WO2014057973A1 - Thermosetting resin and thermosetting resin composition - Google Patents

Thermosetting resin and thermosetting resin composition Download PDF

Info

Publication number
WO2014057973A1
WO2014057973A1 PCT/JP2013/077465 JP2013077465W WO2014057973A1 WO 2014057973 A1 WO2014057973 A1 WO 2014057973A1 JP 2013077465 W JP2013077465 W JP 2013077465W WO 2014057973 A1 WO2014057973 A1 WO 2014057973A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermosetting resin
general formula
group
compound represented
resin composition
Prior art date
Application number
PCT/JP2013/077465
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 昭雄
俊幸 大山
岡本 真
Original Assignee
国立大学法人横浜国立大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 国立大学法人横浜国立大学 filed Critical 国立大学法人横浜国立大学
Priority to JP2014540866A priority Critical patent/JP6108561B2/en
Publication of WO2014057973A1 publication Critical patent/WO2014057973A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08L79/085Unsaturated polyimide precursors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/28Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection
    • H01L23/29Encapsulations, e.g. encapsulating layers, coatings, e.g. for protection characterised by the material, e.g. carbon
    • H01L23/293Organic, e.g. plastic
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/02Polyamines
    • C08G73/0233Polyamines derived from (poly)oxazolines, (poly)oxazines or having pendant acyl groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0622Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0638Polycondensates containing six-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with at least three nitrogen atoms in the ring
    • C08G73/065Preparatory processes
    • C08G73/0655Preparatory processes from polycyanurates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/12Unsaturated polyimide precursors
    • C08G73/126Unsaturated polyimide precursors the unsaturated precursors being wholly aromatic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a thermosetting resin excellent in heat resistance, a low coefficient of thermal expansion, and moldability, and a thermosetting resin composition used for the resin.
  • Polybenzoxazine is a thermosetting resin obtained by ring-opening polymerization of benzoxazine, which is a monomer having a cyclic moiety, and is expected as a novel phenol resin that can overcome the drawbacks of conventional phenol resins.
  • Polymerization of benzoxazine is ring-opening polymerization, and the resulting resin not only has the same heat resistance, flame retardancy, and electrical properties as conventional phenolic resins, but also requires no polymerization catalyst, and is free from molecular design. Advantages such as high degree, few by-products, and good dimensional stability are attracting attention.
  • benzoxazine is advantageous in that the aromatic ring in the structure causes stacking in the polymer, and thus the coefficient of thermal expansion of the cured resin is low. From these characteristics, utilization of polybenzoxazine as the sealing material is expected.
  • a resin having a further improved heat resistance is disclosed by polymerizing a mixture containing benzoxazine and bismaleimide (see, for example, Non-Patent Document 1). .
  • Non-Patent Document 1 has a high melting point of bismaleimide and requires a high temperature for the melt mixing of benzoxazine and bismaleimide, it is still from the viewpoint of obtaining a resin excellent in moldability. There is room for improvement.
  • thermosetting resin excellent in heat resistance, a low thermal expansion coefficient, and a moldability and the thermosetting resin composition used for the said resin are provided.
  • thermosetting resin composition used for the said resin are provided.
  • thermosetting resin according to an embodiment of the present invention is 0.2 to 0.5 with respect to the compound represented by the following general formula (1) and the compound represented by the following general formula (1).
  • a mixture containing a double molar amount of the compound represented by the following general formula (2) and a cyanate ester is polymerized.
  • X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond.
  • Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more.
  • thermosetting resin according to an embodiment of the present invention are each independently a linear or branched alkylene group having 1 to 3 carbon atoms, or the following formula (i):
  • the thermosetting resin according to an embodiment of the present invention includes 0.3 to 10 times the molar amount of the cyanate ester with respect to the compound represented by the general formula (1). 2] is preferable.
  • the thermosetting resin composition according to the embodiment of the present invention is 0.2 to 0 with respect to the compound represented by the following general formula (1) and the compound represented by the following general formula (1).
  • a 5-fold molar amount of the compound represented by the following general formula (2) and a cyanate ester are included.
  • X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond.
  • Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more.
  • thermosetting resin composition according to an embodiment of the present invention, X 1 and X 2 are each independently a linear or branched alkylene group having 1 to 3 carbon atoms, or the following formula (
  • the thermosetting resin composition [4] which is a group represented by any one of i) to (iii) is preferable.
  • the mixture contains 0.3 to 10 times the molar amount of the cyanate ester relative to the compound represented by the general formula (1). It is preferable that it is the thermosetting resin composition of [4] or [5] containing.
  • the semiconductor encapsulant according to the embodiment of the present invention is preferably a semiconductor encapsulant including the thermosetting resin composition of [4] to [6].
  • thermosetting resin of the present invention since it is excellent in heat resistance, low thermal expansion coefficient, and moldability, it is suitably used as a sealing material for power devices for electric vehicles and hybrid vehicles. According to the thermosetting resin composition of the present invention, it is possible to provide a thermosetting resin excellent in heat resistance, a low coefficient of thermal expansion, and moldability.
  • FIG. 6 is a diagram showing the results of differential scanning calorimetry in Examples 1 to 5 and Comparative Example 1 of the present invention.
  • FIG. 6 is a diagram showing the results of FT-IR measurement in Examples 1 to 5 and Comparative Example 1 of the present invention.
  • FIG. 6 is another diagram showing the results of FT-IR measurement in Examples 1 to 5 and Comparative Example 1 of the present invention.
  • thermosetting resin composition has a molar amount of 0.2 to 0.5 times the amount of the compound represented by the following general formula (1) and the compound represented by the general formula (1).
  • a compound represented by the following general formula (2) and a cyanate ester are included.
  • X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond. ]
  • Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more.
  • X 1 is an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”. , An oxygen atom, or a single bond.
  • the alkylene group for X 1 is preferably a linear or branched alkylene group.
  • the number of carbon atoms of the alkylene group in X 1 is preferably 1 to 10, more preferably 1 to 7, and particularly preferably 1 to 3.
  • Specific examples of the linear alkylene group include methylene group, ethylene group, n-propylene group (trimethylene group), n-butylene group (tetramethylene group), n-pentylene group (pentamethylene group), n -Hexylene group (hexamethylene group), n-heptylene group, n-octylene group, n-nonylene group, n-decanylene group, and the like.
  • Examples of the branched alkylene group include a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, and a decanylene group.
  • —C (CH 3 ) 2 — isopropylene group
  • An alkylmethylene group such as —C (CH 3 ) (CH 2 CH 2 CH 3 ) — or —C (CH 2 CH 3 ) 2 —; —CH (CH 3 ) CH 2 —, —CH (CH 3 ) CH
  • An alkylethylene group such as (CH 3 ) —, —C (CH 3 ) 2 CH 2 —, —CH (CH 2 CH 3 ) CH 2 —, or —C (CH 2 CH 3 ) 2 —CH 2 —, etc.
  • Preferable examples of the alkylene group for X 1 include a methylene group, an ethylene group, an n-propylene group, and an isopropylene group.
  • Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more.
  • the hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring may be composed only of an aromatic ring, or may have a hydrocarbon group other than the aromatic ring.
  • Y may have one aromatic ring or two or more aromatic rings, and in the case of two or more, these aromatic rings may be the same or different.
  • the aromatic ring may be either a monocyclic structure or a polycyclic structure.
  • Preferred hydrocarbon groups having 6 to 30 carbon atoms having an aromatic ring include compounds having an aromatic ring such as benzene, biphenyl, naphthalene, anthracene, fluorene, phenanthrene, indacene, terphenyl, acenaphthylene, or phenalene.
  • aromatic hydrocarbon groups may have a substituent.
  • that the aromatic hydrocarbon group has a substituent means that part or all of the hydrogen atoms constituting the aromatic hydrocarbon group are substituted by the substituent. Examples of the substituent include an alkyl group.
  • the alkyl group as a substituent is preferably a chain alkyl group.
  • the number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 4.
  • Specific examples of the substituent that the aromatic hydrocarbon group has include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, and a sec-butyl group.
  • Y preferably has a group obtained by removing two hydrogen atoms from benzene, biphenyl or naphthalene.
  • the group represented by the general formula (3) is more preferably a group represented by any of the following formulas (i) to (iii).
  • n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and particularly preferably 1 or 2.
  • the X 1 is a linear or branched alkylene group having 1 to 3 carbon atoms, or the above formulas (i) to (iii). It is preferable that it is group represented by either.
  • the compound represented by the general formula (1) is a straight chain having 1 to 3 carbon atoms or X 1 in the general formula (1)
  • X 1 in the general formula is a group represented by any one of the formulas (i) to (iii)
  • a compound represented by the general formula (1-1) And at least one compound selected from the group consisting of the compound represented by the general formula (1-2), the compound represented by the general formula (1-1), and More preferably, it is at least one compound selected from the group consisting of compounds represented by formula (1-2).
  • X 2 is an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”. , An oxygen atom, or a single bond.
  • X 2 in the general formula (2) is the same as X 1 in the general formula (1).
  • X 1 and X 2 may be the same as or different from each other.
  • the X 2 is a linear or branched alkylene group having 1 to 3 carbon atoms, or the above formulas (i) to (iii). It is preferable that it is group represented by either.
  • a compound represented by the following general formula (4) is not used. Compared with the compound represented by the general formula (4), a resin having a higher heat resistance can be obtained by using the compound represented by the general formula (2).
  • the compound represented by the general formula (2) is a compound in which X 2 in the general formula (2) is a straight chain having 1 to 3 carbon atoms or A compound which is a branched alkylene group, a compound wherein X 2 in the general formula is a group represented by any one of the formulas (i) to (iii), and a compound represented by the general formula (2-1) And at least one compound selected from the group consisting of the compound represented by the general formula (2-2), the compound represented by the general formula (2-1), and More preferably, it is at least one compound selected from the group consisting of compounds represented by formula (2-2).
  • the content of the compound represented by the general formula (2) in the thermosetting resin composition of the present embodiment is such that the molar ratio with respect to the compound represented by the general formula (1) is 0.00. 2 to 0.5 times. By being in this range, there is an advantage that high heat resistance can be obtained while maintaining a low coefficient of thermal expansion. Outside this range, at least any one of these physical properties may be lowered, which is not preferable.
  • the cyanate ester is necessary for lowering the melting point of the resin and improving the moldability when producing a thermosetting resin from the thermosetting resin composition of the present embodiment. Since it is a cyanate ester, it has the characteristic that it is rich in the reactivity with the compound of said (1) and (2) which comprises this invention compared with another compound.
  • the cyanate ester is not particularly limited as long as the melting point is not high, but those having a melting point of 120 ° C. or lower are preferable.
  • the cyanate ester has a structure in which cyanate (—OCN) and another hydrocarbon group are ester-bonded. In other words, a part of the hydrocarbon is substituted with cyanate.
  • the said hydrocarbon group is not specifically limited, For example, it is preferable that they are the following phenyl derivatives and bisphenyl derivatives.
  • the cyanate ester preferably has a structure of two or more cyanates in one molecule.
  • the compound represented by following General formula (6) is mentioned as an example of a phenyl derivative, for example.
  • X 5 represents an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”, an oxygen atom] Or a single bond, and n is an integer of 0 to 20.
  • X 5 in the general formula (6) the same ones listed as X 1 in the general formula (1), preferably a linear or branched alkylene group having 1 to 3 carbon atoms.
  • Specific examples of the compound represented by the general formula (6) include a phenol novolac type polyfunctional cyanate ester represented by the following formula (6-1).
  • n is an integer of 0 to 20.
  • examples of the bisphenyl derivative include a compound represented by the following general formula (5).
  • X 3 represents an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”, an oxygen atom] Or a single bond. ]
  • X 3 in the general formula (5) the same thing can be mentioned the X 5 in the general formula (6), preferably a linear or branched alkylene group having 1 to 3 carbon atoms.
  • Specific examples of the compound represented by the general formula (5) include a bisphenol A dicyanate represented by the following formula (5-1) or a bisphenol E dicyanate represented by the following formula (5-2). It is done.
  • cyanate ester used in this embodiment, bisphenol F type dicyanate, bisphenol M type dicyanate, bisphenol P type dicyanate, cresol novolac type cyanate, dicyclopentadiene novolac type cyanate, tetramethylbisphenol F type dicyanate, or biphenol diester Examples include cyanate.
  • cyanate ester used in this embodiment one of those described above can be used alone, or two or more can be used in combination.
  • the cyanate ester is preferably a compound represented by the general formula (6), and is represented by the general formula (5). More preferably, it is a compound.
  • the compound represented by the general formula (5) includes a compound in which X 3 in the general formula (5) is a linear or branched alkylene group having 1 to 3 carbon atoms, the general formula (5) It is preferably at least one compound selected from the group consisting of bisphenol A type cyanate represented by 5-1) and bisphenol E type dicyanate represented by general formula (5-2). More preferably, it is at least one compound selected from the group consisting of the compound represented by (5-1) and the compound represented by the general formula (5-2).
  • the content of the cyanate ester in the thermosetting resin composition of the present embodiment is not particularly limited as long as it is a content that improves moldability while maintaining the heat resistance and low thermal expansion coefficient of the resin.
  • the amount is preferably 0.3 to 10 moles compared to the compound represented by the general formula (1). Further, the molar amount is more preferably 0.5 to 10 times. The molar amount is more preferably 1 to 5 times, and particularly preferably 1 to 3 times the molar amount. By being in this range, the effect of improving the moldability while maintaining the heat resistance and low thermal expansion coefficient of the resin can be obtained.
  • thermosetting resin composition of the present embodiment contains other components in addition to the compound represented by the general formula (1), the compound represented by the general formula (2), and the cyanate ester. be able to.
  • other components include a curing accelerator.
  • a hardening accelerator it does not specifically limit and a well-known thing can be used. Specifically, a phosphine compound, a compound having a phosphonium salt, an aromatic amine compound, or the like can be given.
  • Examples of the phosphine compound include: alkylphosphine such as ethylphosphine or propylphosphine, primary phosphine such as phenylphosphine; dialkylphosphine such as dimethylphosphine or diethylphosphine; secondary phosphine such as diphenylphosphine, methylphenylphosphine or ethylphenylphosphine; A trialkylphosphine such as phosphine, triethylphosphine, tributylphosphine or trioctylphosphine; or tricyclohexylphosphine, triphenylphosphine, alkyldiphenylphosphine, dialkylphenylphosphine, tribenzylphosphine, tolylphosphine, tri-p-styrylphosphine, Tris (2,6-dimethoxyphenyl
  • Examples of the compound having a phosphonium salt include a compound having a tetraphenylphosphonium salt, an alkyltriphenylphosphonium salt, or the like. Specifically, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium tetra-p-methylphenylborate, butyltriphenyl Examples thereof include phenylphosphonium thiocyanate.
  • aromatic amine compound examples include imidazoles, specifically, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5 -Hydroxymethylimidazole, 1-vinyl-2-methylimidazole, 1-propyl-2-methylimidazole, 2-isopropylimidazole, 1-cyanomethyl-2-methyl-imidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole , 1-cyano Chill-2-undecyl imidazole, or 1-cyanoethyl-2-phenylimidazole,
  • the blending amount of the curing accelerator is a compound represented by the general formula (1) and a compound represented by the general formula (2). Is preferably 0.1 to 5.0 parts by weight, more preferably 0.1 to 3.0 parts by weight, and more preferably 0.3 to 1 part by weight based on a total of 100 parts by weight of the above and the cyanate ester. Particularly preferred is 5 parts by mass.
  • the thermosetting resin composition of the present embodiment can be sufficiently polymerized without using a curing accelerator, there is an advantage that polymerization can be performed in a particularly short time by using a curing accelerator.
  • the thermosetting resin composition of the present embodiment may further contain a solvent.
  • the solvent include organic acids, inorganic acids, or other organic solvents. Among these, an organic solvent is more preferable among them. Furthermore, for example, a dipolar solvent is particularly preferable because it is a solvent that becomes a homogeneous reaction system during the reaction.
  • Specific examples of the solvent contained in the thermosetting resin composition include ketone organic solvents such as acetone or methyl ethyl ketone, amide organic solvents such as N-methylpyrrolidone, dimethylformamide, or dimethylacetamide, and sulfoxides such as dimethyl sulfoxide. Organic solvents or ether solvents such as dioxane are preferred.
  • thermosetting resin of the present embodiment includes the compound represented by the general formula (1) and the compound represented by the general formula (1) in an amount of 0.2 to 0.5 times the molar amount of the general formula (1).
  • a mixture containing a compound represented by the formula (2), a cyanate ester, and other components as required is polymerized.
  • the method for polymerizing the thermosetting resin composition of the present embodiment is not particularly limited, and may be performed by a method such as heating the thermosetting resin composition or irradiating the thermosetting resin composition with ultraviolet rays. It can be carried out.
  • the heating temperature and heating time in the case of heating the thermosetting resin composition are not particularly limited, and are preferably determined as appropriate according to the blending of the thermosetting resin composition.
  • the heating temperature is preferably from 100 to 240 ° C, more preferably from 180 to 220 ° C.
  • the heating time is preferably 0.5 to 12 hours, more preferably 1 to 10 hours, and particularly preferably 1 to 8 hours.
  • the step of heating and curing the thermosetting resin composition it is also preferable to heat the thermosetting resin composition while raising the temperature stepwise. That is, it is preferable that the process of hardening includes the process of the 2 or more steps from which the temperature conditions of heating temperature or heating time differs. Specifically, for example, a thermosetting resin composition heated at 120 to 180 ° C. for 1 to 6 hours, heated at 160 to 200 ° C. for 0 to 2 hours, and heated at 180 to 220 ° C. for 0.5 to 4 hours. The curing step is included. In order to obtain a thermosetting resin having excellent mechanical properties, it is preferable that the heating temperature of the first stage is high or the heating time is long among the processes of the plurality of stages.
  • the heating temperature is high and the heating time is long.
  • a process is preferred. By curing under such conditions, a resin particularly excellent in bending strength can be obtained.
  • the thermosetting resin of the present embodiment preferably has a glass transition point (Tg) of 250 ° C. or higher.
  • Tg glass transition point
  • the glass transition point is calculated by thermomechanical analysis (TMA).
  • TMA thermomechanical analysis
  • the glass transition point is heated for about 5 to 20 minutes at a rate of temperature increase of 3 to 10 ° C./min. Obtained from the slope of the TMA curve shown.
  • the glass transition point is more preferably 250 to 350 ° C. as a guide.
  • the resin has high heat resistance.
  • the thermosetting resin of this embodiment preferably has a coefficient of thermal expansion (CTE) of 50 ppm or less.
  • CTE coefficient of thermal expansion
  • the coefficient of thermal expansion is calculated by thermomechanical analysis (TMA), and as a measurement example, the same measurement as that of the glass transition point described above is performed, and can be calculated from the slope of the TMA curve.
  • TMA thermomechanical analysis
  • the thermal expansion coefficient is more preferably 20 to 45 ppm.
  • thermosetting resin and / or thermosetting resin composition As a use of the thermosetting resin composition of the present embodiment, it can be used for sealing when insulating properties such as fields requiring high heat resistance and various power devices are required.
  • thermosetting resin composition it can be used as a raw material of a production method used in a production method of a sealing material that requires these insulating properties.
  • it can be used as a raw material for a sealing material of a SiC semiconductor used in a high current power module.
  • thermosetting resin composition of the present invention inorganic fillers such as various silicas, various aluminas, and titanium oxides, and additives for sealing materials such as the above-described curing accelerators depending on the case. Is preferably used as a sealing material.
  • the SiC semiconductor is a semiconductor using single crystal and high purity SiC, which replaces the Si semiconductor that is widely used at present, and its use and development are being promoted. A high current can be obtained and the semiconductor can be miniaturized, and the future is expected. Compared to the conventionally used Si semiconductor, it has a high capacity and high voltage, but generates a large amount of heat. For this reason, the SiC semiconductor encapsulant requires high heat resistance, a low coefficient of thermal expansion, crack resistance, and excellent moldability.
  • the thermosetting resin and / or thermosetting resin composition of the present embodiment is particularly suitable as a sealing material for SiC semiconductors because high heat resistance, excellent moldability, and crack resistance are obtained.
  • thermosetting resin composition of the present embodiment has a high glass transition point (Tg) for a normal Si semiconductor substrate and more than 250 ° C., so that the heat generation is particularly high under a high current. It can be used as a sealing material in modules and devices for SiC semiconductors that are tolerated.
  • Tg glass transition point
  • thermosetting resin of this embodiment it can be used as various materials in the field where high heat resistance is required.
  • a thermosetting resin can also be used in the above-described method for manufacturing a sealing material that requires insulation, or can be used as a raw material for the manufacturing method.
  • the above-described additive for sealing material may be added to be used as a resin that can be used in the manufacturing method of the sealing material, or as a raw material of the sealing material.
  • the resin composition is used as a raw material, and other components such as an inorganic filler, a curing agent, a curing accelerator and the like are appropriately mixed and used.
  • BMI, Pd-type benzoxazine, and BAD were mixed at a molar ratio shown in Table 1 and dissolved by adding methylene chloride to obtain a uniform solution. Then, deaeration treatment was performed in a 40 ° C. vacuum oven, and a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation) was used in a nitrogen atmosphere (20 mL / min) at a rate of temperature increase (10 ° C./min). An exothermic peak was observed to confirm the curing reaction characteristics. The results of differential scanning calorimetry are shown in FIG. In Table 1, Onset temperature indicates the polymerization initiation temperature, and Exothermal peak indicates an exothermic peak. In FIG. 1 and the specification, Pd-type benzoxazine may be expressed as Pd.
  • thermosetting resins of Examples 1 to 5 were excellent in moldability.
  • FIGS. 3 is an enlarged view at 1116.1 to 959.1 cm ⁇ 1 in FIG.
  • the OCN group peak (2275 cm ⁇ 1 ) derived from the BAD monomer was not observed by heating at 180 ° C. for 4 hours, and as shown in FIG. 3, the Pd monomer was heated by heating at 180 ° C. for 4 hours.
  • the derived oxazine ring peak (1034 cm ⁇ 1 ) was not observed. From this, it was confirmed that the BAD monomer and the Pd monomer are almost consumed in the polymerization reaction.
  • a succinimide peak (1176 cm ⁇ 1 ) derived from the BMI polymer and a triazine ring peak (1564 cm ⁇ 1 ) derived from the BAD polymer were observed, it was confirmed that the polymerization reaction was proceeding.
  • thermosetting resin Pd-type benzoxazine (Pd), BMI, and BAD were mixed at a molar ratio shown in Table 2, heated and polymerized to prepare a thermosetting resin. Specifically, first, Pd, BMI, and BAD were placed in a standard bottle so that the total was 14 g, and melt-mixed while stirring in a 120 ° C. oil bath. Subsequently, it poured into the Al casting plate previously heated at 120 degreeC, and after deaeration, the resin was hardened by heating at 200 degreeC for 4 hours. All of the obtained cured products were dark red and transparent.
  • thermomechanical analysis TMA
  • Tg glass transition point
  • CTE coefficient of thermal expansion
  • measurement was performed using a TMA-60 (trade name) manufactured by Shimadzu Corporation at a heating rate of 5 ° C./min, a compression method, a load of 5 g, and air of 100 ml / min.
  • the test piece of the sample thermosetting resin was measured after polishing to 5 (length) ⁇ 5 (width) ⁇ 10 (height) mm after heating for 10 minutes at the final curing temperature to remove strain.
  • Tg (° C.) and CTE (ppm) at 50 to 100 ° C. were calculated.
  • the results are shown in Table 2.
  • the measurement conditions of the glass transition point and the thermal expansion coefficient in the following examples are the same as those in the above examples and comparative examples.
  • Thermogravimetry was performed using the thermosetting resin obtained as described above, and the temperature at which the raw material mass decreased and the amount of residue were examined. Specifically, using a TGA-50 (trade name) manufactured by Shimadzu Corporation, measurement was performed at a temperature rising rate of 5 ° C./min and nitrogen of 20 ml / min, and the mass was 5% based on the mass at 40 ° C. The temperature when the amount was reduced was Td 5 , and the temperature when the amount was reduced by 10% was Td 10 . The results are shown in Table 2.
  • thermosetting resins of Examples 6 to 13 have a Tg of 250 ° C. or higher and excellent moldability as compared with Comparative Examples 2 to 3. In addition, it was confirmed that it has excellent heat resistance. Further, the thermosetting resins of Examples 6 to 13 have a low coefficient of thermal expansion (CTE) compared to 70 ppm / ° C. of general-purpose epoxy resins, and are excellent in low thermal expansion coefficient. confirmed. Further, the thermosetting resins of Examples 6 to 13 showed high values of T d5 and T d10 , and it was found that these resins were excellent in both physical and chemical heat resistance.
  • CTE coefficient of thermal expansion
  • Example 14 Pd-type benzoxazine (Pd), BMI, and BAD were mixed at a molar ratio of 0.3: 1: 2.0, and a resin was produced under the curing conditions shown in Table 3. Specifically, first, Pd, BMI, and BAD were measured so that the whole was 25 g, and BMI and BAD were first taken into a standard bottle, and melt-mixed while stirring in an oil bath at 150 ° C. . Thereafter, the temperature was lowered to 120 ° C., Pd was added, stirred, poured into an Al casting plate preheated to 120 ° C., degassed, and thermally cured under the curing conditions of stepwise curing shown in Table 3. The functional resin was cured. For example, Example 14 shows curing conditions for curing a resin by heating at 120 ° C. for 6 hours and then heating at 220 ° C. for 4 hours. Table 3 shows the thermal characteristics and mechanical characteristics of the obtained cured product.
  • thermosetting resins of Examples 14 to 16 exhibited thermal properties of Tg 250 ° C. or higher and CTE 50 ppm / ° C. or lower, and mechanical properties of bending strength 150 MPa or higher.
  • thermosetting resin of Example 16 cured by performing the first stage curing at a high temperature was particularly excellent in mechanical properties.
  • thermosetting resin obtained under the curing conditions in which the resin was cured by heating at 160 ° C. for 6 hours and then at 220 ° C. for 4 hours also showed the same mechanical characteristics as in Example 16. Therefore, it was confirmed that a thermosetting resin having excellent mechanical properties can be obtained by curing the first stage at a high temperature for a long time.
  • Pd-type benzoxazine (Pd), BMI, and BAD or bisphenol E-type dicyanate (hereinafter also referred to as BED) are mixed at a molar ratio shown in Table 4, and heated and polymerized to produce a thermosetting resin.
  • BED bisphenol E-type dicyanate
  • thermosetting resin of Example 18 using BED instead of BAD shows comparable values in Tg and CTE compared to the thermosetting resin of Example 17 using BAD. It was confirmed. Furthermore, similarly to the thermosetting resin of Example 17, the thermosetting resin of Example 18 shows high values of T d5 and T d10 , and these resins are excellent in both physical and chemical heat resistance. Things turned out. From these facts, it was confirmed that a thermosetting resin excellent in heat resistance and a low thermal expansion coefficient can be obtained even if BED is used instead of BAD as the cyanate ester.
  • Example 19 Pd-type benzoxazine (Pd), BMI, and novolak-type cyanate ester (manufactured by Lonza; Primaset PT-30, phenol novolac-type cyanate ester, average functional group number 7.3; hereinafter also referred to as NCY).
  • Pd, BMI, and NCY were measured so that the whole became 25 g, and BMI and NCY were first taken in a standard bottle and melt-mixed while stirring in a 150 ° C. oil bath. Thereafter, the temperature is lowered to 120 ° C., Pd is added, and the mixture is stirred.
  • the mixture is poured into an Al casting plate preheated to 120 ° C. After degassing, 160 ° C. for 1 hour—180 ° C. for 1 hour—220 ° C. for 4 hours.
  • the resin was cured by heating. All of the obtained cured products were dark red and transparent.
  • the glass transition point, the thermal expansion coefficient, the raw material mass reduction temperature, and the amount of residue of the obtained cured product were measured by the same method as described above. The results are shown in Table 5.
  • thermosetting resin of Example 19 using NCY instead of BAD showed similar values in Tg and CTE as in the case of using BAD. Further, the thermosetting resin of Example 19 showed high values of T d5 and T d10 as in the case of using BAD, and it was found that this resin is excellent in both physical and chemical heat resistance. . From these facts, it was confirmed that a thermosetting resin excellent in heat resistance and low thermal expansion coefficient can be obtained even when NCY is used instead of BAD as the cyanate ester.
  • Example 20 Pd-type benzoxazine (Pd), BMI, and NCY were mixed at a molar ratio of 0.3: 1: 2.0, and heated and polymerized to prepare a thermosetting resin. Specifically, Pd, BMI, and NCY were measured so that the whole became 25 g, and BMI and NCY were first taken in a standard bottle and melt-mixed while stirring in a 150 ° C. oil bath. Thereafter, the temperature is lowered to 120 ° C., Pd is added, and the mixture is stirred. Then, the mixture is poured into an Al casting plate preheated to 120 ° C. After degassing, 160 ° C. for 1 hour—180 ° C. for 1 hour—220 ° C. for 4 hours. The resin was cured by heating. All of the obtained cured products were dark red and transparent. The results are shown in Table 6.
  • Example 21 Pd-type benzoxazine (Pd), BMI, and cyanate ester were mixed at a molar ratio of 0.3: 1: 2.0, and heated and polymerized to prepare a thermosetting resin. Specifically, Pd, BMI, and cyanate ester are measured so that the total weight is 25 g. First, BMI and cyanate ester are placed in a standard bottle, and the mixture is melt-mixed while stirring in an oil bath at 150 ° C. went. The measured cyanate ester is a mixture of BAD and NCY at a molar ratio of 1: 1. Thereafter, the temperature is lowered to 120 ° C., Pd is added, and the mixture is stirred.
  • Pd benzoxazine
  • BMI cyanate ester
  • thermosetting resin of Example 20 prepared by mixing Pd-type benzoxazine (Pd), BMI, and NCY at a molar ratio of 0.3: 1: 2.0 was CTE 50 ppm. It was less than / ° C. and Tg was higher than 350 ° C., indicating excellent thermal characteristics. Further, in place of NCY, the thermosetting resin of Example 21 using a cyanate ester in which BAD and NCY were mixed at a molar ratio of 1: 1 is similar to the case of using NCY alone as the cyanate ester. It was confirmed that Tg and CTE exhibit excellent thermal properties. From this, it was confirmed that even when a mixture of BAD and NCY was used as the cyanate ester, a thermosetting resin excellent in heat resistance and low thermal expansion coefficient was obtained.
  • thermosetting resin of the present invention is excellent in heat resistance, low thermal expansion coefficient, and moldability, it is suitably used for power devices for electric vehicles and hybrid vehicles. According to the thermosetting resin composition of the present invention, it is possible to provide a thermosetting resin excellent in heat resistance, a low coefficient of thermal expansion, and moldability.

Abstract

Provided are a thermosetting resin having excellent heat resistance, a low coefficient of thermal expansion, and excellent moldability, and a thermosetting resin composition used for the resin. This thermosetting resin is characterized in being obtained by polymerizing a mixture containing a compound having a specific structure, another compound having a specific structure in a molar quantity 0.2-0.5 times that of the above-mentioned compound, and a cyanic acid ester.

Description

熱硬化性樹脂、及び熱硬化性樹脂組成物Thermosetting resin and thermosetting resin composition
 本発明は、耐熱性、低熱膨張率、及び成形性に優れた熱硬化性樹脂、並びに、前記樹脂に用いられる熱硬化性樹脂組成物に関する。
 本願は、2012年10月11日に、日本に出願された特願2012-226075号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a thermosetting resin excellent in heat resistance, a low coefficient of thermal expansion, and moldability, and a thermosetting resin composition used for the resin.
This application claims priority on October 11, 2012 based on Japanese Patent Application No. 2012-2226075 for which it applied to Japan, and uses the content here.
 電気自動車やハイブリッド車に用いられるパワーデバイスでは、高温での高効率作動が必須である。このようなパワーデバイスにおける従来の絶縁・封止技術では、接続部への機械的な負荷に耐える性能と、耐熱性との両面を満たす要求性能を得ることが難しく、高耐熱性を有する新たな封止材が必要とされる。
 また、封止材の性能として、熱サイクルによる収縮から生じるクラックを防ぐために、低熱膨張率が必要とされている。
In power devices used for electric vehicles and hybrid vehicles, high-efficiency operation at high temperatures is essential. With the conventional insulation and sealing technology in such power devices, it is difficult to obtain the required performance that satisfies both the mechanical load on the connection part and the heat resistance, and a new high heat resistance An encapsulant is required.
Moreover, in order to prevent the crack which arises from the shrinkage | contraction by a thermal cycle as a performance of a sealing material, the low thermal expansion coefficient is required.
 ポリベンゾオキサジンは、環状部位を有するモノマーであるベンゾオキサジンの開環重合により得られる熱硬化性樹脂であり、従来のフェノール樹脂の欠点を克服できる新規のフェノール樹脂として期待されている。
 ベンゾオキサジンの重合は開環重合であり、得られる樹脂が従来のフェノール樹脂と同様の耐熱性、難燃性、及び電気特性等を有するだけでなく、重合触媒が不要であり、分子設計の自由度が高い、副生成物が少ない、及び寸法安定性が良いなどの利点が注目されている。
 さらに、ベンゾオキサジンは、その構造中の芳香環が、重合体中でスタッキングを起こすことにより、硬化後の樹脂の熱膨張率が低い点で有利である。これらの特徴から、ポリベンゾオキサジンの上記封止材としての利用が期待されている。
Polybenzoxazine is a thermosetting resin obtained by ring-opening polymerization of benzoxazine, which is a monomer having a cyclic moiety, and is expected as a novel phenol resin that can overcome the drawbacks of conventional phenol resins.
Polymerization of benzoxazine is ring-opening polymerization, and the resulting resin not only has the same heat resistance, flame retardancy, and electrical properties as conventional phenolic resins, but also requires no polymerization catalyst, and is free from molecular design. Advantages such as high degree, few by-products, and good dimensional stability are attracting attention.
Further, benzoxazine is advantageous in that the aromatic ring in the structure causes stacking in the polymer, and thus the coefficient of thermal expansion of the cured resin is low. From these characteristics, utilization of polybenzoxazine as the sealing material is expected.
 さらに、このようなポリベンゾオキサジンに加えて、ベンゾオキサジンとビスマレイミドとを含む混合物を重合させることにより、一層の耐熱性を向上させた樹脂が開示されている(例えば、非特許文献1参照)。 Furthermore, in addition to such polybenzoxazine, a resin having a further improved heat resistance is disclosed by polymerizing a mixture containing benzoxazine and bismaleimide (see, for example, Non-Patent Document 1). .
 しかしながら、非特許文献1に記載された樹脂は、ビスマレイミドの融点が高く、ベンゾオキサジンとビスマレイミドとの溶融混合に高い温度を必要とするため、成形性に優れた樹脂を得るという観点では未だ改良の余地がある。 However, since the resin described in Non-Patent Document 1 has a high melting point of bismaleimide and requires a high temperature for the melt mixing of benzoxazine and bismaleimide, it is still from the viewpoint of obtaining a resin excellent in moldability. There is room for improvement.
 本発明は、上記事情に鑑みてなされたものであって、耐熱性、低熱膨張率、及び成形性に優れた熱硬化性樹脂、並びに、前記樹脂に用いられる熱硬化性樹脂組成物を提供することを目的とする。 This invention is made | formed in view of the said situation, Comprising: The thermosetting resin excellent in heat resistance, a low thermal expansion coefficient, and a moldability, and the thermosetting resin composition used for the said resin are provided. For the purpose.
[1]本発明の実施態様に係る熱硬化性樹脂は、下記一般式(1)で表される化合物と、下記一般式(1)で表される化合物に対して0.2~0.5倍モル量の下記一般式(2)で表される化合物と、シアン酸エステルと、を含む混合物を重合させてなる。
Figure JPOXMLDOC01-appb-C000007
                  
[式中、X及びXは、それぞれ独立に、炭素数1~10のアルキレン基、下記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合である。]
Figure JPOXMLDOC01-appb-C000008
                  
[式中、Yは、芳香族環を有する炭素数6~30の炭化水素基であり、nは1以上の整数である。]
[2]本発明の実施態様に係る熱硬化性樹脂は、前記X及びXが、それぞれ独立に炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基、又は下記式(i)~(iii)のいずれかで表される基である[1]の熱硬化性樹脂であることが好ましい。
Figure JPOXMLDOC01-appb-C000009
                  
[3]本発明の実施態様に係る熱硬化性樹脂は、前記一般式(1)で表される化合物に対して0.3~10倍モル量の前記シアン酸エステルを含む[1]~[2]の熱硬化性樹脂であることが好ましい。
[4]本発明の実施態様に係る熱硬化性樹脂組成物は、下記一般式(1)で表される化合物と、下記一般式(1)で表される化合物に対して0.2~0.5倍モル量の下記一般式(2)で表される化合物と、シアン酸エステルと、を含む。
Figure JPOXMLDOC01-appb-C000010
                  
[式中、X及びXは、それぞれ独立に、炭素数1~10のアルキレン基、下記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合である。]
Figure JPOXMLDOC01-appb-C000011
                  
[式中、Yは、芳香族環を有する炭素数6~30の炭化水素基であり、nは1以上の整数である。]
[5]本発明の実施態様に係る熱硬化性樹脂組成物は、前記X及びXが、それぞれ独立に炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基、又は下記式(i)~(iii)のいずれかで表される基である[4]の熱硬化性樹脂組成物であることが好ましい。
Figure JPOXMLDOC01-appb-C000012
                  
[6]本発明の実施態様に係る熱硬化性樹脂組成物は、前記混合物は、前記一般式(1)で表される化合物に対して0.3~10倍モル量の前記シアン酸エステルを含む[4]又は[5]の熱硬化性樹脂組成物であることが好ましい。
[7]本発明の実施態様に係る半導体用封止材は、 [4]から[6]の熱硬化樹脂組成物を含む半導体用封止材であることが好ましい。
[1] The thermosetting resin according to an embodiment of the present invention is 0.2 to 0.5 with respect to the compound represented by the following general formula (1) and the compound represented by the following general formula (1). A mixture containing a double molar amount of the compound represented by the following general formula (2) and a cyanate ester is polymerized.
Figure JPOXMLDOC01-appb-C000007

[Wherein, X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond. ]
Figure JPOXMLDOC01-appb-C000008

[Wherein Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more. ]
[2] In the thermosetting resin according to an embodiment of the present invention, X 1 and X 2 are each independently a linear or branched alkylene group having 1 to 3 carbon atoms, or the following formula (i): The thermosetting resin of [1], which is a group represented by any one of (iii) to (iii), is preferable.
Figure JPOXMLDOC01-appb-C000009

[3] The thermosetting resin according to an embodiment of the present invention includes 0.3 to 10 times the molar amount of the cyanate ester with respect to the compound represented by the general formula (1). 2] is preferable.
[4] The thermosetting resin composition according to the embodiment of the present invention is 0.2 to 0 with respect to the compound represented by the following general formula (1) and the compound represented by the following general formula (1). A 5-fold molar amount of the compound represented by the following general formula (2) and a cyanate ester are included.
Figure JPOXMLDOC01-appb-C000010

[Wherein, X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond. ]
Figure JPOXMLDOC01-appb-C000011

[Wherein Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more. ]
[5] In the thermosetting resin composition according to an embodiment of the present invention, X 1 and X 2 are each independently a linear or branched alkylene group having 1 to 3 carbon atoms, or the following formula ( The thermosetting resin composition [4] which is a group represented by any one of i) to (iii) is preferable.
Figure JPOXMLDOC01-appb-C000012

[6] In the thermosetting resin composition according to the embodiment of the present invention, the mixture contains 0.3 to 10 times the molar amount of the cyanate ester relative to the compound represented by the general formula (1). It is preferable that it is the thermosetting resin composition of [4] or [5] containing.
[7] The semiconductor encapsulant according to the embodiment of the present invention is preferably a semiconductor encapsulant including the thermosetting resin composition of [4] to [6].
 本発明の熱硬化性樹脂によれば、耐熱性、低熱膨張率、及び成形性に優れているため、電気自動車やハイブリッド車用のパワーデバイスの封止材として好適に用いられる。
 本発明の熱硬化性樹脂組成物によれば、耐熱性、低熱膨張率、及び成形性に優れた熱硬化性樹脂を提供することができる。
According to the thermosetting resin of the present invention, since it is excellent in heat resistance, low thermal expansion coefficient, and moldability, it is suitably used as a sealing material for power devices for electric vehicles and hybrid vehicles.
According to the thermosetting resin composition of the present invention, it is possible to provide a thermosetting resin excellent in heat resistance, a low coefficient of thermal expansion, and moldability.
本発明の実施例1~5及び比較例1における示差走査熱量測定の結果を示す図である。FIG. 6 is a diagram showing the results of differential scanning calorimetry in Examples 1 to 5 and Comparative Example 1 of the present invention. 本発明の実施例1~5及び比較例1におけるFT-IR測定の結果を示す図である。FIG. 6 is a diagram showing the results of FT-IR measurement in Examples 1 to 5 and Comparative Example 1 of the present invention. 本発明の実施例1~5及び比較例1におけるFT-IR測定の結果を示すその他の図である。FIG. 6 is another diagram showing the results of FT-IR measurement in Examples 1 to 5 and Comparative Example 1 of the present invention.
 以下、本発明の実施形態について具体例を示して詳細に説明する。
[熱硬化性樹脂組成物]
 本実施形態の熱硬化性樹脂組成物は、下記一般式(1)で表される化合物と、前記一般式(1)で表される化合物に対して0.2~0.5倍モル量の下記一般式(2)で表される化合物と、シアン酸エステルと、を含む。
Hereinafter, embodiments of the present invention will be described in detail with specific examples.
[Thermosetting resin composition]
The thermosetting resin composition of the present embodiment has a molar amount of 0.2 to 0.5 times the amount of the compound represented by the following general formula (1) and the compound represented by the general formula (1). A compound represented by the following general formula (2) and a cyanate ester are included.
Figure JPOXMLDOC01-appb-C000013
                  
[式中、X及びXは、それぞれ独立に、炭素数1~10のアルキレン基、下記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合である。]
Figure JPOXMLDOC01-appb-C000013

[Wherein, X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond. ]
Figure JPOXMLDOC01-appb-C000014
                  
[式中、Yは、芳香族環を有する炭素数6~30の炭化水素基であり、nは1以上の整数である。]
Figure JPOXMLDOC01-appb-C000014

[Wherein Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more. ]
[一般式(1)で表される化合物]
 前記一般式(1)中、Xは炭素数1~10のアルキレン基、前記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合を示す。
[Compound represented by the general formula (1)]
In the general formula (1), X 1 is an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”. , An oxygen atom, or a single bond.
 Xにおけるアルキレン基としては、直鎖状又は分岐鎖状のアルキレン基が好ましい。
 Xにおけるアルキレン基の炭素数は、1~10であることが好ましく、1~7であることがより好ましく、1~3であることが特に好ましい。
 直鎖状のアルキレン基としては、具体的には、メチレン基、エチレン基、n-プロピレン基(トリメチレン基)、n-ブチレン基(テトラメチレン基)、n-ペンチレン基(ペンタメチレン基)、n-ヘキシレン基(ヘキサメチレン基)、n-ヘプチレン基、n-オクチレン基、n-ノニレン基、又はn-デカニレン基、等が挙げられる。
 分岐鎖状のアルキレン基としては、プロピレン基、ブチレン基、ペンチレン基、ヘキシレン基、ヘプチレン基、オクチレン基、ノニレン基、デカニレン基等が挙げられる。具体的には、-C(CH-(イソプロピレン基)、-CH(CH)-、-CH(CHCH)-、-C(CH)(CHCH)-、-C(CH)(CHCHCH)-又は-C(CHCH-等のアルキルメチレン基;-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-CH(CHCH)CH-、又は-C(CHCH-CH-等のアルキルエチレン基等が挙げられる。
 Xにおけるアルキレン基として好ましいものとしては、具体的には、メチレン基、エチレン基、n-プロピレン基又はイソプロピレン基が挙げられる。
The alkylene group for X 1 is preferably a linear or branched alkylene group.
The number of carbon atoms of the alkylene group in X 1 is preferably 1 to 10, more preferably 1 to 7, and particularly preferably 1 to 3.
Specific examples of the linear alkylene group include methylene group, ethylene group, n-propylene group (trimethylene group), n-butylene group (tetramethylene group), n-pentylene group (pentamethylene group), n -Hexylene group (hexamethylene group), n-heptylene group, n-octylene group, n-nonylene group, n-decanylene group, and the like.
Examples of the branched alkylene group include a propylene group, a butylene group, a pentylene group, a hexylene group, a heptylene group, an octylene group, a nonylene group, and a decanylene group. Specifically, —C (CH 3 ) 2 — (isopropylene group), —CH (CH 3 ) —, —CH (CH 2 CH 3 ) —, —C (CH 3 ) (CH 2 CH 3 ) — An alkylmethylene group such as —C (CH 3 ) (CH 2 CH 2 CH 3 ) — or —C (CH 2 CH 3 ) 2 —; —CH (CH 3 ) CH 2 —, —CH (CH 3 ) CH An alkylethylene group such as (CH 3 ) —, —C (CH 3 ) 2 CH 2 —, —CH (CH 2 CH 3 ) CH 2 —, or —C (CH 2 CH 3 ) 2 —CH 2 —, etc. Can be mentioned.
Preferable examples of the alkylene group for X 1 include a methylene group, an ethylene group, an n-propylene group, and an isopropylene group.
 前記一般式(3)で表される基において、Yは、芳香族環を有する炭素数6~30の炭化水素基であり、nは1以上の整数である。
 芳香族環を有する炭素数6~30の炭化水素基は、芳香族環のみからなるものでもよいし、芳香族環以外の炭化水素基を有していてもよい。Yが有する芳香族環は、1つでもよいし、2つ以上でもよく、2つ以上の場合、これら芳香族環は、同一でも異なっていてもよい。又、前記芳香族環は、単環構造及び多環構造のいずれでもよい。
 好ましい芳香族環を有する炭素数6~30の炭化水素基としては、ベンゼン、ビフェニル、ナフタレン、アントラセン、フルオレン、フェナントレイン、インダセン、ターフェニル、アセナフチレン、又はフェナレン等の芳香族環を有する化合物において、これらの核から水素原子を2つ除いた2価の基が挙げられる。
 また、これらの芳香族炭化水素基は、置換基を有していてもよい。ここで芳香族炭化水素基が置換基を有するとは、芳香族炭化水素基を構成する水素原子の一部又は全部が置換基により置換されたことをいう。置換基としては、アルキル基が挙げられる。
 置換基としてのアルキル基としては、鎖状のアルキル基であることが好ましい。その炭素数は1~10であることが好ましく、1~6であることがより好ましく、1~4であることが特に好ましい。芳香族炭化水素基が有する置換基としては、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、tert-ブチル基、又はsec-ブチル基等が挙げられる。
In the group represented by the general formula (3), Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more.
The hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring may be composed only of an aromatic ring, or may have a hydrocarbon group other than the aromatic ring. Y may have one aromatic ring or two or more aromatic rings, and in the case of two or more, these aromatic rings may be the same or different. The aromatic ring may be either a monocyclic structure or a polycyclic structure.
Preferred hydrocarbon groups having 6 to 30 carbon atoms having an aromatic ring include compounds having an aromatic ring such as benzene, biphenyl, naphthalene, anthracene, fluorene, phenanthrene, indacene, terphenyl, acenaphthylene, or phenalene. , A divalent group obtained by removing two hydrogen atoms from these nuclei.
Moreover, these aromatic hydrocarbon groups may have a substituent. Here, that the aromatic hydrocarbon group has a substituent means that part or all of the hydrogen atoms constituting the aromatic hydrocarbon group are substituted by the substituent. Examples of the substituent include an alkyl group.
The alkyl group as a substituent is preferably a chain alkyl group. The number of carbon atoms is preferably 1 to 10, more preferably 1 to 6, and particularly preferably 1 to 4. Specific examples of the substituent that the aromatic hydrocarbon group has include a methyl group, an ethyl group, a propyl group, an isopropyl group, a butyl group, a tert-butyl group, and a sec-butyl group.
 Yは、ベンゼン、ビフェニル又はナフタレンから水素原子を2つ除いた基を有することが好ましい。そして、前記一般式(3)で表される基としては、下記式(i)~(iii)のいずれかで表される基であることがより好ましい。 Y preferably has a group obtained by removing two hydrogen atoms from benzene, biphenyl or naphthalene. The group represented by the general formula (3) is more preferably a group represented by any of the following formulas (i) to (iii).
Figure JPOXMLDOC01-appb-C000015
                  
Figure JPOXMLDOC01-appb-C000015
                  
 前記一般式(3)で表される基において、nは1~5の整数であることが好ましく、1~3の整数であることがより好ましく、1又は2であることが特に好ましい。 In the group represented by the general formula (3), n is preferably an integer of 1 to 5, more preferably an integer of 1 to 3, and particularly preferably 1 or 2.
 本実施形態において、前記一般式(1)で表される化合物は、前記Xが、炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基、又は前記式(i)~(iii)のいずれかで表される基であることが好ましい。 In this embodiment, in the compound represented by the general formula (1), the X 1 is a linear or branched alkylene group having 1 to 3 carbon atoms, or the above formulas (i) to (iii). It is preferable that it is group represented by either.
 前記一般式(1)で表される化合物の具体例を以下の式(1-1)及び(1-2)に示すが、本実施形態に用いられる化合物は、下記の例に限定されない。 Specific examples of the compound represented by the general formula (1) are shown in the following formulas (1-1) and (1-2), but the compounds used in the present embodiment are not limited to the following examples.
                  
                  
Figure JPOXMLDOC01-appb-C000017
                  
Figure JPOXMLDOC01-appb-C000017
                  
 すなわち、本発明の熱硬化性樹脂組成物の一つの態様において、前記一般式(1)で表される化合物は、一般式(1)におけるXが、炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基である化合物、前記一般式におけるXが、前記式(i)~(iii)のいずれかで表される基である化合物、前記一般式(1-1)で表される化合物、及び前記一般式(1-2)で表される化合物よりなる群より選択される少なくとも1つの化合物であることが好ましく、前記一般式(1-1)で表される化合物、及び前記一般式(1-2)で表される化合物よりなる群より選択される少なくとも1つの化合物であることがより好ましい。 That is, in one embodiment of the thermosetting resin composition of the present invention, the compound represented by the general formula (1) is a straight chain having 1 to 3 carbon atoms or X 1 in the general formula (1) A compound which is a branched alkylene group, a compound wherein X 1 in the general formula is a group represented by any one of the formulas (i) to (iii), and a compound represented by the general formula (1-1) And at least one compound selected from the group consisting of the compound represented by the general formula (1-2), the compound represented by the general formula (1-1), and More preferably, it is at least one compound selected from the group consisting of compounds represented by formula (1-2).
[一般式(2)で表される化合物]
 前記一般式(2)中、Xは炭素数1~10のアルキレン基、前記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合を示す。
[Compound represented by formula (2)]
In the general formula (2), X 2 is an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”. , An oxygen atom, or a single bond.
 前記一般式(2)におけるXは、前記一般式(1)におけるXと同様である。
 XとXとは、互いに同一でも異なっていてもよい。
X 2 in the general formula (2) is the same as X 1 in the general formula (1).
X 1 and X 2 may be the same as or different from each other.
 本実施形態において、前記一般式(2)で表される化合物は、前記Xが、炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基、又は前記式(i)~(iii)のいずれかで表される基であることが好ましい。 In this embodiment, in the compound represented by the general formula (2), the X 2 is a linear or branched alkylene group having 1 to 3 carbon atoms, or the above formulas (i) to (iii). It is preferable that it is group represented by either.
 前記一般式(2)で表される化合物の具体例を以下の式(2-1)及び(2-2)に示すが、本実施形態に用いられる化合物は、下記の例に限定されない。 Specific examples of the compound represented by the general formula (2) are shown in the following formulas (2-1) and (2-2), but the compounds used in the present embodiment are not limited to the following examples.
Figure JPOXMLDOC01-appb-C000018
                  
Figure JPOXMLDOC01-appb-C000018
                  
Figure JPOXMLDOC01-appb-C000019
                  
Figure JPOXMLDOC01-appb-C000019
                  
 尚、本実施形態においては、下記一般式(4)で表される化合物を用いない。一般式(4)式で表される化合物に比べて、一般式(2)で表される化合物を用いることでより耐熱性に優れた樹脂を得ることができる。 In this embodiment, a compound represented by the following general formula (4) is not used. Compared with the compound represented by the general formula (4), a resin having a higher heat resistance can be obtained by using the compound represented by the general formula (2).
Figure JPOXMLDOC01-appb-C000020
                  
[式中、Xは、前記一般式(2)におけるXと同じ意味を有する。]
Figure JPOXMLDOC01-appb-C000020

[Wherein, X 2 has the same meaning as X 2 in the general formula (2). ]
 すなわち、本発明の熱硬化性樹脂組成物の一つの態様において、前記一般式(2)で表される化合物は、一般式(2)におけるXが、炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基である化合物、前記一般式におけるXが、前記式(i)~(iii)のいずれかで表される基である化合物、前記一般式(2-1)で表される化合物、及び前記一般式(2-2)で表される化合物よりなる群より選択される少なくとも1つの化合物であることが好ましく、前記一般式(2-1)で表される化合物、及び前記一般式(2-2)で表される化合物よりなる群より選択される少なくとも1つの化合物であることがより好ましい。 That is, in one embodiment of the thermosetting resin composition of the present invention, the compound represented by the general formula (2) is a compound in which X 2 in the general formula (2) is a straight chain having 1 to 3 carbon atoms or A compound which is a branched alkylene group, a compound wherein X 2 in the general formula is a group represented by any one of the formulas (i) to (iii), and a compound represented by the general formula (2-1) And at least one compound selected from the group consisting of the compound represented by the general formula (2-2), the compound represented by the general formula (2-1), and More preferably, it is at least one compound selected from the group consisting of compounds represented by formula (2-2).
 本実施形態の熱硬化性樹脂組成物中の一般式(2)で表される化合物の含有量としては、前記一般式(1)で表される化合物に対して、モル量の比が0.2~0.5倍である。この範囲であることによって、低熱膨張率を維持しながら高耐熱性が得られるという利点がある。この範囲を外れると、この両物性の少なくともいずれか一つが低下する事となる可能性があり好ましくない。 The content of the compound represented by the general formula (2) in the thermosetting resin composition of the present embodiment is such that the molar ratio with respect to the compound represented by the general formula (1) is 0.00. 2 to 0.5 times. By being in this range, there is an advantage that high heat resistance can be obtained while maintaining a low coefficient of thermal expansion. Outside this range, at least any one of these physical properties may be lowered, which is not preferable.
 [シアン酸エステル]
 シアン酸エステルは、本実施形態の熱硬化性樹脂組成物から熱硬化性樹脂を製造する際に、樹脂の融点を下げ、成形性を向上させるために必要なものである。シアン酸エステルであることで、他の化合物に比べて本発明を構成する上記(1)および(2)の化合物との反応性に富むという特徴がある。前記シアン酸エステルとしては、融点が高くないものであれば特に限定されないが、120℃以下の融点のものが好ましい。
 シアン酸エステルは、シアネート(-OCN)と、他の炭化水素基がエステル結合した構造のものである。換言すれば、炭化水素の一部がシアネートで置換されたものである。前記炭化水素基は特に限定されないが、例えば下記に示すフェニル誘導体、ビスフェニル誘導体であることが好ましい。
 また、樹脂の耐熱性を維持する観点から、前記シアン酸エステルは、1分子中に、2個以上のシアネートの構造を有することが好ましい。
 前記シアン酸エステルとして、例えば、フェニル誘導体の例として、下記一般式(6)で表される化合物が挙げられる。
[Cyanate ester]
The cyanate ester is necessary for lowering the melting point of the resin and improving the moldability when producing a thermosetting resin from the thermosetting resin composition of the present embodiment. Since it is a cyanate ester, it has the characteristic that it is rich in the reactivity with the compound of said (1) and (2) which comprises this invention compared with another compound. The cyanate ester is not particularly limited as long as the melting point is not high, but those having a melting point of 120 ° C. or lower are preferable.
The cyanate ester has a structure in which cyanate (—OCN) and another hydrocarbon group are ester-bonded. In other words, a part of the hydrocarbon is substituted with cyanate. Although the said hydrocarbon group is not specifically limited, For example, it is preferable that they are the following phenyl derivatives and bisphenyl derivatives.
From the viewpoint of maintaining the heat resistance of the resin, the cyanate ester preferably has a structure of two or more cyanates in one molecule.
As said cyanate ester, the compound represented by following General formula (6) is mentioned as an example of a phenyl derivative, for example.
Figure JPOXMLDOC01-appb-C000021
                  
[式中、Xは、炭素数1~10のアルキレン基、前記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合であり、nは、0~20の整数である。]
Figure JPOXMLDOC01-appb-C000021

[Wherein X 5 represents an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”, an oxygen atom] Or a single bond, and n is an integer of 0 to 20. ]
 前記一般式(6)におけるXは、前記一般式(1)におけるXと同様のものが挙げられ、炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基が好ましい。 X 5 in the general formula (6), the same ones listed as X 1 in the general formula (1), preferably a linear or branched alkylene group having 1 to 3 carbon atoms.
 前記一般式(6)で表される化合物の具体例として、下記式(6-1)で表されるフェノールノボラック型多官能シアン酸エステルが挙げられる。 Specific examples of the compound represented by the general formula (6) include a phenol novolac type polyfunctional cyanate ester represented by the following formula (6-1).
Figure JPOXMLDOC01-appb-C000022
                  
[式中、nは、0~20の整数である。]
Figure JPOXMLDOC01-appb-C000022

[Wherein n is an integer of 0 to 20. ]
 また、前記一般式(6)で表される化合物において、nが0である場合、ビスフェニル誘導体の例として、例えば、下記一般式(5)で表される化合物が挙げられる。 Further, in the compound represented by the general formula (6), when n is 0, examples of the bisphenyl derivative include a compound represented by the following general formula (5).
Figure JPOXMLDOC01-appb-C000023
                  
[式中、Xは、炭素数1~10のアルキレン基、前記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合である。]
Figure JPOXMLDOC01-appb-C000023

[Wherein X 3 represents an alkylene group having 1 to 10 carbon atoms, a group represented by the general formula (3), a group represented by the formula “—SO 2 —” or “—CO—”, an oxygen atom] Or a single bond. ]
 前記一般式(5)におけるXは、前記一般式(6)におけるXと同様のものが挙げられ、炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基が好ましい。 X 3 in the general formula (5), the same thing can be mentioned the X 5 in the general formula (6), preferably a linear or branched alkylene group having 1 to 3 carbon atoms.
 前記一般式(5)で表される化合物の具体例として、下記式(5-1)で表されるビスフェノールA型ジシアネート、又は下記式(5-2)で表されるビスフェノールE型ジシアネートが挙げられる。 Specific examples of the compound represented by the general formula (5) include a bisphenol A dicyanate represented by the following formula (5-1) or a bisphenol E dicyanate represented by the following formula (5-2). It is done.
Figure JPOXMLDOC01-appb-C000024
                  
Figure JPOXMLDOC01-appb-C000024
                  
Figure JPOXMLDOC01-appb-C000025
                  
Figure JPOXMLDOC01-appb-C000025
                  
 その他、本実施形態に用いられるシアン酸エステルとして、ビスフェノールF型ジシアネート、ビスフェノールM型ジシアネート、ビスフェノールP型ジシアネート、クレゾールノボラック型シアネート、ジシクロペンタジエンノボラック型シアネート、テトラメチルビスフェノールF型ジシアネート、又はビフェノールジシアネート等が挙げられる。 In addition, as the cyanate ester used in this embodiment, bisphenol F type dicyanate, bisphenol M type dicyanate, bisphenol P type dicyanate, cresol novolac type cyanate, dicyclopentadiene novolac type cyanate, tetramethylbisphenol F type dicyanate, or biphenol diester Examples include cyanate.
 本実施形態に用いられるシアン酸エステルとして、上述したものの1種を単独で用いるか、又は2種以上を混合して用いることができる。 As the cyanate ester used in this embodiment, one of those described above can be used alone, or two or more can be used in combination.
 すなわち、本発明の熱硬化性樹脂組成物の一つの態様において、前記シアン酸エステルとしては、前記一般式(6)で表される化合物であることが好ましく、前記一般式(5)で表される化合物であることがより好ましい。また、前記一般式(5)で表される化合物としては、一般式(5)におけるXが、炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基である化合物、前記一般式(5-1)で表されるビスフェノールA型字シアネート、前記一般式(5-2)で表されるビスフェノールE型ジシアネートからなる群より選択される少なくとも1つの化合物であることが好ましく、前記一般式(5-1)で表される化合物、及び前記一般式(5-2)で表される化合物よりなる群より選択される少なくとも1つの化合物であることがより好ましい。 That is, in one embodiment of the thermosetting resin composition of the present invention, the cyanate ester is preferably a compound represented by the general formula (6), and is represented by the general formula (5). More preferably, it is a compound. In addition, the compound represented by the general formula (5) includes a compound in which X 3 in the general formula (5) is a linear or branched alkylene group having 1 to 3 carbon atoms, the general formula (5) It is preferably at least one compound selected from the group consisting of bisphenol A type cyanate represented by 5-1) and bisphenol E type dicyanate represented by general formula (5-2). More preferably, it is at least one compound selected from the group consisting of the compound represented by (5-1) and the compound represented by the general formula (5-2).
 本実施形態の熱硬化性樹脂組成物中のシアン酸エステルの含有量としては、樹脂の耐熱性及び低熱膨張率を維持しつつ、成形性を向上させる含有量であれば特に限定されないが、前記一般式(1)で表される化合物に対して、0.3~10倍モルであることが好ましい。また、0.5~10倍モル量であることがより好ましい。1~5倍モル量であることがさらに好ましく、1~3倍モル量であることが特に好ましい。この範囲であることで、樹脂の耐熱性及び低熱膨張率を維持しつつ、成形性を向上させるという効果が得られる。 The content of the cyanate ester in the thermosetting resin composition of the present embodiment is not particularly limited as long as it is a content that improves moldability while maintaining the heat resistance and low thermal expansion coefficient of the resin. The amount is preferably 0.3 to 10 moles compared to the compound represented by the general formula (1). Further, the molar amount is more preferably 0.5 to 10 times. The molar amount is more preferably 1 to 5 times, and particularly preferably 1 to 3 times the molar amount. By being in this range, the effect of improving the moldability while maintaining the heat resistance and low thermal expansion coefficient of the resin can be obtained.
[その他の成分]
 本実施形態の熱硬化性樹脂組成物は、上記一般式(1)で表される化合物、上記一般式(2)で表される化合物、及び上記シアン酸エステル以外に、その他の成分を配合することができる。その他の成分としては、例えば、硬化促進剤が挙げられる。
 硬化促進剤としては、特に限定されるものではなく、公知のものを用いることができる。具体的には、ホスフィン化合物、ホスホニウム塩を有する化合物、又は芳香族アミン化合物等が挙げられる。
 ホスフィン化合物としては、エチルホスフィン若しくはプロピルホスフィン等のアルキルホスフィン、フェニルホスフィン等の1級ホスフィン;ジメチルホスフィン若しくはジエチルホスフィン等のジアルキルホスフィン;ジフェニルホスフィン、メチルフェニルホスフィン若しくはエチルフェニルホスフィン等の2級ホスフィン;トリメチルホスフィン、トリエチルホスフィン、トリブチルホスフィン若しくはトリオクチルホスフィン等のトリアルキルホスフィン;又は、トリシクロヘキシルホスフィン、トリフェニルホスフィン、アルキルジフェニルホスフィン、ジアルキルフェニルホスフィン、トリベンジルホスフィン、トリトリルホスフィン、トリ-p-スチリルホスフィン、トリス(2,6-ジメトキシフェニル)ホスフィン、トリ-4-メチルフェニルホスフィン、トリ-4-メトキシフェニルホスフィン若しくはトリ-2-シアノエチルホスフィン等の3級ホスフィン等が挙げられる。
 ホスホニウム塩を有する化合物としては、テトラフェニルホスホニウム塩、又はアルキルトリフェニルホスホニウム塩等を有する化合物が挙げられ、具体的には、テトラフェニルホスホニウムチオシアネート、テトラフェニルホスホニウムテトラ-p-メチルフェニルボレート、ブチルトリフェニルホスホニウムチオシアネート等が挙げられる。
 芳香族アミン化合物としては、イミダゾール類が挙げられ、具体的には、2-エチル-4-メチルイミダゾール、2-メチルイミダゾール、2-エチルイミダゾール、2,4-ジメチルイミダゾール、2-ウンデシルイミダゾール、2-ヘプタデシルイミダゾール、2-フェニルイミダゾール、2-フェニル-4-メチルイミダゾール、1-ベンジル-2-メチルイミダゾール、2-フェニル-4,5-ジヒドロキシメチルイミダゾール、2-フェニル-4-メチル-5-ヒドロキシメチルイミダゾール、1-ビニル-2-メチルイミダゾール、1-プロピル-2-メチルイミダゾール、2-イソプロピルイミダゾール、1-シアノメチル-2-メチル-イミダゾール、1-シアノエチル-2-エチル-4-メチルイミダゾール、1-シアノエチル-2-ウンデシルイミダゾール、又は1-シアノエチル-2-フェニルイミダゾール等が挙げられる。
 これら硬化促進剤は、常法により製造してもよく、市販のものを用いてもよい。
 又、硬化促進剤は、1種を単独で用いてもよく、2種以上を組み合わせて用いてもよい。
 本実施形態の熱硬化性樹脂組成物に硬化促進剤を配合する場合、硬化促進剤の配合量は、上記一般式(1)で表される化合物と上記一般式(2)で表される化合物と上記シアン酸エステルとの合計100質量部に対し、0.1~5.0質量部であることが好ましく、0.1~3.0質量部であることがより好ましく、0.3~1.5質量部であることが特に好ましい。
 但し、硬化促進剤を用いなくても、本実施形態の熱硬化性樹脂組成物を十分に重合させることができるが、硬化促進剤を用いることで特に短時間で重合できるという利点がある。
[Other ingredients]
The thermosetting resin composition of the present embodiment contains other components in addition to the compound represented by the general formula (1), the compound represented by the general formula (2), and the cyanate ester. be able to. Examples of other components include a curing accelerator.
As a hardening accelerator, it does not specifically limit and a well-known thing can be used. Specifically, a phosphine compound, a compound having a phosphonium salt, an aromatic amine compound, or the like can be given.
Examples of the phosphine compound include: alkylphosphine such as ethylphosphine or propylphosphine, primary phosphine such as phenylphosphine; dialkylphosphine such as dimethylphosphine or diethylphosphine; secondary phosphine such as diphenylphosphine, methylphenylphosphine or ethylphenylphosphine; A trialkylphosphine such as phosphine, triethylphosphine, tributylphosphine or trioctylphosphine; or tricyclohexylphosphine, triphenylphosphine, alkyldiphenylphosphine, dialkylphenylphosphine, tribenzylphosphine, tolylphosphine, tri-p-styrylphosphine, Tris (2,6-dimethoxyphenyl) phosphine, tris 4-methylphenyl phosphine, tertiary phosphines such as tri-4-methoxyphenyl phosphine or tri-2-cyanoethyl phosphine, and the like.
Examples of the compound having a phosphonium salt include a compound having a tetraphenylphosphonium salt, an alkyltriphenylphosphonium salt, or the like. Specifically, tetraphenylphosphonium thiocyanate, tetraphenylphosphonium tetra-p-methylphenylborate, butyltriphenyl Examples thereof include phenylphosphonium thiocyanate.
Examples of the aromatic amine compound include imidazoles, specifically, 2-ethyl-4-methylimidazole, 2-methylimidazole, 2-ethylimidazole, 2,4-dimethylimidazole, 2-undecylimidazole, 2-heptadecylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 1-benzyl-2-methylimidazole, 2-phenyl-4,5-dihydroxymethylimidazole, 2-phenyl-4-methyl-5 -Hydroxymethylimidazole, 1-vinyl-2-methylimidazole, 1-propyl-2-methylimidazole, 2-isopropylimidazole, 1-cyanomethyl-2-methyl-imidazole, 1-cyanoethyl-2-ethyl-4-methylimidazole , 1-cyano Chill-2-undecyl imidazole, or 1-cyanoethyl-2-phenylimidazole, and the like.
These curing accelerators may be produced by a conventional method, or commercially available products may be used.
Moreover, a hardening accelerator may be used individually by 1 type, and may be used in combination of 2 or more type.
When a curing accelerator is blended in the thermosetting resin composition of the present embodiment, the blending amount of the curing accelerator is a compound represented by the general formula (1) and a compound represented by the general formula (2). Is preferably 0.1 to 5.0 parts by weight, more preferably 0.1 to 3.0 parts by weight, and more preferably 0.3 to 1 part by weight based on a total of 100 parts by weight of the above and the cyanate ester. Particularly preferred is 5 parts by mass.
However, although the thermosetting resin composition of the present embodiment can be sufficiently polymerized without using a curing accelerator, there is an advantage that polymerization can be performed in a particularly short time by using a curing accelerator.
 本実施形態の熱硬化性樹脂組成物は、更に溶媒を含んでいてもよい。溶媒の好ましい例としては、有機酸、無機酸又はこれら以外の有機溶媒が挙げられる。溶媒としては、この中では特に有機溶媒がより好ましい。さらに、例えば、双極性溶媒は反応時に均一な反応系となる溶媒であるため特に好ましい。熱硬化性樹脂組成物が含有する溶媒としては具体的には、アセトン若しくはメチルエチルケトン等のケトン系有機溶媒、N-メチルピロリドン、ジメチルホルムアミド若しくはジメチルアセトアミド等のアミド系有機溶媒、ジメチルスルホキシド等のスルホキシド系有機溶媒、又は、ジオキサン等のエーテル系溶媒が好ましい。 The thermosetting resin composition of the present embodiment may further contain a solvent. Preferable examples of the solvent include organic acids, inorganic acids, or other organic solvents. Among these, an organic solvent is more preferable among them. Furthermore, for example, a dipolar solvent is particularly preferable because it is a solvent that becomes a homogeneous reaction system during the reaction. Specific examples of the solvent contained in the thermosetting resin composition include ketone organic solvents such as acetone or methyl ethyl ketone, amide organic solvents such as N-methylpyrrolidone, dimethylformamide, or dimethylacetamide, and sulfoxides such as dimethyl sulfoxide. Organic solvents or ether solvents such as dioxane are preferred.
[熱硬化性樹脂]
 本実施形態の熱硬化性樹脂は、前記一般式(1)で表される化合物と、前記一般式(1)で表される化合物に対して0.2~0.5倍モル量の前記一般式(2)で表される化合物と、シアン酸エステルと、必要に応じてその他の成分と、を含む混合物を重合させてなる。
 前記一般式(1)で表される化合物と前記一般式(2)で表される化合物のモル量の比をこのような範囲とすることにより、熱硬化性樹脂のTg(ガラス転移点)が特異的に上昇するので、耐熱性が際立って向上する。
[Thermosetting resin]
The thermosetting resin of the present embodiment includes the compound represented by the general formula (1) and the compound represented by the general formula (1) in an amount of 0.2 to 0.5 times the molar amount of the general formula (1). A mixture containing a compound represented by the formula (2), a cyanate ester, and other components as required is polymerized.
By setting the ratio of the molar amount of the compound represented by the general formula (1) and the compound represented by the general formula (2) within such a range, the Tg (glass transition point) of the thermosetting resin can be increased. Since it rises specifically, the heat resistance is markedly improved.
 本実施形態の熱硬化性樹脂組成物を重合させる方法は特に限定されるものではなく、前記熱硬化性樹脂組成物を加熱する、前記熱硬化性樹脂組成物に紫外線を照射する等の方法により行うことができる。
 前記熱硬化性樹脂組成物を加熱する場合の加熱温度及び加熱時間は特に限定されるものではなく、前記熱硬化性樹脂組成物の配合に応じて適宜決定することが好ましい。
 加熱温度は、100~240℃であることが好ましく、180~220℃であることがより好ましい。加熱時間は、0.5~12時間であることが好ましく、1~10時間であることが好ましく、1~8時間であることが特に好ましい。
The method for polymerizing the thermosetting resin composition of the present embodiment is not particularly limited, and may be performed by a method such as heating the thermosetting resin composition or irradiating the thermosetting resin composition with ultraviolet rays. It can be carried out.
The heating temperature and heating time in the case of heating the thermosetting resin composition are not particularly limited, and are preferably determined as appropriate according to the blending of the thermosetting resin composition.
The heating temperature is preferably from 100 to 240 ° C, more preferably from 180 to 220 ° C. The heating time is preferably 0.5 to 12 hours, more preferably 1 to 10 hours, and particularly preferably 1 to 8 hours.
 また、熱硬化性樹脂組成物を加熱して硬化させる工程としては、加熱する際、段階的に昇温しながら加熱することも好ましい。すなわち、硬化させる工程が、加熱温度の温度条件、又は、加熱時間が異なる2以上の段階の工程を含むことが好ましい。具体的には、例えば、120~180℃で1~6時間加熱し、160~200℃で0~2時間加熱し、180~220℃で0.5~4時間加熱する熱硬化性樹脂組成物の硬化の工程が挙げられる。
 機械的特性に優れた熱硬化性樹脂を得るためには、前記の複数の段階の工程のうち、一段階目の加熱温度が高いか、又は、加熱時間が長いことが好ましく、一段階目の加熱温度が高く、かつ、加熱時間が長いことがより好ましい。
 中でも、160℃で1時間-180℃で1時間-220℃で4時間加熱するという硬化の工程、又は160℃で6時間-220℃で4時間加熱するという熱硬化性樹脂組成物の硬化の工程が好ましい。かかる条件で硬化させることにより、特に曲げ強度に優れた樹脂が得られる。
In addition, as the step of heating and curing the thermosetting resin composition, it is also preferable to heat the thermosetting resin composition while raising the temperature stepwise. That is, it is preferable that the process of hardening includes the process of the 2 or more steps from which the temperature conditions of heating temperature or heating time differs. Specifically, for example, a thermosetting resin composition heated at 120 to 180 ° C. for 1 to 6 hours, heated at 160 to 200 ° C. for 0 to 2 hours, and heated at 180 to 220 ° C. for 0.5 to 4 hours. The curing step is included.
In order to obtain a thermosetting resin having excellent mechanical properties, it is preferable that the heating temperature of the first stage is high or the heating time is long among the processes of the plurality of stages. More preferably, the heating temperature is high and the heating time is long.
Among them, the curing process of heating at 160 ° C. for 1 hour—180 ° C. for 1 hour at −220 ° C. for 4 hours, or the curing of the thermosetting resin composition of heating at 160 ° C. for 6 hours at −220 ° C. for 4 hours. A process is preferred. By curing under such conditions, a resin particularly excellent in bending strength can be obtained.
 本実施形態の熱硬化性樹脂は、ガラス転移点(Tg)が250℃以上であることが好ましい。ここでガラス転移点は熱機械分析(TMA)で算出したもので、測定例としては、昇温速度3~10℃/分で5~20分前後加熱してひずみを取り、温度あたりのひずみを示すTMA曲線の傾きから得る。ガラス転移点は目安として250~350℃であることがより好ましい。ガラス転移点が250℃以上、すなわち従来の熱硬化性樹脂と同程度に充分に高いことにより、耐熱性が高い樹脂となる。 The thermosetting resin of the present embodiment preferably has a glass transition point (Tg) of 250 ° C. or higher. Here, the glass transition point is calculated by thermomechanical analysis (TMA). As an example of measurement, the glass transition point is heated for about 5 to 20 minutes at a rate of temperature increase of 3 to 10 ° C./min. Obtained from the slope of the TMA curve shown. The glass transition point is more preferably 250 to 350 ° C. as a guide. When the glass transition point is 250 ° C. or higher, that is, as high as the conventional thermosetting resin, the resin has high heat resistance.
 本実施形態の熱硬化性樹脂は、熱膨張率(CTE)が50ppm以下であることが好ましい。ここで熱膨張率は、熱機械分析(TMA)で算出したもので、測定例としては上述のガラス転移点と同様の測定を行い、TMA曲線の傾きから算出できる。熱膨張率は20~45ppmであることがさらに好ましい。熱膨張率が充分に小さいことで、熱による体積変化が少なく、クラックを防ぐことができ、高熱の環境下において用いられる部材、特に封止材の材質として良好な樹脂となる。 The thermosetting resin of this embodiment preferably has a coefficient of thermal expansion (CTE) of 50 ppm or less. Here, the coefficient of thermal expansion is calculated by thermomechanical analysis (TMA), and as a measurement example, the same measurement as that of the glass transition point described above is performed, and can be calculated from the slope of the TMA curve. The thermal expansion coefficient is more preferably 20 to 45 ppm. When the coefficient of thermal expansion is sufficiently small, the volume change due to heat is small, cracks can be prevented, and the resin used as a material for a member used in a high heat environment, particularly a sealing material, is good.
[熱硬化性樹脂及び/又は熱硬化性樹脂組成物の用途]
 本実施形態の熱硬化性樹脂組成物の用途としては、高耐熱性が要求される分野、各種パワーデバイス等の絶縁性が要求されるや封止に用いることができる。
 例えば、熱硬化性樹脂組成物の好ましい用途として、これらの絶縁性が要求される封止材の製造方法に用いる、製造方法の原料として使用することができる。特に、大電流パワーモジュールに用いられるSiC半導体の封止材の原料として用いることができる。具体的には、本発明の熱硬化性樹脂組成物に対して、各種シリカ、各種アルミナ、酸化チタン等の無機充填剤や、場合に応じて上述の硬化促進剤などの封止材用添加物を配合して、封止材とすることが好ましい。
[Use of thermosetting resin and / or thermosetting resin composition]
As a use of the thermosetting resin composition of the present embodiment, it can be used for sealing when insulating properties such as fields requiring high heat resistance and various power devices are required.
For example, as a preferable use of the thermosetting resin composition, it can be used as a raw material of a production method used in a production method of a sealing material that requires these insulating properties. In particular, it can be used as a raw material for a sealing material of a SiC semiconductor used in a high current power module. Specifically, for the thermosetting resin composition of the present invention, inorganic fillers such as various silicas, various aluminas, and titanium oxides, and additives for sealing materials such as the above-described curing accelerators depending on the case. Is preferably used as a sealing material.
 SiC半導体は、単結晶で高純度のSiCを用いた半導体で、現状多く用いられているSi半導体に替わるもので、その使用・開発が進められている。高電流が得られ半導体の小型化が図られ、今後が期待されている。従来用いられてきたSi半導体に比べて高容量・高電圧であるが、発熱量が大きい。そのためSiC半導体の封止材には高い耐熱性、低熱膨張率、耐クラック性が必要であり、かつ優れた成形性が必要となる。本実施形態の熱硬化性樹脂及び/又は熱硬化性樹脂組成物は、高い耐熱性と優れた成形性、耐クラック性が得られるため、SiC半導体用の封止材として特に好適である。 The SiC semiconductor is a semiconductor using single crystal and high purity SiC, which replaces the Si semiconductor that is widely used at present, and its use and development are being promoted. A high current can be obtained and the semiconductor can be miniaturized, and the future is expected. Compared to the conventionally used Si semiconductor, it has a high capacity and high voltage, but generates a large amount of heat. For this reason, the SiC semiconductor encapsulant requires high heat resistance, a low coefficient of thermal expansion, crack resistance, and excellent moldability. The thermosetting resin and / or thermosetting resin composition of the present embodiment is particularly suitable as a sealing material for SiC semiconductors because high heat resistance, excellent moldability, and crack resistance are obtained.
 本実施形態の熱硬化性樹脂組成物のさらなる用途として、通常のSi半導体基板用の、さらには、250度以上の高ガラス転移点(Tg)を有することから特に高電流下での高発熱に耐得るSiC半導体用のモジュール、デバイスに封止材として用いることができる。 As a further use of the thermosetting resin composition of the present embodiment, it has a high glass transition point (Tg) for a normal Si semiconductor substrate and more than 250 ° C., so that the heat generation is particularly high under a high current. It can be used as a sealing material in modules and devices for SiC semiconductors that are tolerated.
 本実施形態の熱硬化性樹脂の用途としては、高耐熱性が要求される分野における各種の素材として用いることができる。
 例えば、熱硬化性樹脂も上述の絶縁性が要求される封止材の製造方法に用いる、又は製造方法の原料として使用することができる。この場合、熱硬化性樹脂を製造する際に、上述の封止材用添加物を添加し、封止材の製造方法に用いることのできる樹脂、又は封止材の原料としての樹脂としてもよい。例えば、本樹脂組成物を原料とし、他の成分、例えば無機充填剤や、硬化剤、硬化促進剤などを適宜混合して、用いられる。
As a use of the thermosetting resin of this embodiment, it can be used as various materials in the field where high heat resistance is required.
For example, a thermosetting resin can also be used in the above-described method for manufacturing a sealing material that requires insulation, or can be used as a raw material for the manufacturing method. In this case, when the thermosetting resin is manufactured, the above-described additive for sealing material may be added to be used as a resin that can be used in the manufacturing method of the sealing material, or as a raw material of the sealing material. . For example, the resin composition is used as a raw material, and other components such as an inorganic filler, a curing agent, a curing accelerator and the like are appropriately mixed and used.
 以下、実施例および比較例により本実施形態をさらに具体的に説明するが、本実施形態は以下の実施例に限定されるものではない Hereinafter, the present embodiment will be described more specifically with reference to examples and comparative examples, but the present embodiment is not limited to the following examples.
[実施例1~5、比較例1](示差走査熱量測定)
 前記式(1-1)で表される化合物(4、4‘-ジフェニルメタンビスマレイミド、以下、BMIという)、前記式(2-1)で表される化合物(3,3’-(メチレン-1,4-ジフェニレン)ビス(3,4-ジヒドロ-2H-1,3-ベンゾオキサジン、以下、Pd型ベンゾオキサジンという)、及びビスフェノールA型ジシアネート(以下、BAD)の硬化反応挙動を示差走査熱量測定(DSC)により検討した。
 BMI、Pd型ベンゾオキサジン、及びBADを表1に示すモル比で混合、塩化メチレンを加えて溶解し、均一な溶液を得た。そして、40℃減圧オーブン中で脱気処理を行い、示差走査熱量計(DSC-60、島津製作所製)を用いて、窒素雰囲気下(20mL/分)、昇温速度(10℃/分)で発熱ピークを観測して、硬化反応特性を確認した。示差走査熱量測定の結果を図1及び表1に示す。表1中、Onset temperatureは、重合開始温度を示し、Exothermal peakは、発熱ピークを示す。尚、図1及び明細書中、Pd型ベンゾオキサジンをPdと表記することがある。
[Examples 1 to 5, Comparative Example 1] (Differential scanning calorimetry)
The compound represented by the formula (1-1) (4,4′-diphenylmethane bismaleimide, hereinafter referred to as BMI), the compound represented by the formula (2-1) (3,3 ′-(methylene-1) , 4-diphenylene) bis (3,4-dihydro-2H-1,3-benzoxazine, hereinafter referred to as Pd-type benzoxazine) and bisphenol A-type dicyanate (hereinafter referred to as BAD) differential scanning calorimetry (DSC).
BMI, Pd-type benzoxazine, and BAD were mixed at a molar ratio shown in Table 1 and dissolved by adding methylene chloride to obtain a uniform solution. Then, deaeration treatment was performed in a 40 ° C. vacuum oven, and a differential scanning calorimeter (DSC-60, manufactured by Shimadzu Corporation) was used in a nitrogen atmosphere (20 mL / min) at a rate of temperature increase (10 ° C./min). An exothermic peak was observed to confirm the curing reaction characteristics. The results of differential scanning calorimetry are shown in FIG. In Table 1, Onset temperature indicates the polymerization initiation temperature, and Exothermal peak indicates an exothermic peak. In FIG. 1 and the specification, Pd-type benzoxazine may be expressed as Pd.
Figure JPOXMLDOC01-appb-T000026
                  
Figure JPOXMLDOC01-appb-T000026
                  
 図1に示すように、BADを含有することにより、発熱ピークは低温側にシフトすることが確認された。BADを含有しない比較例1における融点は、約150℃であるのに対し、BADを含有しない実施例1~実施例5における融点は、約60℃である。実施例1~実施例5の熱硬化性樹脂は、成形性に優れていることが確認された。 As shown in FIG. 1, it was confirmed that the exothermic peak shifts to the low temperature side by containing BAD. The melting point in Comparative Example 1 not containing BAD is about 150 ° C., whereas the melting point in Examples 1 to 5 not containing BAD is about 60 ° C. It was confirmed that the thermosetting resins of Examples 1 to 5 were excellent in moldability.
 (フーリエ変換型赤外分光(FT-IR)測定)
 180℃で4時間、200℃で4時間、及び220℃で4時間の硬化条件、並びに、硬化前におけるFT-IRによる反応調査を、Pd型ベンゾオキサジン+BMI+BAD(0.3:1:2)の混合系に対して行った。結果を図2及び図3に示す。図3は、図2の1116.1~959.1cm-1における拡大図である。
(Fourier transform infrared spectroscopy (FT-IR) measurement)
The curing conditions of 180 ° C. for 4 hours, 200 ° C. for 4 hours, and 220 ° C. for 4 hours, and the reaction investigation by FT-IR before curing were compared with those of Pd-type benzoxazine + BMI + BAD (0.3: 1: 2). Performed on mixed system. The results are shown in FIGS. FIG. 3 is an enlarged view at 1116.1 to 959.1 cm −1 in FIG.
 図2に示すように、180℃で4時間の加熱により、BADモノマー由来のOCN基ピーク(2275cm-1)が観察されず、図3に示すように、180℃4時間の加熱により、Pdモノマー由来のオキサジン環ピーク(1034cm-1)が観察されなかった。このことから、BADモノマー及びPdモノマーは、重合反応でほぼ消費されていることが確認された。
 また、BMIポリマー由来のスクシンイミドピーク(1176cm-1)及びBADポリマー由来のトリアジン環ピーク(1564cm-1)が観察されたため、重合反応が進行していることが確認された。
As shown in FIG. 2, the OCN group peak (2275 cm −1 ) derived from the BAD monomer was not observed by heating at 180 ° C. for 4 hours, and as shown in FIG. 3, the Pd monomer was heated by heating at 180 ° C. for 4 hours. The derived oxazine ring peak (1034 cm −1 ) was not observed. From this, it was confirmed that the BAD monomer and the Pd monomer are almost consumed in the polymerization reaction.
In addition, since a succinimide peak (1176 cm −1 ) derived from the BMI polymer and a triazine ring peak (1564 cm −1 ) derived from the BAD polymer were observed, it was confirmed that the polymerization reaction was proceeding.
[実施例6~13、比較例2~3]
 Pd型ベンゾオキサジン(Pd)、BMI、及びBADを表2に示すモル比で混合し、加熱、重合させて熱硬化性樹脂を作製した。具体的には、まず、全体が14gになるようにPd、BMI、及びBADを規格瓶にとり、120℃のオイルバスで撹拌しながら、溶融混合を行った。次いで、あらかじめ120℃に温めておいたAl注型版に注ぎ、脱気後、200℃で4時間の加熱により、樹脂を硬化させた。得られた硬化物はどれも濃赤色透明であった。
[Examples 6 to 13, Comparative Examples 2 to 3]
Pd-type benzoxazine (Pd), BMI, and BAD were mixed at a molar ratio shown in Table 2, heated and polymerized to prepare a thermosetting resin. Specifically, first, Pd, BMI, and BAD were placed in a standard bottle so that the total was 14 g, and melt-mixed while stirring in a 120 ° C. oil bath. Subsequently, it poured into the Al casting plate previously heated at 120 degreeC, and after deaeration, the resin was hardened by heating at 200 degreeC for 4 hours. All of the obtained cured products were dark red and transparent.
(ガラス転移点・熱膨張率)
 上記により得られた熱硬化性樹脂を用い、熱機械分析(TMA)を行い、ガラス転移点(Tg)及び熱膨張率(CTE)について検討した。
 具体的には、島津製作所社製のTMA‐60(商品名)を用いて、昇温速度5℃/分、圧縮法、荷重5g、空気100ml/分で測定を行った。サンプルの熱硬化性樹脂の試験片は5(縦)×5(横)×10(高さ)mmに磨いたものを最終硬化温度で10分加熱してひずみをとった後に測定した。TMA曲線の傾きより、Tg(℃)と、50~100℃におけるCTE(ppm)を算出した。結果を表2に示す。尚、以下の実施例におけるガラス転移点・熱膨張率の測定条件は、上述の実施例及び比較例と同様である。
(Glass transition point / thermal expansion coefficient)
Using the thermosetting resin obtained above, thermomechanical analysis (TMA) was performed, and the glass transition point (Tg) and the coefficient of thermal expansion (CTE) were examined.
Specifically, measurement was performed using a TMA-60 (trade name) manufactured by Shimadzu Corporation at a heating rate of 5 ° C./min, a compression method, a load of 5 g, and air of 100 ml / min. The test piece of the sample thermosetting resin was measured after polishing to 5 (length) × 5 (width) × 10 (height) mm after heating for 10 minutes at the final curing temperature to remove strain. From the slope of the TMA curve, Tg (° C.) and CTE (ppm) at 50 to 100 ° C. were calculated. The results are shown in Table 2. In addition, the measurement conditions of the glass transition point and the thermal expansion coefficient in the following examples are the same as those in the above examples and comparative examples.
(原料質量減少温度・残渣量)
 上記により得られた熱硬化性樹脂を用い、熱重量測定(TGA)を行い、原料質量が減少する温度及び残渣量について検討した。
 具体的には、島津製作所社製のTGA‐50(商品名)を用い、昇温速度5℃/分、窒素20ml/分で測定を行い、40℃時点の質量を基準として、質量が5%減量したときの温度をTd、10%減量したときの温度をTd10とした。結果を表2に示す。
 また、40℃時点の質量を基準として、800℃まで加熱した際の残渣量(質量%)を求め、化学的な耐熱性を評価した。結果を表2に示す。尚、以下の実施例における原料質量減少温度・残渣量の測定条件は、同様である。
(Raw material mass reduction temperature, residue amount)
Thermogravimetry (TGA) was performed using the thermosetting resin obtained as described above, and the temperature at which the raw material mass decreased and the amount of residue were examined.
Specifically, using a TGA-50 (trade name) manufactured by Shimadzu Corporation, measurement was performed at a temperature rising rate of 5 ° C./min and nitrogen of 20 ml / min, and the mass was 5% based on the mass at 40 ° C. The temperature when the amount was reduced was Td 5 , and the temperature when the amount was reduced by 10% was Td 10 . The results are shown in Table 2.
Moreover, the amount of residue (mass%) at the time of heating to 800 degreeC was calculated | required on the basis of the mass at the time of 40 degreeC, and chemical heat resistance was evaluated. The results are shown in Table 2. In addition, the measurement conditions of the raw material mass decreasing temperature and the amount of residue in the following examples are the same.
Figure JPOXMLDOC01-appb-T000027
                  
Figure JPOXMLDOC01-appb-T000027
                  
 上記の結果から、本実施形態に係る実施例6~13の熱硬化性樹脂は、比較例2~3と比較して、Tgが250℃以上と、同程度の値を示し、成形性に優れているだけでなく、耐熱性にも優れることが確認された。また、実施例6~13の熱硬化性樹脂は、熱膨張率(CTE)においては、汎用エポキシ樹脂の70ppm/℃と比較して低い値が得られ、低熱膨張率にも優れていることが確認された。
 さらに、実施例6~13の熱硬化性樹脂は、Td5、及びTd10が高い値を示し、これらの樹脂が物理的・化学的耐熱性共に優れている事が判明した。
From the above results, the thermosetting resins of Examples 6 to 13 according to the present embodiment have a Tg of 250 ° C. or higher and excellent moldability as compared with Comparative Examples 2 to 3. In addition, it was confirmed that it has excellent heat resistance. Further, the thermosetting resins of Examples 6 to 13 have a low coefficient of thermal expansion (CTE) compared to 70 ppm / ° C. of general-purpose epoxy resins, and are excellent in low thermal expansion coefficient. confirmed.
Further, the thermosetting resins of Examples 6 to 13 showed high values of T d5 and T d10 , and it was found that these resins were excellent in both physical and chemical heat resistance.
[実施例14~16]
 Pd型ベンゾオキサジン(Pd)、BMI、及びBADを0.3:1:2.0のモル比で混合し、表3に示す硬化条件にて樹脂を作製した。具体的には、まず、全体が25gになるようにPd、BMI、及びBADを測り取り、先にBMI、及びBADを規格瓶にとり、150℃のオイルバスで撹拌しながら、溶融混合を行った。その後、120℃まで温度を下げ、Pdを加え、撹拌した後、あらかじめ120℃に温めておいたAl注型版に注ぎ、脱気後、表3に示す段階硬化の硬化条件にて、熱硬化性樹脂を硬化させた。例えば、実施例14は、120℃で6時間の加熱後、220℃で4時間の加熱により樹脂を硬化させる硬化条件を示す。得られた硬化物の熱的特性及び機械特性を表3に示す。
[Examples 14 to 16]
Pd-type benzoxazine (Pd), BMI, and BAD were mixed at a molar ratio of 0.3: 1: 2.0, and a resin was produced under the curing conditions shown in Table 3. Specifically, first, Pd, BMI, and BAD were measured so that the whole was 25 g, and BMI and BAD were first taken into a standard bottle, and melt-mixed while stirring in an oil bath at 150 ° C. . Thereafter, the temperature was lowered to 120 ° C., Pd was added, stirred, poured into an Al casting plate preheated to 120 ° C., degassed, and thermally cured under the curing conditions of stepwise curing shown in Table 3. The functional resin was cured. For example, Example 14 shows curing conditions for curing a resin by heating at 120 ° C. for 6 hours and then heating at 220 ° C. for 4 hours. Table 3 shows the thermal characteristics and mechanical characteristics of the obtained cured product.
Figure JPOXMLDOC01-appb-T000028
                  
Figure JPOXMLDOC01-appb-T000028
                  
 表3に示すように、実施例14~16の熱硬化性樹脂は、Tg250℃以上及びCTE50ppm/℃以下の熱的特性を示し、曲げ強度150MPa以上の機械特性を示した。
 実施例14~16の中でも、一段階目の硬化を高温で行って硬化させた実施例16の熱硬化性樹脂が特に機械的特性に優れていることが確認された。また、160℃で6時間の加熱後、220℃で4時間の加熱により樹脂を硬化させる硬化条件で得られた熱硬化性樹脂も、実施例16と同様の機械特性を示した。
 従って、一段階目の硬化を高温で長時間行って硬化させることにより、機械的特性に優れた熱硬化性樹脂を得られることが確認された。
As shown in Table 3, the thermosetting resins of Examples 14 to 16 exhibited thermal properties of Tg 250 ° C. or higher and CTE 50 ppm / ° C. or lower, and mechanical properties of bending strength 150 MPa or higher.
Among Examples 14 to 16, it was confirmed that the thermosetting resin of Example 16 cured by performing the first stage curing at a high temperature was particularly excellent in mechanical properties. Further, the thermosetting resin obtained under the curing conditions in which the resin was cured by heating at 160 ° C. for 6 hours and then at 220 ° C. for 4 hours also showed the same mechanical characteristics as in Example 16.
Therefore, it was confirmed that a thermosetting resin having excellent mechanical properties can be obtained by curing the first stage at a high temperature for a long time.
[実施例17~18]
 Pd型ベンゾオキサジン(Pd)と、BMIと、BAD又はビスフェノールE型ジシアネート(以下、BEDともいう。)とを、表4に示すモル比で混合し、加熱、重合させて熱硬化性樹脂を作製した。具体的には、まず、全体が14gになるようにPd、BMI、及び、BAD又はBEDを規格瓶にとり、120℃のオイルバスで撹拌しながら、溶融混合を行った。次いで、あらかじめ120℃に温めておいたAl注型版に注ぎ、脱気後、220℃4時間の加熱により、樹脂を硬化させた。得られた硬化物はどれも濃赤色透明であった。
[Examples 17 to 18]
Pd-type benzoxazine (Pd), BMI, and BAD or bisphenol E-type dicyanate (hereinafter also referred to as BED) are mixed at a molar ratio shown in Table 4, and heated and polymerized to produce a thermosetting resin. did. Specifically, first, Pd, BMI, and BAD or BED were placed in a standard bottle so that the total was 14 g, and melt-mixed while stirring in a 120 ° C. oil bath. Subsequently, it poured into the Al casting plate preheated to 120 degreeC, and after deaeration, the resin was hardened by heating at 220 degreeC for 4 hours. All of the obtained cured products were dark red and transparent.
 上記と同様の方法で、得られた硬化物のガラス転移点・熱膨張率・原料質量減少温度・及び残渣量を測定した。結果を表4に示す。 The glass transition point, the thermal expansion coefficient, the raw material mass reduction temperature, and the amount of residue of the obtained cured product were measured by the same method as described above. The results are shown in Table 4.
Figure JPOXMLDOC01-appb-T000029
                  
 
Figure JPOXMLDOC01-appb-T000029
                  
 
 上記の結果から、BADに代えてBEDを用いた実施例18の熱硬化性樹脂は、BADを用いた実施例17の熱硬化性樹脂と比較して、Tg及びCTEにおいて同程度の値を示すことが確認された。
 さらに、実施例18の熱硬化性樹脂は、実施例17の熱硬化性樹脂と同様に、Td5、Td10が高い値を示し、これらの樹脂が物理的・化学的耐熱性共に優れている事が判明した。
 これらのことから、シアン酸エステルとして、BADに代えてBEDを用いても、耐熱性及び低熱膨張率に優れた熱硬化性樹脂が得られることが確認された。
From the above results, the thermosetting resin of Example 18 using BED instead of BAD shows comparable values in Tg and CTE compared to the thermosetting resin of Example 17 using BAD. It was confirmed.
Furthermore, similarly to the thermosetting resin of Example 17, the thermosetting resin of Example 18 shows high values of T d5 and T d10 , and these resins are excellent in both physical and chemical heat resistance. Things turned out.
From these facts, it was confirmed that a thermosetting resin excellent in heat resistance and a low thermal expansion coefficient can be obtained even if BED is used instead of BAD as the cyanate ester.
[実施例19]
 Pd型ベンゾオキサジン(Pd)、BMI、及び、ノボラック型シアン酸エステル(ロンザ社製;プリマセットPT-30、フェノールノボラック型シアン酸エステル、平均官能基数7.3;以下、NCYともいう。)を、0.5:1:2.0のモル比で混合し、加熱、重合させて熱硬化性樹脂を作製した。具体的には、全体が25gになるようにPd、BMI、及びNCYを測り取り、先にBMI、及びNCYを規格瓶にとり、150℃のオイルバスで撹拌しながら、溶融混合を行った。その後、120℃まで温度を下げ、Pdを加え、撹拌した後、あらかじめ120℃に温めておいたAl注型版に注ぎ、脱気後、160℃1時間-180℃1時間-220℃4時間の加熱により、樹脂を硬化させた。得られた硬化物はどれも濃赤色透明であった。
[Example 19]
Pd-type benzoxazine (Pd), BMI, and novolak-type cyanate ester (manufactured by Lonza; Primaset PT-30, phenol novolac-type cyanate ester, average functional group number 7.3; hereinafter also referred to as NCY). , 0.5: 1: 2.0, and the mixture was heated and polymerized to prepare a thermosetting resin. Specifically, Pd, BMI, and NCY were measured so that the whole became 25 g, and BMI and NCY were first taken in a standard bottle and melt-mixed while stirring in a 150 ° C. oil bath. Thereafter, the temperature is lowered to 120 ° C., Pd is added, and the mixture is stirred. Then, the mixture is poured into an Al casting plate preheated to 120 ° C. After degassing, 160 ° C. for 1 hour—180 ° C. for 1 hour—220 ° C. for 4 hours. The resin was cured by heating. All of the obtained cured products were dark red and transparent.
 上記と同様の方法で、得られた硬化物のガラス転移点・熱膨張率・原料質量減少温度・及び残渣量を測定した。結果を表5に示す。 The glass transition point, the thermal expansion coefficient, the raw material mass reduction temperature, and the amount of residue of the obtained cured product were measured by the same method as described above. The results are shown in Table 5.
Figure JPOXMLDOC01-appb-T000030
                  
Figure JPOXMLDOC01-appb-T000030
                  
 上記の結果から、BADに代えてNCYを用いた実施例19の熱硬化性樹脂は、BADを用いた場合と同様に、Tg及びCTEにおいて同程度の値を示すことが確認された。
 さらに、実施例19の熱硬化性樹脂は、BADを用いた場合と同様に、Td5、Td10が高い値を示し、この樹脂が物理的・化学的耐熱性共に優れている事が判明した。
 これらのことから、シアン酸エステルとして、BADに代えてNCYを用いても、耐熱性及び低熱膨張率に優れた熱硬化性樹脂が得られることが確認された。
From the above results, it was confirmed that the thermosetting resin of Example 19 using NCY instead of BAD showed similar values in Tg and CTE as in the case of using BAD.
Further, the thermosetting resin of Example 19 showed high values of T d5 and T d10 as in the case of using BAD, and it was found that this resin is excellent in both physical and chemical heat resistance. .
From these facts, it was confirmed that a thermosetting resin excellent in heat resistance and low thermal expansion coefficient can be obtained even when NCY is used instead of BAD as the cyanate ester.
[実施例20]
 Pd型ベンゾオキサジン(Pd)、BMI、及び、NCYを0.3:1:2.0のモル比で混合し、加熱、重合させて熱硬化性樹脂を作製した。具体的には、全体が25gになるようにPd、BMI、及びNCYを測り取り、先にBMI、及びNCYを規格瓶にとり、150℃のオイルバスで撹拌しながら、溶融混合を行った。その後、120℃まで温度を下げ、Pdを加え、撹拌した後、あらかじめ120℃に温めておいたAl注型版に注ぎ、脱気後、160℃1時間-180℃1時間-220℃4時間の加熱により、樹脂を硬化させた。得られた硬化物はどれも濃赤色透明であった。結果を表6に示す。
[Example 20]
Pd-type benzoxazine (Pd), BMI, and NCY were mixed at a molar ratio of 0.3: 1: 2.0, and heated and polymerized to prepare a thermosetting resin. Specifically, Pd, BMI, and NCY were measured so that the whole became 25 g, and BMI and NCY were first taken in a standard bottle and melt-mixed while stirring in a 150 ° C. oil bath. Thereafter, the temperature is lowered to 120 ° C., Pd is added, and the mixture is stirred. Then, the mixture is poured into an Al casting plate preheated to 120 ° C. After degassing, 160 ° C. for 1 hour—180 ° C. for 1 hour—220 ° C. for 4 hours. The resin was cured by heating. All of the obtained cured products were dark red and transparent. The results are shown in Table 6.
[実施例21]
 Pd型ベンゾオキサジン(Pd)、BMI、及びシアン酸エステルを0.3:1:2.0のモル比で混合し、加熱、重合させて熱硬化性樹脂を作製した。具体的には、全体が25gになるようにPd、BMI、及びシアン酸エステルを測り取り、先にBMI、及びシアン酸エステルを規格瓶にとり、150℃のオイルバスで撹拌しながら、溶融混合を行った。測り取ったシアン酸エステルは、BADとNCYとを1:1のモル比で混合したものである。
 その後、120℃まで温度を下げ、Pdを加え、撹拌した後、あらかじめ120℃に温めておいたAl注型版に注ぎ、脱気後、160℃1時間-180℃1時間-220℃4時間の加熱により、樹脂を硬化させた。得られた硬化物はどれも濃赤色透明であった。結果を表6に示す。
[Example 21]
Pd-type benzoxazine (Pd), BMI, and cyanate ester were mixed at a molar ratio of 0.3: 1: 2.0, and heated and polymerized to prepare a thermosetting resin. Specifically, Pd, BMI, and cyanate ester are measured so that the total weight is 25 g. First, BMI and cyanate ester are placed in a standard bottle, and the mixture is melt-mixed while stirring in an oil bath at 150 ° C. went. The measured cyanate ester is a mixture of BAD and NCY at a molar ratio of 1: 1.
Thereafter, the temperature is lowered to 120 ° C., Pd is added, and the mixture is stirred. Then, the mixture is poured into an Al casting plate preheated to 120 ° C. After degassing, 160 ° C. for 1 hour—180 ° C. for 1 hour—220 ° C. for 4 hours. The resin was cured by heating. All of the obtained cured products were dark red and transparent. The results are shown in Table 6.
Figure JPOXMLDOC01-appb-T000031
                  
Figure JPOXMLDOC01-appb-T000031
                  
 表6に示すように、Pd型ベンゾオキサジン(Pd)、BMI、及びNCYを、0.3:1:2.0のモル比で混合して作製した実施例20の熱硬化性樹脂は、CTE50ppm/℃未満で、かつ、Tgが350℃より高く、優れた熱的特性を示した。
 また、NCYに代えて、BADとNCYを1:1のモル比で混合したシアン酸エステルを用いた実施例21の熱硬化性樹脂は、シアン酸エステルとしてNCY単独を用いた場合と同様に、Tg及びCTEにおいて優れた熱的特性を示すことが確認された。
 このことから、シアン酸エステルとして、BADとNCYの混合物を用いても、耐熱性及び低熱膨張率に優れた熱硬化性樹脂が得られることが確認された。
As shown in Table 6, the thermosetting resin of Example 20 prepared by mixing Pd-type benzoxazine (Pd), BMI, and NCY at a molar ratio of 0.3: 1: 2.0 was CTE 50 ppm. It was less than / ° C. and Tg was higher than 350 ° C., indicating excellent thermal characteristics.
Further, in place of NCY, the thermosetting resin of Example 21 using a cyanate ester in which BAD and NCY were mixed at a molar ratio of 1: 1 is similar to the case of using NCY alone as the cyanate ester. It was confirmed that Tg and CTE exhibit excellent thermal properties.
From this, it was confirmed that even when a mixture of BAD and NCY was used as the cyanate ester, a thermosetting resin excellent in heat resistance and low thermal expansion coefficient was obtained.
 本発明の熱硬化性樹脂によれば、耐熱性、低熱膨張率、及び成形性に優れているため、電気自動車やハイブリッド車用のパワーデバイスに好適に用いられる。本発明の熱硬化性樹脂組成物によれば、耐熱性、低熱膨張率、及び成形性に優れた熱硬化性樹脂を提供することができる。 Since the thermosetting resin of the present invention is excellent in heat resistance, low thermal expansion coefficient, and moldability, it is suitably used for power devices for electric vehicles and hybrid vehicles. According to the thermosetting resin composition of the present invention, it is possible to provide a thermosetting resin excellent in heat resistance, a low coefficient of thermal expansion, and moldability.

Claims (7)

  1.  下記一般式(1)で表される化合物と、下記一般式(1)で表される化合物に対して0.2~0.5倍モル量の下記一般式(2)で表される化合物と、シアン酸エステルと、を含む混合物を重合させてなる熱硬化性樹脂。
    Figure JPOXMLDOC01-appb-C000001
                      
    [式中、X及びXは、それぞれ独立に、炭素数1~10のアルキレン基、下記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合である。]
    Figure JPOXMLDOC01-appb-C000002
                      
    [式中、Yは、芳香族環を有する炭素数6~30の炭化水素基であり、nは1以上の整数である。]
    A compound represented by the following general formula (1) and a compound represented by the following general formula (2) in an amount of 0.2 to 0.5 times the molar amount of the compound represented by the following general formula (1): And a thermosetting resin obtained by polymerizing a mixture containing cyanate ester.
    Figure JPOXMLDOC01-appb-C000001

    [Wherein, X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond. ]
    Figure JPOXMLDOC01-appb-C000002

    [Wherein Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more. ]
  2.  前記X及びXが、それぞれ独立に炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基、又は下記式(i)~(iii)のいずれかで表される基である請求項1に記載の熱硬化性樹脂。
    Figure JPOXMLDOC01-appb-C000003
                      
    X 1 and X 2 are each independently a linear or branched alkylene group having 1 to 3 carbon atoms, or a group represented by any of the following formulas (i) to (iii): 1. The thermosetting resin according to 1.
    Figure JPOXMLDOC01-appb-C000003
  3.  前記混合物は、前記一般式(1)で表される化合物に対して0.3~10倍モル量の前記シアン酸エステルを含む請求項1から3のいずれか1項に記載の熱硬化性樹脂。 The thermosetting resin according to any one of claims 1 to 3, wherein the mixture contains 0.3 to 10 times the molar amount of the cyanate ester relative to the compound represented by the general formula (1). .
  4.  下記一般式(1)で表される化合物と、前記一般式(1)で表される化合物に対して0.2~0.5倍モル量の下記一般式(2)で表される化合物と、シアン酸エステルと、を含む熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000004
                      
    [式中、X及びXは、それぞれ独立に、炭素数1~10のアルキレン基、下記一般式(3)で表される基、式「-SO-」若しくは「-CO-」で表される基、酸素原子、又は単結合である。]
    Figure JPOXMLDOC01-appb-C000005
                      
    [式中、Yは、芳香族環を有する炭素数6~30の炭化水素基であり、nは1以上の整数である。]
    A compound represented by the following general formula (1) and a compound represented by the following general formula (2) in an amount of 0.2 to 0.5 times the molar amount of the compound represented by the general formula (1): And a thermosetting resin composition comprising a cyanate ester.
    Figure JPOXMLDOC01-appb-C000004

    [Wherein, X 1 and X 2 are each independently an alkylene group having 1 to 10 carbon atoms, a group represented by the following general formula (3), a formula “—SO 2 —” or “—CO—” Or a single bond. ]
    Figure JPOXMLDOC01-appb-C000005

    [Wherein Y is a hydrocarbon group having 6 to 30 carbon atoms having an aromatic ring, and n is an integer of 1 or more. ]
  5.  前記X及びXが、それぞれ炭素数1~3の直鎖状若しくは分岐鎖状のアルキレン基、又は下記式(i)~(iii)のいずれかで表される基である請求項4に記載の熱硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006
                      
     
    The X 1 and X 2 are each a linear or branched alkylene group having 1 to 3 carbon atoms, or a group represented by any of the following formulas (i) to (iii): The thermosetting resin composition as described.
    Figure JPOXMLDOC01-appb-C000006

  6.  前記混合物は、前記一般式(1)で表される化合物に対して0.3~10倍モル量の前記シアン酸エステルを含む請求項4又は5に記載の熱硬化性樹脂組成物。 The thermosetting resin composition according to claim 4 or 5, wherein the mixture contains 0.3 to 10 times the molar amount of the cyanate ester relative to the compound represented by the general formula (1).
  7.  請求項4から6のいずれか1項に記載の熱硬化性樹脂組成物を含むSiC半導体用封止材。 A sealing material for SiC semiconductor containing the thermosetting resin composition according to any one of claims 4 to 6.
PCT/JP2013/077465 2012-10-11 2013-10-09 Thermosetting resin and thermosetting resin composition WO2014057973A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014540866A JP6108561B2 (en) 2012-10-11 2013-10-09 Thermosetting resin and thermosetting resin composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2012-226075 2012-10-11
JP2012226075 2012-10-11

Publications (1)

Publication Number Publication Date
WO2014057973A1 true WO2014057973A1 (en) 2014-04-17

Family

ID=50477440

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/077465 WO2014057973A1 (en) 2012-10-11 2013-10-09 Thermosetting resin and thermosetting resin composition

Country Status (2)

Country Link
JP (1) JP6108561B2 (en)
WO (1) WO2014057973A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025121A (en) * 2013-06-21 2015-02-05 住友ベークライト株式会社 Resin composition for semiconductor encapsulation, and semiconductor device
WO2018159506A1 (en) * 2017-02-28 2018-09-07 日本発條株式会社 Resin composition, laminate for circuit boards, metal-based circuit board and power module
WO2019078300A1 (en) * 2017-10-20 2019-04-25 日本化薬株式会社 Curable resin composition, varnish, prepreg, cured product, laminate and copper-clad laminate
WO2019092968A1 (en) * 2017-11-10 2019-05-16 株式会社プリンテック Resin composition

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203464A (en) * 1988-02-09 1989-08-16 Shin Etsu Chem Co Ltd Maleimide resin composition, its cured product and semiconductor device using same
JPH11124487A (en) * 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc Cyanic acid ester-maleimide liquid resin composition and sealed semiconductor device
JP2006057007A (en) * 2004-08-20 2006-03-02 Namics Corp Liquid resin composition for sealing
JP2007169454A (en) * 2005-12-21 2007-07-05 Ajinomoto Co Inc Prepreg containing modified polyimide resin
JP2010013636A (en) * 2008-06-03 2010-01-21 Mitsubishi Rayon Co Ltd Resin composition for fiber-reinforced composite material and fiber-reinforced composite material using it
JP2012097207A (en) * 2010-11-02 2012-05-24 Yokohama National Univ Polybenzoxazine-modified bismaleimide resin and polybenzoxazine-modified bismaleimide resin composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01203464A (en) * 1988-02-09 1989-08-16 Shin Etsu Chem Co Ltd Maleimide resin composition, its cured product and semiconductor device using same
JPH11124487A (en) * 1997-10-22 1999-05-11 Mitsubishi Gas Chem Co Inc Cyanic acid ester-maleimide liquid resin composition and sealed semiconductor device
JP2006057007A (en) * 2004-08-20 2006-03-02 Namics Corp Liquid resin composition for sealing
JP2007169454A (en) * 2005-12-21 2007-07-05 Ajinomoto Co Inc Prepreg containing modified polyimide resin
JP2010013636A (en) * 2008-06-03 2010-01-21 Mitsubishi Rayon Co Ltd Resin composition for fiber-reinforced composite material and fiber-reinforced composite material using it
JP2012097207A (en) * 2010-11-02 2012-05-24 Yokohama National Univ Polybenzoxazine-modified bismaleimide resin and polybenzoxazine-modified bismaleimide resin composition

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015025121A (en) * 2013-06-21 2015-02-05 住友ベークライト株式会社 Resin composition for semiconductor encapsulation, and semiconductor device
WO2018159506A1 (en) * 2017-02-28 2018-09-07 日本発條株式会社 Resin composition, laminate for circuit boards, metal-based circuit board and power module
JP2018141056A (en) * 2017-02-28 2018-09-13 日本発條株式会社 Resin composition, laminated plate for circuit board, metal-based circuit board, and power module
TWI686446B (en) * 2017-02-28 2020-03-01 日商日本發條股份有限公司 Resin composition, laminate for circuit board, metal base circuit board, and power module
WO2019078300A1 (en) * 2017-10-20 2019-04-25 日本化薬株式会社 Curable resin composition, varnish, prepreg, cured product, laminate and copper-clad laminate
JP6515255B1 (en) * 2017-10-20 2019-05-15 日本化薬株式会社 Curable resin composition, varnish, prepreg, cured product, and laminate or copper-clad laminate
WO2019092968A1 (en) * 2017-11-10 2019-05-16 株式会社プリンテック Resin composition
KR20200078638A (en) * 2017-11-10 2020-07-01 가부시키가이샤 프린테크 Resin composition
JPWO2019092968A1 (en) * 2017-11-10 2021-01-28 株式会社プリンテック Resin composition
JP7137576B2 (en) 2017-11-10 2022-09-14 株式会社プリンテック Method for producing resin composition
KR102502897B1 (en) * 2017-11-10 2023-02-23 가부시키가이샤 프린테크 resin composition

Also Published As

Publication number Publication date
JPWO2014057973A1 (en) 2016-09-05
JP6108561B2 (en) 2017-04-05

Similar Documents

Publication Publication Date Title
JP5585985B2 (en) A polybenzoxazine-modified bismaleimide resin and a polybenzoxazine-modified bismaleimide resin composition.
US11208525B2 (en) Epoxy resin, epoxy resin composition, inorganic filler-containing epoxy resin composition, resin sheet, cured product, and epoxy compound
JP6680523B2 (en) Powder paint
JP6602865B2 (en) Epoxy resin composition, method for producing the same, and use of the composition
JP6108561B2 (en) Thermosetting resin and thermosetting resin composition
EP3101046B1 (en) Liquid resin composition
JP6509009B2 (en) Bismaleimide compound, composition containing the same, and cured product
WO2016039486A1 (en) Thermosetting resin composition
JP2014015603A (en) Cyanate ester-based composition and its use
JP4805413B2 (en) Thermosetting resin having benzoxazine ring and method for producing the same
KR102383874B1 (en) Heat-curable resin composition
JP5627196B2 (en) Epoxy resin composition and cured product thereof
TWI592442B (en) Thermosetting resin composition
KR20150026800A (en) Resin compositions for sealing semiconductor and semiconductor device with the cured product thereof
JP5498200B2 (en) Method for producing thermosetting resin having benzoxazine ring, and thermosetting resin having benzoxazine ring
JP2015174897A (en) Curable composition, hardened product containing mesogenic group and production method of the hardened product
JP2012025800A (en) Epoxy resin composition and epoxy resin
JP6512295B2 (en) Epoxy resin molding material, molding and cured product
JP2015101709A (en) Thermosetting resin and thermosetting resin composition
JP7191275B1 (en) Thermosetting resin compositions, cured products, resin sheets, prepregs, metal foil-clad laminates, multilayer printed wiring boards, sealing materials, fiber-reinforced composite materials, adhesives, and semiconductor devices
JP2011207995A (en) Thermosetting resin and method for producing the same, thermosetting resin composition, molding, cured product, and electronic equipment
JP6867894B2 (en) Compositions, epoxy resin curing agents, epoxy resin compositions, thermosetting compositions, cured products, semiconductor devices, and interlayer insulating materials
JP2024034973A (en) Curable resin compositions, cured products and articles
TW202225256A (en) Ester compound, polyester resin, curable composition, cured product, prepreg, printed wiring board, build-up film, semiconductor sealing material, and semiconductor device having a small increase in dielectric loss tangent even when exposed to moist heat conditions
US20230250328A1 (en) Thermally conductive resin composition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13844757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014540866

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13844757

Country of ref document: EP

Kind code of ref document: A1