクリロニトリル共重合体の変性物、ポリフェニレンエーテル、ポリスチレン、ポリエチレン、ポリイミド、フッ素樹脂等の各種形状の有機または無機の充填剤が挙げられる。これらの充填剤は一種のみを用いても、二種以上を併用してもよい。 Specific examples of the filler include fumed silica, calcined silica, precipitated silica, crushed silica, fused silica, diatomaceous earth, iron oxide, zinc oxide, titanium oxide, barium oxide, magnesium oxide, calcium carbonate, magnesium carbonate, zinc carbonate, Wax clay, kaolin clay, calcined clay, carbon black, polyamide resin, silicone resin, polytetrafluoroethylene, polybutadiene and its modified product, modified product of acrylonitrile copolymer, polyphenylene ether, polystyrene, polyethylene, polyimide, fluorocarbon resin, etc. And organic or inorganic fillers of various forms. These fillers may be used alone or in combination of two or more.
 添加剤の具体例としては、表面処理剤、反応遅延剤、色材、帯電防止剤、老化防止剤、酸化防止剤等が挙げられる。
 表面処理剤の具体例としては、シランカップリング剤等が挙げられる。
 反応遅延剤の具体例としては、アルコール系等の化合物が挙げられ、老化防止剤としては、例えば、ヒンダードフェノール系等の化合物が挙げられる。また、酸化防止剤としては、例えば、ブチルヒドロキシトルエン(BHT)、ブチルヒドロキシアニソール(BHA)等が挙げられる。
 色材の具体例としては、酸化チタン、酸化亜鉛、群青、ベンガラ、リトポン、鉛、カドミウム、鉄、コバルト、アルミニウム、塩酸塩、硫酸塩等の無機顔料;アゾ顔料、フタロシアニン顔料、キナクリドン顔料、キナクリドンキノン顔料、ジオキサジン顔料、アントラピリミジン顔料、アンサンスロン顔料、インダンスロン顔料、フラバンスロン顔料、ペリレン顔料、ペリノン顔料、ジケトピロロピロール顔料、キノナフタロン顔料、アントラキノン顔料、チオインジゴ顔料、ベンズイミダゾロン顔料、イソインドリン顔料、カーボンブラック等の有機顔料等が挙げられる。
 帯電防止剤としては、一般的に、第四級アンモニウム塩;ポリグリコール、エチレンオキサイド誘導体等の親水性化合物等が挙げられる。
Specific examples of the additive include surface treatment agents, reaction retarders, coloring materials, antistatic agents, antiaging agents, antioxidants, and the like.
A silane coupling agent etc. are mentioned as a specific example of a surface treating agent.
Specific examples of the reaction retarder include compounds such as alcohols, and examples of anti-aging agents include compounds such as hindered phenols. Moreover, as an antioxidant, butyl hydroxytoluene (BHT), butyl hydroxy anisole (BHA) etc. are mentioned, for example.
Specific examples of coloring materials include titanium oxide, zinc oxide, ultramarine blue, bengala, lithopone, inorganic pigments such as lead, cadmium, iron, cobalt, aluminum, hydrochloride and sulfate; azo pigments, phthalocyanine pigments, quinacridone pigments, quinacridones Quinone pigment, dioxazine pigment, anthrapyrimidine pigment, anthanthrone pigment, indanthrone pigment, flavanthrone pigment, perylene pigment, perinone pigment, diketopyrrolopyrrole pigment, quinonaphthalone pigment, anthraquinone pigment, thioindigo pigment, benzimidazolone pigment, iso Examples thereof include indoline pigments, organic pigments such as carbon black, and the like.
Examples of the antistatic agent generally include quaternary ammonium salts; hydrophilic compounds such as polyglycols and ethylene oxide derivatives, and the like.
 本発明の硬化性樹脂組成物は、さらにシアネートエステル樹脂を含有することが好ましい。本発明の硬化性樹脂組成物は、さらにシアネートエステル樹脂を含有することにより、上記の硬化触媒を使用しなくても、より低温での硬化が可能となる。
 一般的に触媒は高価であるため、触媒を添加することなく、硬化性樹脂組成物を硬化させることがコストの面からは好ましい。また、触媒を多く入れ過ぎると、得られる硬化物の耐熱性や力学強度等の信頼性に影響を及ぼす。特にベンゾオキサジン樹脂、シアネートエステル樹脂、マレイミド樹脂に使用されることの多い金属錯体触媒は金属イオン成分を混入させるため、電子材料用途では、腐食の原因になり得る。
The curable resin composition of the present invention preferably further contains a cyanate ester resin. The curable resin composition of the present invention, by further containing a cyanate ester resin, enables curing at a lower temperature without using the above-mentioned curing catalyst.
In general, since the catalyst is expensive, it is preferable from the viewpoint of cost to cure the curable resin composition without adding the catalyst. In addition, if too much catalyst is added, the reliability of the resulting cured product such as heat resistance and mechanical strength is affected. In particular, metal complex catalysts often used for benzoxazine resins, cyanate ester resins, and maleimide resins, which incorporate metal ion components, may cause corrosion in electronic material applications.
 本発明の硬化性樹脂組成物に使用できるシアネートエステル樹脂としては、公知のシアネートエステル樹脂であれば特に限定されず、例えば、ノボラック型シアネートエステル樹脂、ビスフェノールA型シアネートエステル樹脂、ビスフェノールE型シアネートエステル樹脂、テトラメチルビスフェノールF型シアネートエステル樹脂などのビスフェノール型シアネートエステル樹脂;ナフトールアラルキル型フェノール樹脂と、ハロゲン化シアンとの反応で得られるナフトールアラルキル型シアネートエステル樹脂;ジシクロペンタジエン型シアネートエステル樹脂;ビフェニルアルキル型シアネートエステル樹脂やフェノール類と各種アルデヒドとの重縮合物、フェノール類と各種ジエン化合物との重合物、フェノール類とケトン類との重縮合物及びビスフェノール類と各種アルデヒドの重縮合物などをハロゲン化シアンと反応させることにより得られるシアネートエステル樹脂が挙げられる。
 上記フェノール類としては、フェノール、アルキル置換フェノール、芳香族置換フェノール、ナフトール、アルキル置換ナフトール、ジヒドロキシベンゼン、アルキル置換ジヒドロキシベンゼン、ジヒドロキシナフタレン等が挙げられる。
 上記各種アルデヒドとしては、ホルムアルデヒド、アセトアルデヒド、アルキルアルデヒド、ベンズアルデヒド、アルキル置換ベンズアルデヒド、ヒドロキシベンズアルデヒド、ナフトアルデヒド、グルタルアルデヒド、フタルアルデヒド、クロトンアルデヒド、シンナムアルデヒド等が挙げられる。
 上記各種ジエン化合物としては、ジシクロペンタジエン、テルペン類、ビニルシクロヘキセン、ノルボルナジエン、ビニルノルボルネン、テトラヒドロインデン、ジビニルベンゼン、ジビニルビフェニル、ジイソプロペニルビフェニル、ブタジエン、イソプレン等が挙げられる。
 上記ケトン類としてはアセトン、メチルエチルケトン、メチルイソブチルケトン、アセトフェノン、ベンゾフェノン等が挙げられる。
 これらの中でもノボラック型シアネートエステル樹脂、ナフトールアラルキル型シアネートエステル樹脂が好ましく、ノボラック型シアネートエステル樹脂がより好ましい。ノボラック型シアネートエステル樹脂を用いることにより、得られる硬化物の架橋密度が増加し、耐熱性が向上するだけでなく、ベンゼン濃度の向上により、優れた熱分解特性や難燃性が期待できる。これらは単独で用いてもよく2種類以上を用いてもよい。
 本発明の硬化性樹脂組成物においてシアネートエステル樹脂を使用する場合、耐熱性の観点から、配合量の下限値はベンゾオキサジン樹脂10質量部に対し、0.1質量部が好ましく、更に好ましくは1質量部、特に好ましくは3質量部である。
 また、ハンドリングの観点から、配合量の上限値はベンゾオキサジン樹脂10質量部に対し、100質量部が好ましく、更に好ましくは50質量部、特に好ましくは30質量部である。ベンゾオキサジン樹脂の配合量が多すぎると、ベンゾオキサジンと相分離をすることがある。
The cyanate ester resin that can be used in the curable resin composition of the present invention is not particularly limited as long as it is a known cyanate ester resin, and for example, novolac type cyanate ester resin, bisphenol A type cyanate ester resin, bisphenol E type cyanate ester Resin, bisphenol type cyanate ester resin such as tetramethyl bisphenol F type cyanate ester resin; naphthol aralkyl type cyanate ester resin obtained by reaction of naphthol aralkyl type phenol resin with cyanogen halide; dicyclopentadiene type cyanate ester resin; biphenyl Alkyl-type cyanate ester resins, polycondensates of phenols with various aldehydes, polymers of phenols with various diene compounds, and phenols with ketones Cyanate ester resin obtained by reacting a condensate and polycondensates of bisphenols and various aldehydes such as cyanogen halide and the like.
Examples of the above-mentioned phenols include phenol, alkyl substituted phenol, aromatic substituted phenol, naphthol, alkyl substituted naphthol, dihydroxybenzene, alkyl substituted dihydroxybenzene and dihydroxynaphthalene.
Examples of the various aldehydes include formaldehyde, acetaldehyde, alkylaldehyde, benzaldehyde, alkyl-substituted benzaldehyde, hydroxybenzaldehyde, naphthaldehyde, glutaraldehyde, phthalaldehyde, crotonaldehyde and cinnamaldehyde.
Examples of the various diene compounds include dicyclopentadiene, terpenes, vinylcyclohexene, norbornadiene, vinyl norbornene, tetrahydroindene, divinylbenzene, divinylbiphenyl, diisopropenylbiphenyl, butadiene, isoprene and the like.
Examples of the ketones include acetone, methyl ethyl ketone, methyl isobutyl ketone, acetophenone, benzophenone and the like.
Among these, novolac type cyanate ester resins and naphthol aralkyl type cyanate ester resins are preferable, and novolac type cyanate ester resins are more preferable. By using the novolac type cyanate ester resin, the crosslink density of the obtained cured product is increased, and not only the heat resistance is improved, but also by the improvement of the benzene concentration, excellent thermal decomposition characteristics and flame retardancy can be expected. These may be used alone or in combination of two or more.
When a cyanate ester resin is used in the curable resin composition of the present invention, the lower limit value of the compounding amount is preferably 0.1 parts by mass, more preferably 1 with respect to 10 parts by mass of the benzoxazine resin from the viewpoint of heat resistance. It is part by weight, particularly preferably 3 parts by weight.
In addition, from the viewpoint of handling, the upper limit value of the compounding amount is preferably 100 parts by mass, more preferably 50 parts by mass, and particularly preferably 30 parts by mass with respect to 10 parts by mass of the benzoxazine resin. When the compounding amount of benzoxazine resin is too large, phase separation may occur with benzoxazine.
 本発明の硬化性樹脂組成物は、エポキシ樹脂、フェノール樹脂、メラミン樹脂、不飽和ポリエステル樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリウレタン樹脂等の共重合成分を含んでいてもよい。これらの共重合成分は一種のみを用いても、二種以上を併用してもよい。
 これらの共重合成分の中でも、加熱により樹脂組成物中に生じるフェノール性水酸基との反応性を有するエポキシ樹脂、フェノール樹脂、を配合することが好ましく、エポキシ樹脂を配合することが特に好ましい。
The curable resin composition of the present invention may contain copolymer components such as epoxy resin, phenol resin, melamine resin, unsaturated polyester resin, polyimide resin, polyamide resin, polyurethane resin and the like. These copolymerization components may be used alone or in combination of two or more.
Among these copolymerization components, it is preferable to blend an epoxy resin having reactivity with a phenolic hydroxyl group generated in the resin composition by heating, and a phenol resin, and it is particularly preferable to blend an epoxy resin.
 配合し得るエポキシ樹脂としては、少なくとも1つのエポキシ基を有する化合物であれば特に限定されず、例えば、ビスフェノールA、ビスフェノールF、ビスフェノールS、ヘキサヒドロビスフェノールA、テトラメチルビスフェノールA、ピロカテコール、レゾルシノール、クレゾールノボラック、フェノールノボラック、テトラブロモビスフェノールA、トリヒドロキシビフェニル、ビスレゾルシノール、ビスフェノールヘキサフルオロアセトン、テトラメチルビスフェノールF、ビキシレノール、ジヒドロキシナフタレン等の多価フェノールとエピクロルヒドリンとの反応によって得られるグリシジルエーテル型;グリセリン、ネオペンチルグリコール、エチレングリコール、プロピレングリコール、ブチレングリコール、ヘキシレングリコール、ポリエチレングリコール、ポリプロピレングリコール等の脂肪族多価アルコールとエピクロルヒドリンとの反応によって得られるポリグリシジルエーテル型;p-オキシ安息香酸、β-オキシナフトエ酸等のヒドロキシカルボン酸とエピクロルヒドリンとの反応によって得られるグリシジルエーテルエステル型;フタル酸、メチルフタル酸、イソフタル酸、テレフタル酸、テトラハイドロフタル酸、ヘキサハイドロフタル酸、エンドメチレンテトラハイドロフタル酸、エンドメチレンヘキサハイドロフタル酸、トリメリット酸、重合脂肪酸等のポリカルボン酸から誘導されるポリグリシジルエステル型;アミノフェノール、アミノアルキルフェノール等から誘導されるグリシジルアミノグリシジルエーテル型;アミノ安息香酸から誘導されるグリシジルアミノグリシジルエステル型;アニリン、トルイジン、トリブロムアニリン、キシリレンジアミン、ジアミノシクロヘキサン、ビスアミノメチルシクロヘキサン、4,4’-ジアミノジフェニルメタン、4,4’-ジアミノジフェニルスルホン等から誘導されるグリシジルアミン型;さらにエポキシ化ポリオレフィン、グリシジルヒダントイン、グリシジルアルキルヒダントイン、トリグリシジルシアヌレート等が挙げられる。耐熱性向上の観点からノボラック型のエポキシやグリシジルアミン型のエポキシ樹脂が好ましい。 The epoxy resin which can be blended is not particularly limited as long as it is a compound having at least one epoxy group, and examples thereof include bisphenol A, bisphenol F, bisphenol S, hexahydrobisphenol A, tetramethylbisphenol A, pyrocatechol, resorcinol, A glycidyl ether type obtained by the reaction of an epichlorohydrin with a polyphenol such as cresol novolak, phenol novolak, tetrabromobisphenol A, trihydroxybiphenyl, bisresorcinol, bisphenol hexafluoroacetone, tetramethyl bisphenol F, bixylenol, dihydroxynaphthalene, etc .; Glycerin, neopentyl glycol, ethylene glycol, propylene glycol, butylene glycol, hexi Polyglycidyl ether type obtained by the reaction of epichlorohydrin with aliphatic polyhydric alcohol such as glycol, polyethylene glycol and polypropylene glycol; by the reaction of epichlorohydrin with hydroxycarboxylic acid such as p-hydroxybenzoic acid and β-hydroxynaphthoic acid Obtained glycidyl ether ester type: phthalic acid, methyl phthalic acid, isophthalic acid, terephthalic acid, tetrahydrophthalic acid, hexahydrophthalic acid, endomethylenetetrahydrophthalic acid, endomethylene hexahydrophthalic acid, trimellitic acid, polymerized fatty acid, etc. Polyglycidyl ester type derived from polycarboxylic acid of glycidyl; glycidyl aminoglycidyl ether type derived from aminophenol, aminoalkylphenol etc .; aminobenzoic acid Glycidyl aminoglycidyl ester derived from aniline; derived from aniline, toluidine, tribromoaniline, xylylenediamine, diaminocyclohexane, bisaminomethylcyclohexane, 4,4'-diaminodiphenylmethane, 4,4'-diaminodiphenylsulfone etc. Glycidyl amine type; and epoxidized polyolefin, glycidyl hydantoin, glycidyl alkyl hydantoin, triglycidyl cyanurate and the like. From the viewpoint of heat resistance improvement, novolac type epoxy and glycidyl amine type epoxy resins are preferable.
 本発明の硬化性樹脂組成物は溶媒に溶解したワニスとして用いることもできる。ワニスとすることは、硬化性樹脂組成物の取り扱い(ハンドリング)が容易になるという意味では好ましい態様である。 The curable resin composition of the present invention can also be used as a varnish dissolved in a solvent. The use of a varnish is a preferred embodiment in that handling of the curable resin composition is facilitated.
 本発明のワニスに用い得る溶媒としては、トルエン、キシレン、アセトン、メチルエチルケトン、メチルイソブチルケトン、ジメチルホルムアミド、ジメチルアセトアミド、N-メチルピロリドン、ジオキサン、1-プロパノール、2-プロパノール、1-ブタノール、1,4-ジオキサン、エチレングリコールエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル及びプロピレングリコールモノメチルエーテル等が挙げられるが、本発明の硬化性樹脂組成物を溶解し得る溶媒であれば特に制限なく用いることができる。
 本発明のワニスには、必要に応じて前述の添加物や任意成分を配合してもよい。
As a solvent which can be used for the varnish of the present invention, toluene, xylene, acetone, methyl ethyl ketone, methyl isobutyl ketone, dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dioxane, 1-propanol, 2-propanol, 1-butanol, 1, -butanol Although 4-dioxane, ethylene glycol ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, etc. may be mentioned, any solvent capable of dissolving the curable resin composition of the present invention may be used without particular limitation. Can.
The above-described additives and optional components may be blended into the varnish of the present invention as required.
 本発明の硬化性樹脂組成物を含むワニスを各種の基板に塗布し、例えば150℃以下の温度で溶媒を除去(乾燥)した後、200℃以上の高温で処理することにより、重合物(硬化物)とすることができる。
 また、本発明のワニスをガラス不織布等の基材に含浸させた後に溶媒を除去して得たプリプレグを用いて、積層板、銅張積層板等の繊維強化材料とすることもできる。
The varnish containing the curable resin composition of the present invention is applied to various substrates, and the solvent is removed (dried) at a temperature of 150 ° C. or less, for example, and then treated at a high temperature of 200 ° C. or more Can be
Moreover, after impregnating the base materials, such as a glass nonwoven fabric, with the varnish of this invention and removing a solvent, it can also be set as fiber reinforced materials, such as a laminated board and a copper clad laminated board, using the prepreg obtained.
 次に本発明を実施例により更に具体的に説明する。なお、本発明はこれら実施例に限定されるものではない。合成例中の軟化点及び溶融粘度は下記の方法で測定した。
・軟化点:JIS K-7234に準じた方法で測定
・ICI溶融粘度:JIS K 7117-2(ISO 3219)に準じた方法で測定
The present invention will now be described in more detail by way of examples. The present invention is not limited to these examples. The softening point and the melt viscosity in the synthesis examples were measured by the following methods.
Softening point: Measured according to JIS K-7234 ICI melt viscosity Measured according to JIS K 7117-2 (ISO 3219)
(合成例1)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン559質量部とトルエン500質量部を仕込み、室温で35%塩酸167質量部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル251質量部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を190~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液500質量部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いで油層から加熱減圧下において過剰のアニリンとトルエンを留去することにより下記式(8)で表されるアニリン樹脂335質量部(軟化点57℃、溶融粘度0.035Pa・s、アミン当量196g/eq)を得た。また、ゲルパーミエーションクロマトグラフィーで測定した結果、式(8)におけるnは1.6(平均値)であった。
Synthesis Example 1
In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 559 parts by mass of aniline and 500 parts by mass of toluene were charged, and 167 parts by mass of 35% hydrochloric acid was dropped over 1 hour at room temperature. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the toluene which was the organic layer was returned to the system for dehydration. Subsequently, 251 parts by mass of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining at 60 to 70 ° C., and the reaction was further performed at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 190 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. After that, 500 parts by weight of a 30% aqueous solution of sodium hydroxide was slowly added dropwise while cooling so that the system was not vigorously refluxed, and the toluene distilled off at 80 ° C. or less was returned to the system and allowed to stand at 70 ° C. to 80 ° C. . The lower aqueous layer separated was removed, and the reaction solution was repeatedly washed with water until the washing solution became neutral. Next, 335 parts by mass of an aniline resin represented by the following formula (8) (softening point 57 ° C., melt viscosity 0.035 Pa · s, amine equivalent 196 g / a) by distilling excess aniline and toluene away from the oil layer under heating and pressure reduction. got eq). Moreover, as a result of measuring by gel permeation chromatography, n in Formula (8) was 1.6 (average value).
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000015
(合成例2)
 撹拌機、還流冷却管、撹拌装置を備えたフラスコに、合成例1で得たアニリン樹脂59質量部、フェノール28質量部、トルエン90質量部を加え、60℃に昇温した。次いでホルムアルデヒド水溶液49質量部を60分かけて添加した。その後、80℃に昇温し、8時間反応を行った。
 反応終了後、トルエン90質量部を加え、水洗を繰り返したのち、ロータリーエバポレーターにて加熱減圧下、トルエンを留去することで、ベンゾオキサジン樹脂90質量部を得た。得られたベンゾオキサジン樹脂の軟化点は102℃、溶融粘度は2.76Pa・s(150℃)であった。
 H-NMR分析により、得られたベンゾオキサジン樹脂は下記式(9)で表されることを確認した。H-NMR分析の結果を図1に示す。
(Composition example 2)
In a flask equipped with a stirrer, a reflux condenser, and a stirrer, 59 parts by mass of the aniline resin obtained in Synthesis Example 1, 28 parts by mass of phenol and 90 parts by mass of toluene were added, and the temperature was raised to 60 ° C. Then, 49 parts by mass of an aqueous solution of formaldehyde was added over 60 minutes. Thereafter, the temperature was raised to 80 ° C., and reaction was performed for 8 hours.
After completion of the reaction, 90 parts by mass of toluene was added, and after repeated washing with water, the toluene was distilled off under heating and reduced pressure using a rotary evaporator to obtain 90 parts by mass of benzooxazine resin. The softening point of the obtained benzoxazine resin was 102 ° C., and the melt viscosity was 2.76 Pa · s (150 ° C.).
It was confirmed by 1 H-NMR analysis that the obtained benzoxazine resin is represented by the following formula (9). The results of 1 H-NMR analysis are shown in FIG.
Figure JPOXMLDOC01-appb-C000016
Figure JPOXMLDOC01-appb-C000016
(合成例3)
 フェノール28質量部をアリルフェノール34質量部に変えた以外は、合成例1と同様にして、ベンゾオキサジン樹脂98質量部を得た。得られたベンゾオキサジン樹脂の軟化点は91℃、溶融粘度は0.5Pa・s(150℃)であった。
 H-NMR分析により、得られたベンゾオキサジン樹脂は下記式(10)で表されることを確認した。H-NMRの結果を図2に示す。
(Composition example 3)
In the same manner as in Synthesis Example 1 except that 28 parts by mass of phenol was changed to 34 parts by mass of allylphenol, 98 parts by mass of benzoxazine resin was obtained. The softening point of the obtained benzoxazine resin was 91 ° C., and the melt viscosity was 0.5 Pa · s (150 ° C.).
It was confirmed by 1 H-NMR analysis that the obtained benzoxazine resin is represented by the following formula (10). The results of 1 H-NMR are shown in FIG.
Figure JPOXMLDOC01-appb-C000017
Figure JPOXMLDOC01-appb-C000017
(合成例4)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコにアニリン372質量部とトルエン200質量部を仕込み、室温で35%塩酸146質量部を1時間で滴下した。滴下終了後加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次いで4,4’-ビス(クロロメチル)ビフェニル125質量部を60~70℃に保ちながら1時間かけて添加し、更に同温度で2時間反応を行った。反応終了後、昇温をしながらトルエンを留去して系内を195~200℃とし、この温度で15時間反応をした。その後冷却しながら30%水酸化ナトリウム水溶液330質量部を系内が激しく還流しないようにゆっくりと滴下し、80℃以下で昇温時に留去したトルエンを系内に戻し、70℃~80℃で静置した。分離した下層の水層を除去し、反応液の水洗を洗浄液が中性になるまで繰り返した。次いでロータリーエバポレーターで油層から加熱減圧下(200℃、0.6KPa)において過剰のアニリンとトルエンを留去することにより芳香族アニリン樹脂173質量部を得た。芳香族アニリン樹脂(a1)中のジフェニルアミンは2.0%であった。
 得られた樹脂を、再びロータリーエバポレーターで加熱減圧下(200℃、4KPa)において水蒸気吹き込みの代わりに水を少量ずつ滴下した。その結果、芳香族アニリン樹脂(a1)166質量部を得た。得られた芳香族アニリン樹脂(a1)の軟化点は56℃、溶融粘度は0.035Pa・s(150℃)、ジフェニルアミンは0.1%以下であった。
(Composition example 4)
In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 372 parts by mass of aniline and 200 parts by mass of toluene were charged, and 146 parts by mass of 35% hydrochloric acid was added dropwise over 1 hour at room temperature. After completion of the dropwise addition, the mixture was heated to cool and separate azeotropic water and toluene, and then only the toluene which was the organic layer was returned to the system for dehydration. Then, 125 parts by mass of 4,4′-bis (chloromethyl) biphenyl was added over 1 hour while maintaining at 60 to 70 ° C., and reaction was further performed at the same temperature for 2 hours. After completion of the reaction, toluene was distilled off while raising the temperature to bring the system to 195 to 200 ° C., and the reaction was carried out at this temperature for 15 hours. After that, 330 parts by mass of a 30% aqueous solution of sodium hydroxide is slowly added dropwise while cooling so that the system does not vigorously reflux, and the toluene distilled off at the temperature rise below 80 ° C is returned to the system, and at 70 ° C to 80 ° C. Let stand. The lower aqueous layer separated was removed, and the reaction solution was repeatedly washed with water until the washing solution became neutral. Subsequently, 173 parts by mass of an aromatic aniline resin was obtained by distilling off excess aniline and toluene under heating and reduced pressure (200 ° C., 0.6 KPa) from the oil layer using a rotary evaporator. The diphenylamine in the aromatic aniline resin (a1) was 2.0%.
The obtained resin was again added dropwise little by little with a rotary evaporator under heating and reduced pressure (200 ° C., 4 KPa) instead of steam blowing. As a result, 166 parts by mass of an aromatic aniline resin (a1) was obtained. The softening point of the obtained aromatic aniline resin (a1) was 56 ° C., the melt viscosity was 0.035 Pa · s (150 ° C.), and the diphenylamine was 0.1% or less.
(合成例5)
 温度計、冷却管、ディーンスターク共沸蒸留トラップ、撹拌機を取り付けたフラスコに無水マレイン酸147質量部とトルエン300質量部を仕込み、加熱して共沸してくる水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行った。次に、合成例4で得られた芳香族アニリン樹脂(a1)195質量部をN-メチル-2-ピロリドン195質量部に溶解した樹脂溶液を、系内を80~85℃に保ちながら1時間かけて滴下した。滴下終了後、同温度で2時間反応を行い、p-トルエンスルホン酸3質量部を加えて、還流条件で共沸してくる縮合水とトルエンを冷却・分液した後、有機層であるトルエンだけを系内に戻して脱水を行いながら20時間反応を行った。反応終了後、トルエンを120質量部追加し、水洗を繰り返してp-トルエンスルホン酸及び過剰の無水マレイン酸を除去し、加熱して共沸により水を系内から除いた。次いで反応溶液を濃縮して、固形のマレイミド樹脂(A1)を281質量部得た。得られたマレイミド樹脂の軟化点は108℃であった。
(Composition example 5)
In a flask equipped with a thermometer, a condenser, a Dean-Stark azeotropic distillation trap, and a stirrer, 147 parts by mass of maleic anhydride and 300 parts by mass of toluene are charged and heated to azeotropically cool water and toluene After that, only toluene which is an organic layer was returned to the system for dehydration. Next, a resin solution prepared by dissolving 195 parts by mass of the aromatic aniline resin (a1) obtained in Synthesis Example 4 in 195 parts by mass of N-methyl-2-pyrrolidone is kept for 1 hour while maintaining the inside of the system at 80 to 85 ° C. It dripped over. After completion of the dropwise addition, the reaction is carried out at the same temperature for 2 hours, 3 parts by mass of p-toluenesulfonic acid is added, and the condensed water and toluene which are azeotroped under reflux conditions are cooled and separated to obtain toluene as an organic layer. The reaction was carried out for 20 hours while dehydrating the solution. After completion of the reaction, 120 parts by mass of toluene was added and water washing was repeated to remove p-toluenesulfonic acid and excess maleic anhydride, and heating was performed to remove water from the system by azeotropic distillation. Then, the reaction solution was concentrated to obtain 281 parts by mass of solid maleimide resin (A1). The softening point of the obtained maleimide resin was 108 ° C.
(実施例1)
 合成例2で得られたベンゾオキサジン樹脂を45質量部、マレイミド樹脂(ケイ・アイ化成(株)製、製品名:BMI)を54質量部配合し、150℃で混練した後、硬化触媒である18%オクトープZn(ホープ製薬(株)製)を1質量部添加し200℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
Example 1
45 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 54 parts by mass of maleimide resin (manufactured by KAI / AI Kasei Co., Ltd., product name: BMI) are blended, and after kneading at 150 ° C., a curing catalyst is obtained One part by weight of 18% Octopus Zn (manufactured by Hope Pharmaceutical Co., Ltd.) was added and cured under the curing conditions of 200 ° C. × 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例2)
 マレイミド樹脂(ケイ・アイ化成(株)製、製品名:BMI)を合成例5で得られたマレイミド樹脂に変えた以外は実施例1と同様にして、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 2)
A cured product of the present invention was obtained in the same manner as Example 1, except that the maleimide resin (manufactured by KAI / AI Kasei Co., Ltd. product name: BMI) was changed to the maleimide resin obtained in Synthesis Example 5. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例3)
 合成例2で得られたベンゾオキサジン樹脂を合成例3で得られたベンゾオキサジン樹脂に変えた以外は実施例1と同様にして、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 3)
A cured product of the present invention was obtained in the same manner as in Example 1 except that the benzoxazine resin obtained in Synthesis Example 2 was changed to the benzoxazine resin obtained in Synthesis Example 3. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例4)
 合成例2で得られたベンゾオキサジン樹脂を55質量部、マレイミド樹脂(ケイ・アイ化成(株)製、製品名:BMI)を44質量部配合し、150℃で混練した後、硬化触媒である18%オクトープZn(ホープ製薬(株)製)を1質量部添加し200℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 4)
55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 44 parts by mass of maleimide resin (manufactured by KAI / AI Kasei Co., Ltd., product name: BMI) are blended, and after kneading at 150 ° C., a curing catalyst is obtained One part by weight of 18% Octopus Zn (manufactured by Hope Pharmaceutical Co., Ltd.) was added and cured under the curing conditions of 200 ° C. × 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例5)
 硬化触媒を18%オクトープZn(ホープ製薬(株)製)から2-エチル4-メチルイミダゾール(四国化成(株)製)に変えた以外は実施例4と同様にして、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 5)
A cured product of the present invention was prepared in the same manner as in Example 4 except that the curing catalyst was changed from 18% Octopus Zn (manufactured by Hope Pharmaceuticals Co., Ltd.) to 2-ethyl 4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.). Obtained. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例6)
 合成例2で得られたベンゾオキサジン樹脂を55質量部、マレイミド樹脂(ケイ・アイ化成(株)製、製品名:BMI)を45質量部配合し、150℃で混練した後、200℃×2時間+230℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 6)
55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 45 parts by mass of maleimide resin (manufactured by KAI / AI Kasei Co., Ltd., product name: BMI) are blended, and after kneading at 150 ° C., 200 ° C. × 2 It was cured under the curing conditions of time + 230 ° C. × 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例7)
 合成例2で得られたベンゾオキサジン樹脂を55質量部、ビス-3-エチル―5-メチル-4-マレイミドフェニルメタン(ケイ・アイ化成(株)製、製品名:BMI-70)を45質量部配合し、150℃で混練した後、200℃×2時間+230℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 7)
55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2 and 45 parts by mass of bis-3-ethyl-5-methyl-4-maleimidophenylmethane (manufactured by Kei Ikasei Co., Ltd., product name: BMI-70) After blending in parts and kneading at 150 ° C., curing was carried out under the curing conditions of 200 ° C. × 2 hours + 230 ° C. × 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例8)
 合成例2で得られたベンゾオキサジン樹脂を55質量部、2,2’-ビス-[4-(4-マレイミドフェノキシ)フェニル]プロパン(ケイ・アイ化成(株)製、製品名:BMI-80)を45質量部配合し、150℃で混練した後、200℃×2時間+230℃×2時間の硬化条件で硬化させ、本発明の硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Example 8)
55 parts by mass of the benzoxazine resin obtained in Synthesis Example 2, 2,2′-bis- [4- (4-maleimidophenoxy) phenyl] propane (manufactured by KAI / AI KASEI CO., LTD., Product name: BMI-80) 45 parts by mass of K) were kneaded at 150 ° C., and then cured under the curing conditions of 200 ° C. × 2 hours + 230 ° C. × 2 hours to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 1.
(実施例9)
 合成例2で得られたベンゾオキサジン樹脂を50質量部、合成例5で得られたマレイミド樹脂を50質量部、18%オクトープZn(ホープ製薬(株)製)を0.5質量部、MEK100質量部を添加し、30℃で還流攪拌し、本発明のワニスを作成した。得られたワニスをガラスクロス(製品名:1031 NT-105、(株)有沢製作所製)に含浸し、80℃のオーブンで乾燥後、150℃で追加乾燥し、本発明のプリプレグを得た。得られたプリプレグを、4枚積層させ銅箔(製品名:CF-T9FZ-HTE-18,福田金属箔分工業(株)製)で挟み、200℃×2時間+230℃×2時間の減圧プレスの硬化条件で硬化させ、本発明の銅張り積層板を得た。得られた銅張り積層板を濃度25%の塩化鉄(III)溶液に付け、銅張り積層板を溶解させた積層板を得た。得られた積層板について耐酸性試験、耐アルカリ性試験及びデスミア液に対するエッチンググレード試験を行った。それらの結果を表2に示す。
(Example 9)
50 parts by mass of the benzoxazine resin obtained in Synthesis Example 2, 50 parts by mass of the maleimide resin obtained in Synthesis Example 5, 0.5 parts by mass of 18% Octopus Zn (manufactured by Hope Pharmaceutical Co., Ltd.), 100 parts by mass of MEK Parts were added and the mixture was stirred under reflux at 30 ° C. to form a varnish of the present invention. The obtained varnish was impregnated into glass cloth (product name: 1031 NT-105, manufactured by Arisawa Mfg. Co., Ltd.), dried in an oven at 80 ° C., and additionally dried at 150 ° C. to obtain a prepreg of the present invention. Four sheets of the obtained prepreg are laminated and sandwiched between copper foils (product name: CF-T9FZ-HTE-18, manufactured by Fukuda Metal Foil Division Co., Ltd.), and subjected to 200 ° C × 2 hours + 230 ° C × 2 hours vacuum press It was cured under the curing conditions of the above to obtain a copper-clad laminate of the present invention. The obtained copper-clad laminate was attached to a 25% iron (III) chloride solution to obtain a laminate in which the copper-clad laminate was dissolved. The obtained laminate was subjected to an acid resistance test, an alkali resistance test and an etching grade test for a desmear solution. The results are shown in Table 2.
(実施例10)
 合成例2で得られたベンゾオキサジン樹脂を10質量部、合成例5で得られたマレイミド樹脂を30質量部、2,2-ビス(4-シアナトフェニル)プロパン(東京化成工業(株)製)を60質量部添加し、120℃で加熱溶融しながら混合し、ベンゾオキサジン-マレイミド-シアネートエステル樹脂組成物を得た。得られた樹脂組成物の硬化挙動を確認するためMDSC測定を行った。MDSC測定の結果を図3に示す。
 更に得られた樹脂組成物を200℃、成形圧力50kg/cmの条件でトランスファー成形し、成形体を220℃でポストキュアし、本発明の硬化物を得た。硬化物の物性の測定結果を表3に示す。
(Example 10)
10 parts by mass of the benzoxazine resin obtained in Synthesis Example 2, 30 parts by mass of the maleimide resin obtained in Synthesis Example 5, 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) 60 parts by mass) were mixed while heating and melting at 120 ° C. to obtain a benzoxazine-maleimido-cyanate ester resin composition. MDSC measurement was performed to confirm the curing behavior of the obtained resin composition. The results of the MDSC measurement are shown in FIG.
Further, the obtained resin composition was transfer molded under the conditions of 200 ° C. and a molding pressure of 50 kg / cm 2 , and the molded body was post-cured at 220 ° C. to obtain a cured product of the present invention. The measurement results of the physical properties of the cured product are shown in Table 3.
(比較例1)
 合成例2で得られたベンゾオキサジン樹脂をビスフェノールF型ベンゾオキサジン樹脂(四国化成(株)製)に変えた以外は実施例4と同様にして、硬化物を得た。硬化物の物性の測定結果を表1に示す。
(Comparative example 1)
A cured product was obtained in the same manner as in Example 4, except that the benzoxazine resin obtained in Synthesis Example 2 was changed to a bisphenol F-type benzoxazine resin (manufactured by Shikoku Kasei Co., Ltd.). The measurement results of the physical properties of the cured product are shown in Table 1.
(比較例2)
 ビスフェノールA型エポキシ樹脂(製品名:JER-828、三菱化学(株)製)を65質量部、フェノールノボラック(製品名:H-1、明和化成(株)製)を50質量部、2-エチル-4-メチルイミダゾール(四国化成(株)製)を0.5質量部、MEK70質量部、メチルセルソルブ30質量部を添加し、30℃で還流攪拌し、ワニスを作成した。ワニスをガラスクロス(製品名:1031 NT-105、(株)有沢製作所製)に含浸し、80℃のオーブンで乾燥後、150℃で追加乾燥し、プリプレグを得た。得られたプリプレグを、4枚積層させ銅箔(製品名:CF-T9FZ-HTE-18,福田金属箔分工業(株)製)で挟み、200℃×2時間+230℃×2時間の減圧プレスの硬化条件で硬化させ、銅張り積層板を得た。得られた銅張り積層板を濃度25%の塩化鉄(III)溶液に付け、銅張り積層板を溶解させた積層板を得た。得られた積層板について耐酸性試験、耐アルカリ性試験及びデスミア液に対するエッチンググレード測定を行った。それらの結果を表2に示す。
(Comparative example 2)
65 parts by mass of bisphenol A type epoxy resin (product name: JER-828, manufactured by Mitsubishi Chemical Corporation), 50 parts by mass of phenol novolac (product name: H-1, manufactured by Meiwa Kasei Co., Ltd.), 2-ethyl 0.5 parts by mass of -4-methylimidazole (manufactured by Shikoku Kasei Co., Ltd.), 70 parts by mass of MEK and 30 parts by mass of methyl cellosolve were added, and the mixture was stirred under reflux at 30 ° C. to prepare a varnish. The varnish was impregnated into glass cloth (product name: 1031 NT-105, manufactured by Arisawa Seisakusho Co., Ltd.), dried in an oven at 80 ° C., and additionally dried at 150 ° C. to obtain a prepreg. Four sheets of the obtained prepreg are laminated and sandwiched between copper foils (product name: CF-T9FZ-HTE-18, manufactured by Fukuda Metal Foil Division Co., Ltd.), and subjected to 200 ° C × 2 hours + 230 ° C × 2 hours vacuum press It hardened on the hardening conditions of, and obtained the copper-clad laminate board. The obtained copper-clad laminate was attached to a 25% iron (III) chloride solution to obtain a laminate in which the copper-clad laminate was dissolved. The obtained laminate was subjected to the acid resistance test, the alkali resistance test, and the etching grade measurement for the desmear solution. The results are shown in Table 2.
(比較例3)
 ビスフェノールF型ベンゾオキサジン樹脂(四国化成(株)製)を50質量部、合成例5で得られたマレイミド樹脂を50質量部、MEK100質量部を添加し、30℃で還流攪拌したが、溶解しなかった。
(Comparative example 3)
50 parts by mass of bisphenol F-type benzoxazine resin (manufactured by Shikoku Kasei Co., Ltd.), 50 parts by mass of the maleimide resin obtained in Synthesis Example 5 and 100 parts by mass of MEK were added and dissolved under reflux at 30 ° C. It was not.
(比較例4)
 合成例5で得られたマレイミド樹脂を33質量部、2,2-ビス(4-シアナトフェニル)プロパン(東京化成工業(株)製)を67質量部添加し、120℃で加熱溶融しながら混合し、混合樹脂を得た。得られた混合樹脂の硬化挙動を確認するためMDSC測定を行った。MDSC測定の結果を図3に示す。
 更に得られた混合樹脂を200℃、成形圧力50kg/cmの条件でトランスファー成形し、成形体を220℃でポストキュアし、硬化物を得た。得られた硬化物の物性を評価した。結果を表3に示す。
(Comparative example 4)
33 parts by mass of the maleimide resin obtained in Synthesis Example 5 and 67 parts by mass of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) are added, and the mixture is heated and melted at 120 ° C. It mixed and obtained mixed resin. MDSC measurements were performed to confirm the curing behavior of the resulting mixed resin. The results of the MDSC measurement are shown in FIG.
Further, the obtained mixed resin was transfer-molded at 200 ° C. under a molding pressure of 50 kg / cm 2 , and the molded body was post-cured at 220 ° C. to obtain a cured product. Physical properties of the obtained cured product were evaluated. The results are shown in Table 3.
(比較例5)
 2,2-ビス(4-シアナトフェニル)プロパン(東京化成工業(株)製)のMDSC測定を行い、硬化挙動を確認した。MDSC測定の結果を図3に示す。
(Comparative example 5)
The MDSC measurement of 2,2-bis (4-cyanatophenyl) propane (manufactured by Tokyo Chemical Industry Co., Ltd.) was performed to confirm the curing behavior. The results of the MDSC measurement are shown in FIG.
 得られた硬化物は下記条件にて測定を実施した。
<耐熱性>
・DMA測定にてTg(tanδ最大時の温度)の測定を行った。
 測定装置:動的粘弾性測定器TA-instruments製、Q-800
 測定温度:30~350℃
 昇温速度:2℃/min
 サンプルサイズ:幅5mm×長さ50mm×厚み0.8mm
 <誘電率及び誘電正接>
・空洞共振器を用いて空洞共振器摂動法にて測定を行った。
 測定装置:空洞共振器 Agilent Technologies社製
 測定方法:JIS K6991に準拠して1GHzにおいて測定
 測定モード:空洞共振器摂動法
 測定温度:25℃
 サンプルサイズ:幅1.7mm×長さ100mm×厚さ1.7mm
<耐熱分解性>
・TG-DTAを用いて重量が1%及び5%減少したときの温度を測定した。
 測定装置:TG-DTA6220 SII社製
 測定温度:30~580℃
 昇温速度:10℃/min
 Td1:1%重量減少温度
 Td5:5%重量減少温度
<吸水率>
・試験片を100℃の水中で24時間煮沸させた後の重量増加率(%)
 サンプルサイズ:直径5cm×厚み4mmの円盤状
The obtained cured product was measured under the following conditions.
<Heat resistance>
-Measurement of Tg (temperature at maximum of tan δ) was performed by DMA measurement.
Measuring device: Dynamic viscoelasticity measuring instrument TA-instruments, Q-800
Measurement temperature: 30 to 350 ° C
Heating rate: 2 ° C / min
Sample size: Width 5 mm × length 50 mm × thickness 0.8 mm
<Dielectric constant and dielectric loss tangent>
-Measurement was performed by a cavity resonator perturbation method using a cavity resonator.
Measurement device: Cavity resonator Agilent Technologies, Inc. Measurement method: Measurement at 1 GHz according to JIS K6991 Measurement mode: Cavity resonator perturbation method Measurement temperature: 25 ° C.
Sample size: Width 1.7mm × length 100mm × thickness 1.7mm
<Heat resistant decomposition resistance>
TG-DTA was used to measure the temperature at which the weight was reduced by 1% and 5%.
Measuring device: TG-DTA6220 manufactured by SII Measuring temperature: 30 to 580 ° C.
Heating rate: 10 ° C / min
Td 1: 1% weight loss temperature Td 5: 5% weight loss temperature <water absorption>
・ Weight gain (%) after boiling test piece in water at 100 ° C for 24 hours
Sample size: 5 cm diameter × 4 mm thick disc
 得られた積層板は下記条件にて測定した。
<耐酸性試験>
・JIS K 8576に規定の塩酸を、濃度3±0.2wt%、温度40±2℃の水溶液に調整し、試料を24時間浸漬させた後に取り出し、速やかに流水中で20±10分間洗い、乾燥した清浄な試料の膨れや変色の有無を確認する。
<耐アルカリ性試験>
・JIS K 8576に規定の水酸化ナトリウムを、濃度3±0.2wt%、温度40±2℃の水溶液に調整し、試料を24時間浸漬させた後に取り出し、速やかに流水中で20±10分間洗い、乾燥した清浄な試料に膨れや変色の有無を確認する。
<デスミア液に対するエッチンググレード試験>
・乾燥後の10cm×10cmにカットした試験片を初期質量測定後に奥野製薬(株)製「OPC-1080コンディショナー」及び「無電解銅R-N」に60℃で5分間膨潤させた後、奥野製薬(株)製「OPC-1200エボエッチ」及び「OPC-1540MN」にて80℃で6分間マイクロエッチング処理した。次に、奥野製薬(株)製「OPC-1300ニュートライザー」で5分間中和した後、100℃で24時間乾燥させた後、デシケータ内で1日空冷してからデスミア処理後の質量を測定した。耐デスミア液耐性は(重量変化/試料の表面積)から算出した。
The obtained laminate was measured under the following conditions.
<Acid resistance test>
· Adjust hydrochloric acid specified in JIS K 8576 to an aqueous solution with a concentration of 3 ± 0.2 wt% and a temperature of 40 ± 2 ° C, immerse the sample for 24 hours, remove it, and immediately wash in running water for 20 ± 10 minutes, Check for swelling or discoloration of the dry, clean sample.
<Alkali resistance test>
-Adjust sodium hydroxide specified in JIS K 8576 to an aqueous solution with a concentration of 3 ± 0.2 wt% and a temperature of 40 ± 2 ° C, immerse the sample for 24 hours, and then immediately take out it for 20 ± 10 minutes in running water. Check the washed and dried clean sample for swelling and discoloration.
<Etching grade test for desmear liquid>
· After swelling the test pieces cut into 10 cm × 10 cm after drying in the “OPC-1080 conditioner” and “electroless copper R-N” manufactured by Okuno Pharmaceutical Co., Ltd. for 5 minutes at 60 ° C. for 5 minutes, Micro etching was performed at 80 ° C. for 6 minutes using “OPC-1200 EVO Etch” and “OPC-1540 MN” manufactured by Pharmaceutical Co., Ltd. Next, after neutralizing for 5 minutes with Okuno Seiyaku Co., Ltd. “OPC-1300 Neutriizer”, it is dried at 100 ° C. for 24 hours, then air cooled in a desiccator for 1 day, and then the mass after desmear treatment is measured. did. The resistance to desmear liquid was calculated from (weight change / surface area of sample).
<トランスファー成形体の歩留まり>
・下記のトランスファー成形条件で硬化樹脂成形体を作製した。
歩留りは、(クラックがないサンプル数)/(サンプル数)で評価した。
加熱温度:200℃
成形圧力:50kg/cm
サンプル形状:幅1.7mm×長さ100mm×厚さ1.7mm
<Yield of transfer molded product>
A cured resin molding was produced under the following transfer molding conditions.
The yield was evaluated by (number of samples without cracks) / (number of samples).
Heating temperature: 200 ° C
Molding pressure: 50 kg / cm 2
Sample shape: Width 1.7mm × length 100mm × thickness 1.7mm
 実施例10、比較例4、5で得られた樹脂組成物の硬化挙動は下記条件にて測定を行った。
<硬化挙動>
・MDSC測定にて硬化発熱の観察を行った。
 測定装置:Q-2000 TAインスツルメンツ社製
 測定温度:25~330℃
 昇温速度:3℃/min
 測定モード:MDSC測定
The curing behavior of the resin composition obtained in Example 10 and Comparative Examples 4 and 5 was measured under the following conditions.
<Hardening behavior>
The heat of curing was observed by MDSC measurement.
Measuring device: Q-2000 TA Instruments Co. Measuring temperature: 25 to 330 ° C
Heating rate: 3 ° C / min
Measurement mode: MDSC measurement
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Tg 1st:1回目の測定結果
Tg 2nd:1回目の測定終了後、350℃まで加温したサンプルを室温まで冷却して再測定した結果
ΔTg:(Tg 2nd)-(Tg 1st)
Tg 1st: First measurement result Tg 2nd: After completion of the first measurement, the sample heated to 350 ° C. is cooled to room temperature and re-measured result ΔTg: (Tg 2nd)-(Tg 1st)
 表1の結果より、比較例1は耐熱性が良好であったが、その他の特性において不具合を生じた。これに対して、本発明の硬化性樹脂組成物(実施例1~8)は、耐熱性、熱分解特性、誘電特性、及び吸水特性の全ての特性において優れた結果を示した。 From the results of Table 1, Comparative Example 1 was good in heat resistance, but failed in other characteristics. On the other hand, the curable resin compositions (Examples 1 to 8) of the present invention showed excellent results in all of the heat resistance, thermal decomposition characteristics, dielectric characteristics, and water absorption characteristics.
 比較例3は基板分野で一般に使用されているMEKに溶解しなかったのに対し、実施例9はMEKへの溶解性が良好であり、積層板への加工性に優れる。 Comparative Example 3 did not dissolve in MEK generally used in the field of substrates, whereas Example 9 had good solubility in MEK and was excellent in processability to laminates.
 表2の結果より、実施例9は耐薬品性に優れ、一般的なエポキシ積層板である比較例2よりも耐デスミア液耐性に優れた結果を示した。 From the results of Table 2, Example 9 was excellent in chemical resistance, and showed a result of being more excellent in the resistance to desmear liquid than Comparative Example 2 which is a general epoxy laminate.
 図3の結果より、比較例4、5は重合温度が高温であるが、実施例10は本発明のベンゾオキサジン樹脂を添加することで、触媒を添加していないにもかかわらず、シアネートエステル樹脂及びマレイミド樹脂の重合を促進する結果となった。
 さらに、表3の結果より、本発明のベンゾオキサジン-マレイミド-シアネートエステル樹脂組成物はΔTgの変化が殆どなく、220℃の条件で硬化することが確認できた。
また、その硬化物は耐熱性に優れ、低誘電材料として知られるBTレジンの組成と比較して優れた結果を示した。
 実施例10は触媒なしで硬化して、耐熱性、低誘電性に優れることから、産業上の利用可能性が高い。
From the results of FIG. 3, although Comparative Examples 4 and 5 have a high polymerization temperature, Example 10 adds a benzoxazine resin of the present invention, although a cyanate ester resin is not added. And promoting the polymerization of the maleimide resin.
Furthermore, from the results in Table 3, it was confirmed that the benzoxazine-maleimido-cyanate ester resin composition of the present invention hardly causes a change in ΔTg and cures under the condition of 220 ° C.
Moreover, the cured product was excellent in heat resistance and showed excellent results as compared with the composition of BT resin known as a low dielectric material.
Since Example 10 is cured without a catalyst and is excellent in heat resistance and low dielectric property, industrial applicability is high.
 本発明を特定の態様を参照して詳細に説明したが、本発明の精神と範囲を離れることなく様々な変更および修正が可能であることは、当業者にとって明らかである。
 なお、本出願は、2017年10月20日付で出願された日本国特許出願(特願2017-203286)に基づいており、その全体が引用により援用される。また、ここに引用されるすべての参照は全体として取り込まれる。
Although the present invention has been described in detail with reference to particular embodiments, it will be apparent to those skilled in the art that various changes and modifications can be made without departing from the spirit and scope of the present invention.
This application is based on the Japanese Patent Application (Japanese Patent Application No. 2017-203286) filed on October 20, 2017, which is incorporated by reference in its entirety. Also, all references cited herein are taken as a whole.
 本発明の硬化性樹脂組成物は、溶剤溶解性に優れ、耐熱性、熱分解特性、誘電特性、吸水特性、耐薬品性に優れた硬化物が得られるため、電気電子部品用絶縁材料、半導体封止材料用途、積層板(プリント配線板、ビルドアップ基板など)、CFRPを始めとする各種複合材料、接着剤、塗料等に有用である。 The curable resin composition of the present invention is excellent in solvent solubility, and a cured product excellent in heat resistance, thermal decomposition characteristics, dielectric characteristics, water absorption characteristics, and chemical resistance can be obtained. It is useful for sealing material applications, laminates (printed wiring boards, build-up substrates, etc.), various composite materials including CFRP, adhesives, paints, etc.

Claims (9)

  1.  マレイミド樹脂(A)、及び下記式(1)で表されるベンゾオキサジン樹脂(B)を含有する硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、nは繰り返し数の平均値であり、1~10の実数を表す。R~Rはそれぞれ独立に水素原子、ハロゲン原子、炭素数1~8のアルキル基又はアリール基のいずれかを表す。R~Rがそれぞれ複数存在する場合、それぞれのR~Rは互いに同一であっても異なっていてもよい。R、R10はそれぞれ独立に水素原子、炭素数1~8のアルキル基、アリール基、アリル基又はアルコキシ基のいずれかを表す。R、R10がそれぞれ複数存在する場合、それぞれのR、R10は互いに同一であっても異なっていてもよい。点線はベンゼン環が形成されていてもよいことを表す。)
    Curable resin composition containing maleimide resin (A) and benzoxazine resin (B) represented by following formula (1).
    Figure JPOXMLDOC01-appb-C000001
    (In formula (1), n is an average value of the number of repetitions and represents a real number of 1 to 10. R 1 to R 8 each independently represent a hydrogen atom, a halogen atom, an alkyl group having 1 to 8 carbon atoms, or an aryl group If .R 3 ~ R 7 represent either a group is present in plural, each of R 3 ~ R 7 is optionally being the same or different .R 9, R 10 each independently represent a hydrogen atom Or an alkyl group having 1 to 8 carbon atoms, an aryl group, an allyl group or an alkoxy group, and when a plurality of R 9 s and R 10 s are present, each R 9 s and R 10 s may be identical to each other The dotted line may indicate that a benzene ring may be formed.)
  2.  前記式(1)におけるR~Rが水素原子である請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein R 1 to R 8 in the formula (1) are hydrogen atoms.
  3.  前記マレイミド樹脂(A)として芳香族マレイミド樹脂及び脂肪族マレイミド樹脂から選ばれる1種以上の樹脂を含有する請求項1又は2に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the maleimide resin (A) contains one or more resins selected from an aromatic maleimide resin and an aliphatic maleimide resin.
  4.  さらにシアネートエステル樹脂を含有する請求項1乃至3のいずれか一項に記載の硬化性樹脂組成物。 The curable resin composition according to any one of claims 1 to 3, further comprising a cyanate ester resin.
  5.  請求項1乃至4のいずれか一項に記載の硬化性樹脂組成物を硬化してなる硬化物。 A cured product obtained by curing the curable resin composition according to any one of claims 1 to 4.
  6.  請求項1乃至4のいずれか一項に記載の硬化性樹脂組成物を溶媒に溶かしたワニス。 The varnish which melt | dissolved the curable resin composition as described in any one of Claims 1-4 in the solvent.
  7.  請求項6に記載のワニスを基材に含浸させてなるプリプレグ。 A prepreg obtained by impregnating the varnish according to claim 6 into a substrate.
  8.  請求項7に記載のプリプレグを硬化してなる硬化物。 A cured product obtained by curing the prepreg according to claim 7.
  9.  請求項7に記載のプリプレグを使用して得られる積層板または銅張積層板。 A laminated board or a copper clad laminated board obtained by using the prepreg according to claim 7.
PCT/JP2018/038852 2017-10-20 2018-10-18 Curable resin composition, varnish, prepreg, cured product, laminate and copper-clad laminate WO2019078300A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019512853A JP6515255B1 (en) 2017-10-20 2018-10-18 Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
CN201880064594.9A CN111164127A (en) 2017-10-20 2018-10-18 Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017203286 2017-10-20
JP2017-203286 2017-10-20

Publications (1)

Publication Number Publication Date
WO2019078300A1 true WO2019078300A1 (en) 2019-04-25

Family

ID=66173627

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038852 WO2019078300A1 (en) 2017-10-20 2018-10-18 Curable resin composition, varnish, prepreg, cured product, laminate and copper-clad laminate

Country Status (4)

Country Link
JP (1) JP6515255B1 (en)
CN (1) CN111164127A (en)
TW (1) TWI757557B (en)
WO (1) WO2019078300A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149698A1 (en) * 2020-01-22 2021-07-29 昭和電工マテリアルズ株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board and semiconductor package
JP2021152182A (en) * 2021-03-15 2021-09-30 晉一化工股▲ふん▼有限公司Chin Yee Chemical Industries Co., Ltd. Thermosetting resin composition, flame-retardant resin composition, liquid package material and use of the same, and film and use of the same
CN116333586A (en) * 2023-03-29 2023-06-27 哈尔滨理工大学 High heat-resistant impregnating varnish and preparation method and application thereof

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111592502A (en) * 2020-06-11 2020-08-28 广东同宇新材料有限公司 Biphenyl polyamine benzoxazine and preparation method thereof
CN112142682A (en) * 2020-10-14 2020-12-29 广东同宇新材料有限公司 Biphenyl benzoxazine, preparation method thereof and polybenzoxazine resin

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010839A (en) * 2002-06-10 2004-01-15 Nippon Steel Chem Co Ltd Thermosetting resin having benzoxazine structure, resin composition and cured material
JP2009001783A (en) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd Resin composition for laminate, prepreg and laminate
JP2009001755A (en) * 2007-06-25 2009-01-08 Sekisui Chem Co Ltd Thermosetting resin, thermosetting composition containing the same and molded body obtained from the same
CN103131007A (en) * 2011-11-22 2013-06-05 台光电子材料股份有限公司 Thermosetting resin composition and laminated plate and circuit board employing same
WO2014057973A1 (en) * 2012-10-11 2014-04-17 国立大学法人横浜国立大学 Thermosetting resin and thermosetting resin composition
JP2017186265A (en) * 2016-04-04 2017-10-12 日本化薬株式会社 Benzoxazine compound
JP2018135447A (en) * 2017-02-22 2018-08-30 住友ベークライト株式会社 Resin composition and structure

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009084391A (en) * 2007-09-28 2009-04-23 Sekisui Chem Co Ltd Method for producing thermosetting resin having dihydrobenzoxazine ring structure
TWI450913B (en) * 2011-11-04 2014-09-01 Elite Material Co Ltd Thermosetting resin composition and application board and circuit board
TWI526435B (en) * 2015-04-10 2016-03-21 Elite Material Co Ltd Modified benzoxazine resin and its composition
WO2017104295A1 (en) * 2015-12-16 2017-06-22 Dic株式会社 Oxazine compound, composition and cured product

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004010839A (en) * 2002-06-10 2004-01-15 Nippon Steel Chem Co Ltd Thermosetting resin having benzoxazine structure, resin composition and cured material
JP2009001783A (en) * 2007-05-18 2009-01-08 Nippon Kayaku Co Ltd Resin composition for laminate, prepreg and laminate
JP2009001755A (en) * 2007-06-25 2009-01-08 Sekisui Chem Co Ltd Thermosetting resin, thermosetting composition containing the same and molded body obtained from the same
CN103131007A (en) * 2011-11-22 2013-06-05 台光电子材料股份有限公司 Thermosetting resin composition and laminated plate and circuit board employing same
WO2014057973A1 (en) * 2012-10-11 2014-04-17 国立大学法人横浜国立大学 Thermosetting resin and thermosetting resin composition
JP2017186265A (en) * 2016-04-04 2017-10-12 日本化薬株式会社 Benzoxazine compound
JP2018135447A (en) * 2017-02-22 2018-08-30 住友ベークライト株式会社 Resin composition and structure

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021149698A1 (en) * 2020-01-22 2021-07-29 昭和電工マテリアルズ株式会社 Thermosetting resin composition, prepreg, laminate, printed wiring board and semiconductor package
JP2021152182A (en) * 2021-03-15 2021-09-30 晉一化工股▲ふん▼有限公司Chin Yee Chemical Industries Co., Ltd. Thermosetting resin composition, flame-retardant resin composition, liquid package material and use of the same, and film and use of the same
JP7155352B2 (en) 2021-03-15 2022-10-18 晉一化工股▲ふん▼有限公司 Thermosetting resin composition, flame-retardant resin composition, liquid packaging material and its use, and film and its use
CN116333586A (en) * 2023-03-29 2023-06-27 哈尔滨理工大学 High heat-resistant impregnating varnish and preparation method and application thereof
CN116333586B (en) * 2023-03-29 2024-01-02 哈尔滨理工大学 High heat-resistant impregnating varnish and preparation method and application thereof

Also Published As

Publication number Publication date
TWI757557B (en) 2022-03-11
CN111164127A (en) 2020-05-15
JP6515255B1 (en) 2019-05-15
TW201922917A (en) 2019-06-16
JPWO2019078300A1 (en) 2019-11-14

Similar Documents

Publication Publication Date Title
JP6515255B1 (en) Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
JP5030297B2 (en) Laminate resin composition, prepreg and laminate
WO2017170844A1 (en) Thermosetting resin composition, prepreg and cured product thereof
JP6799376B2 (en) Oxazine resin composition and its cured product
JP7357139B2 (en) Active ester resins, epoxy resin compositions, cured products thereof, prepregs, laminates, and build-up films
JP5366263B2 (en) Phenol aralkyl resin, epoxy resin composition and cured product thereof
JP6513372B2 (en) Phenolic resin, epoxy resin, epoxy resin composition and cured product thereof
JP7415272B2 (en) Indanbisphenol compound, curable resin composition, and cured product
JP5328064B2 (en) Polyhydric phenol compound, thermosetting resin composition and cured product thereof
WO2019078298A1 (en) Benzoxazine resin, benzoxazine resin composition, cured product thereof, varnish, prepreg, and laminate or copper-clad laminate
JP2009046632A (en) Polyfunctional epoxidized polyphenylene ether resin and method for manufacturing the same
WO2023032534A1 (en) Allyl ether compound, resin composition, and cured product thereof
TWI522385B (en) An epoxy resin, an epoxy resin composition, and a cured product thereof
KR101889442B1 (en) Phenol novolak resin and epoxy resin composition using same
TW201902714A (en) Epoxy resin, production method, epoxy resin composition, and cured product thereof
JP5448137B2 (en) Polyhydric phenol resin, epoxy resin composition, and cured product thereof
JP7198419B2 (en) Curable resin composition
JP5170724B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP4628621B2 (en) Method for producing phenol aralkyl resin
JP4748625B2 (en) Epoxy resin, epoxy resin composition and cured product thereof
JP6464721B2 (en) Cyanate ester compound, cyanate ester resin, method for producing cyanate ester compound, curable resin composition, cured product thereof, build-up adhesive film, semiconductor sealing material, prepreg, and circuit board
US20150322308A1 (en) Epoxy resin, production method thereof, epoxy resin composition, and cured product
WO2024071129A1 (en) Active ester resin, epoxy resin composition and cured product thereof, prepreg, laminated board, and build-up film
US20230242753A1 (en) Thermosetting resin composition and cured product thereof
JP7157601B2 (en) Thermosetting resin composition and cured product thereof

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2019512853

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18868314

Country of ref document: EP

Kind code of ref document: A1