WO2019078135A1 - 量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材 - Google Patents

量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材 Download PDF

Info

Publication number
WO2019078135A1
WO2019078135A1 PCT/JP2018/038244 JP2018038244W WO2019078135A1 WO 2019078135 A1 WO2019078135 A1 WO 2019078135A1 JP 2018038244 W JP2018038244 W JP 2018038244W WO 2019078135 A1 WO2019078135 A1 WO 2019078135A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
film
quantum dot
quantum dots
layer
Prior art date
Application number
PCT/JP2018/038244
Other languages
English (en)
French (fr)
Inventor
飯田 和則
絵美 堤
美佳 庭木
潤 金野
惣一朗 荷方
秀敏 田中
Original Assignee
Nsマテリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nsマテリアルズ株式会社 filed Critical Nsマテリアルズ株式会社
Priority to EP18867724.9A priority Critical patent/EP3699650A4/en
Priority to JP2019549257A priority patent/JP7387949B2/ja
Priority to CN201880067203.9A priority patent/CN111226144A/zh
Priority to US16/754,995 priority patent/US11629288B2/en
Publication of WO2019078135A1 publication Critical patent/WO2019078135A1/ja
Priority to US18/116,105 priority patent/US11905443B2/en
Priority to JP2023171678A priority patent/JP2023182725A/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/023Optical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/022Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/03Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor characterised by the shape of the extruded material at extrusion
    • B29C48/07Flat, e.g. panels
    • B29C48/08Flat, e.g. panels flexible, e.g. films
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C48/00Extrusion moulding, i.e. expressing the moulding material through a die or nozzle which imparts the desired form; Apparatus therefor
    • B29C48/16Articles comprising two or more components, e.g. co-extruded layers
    • B29C48/18Articles comprising two or more components, e.g. co-extruded layers the components being layers
    • B29C48/21Articles comprising two or more components, e.g. co-extruded layers the components being layers the layers being joined at their surfaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • B32B27/20Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • B32B27/308Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/325Layered products comprising a layer of synthetic resin comprising polyolefins comprising polycycloolefins
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/36Layered products comprising a layer of synthetic resin comprising polyesters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B33/00Layered products characterised by particular properties or particular surface features, e.g. particular surface coatings; Layered products designed for particular purposes not covered by another single class
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/02Use of particular materials as binders, particle coatings or suspension media therefor
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/54Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing zinc or cadmium
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/20Filters
    • G02B5/206Filters comprising particles embedded in a solid matrix
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/505Wavelength conversion elements characterised by the shape, e.g. plate or foil
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material
    • B29K2023/38Polymers of cycloalkenes, e.g. norbornene or cyclopentene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2033/00Use of polymers of unsaturated acids or derivatives thereof as moulding material
    • B29K2033/04Polymers of esters
    • B29K2033/12Polymers of methacrylic acid esters, e.g. PMMA, i.e. polymethylmethacrylate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2067/00Use of polyesters or derivatives thereof, as moulding material
    • B29K2067/003PET, i.e. poylethylene terephthalate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/16Fillers
    • B29K2105/162Nanoparticles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2995/00Properties of moulding materials, reinforcements, fillers, preformed parts or moulds
    • B29K2995/0037Other properties
    • B29K2995/0039Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/022 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/24All layers being polymeric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/02Synthetic macromolecular particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/10Inorganic particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/20Particles characterised by shape
    • B32B2264/202Solid spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/30Particles characterised by physical dimension
    • B32B2264/301Average diameter smaller than 100 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/50Particles characterised by their position or distribution in a layer
    • B32B2264/502Particles characterised by their position or distribution in a layer distributed in a gradient manner
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/42Polarizing, birefringent, filtering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/40Properties of the layers or laminate having particular optical properties
    • B32B2307/422Luminescent, fluorescent, phosphorescent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/702Amorphous
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/732Dimensional properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/738Thermoformability
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2551/00Optical elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y20/00Nanooptics, e.g. quantum optics or photonic crystals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2345/00Characterised by the use of homopolymers or copolymers of compounds having no unsaturated aliphatic radicals in side chain, and having one or more carbon-to-carbon double bonds in a carbocyclic or in a heterocyclic ring system; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • H01L33/504Elements with two or more wavelength conversion materials

Definitions

  • the present invention relates to a quantum dot-containing resin sheet or film, a method of manufacturing the same, and a wavelength conversion member.
  • the quantum dot is a nanoparticle having a particle diameter of several nm to several tens of nm, which is composed of several hundreds to several thousands of atoms. Quantum dots are also called fluorescent nanoparticles, semiconductor nanoparticles, or nanocrystals.
  • the peak emission wavelength can be variously changed according to the particle size and composition of the nanoparticles, and thus can be adjusted to the target wavelength.
  • Quantum dots can be dispersed in a resin and used as a wavelength conversion material.
  • Patent Document 1 describes a film in which quantum dots are dispersed in a resin.
  • Patent Document 1 has a problem that the film is laminated, a complicated operation is required, and the light conversion efficiency tends to decrease.
  • the present invention has been made in view of these points, and in particular, a quantum dot-containing resin sheet or film capable of improving the light conversion efficiency of a resin molded body containing quantum dots, a method for producing the same, and It aims at providing a wavelength conversion member.
  • quantum dots are contained in at least one resin layer, and the plurality of resin layers are integrated by coextrusion molding It is characterized by
  • the resin layer containing the quantum dot and the resin layer not containing the quantum dot are integrated.
  • the resin layer containing no quantum dot contains a functional additive.
  • a plurality of quantum dots having different fluorescence wavelengths be contained in different resin layers.
  • the quantum dots include at least quantum dots emitting green light and quantum dots emitting red light.
  • the first resin layer containing the green-emitting quantum dots but not the red-emitting quantum dots, and the second resin layer containing the red-emitting quantum dots but not the green-emitting quantum dots A resin layer, and an intermediate resin layer located between the first resin layer and the second resin layer and including both the red-emitting quantum dots and the green-emitting quantum dots; It is preferable that concentration gradients of the green-emitting quantum dots and the red-emitting quantum dots are formed from the first resin layer to the second resin layer.
  • the resin layer containing the quantum dots emitting red light is disposed on the excitation light side, and the resin layer containing the quantum dots emitting green light is disposed on the side away from the excitation light Is preferred.
  • an amorphous resin is used for the resin layer.
  • the quantum dot-containing resin sheet or film in the present invention is characterized in that the resin layer contains quantum dots, and the quantum dots are unevenly distributed in the film thickness direction of the resin layer.
  • the resin layer contains a plurality of quantum dots having different fluorescence wavelengths, and the different quantum dots have different concentration gradients in the film thickness direction of the resin layer. It is characterized by
  • the concentration of the quantum dots in the entire resin layer is preferably 0.05% or more and 1.5% or less.
  • the total thickness of the resin layer is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the green light intensity ratio to the blue light intensity and the red light intensity ratio to the blue light intensity are each 0.3 or more.
  • each fluorescence half width of blue light intensity, green light intensity and red light intensity is 100 nm or less.
  • the wavelength conversion member in the present invention is characterized by being molded and processed using the quantum dot-containing resin sheet or film described in any of the above.
  • the method for producing a quantum dot-containing resin sheet or film in the present invention comprises the steps of: forming resin pellets containing quantum dots; and integrating two or more resin layers by coextrusion molding. Do.
  • the quantum dot-containing resin sheet or film of the present invention by integral molding by co-extrusion, a complicated manufacturing process is not required, and light conversion efficiency can be improved.
  • FIG. 2A is a schematic view of a quantum dot in the present embodiment.
  • FIG. 2B is a schematic view of a quantum dot in the present embodiment. It is sectional drawing of the quantum dot containing resin sheet or film in 2nd Embodiment. It is sectional drawing of the quantum dot containing resin sheet or film in 3rd Embodiment. It is sectional drawing of the quantum dot containing resin sheet or film in 4th Embodiment. It is a flowchart which shows the manufacturing process of the quantum dot containing resin sheet or film in this embodiment.
  • 21 is an enlarged photograph of a cross-sectional view of a quantum dot-containing resin film in Example 9.
  • FIG. 21 is an enlarged photograph of a cross sectional view of a quantum dot-containing resin film in Example 10.
  • FIG. 21 is an enlarged photograph of a cross-sectional view of a quantum dot-containing resin film in Example 11.
  • FIG. 21 is an enlarged photograph of a cross-sectional view of a quantum dot-containing resin film in Example 12.
  • FIG. 21 is an enlarged photograph of a cross-sectional view of a quantum dot-containing resin film in Example 13.
  • FIG. 21 is an enlarged photograph of a cross-sectional view of a quantum dot-containing resin film in Example 14.
  • FIG. 21 is an enlarged photograph of a cross-sectional view of a quantum dot-containing resin film in Example 15.
  • FIG. 21 is an enlarged photograph of a cross-sectional view of a quantum dot-containing resin film in Example 10.
  • 21 is a spectrum of a quantum dot-containing resin film in Example 10.
  • 15 is a spectrum of a quantum dot-containing resin film in Example 11.
  • 21 is a spectrum of the quantum dot-containing resin film in Example 12. It is a spectrum of the quantum dot containing resin film in Example 12 (measurement is carried out by putting Example 12 measured in FIG. 17 upside down).
  • 21 is a spectrum of a quantum dot-containing resin film in Example 13.
  • 21 is a spectrum of a quantum dot-containing resin film in Example 14.
  • 21 is a spectrum of a quantum dot-containing resin film in Example 14.
  • 7 is a spectrum of a quantum dot-containing resin film in Example 15.
  • 21 is a spectrum of a quantum dot-containing resin film in Example 16.
  • 21 is a spectrum of a quantum dot-containing resin film in Example 17.
  • 21 is a spectrum of a quantum dot-containing resin film in Example 18.
  • 21 is a spectrum of a quantum dot-containing resin film in Example 19. It is the spectrum of the quantum dot containing resin film in Example 12 (however, it measured without BEF). It is a spectrum of the quantum dot containing resin film in Example 12 (however, it measured without BEF) (measurement which made Example 12 measured in FIG. 27 upside down). It is the spectrum of the quantum dot containing resin film in Example 14 (however, it measured without BEF). It is a spectrum of the quantum dot containing resin film in Example 14 (However, it measured without BEF.) (Example 14 measured in FIG. 29 was measured by turning upside down).
  • FIG. 1 shows a cross-sectional view of the quantum dot-containing resin film in the first embodiment.
  • film is defined as a flexible sheet.
  • sheet is generally configured to have a thickness smaller than the length and the width.
  • the length dimension L, the width dimension W, and the thickness dimension T of the quantum dot-containing resin film or sheet are not limited, and various dimensions may be changed depending on the product. For example, it may be used as a backlight for a large product such as a television, or may be used as a backlight for a small portable device such as a smartphone. Therefore, the size is determined according to the product.
  • the quantum dot-containing resin film 1 has, for example, a three-layer film structure.
  • the middle layer 1 b shown in FIG. 1 is a layer containing quantum dots (QD). The quantum dot will be described.
  • Quantum dots have fluorescence characteristics due to band edge emission and exhibit quantum size effects from the particle size.
  • Quantum dots refer to nanoparticles having a particle size of several nm to several tens of nm.
  • the quantum dot is formed of CdS, CdSe, ZnS, ZnSe, ZnSeS, ZnTe, ZnTeS, InP, AgInS 2 , CuInS 2 or the like, or a quantum dot or the like having a structure in which those quantum dots are covered by a shell. Since Cd is restricted in its use in various countries due to its toxicity, it is preferable that quantum dots do not contain Cd.
  • a large number of organic ligands 11 are coordinated to the surface of the quantum dot 10. Thereby, aggregation of quantum dot 10 comrades can be suppressed and the optical characteristic made into the objective is expressed.
  • the ligand which can be used for reaction is not specifically limited, For example, the following ligands are mentioned as a typical thing.
  • the quantum dot 10 shown to FIG. 2B is a core-shell structure which has the core 10a and the shell 10b by which the surface of the core 10a was coat
  • the core 10a of the quantum dot 10 shown in FIG. 2B is a nanoparticle shown in FIG. 2A. Therefore, the core 10a is formed of, for example, the materials listed above.
  • the material of the shell 10b is not limited, it is made of, for example, zinc sulfide (ZnS) or the like. It is preferable that the shell 10b does not contain cadmium (Cd) as well as the core 10a.
  • the shell 10 b may be in a solid solution state on the surface of the core 10 a. Although the boundary between the core 10a and the shell 10b is shown by a dotted line in FIG. 2B, this indicates that either the boundary between the core 10a and the shell 10b may or may not be confirmed by analysis.
  • the quantum dot 10 contained in the middle layer 1b can contain not only one type but also two or more types of QDs having different fluorescence wavelengths as needed.
  • the middle layer 1 b is formed of a resin composition in which the quantum dots 10 are dispersed.
  • the upper layer 1a, the middle layer 1b and the lower layer 1c are all resin layers, and it is preferable that an amorphous resin be used for the resin layer.
  • the amorphous resin is not particularly limited, but a resin with high transparency is used. In general, a resin having a total light transmittance of 85% or more is preferable, but it is not particularly limited.
  • amorphous resins include cyclic polyolefin polymers (Cyclic Olefin Polymer: COP), cyclic polyolefin copolymers (Cyclic Olefin Copolymer: COC), polystyrene (Poly (strene): PS), acrylic resin (Acrylic resin), polycarbonate (Poly) (Carbonate): PC, modified-poly (phenylene ether): PPE, polyethylene terephthalate (poly (ethylene terephthalate): PET), ethylene vinyl alcohol (EVAL), polymethylpentene (PMP), transparency High
  • the crystalline resin, polyethylene (Polyethylene: PE), polypropylene (Polypropylene: PP), polyvinylidene fluoride (Poly (vinylidene fluoride): PVDF, etc. may be used melt-extrudable resin.
  • the combination of the amorphous resin used in the present embodiment is not particularly limited because it is performed according to the physical properties and functions required for the member.
  • amorphous resin which comprises the resin molding which disperse
  • the homopolymer (COP) and copolymer of acrylic resin and cyclic olefin resin from the dispersibility to resin of a quantum dot and the fluorescence intensity after dispersion (COC), polyethylene terephthalate (PET), or polycarbonate (PC) from the viewpoint of heat resistance is preferable.
  • the upper layer 1a and the lower layer 1c shown in FIG. 1 are resin layers which do not contain the quantum dots 10, and play a role as a protective layer of the middle layer 1b.
  • the upper layer 1a and the lower layer 1c are formed of the above-described resin materials and the like.
  • the upper layer 1a and the lower layer 1c can be formed, for example, of an acrylic resin or the like on the outer layer of the middle layer 1b to protect the middle layer 1b from trauma.
  • the upper layer 1a and the lower layer 1c function as a barrier layer from water and oxygen by being formed on the outer layer of the middle layer 1b with polyethylene terephthalate resin (PET), ethylene vinyl alcohol (EVAL) or the like.
  • PET polyethylene terephthalate resin
  • EVAL ethylene vinyl alcohol
  • the film can be made less likely to break.
  • the handling properties of the film can be improved.
  • the outer layers (upper layer 1a and lower layer 1c) formed on the upper and lower sides of the middle layer 1b containing the quantum dots 10 are also used for flattening the film and adjusting the total thickness of the film.
  • the upper layer 1a and the lower layer 1c do not necessarily have to be formed with the same thickness, and do not have to be the same resin material.
  • the upper layer 1a and the lower layer 1c may have a functionally asymmetric structure.
  • the upper layer 1a or the lower layer 1c, or the upper layer 1a and the lower layer 1c may contain a phosphor such as a fluorescent pigment or a fluorescent dye other than the quantum dots.
  • a resin layer (middle layer 1b) containing quantum dots 10 and a resin layer (upper layer 1a and lower layer 1c) not containing quantum dots 10 are integrated by coextrusion molding ing. That is, there is no adhesive layer at the interface between the middle layer 1b and the upper layer 1a and the interface between the middle layer 1b and the lower layer 1c, and the respective resin layers are directly bonded.
  • the quantum dot-containing resin film 1 can be appropriately thinned, and the light conversion efficiency can be enhanced.
  • a resin layer containing quantum dots can also be used for the upper layer 1a or the lower layer 1c. Thereby, the quantum dots can be unevenly distributed in the film thickness direction.
  • the quantum dot-containing resin film 2 of the second embodiment shown in FIG. 3 is a three-layer film of an intermediate layer 2b containing quantum dots 10, and an upper layer 2a and a lower layer 2c formed above and below the intermediate layer 2b and not containing quantum dots 10. It is a structure.
  • the upper layer 2 a and the lower layer 2 c of the quantum dot-containing resin film 2 each contain an additive.
  • One or more additives are included.
  • the type of additive is not limited, for example, as an additive, a light scattering agent such as silica (SiO 2 ) or zinc oxide (ZnO), a lubricant such as talc and metal soap, an antiblocking agent, or It is possible to add various reinforcing agents such as glass fiber and beads to have various functions.
  • the upper layer 1a and the lower layer 1c may contain phosphors such as fluorescent pigments and fluorescent dyes other than quantum dots.
  • the upper layer 1a and the lower layer 1c may not necessarily contain the same additive.
  • quantum dots are included in the upper layer 3 a and the middle layer 3 b respectively.
  • the lower layer 3c is a resin layer not containing quantum dots.
  • the quantum dots contained in the upper layer 3a and the quantum dots contained in the middle layer 3b can be of different types.
  • the lower layer 3c may contain a phosphor such as a fluorescent pigment or a fluorescent dye other than the quantum dots.
  • the upper layer 3a may contain red-emitting quantum dots, and the middle layer 3b may contain green-emitting quantum dots.
  • the middle layer 3b may contain quantum dots emitting red light, and the upper layer 3a may contain quantum dots emitting green light.
  • a layer containing red-emitting quantum dots is used to prevent red-emitting quantum dots from absorbing the fluorescence of green-emitting quantum dots. It is preferable that the layer disposed on the excitation light side and the layer on the side away from the excitation light contain a quantum dot of green light emission.
  • a quantum dot as a wavelength conversion material
  • two or more types of quantum dots with different fluorescence wavelengths are used.
  • a method is employed in which excitation light is converted by two types of green emission quantum dots and red emission quantum dots using blue LED light as excitation light for backlight.
  • the red-emitting quantum dots can absorb not only the excitation light but also the fluorescence of the green-emitting quantum dots, the intensity of the green fluorescence decreases.
  • the upper layer 3a contains quantum dots of red light emission
  • the middle layer 3b contains quantum dots of green light emission. Therefore, the quantum dot concentration in each layer can be suppressed low.
  • a layer containing quantum dots of red light emission is disposed on the excitation light side, and quantum dots of red light emission are green light emission by containing quantum dots of green light emission in the layer separated from the excitation light. It is possible to avoid absorbing the fluorescence of the quantum dots and to improve the light conversion efficiency.
  • the lower layer 3c shown in FIG. 4 may contain a functional additive in the same manner as the upper layer 2a and the lower layer 2c of FIG. Further, the quantum dot-containing resin film 3 of FIG. 4 is formed of two layers, the upper layer 3a and the middle layer 3b, and the lower layer 3c may not be formed.
  • the upper layer 3a and the lower layer 3c shown in FIG. 4 may contain quantum dots
  • the middle layer 3b may be a resin layer not containing quantum dots.
  • the middle layer 3b may contain phosphors such as fluorescent pigments and fluorescent dyes other than quantum dots.
  • the layer not containing quantum dots it is preferable to appropriately select the light transmittance and the refractive index in consideration of light reflection and refraction at the interface between the layers.
  • the quantum dot-containing resin film 4 of the fourth embodiment shown in FIG. 5 comprises an upper layer 4a as a resin layer containing first quantum dots, a lower layer 4c as a resin layer containing second quantum dots, and an upper layer 4a. It is formed between the lower layer 4c and has a laminated film structure of the middle layer 4b including both the first quantum dot and the second quantum dot.
  • the first quantum dot is a green-emitting quantum dot
  • the second quantum dot is a red-emitting quantum dot. Therefore, the middle layer 4b includes both green-emitting quantum dots and red-emitting quantum dots.
  • the green-emitting quantum dots are not included in the lower layer 4c, but are included in both the middle layer 4b and the upper layer 4a, but the upper layer 4a is more included than the middle layer 4b. Therefore, the quantum dot emitting green light has a concentration gradient (gradient) in which the concentration increases from the lower layer 4c to the upper layer 4a.
  • quantum dots emitting red light are not included in the upper layer 4a, but are included in both the middle layer 4b and the lower layer 4c.
  • the lower layer 4c is contained more than the middle layer 4b. Therefore, the quantum dot of red light emission has a concentration gradient (gradient) in which the concentration increases from the upper layer 4a to the lower layer 4c.
  • one type of quantum dot is contained in each resin layer at a different concentration, and a concentration gradient (gradient) is generated for only one type of quantum dot. You may put it on.
  • FIG. 1 is a 3 layer film structure, it does not limit the number of layers. Also, two or more resin layers may be used for each layer.
  • the resin molded body is a laminate of two layers and three or more layers, and the quantum dots are dispersed in the respective resin layers.
  • functions such as suppression of self-absorption of quantum dots, suppression of fluorescence absorption by quantum dots with different emission wavelengths, protection from oxygen and moisture, increase of light conversion efficiency, and light scattering can be exhibited.
  • the required functions can be adjusted by the thickness and combination of each layer. Since the required functions vary depending on the application, this embodiment does not strictly limit the layer structure of the multilayer film.
  • the concentration of the quantum dots in the entire resin layer is preferably 0.05% or more and 1.5% or less. As described above, in the present embodiment, since the content of the quantum dots can be reduced, it is possible to fundamentally avoid the problem of agglomeration of the quantum dots.
  • the total thickness of the resin layer is preferably 50 ⁇ m or more and 500 ⁇ m or less.
  • the respective resin layers can be integrated, and an adhesive layer is not necessary, so the thickness can be reduced.
  • the green light intensity ratio to the blue light intensity and the red light intensity ratio to the blue light intensity can each be 0.3 or more.
  • the quantum dots of red light emission are green light emission quantum dots Absorption of fluorescence can be avoided, and the intensity ratio can be appropriately obtained.
  • the respective fluorescence half-widths of the blue light intensity, the green light intensity, and the red light intensity can be set to 100 nm or less.
  • step ST1 and ST2 a method of manufacturing the quantum dot-containing resin film and the wavelength conversion member of the present embodiment will be described.
  • the quantum dot solution and the resin pellet are mixed and dried (steps ST1 and ST2). Thereby, the resin pellet in which the quantum dot was coated on the surface is obtained.
  • the resin pellet is kneaded, for example, by a twin-screw extruder, and the obtained strand is cut by a pelletizer to obtain a resin pellet in which quantum dots are dispersed in the resin (steps ST3 and ST4).
  • Step ST5 a plurality of resin pellets are introduced into separate raw material inlets of a molding machine, and are melted by a co-extrusion molding machine and extruded from a T-die to obtain a quantum dot-containing resin film having a laminated structure.
  • the quantum dot-containing resin film can be molded to obtain a desired wavelength conversion member (step ST6).
  • the optical adhesive is not used, a decrease in light transmittance and the like due to the adhesive layer is suppressed. Also, unnecessary increase in thickness can be suppressed.
  • the quantum dot containing film formed by the manufacturing method of this embodiment it is possible to suppress the fall of the conversion efficiency resulting from the self-absorption of a quantum dot, and to raise luminous efficiency.
  • two or more types of quantum dots are dispersed independently in each of two or more types of resin layers, and it is possible to freely design the order of lamination of each resin layer.
  • the layer containing the red light emitting quantum dots is disposed on the excitation light side to prevent the red light emitting quantum dots from absorbing the fluorescence of the green light emitting quantum dots. It is preferable to dispose thereon a layer containing green-emitting quantum dots.
  • a layer having a light diffusion function, an outer layer to be a film protection, and the like can be appropriately disposed in addition to the resin layer containing quantum dots.
  • the resin layer not containing quantum dots can contain a fluorescent pigment other than the quantum dots and a fluorescent material such as a fluorescent dye.
  • the resin that can be used in the present embodiment is basically a transparent resin having a different refractive index, but the same material may be used for each layer. Since there are many combinations of these resin types, there is an advantage that many options can be obtained when designing a product according to the purpose.
  • the composition, shape, and shell structure of the quantum dots to be used are not particularly limited, and Cd-based quantum dots containing cadmium (Cd), Cd-free quantum dots not containing Cd, and the like can be used.
  • the resin layer used in the present embodiment is an amorphous transparent resin, and since their refractive index is different, light reflection occurs at the interface of the resin layer.
  • By adjusting the difference in refractive index between the two resins at the interface of the resin layer it is possible to suppress leakage of the light wavelength-converted by the quantum dot or to efficiently extract the light.
  • necessary functions can be added in addition to the multi-layering of the resin layer including quantum dots, and as described in FIG. 3, various additives can be used.
  • various additives can be used.
  • light scattering agents, stabilizers, antioxidants, lubricants, antiblocking agents, plasticizers and the like can be mentioned as typical additives, but not limited thereto.
  • an organic or inorganic light scattering agent or the like it is possible to use an organic or inorganic light scattering agent or the like.
  • resin such as a polyethylene terephthalate (PET) with comparatively low permeability of oxygen or water
  • PET polyethylene terephthalate
  • PVA polyvinyl alcohol
  • EVAL polyethylene vinyl alcohol
  • the transparent resin containing quantum dots can be formed into any size and shape. Since the molding method is co-extrusion molding to which the conventional extrusion molding is applied, continuous production is possible, and a multilayer film with an optical function can be made inexpensive as compared with a manufacturing method including a film laminating step. It is possible to manufacture.
  • distributes a quantum dot the one where the refractive index difference of resin to be used is large is desirable. Therefore, a combination of a resin having a low refractive index and a resin having a high refractive index is preferable.
  • a combination of an acrylic resin and a cyclic polyolefin polymer, a combination of an acrylic resin and a polyethylene terephthalate resin, and the like are preferable. This makes it possible to increase the light conversion efficiency without using a scattering agent by reflection and refraction of light at the interface of the resin layer.
  • the resin molded body is made of two or three or more layers of transparent resin, but since the layer structure is manufactured in one step by coextrusion molding, the end face and the cut surface basically peel off Integrated structure. This layer structure can be confirmed by an optical instrument such as a microscope.
  • quantum dots In the experiment, the following materials were used as quantum dots (QD). Incidentally, one of the quantum dots (QD) also hexane: used in a state of being dispersed in (Hexane C 6 H 12) solvent. The concentration was determined optically by quantifying the absorptivity using a UV-Vis Spectrophotometer V-770 manufactured by JASCO Corporation.
  • Cd system quantum dots green light emitting quantum dots (hereinafter referred to as G-QD) having a core / shell structure and red light emitting quantum dots (hereinafter referred to as R-QD)
  • Cd free quantum dots QD: green light emitting quantum dots (G-QD) with core / shell structure and red light emitting Cd free quantum dots (R-QD)
  • Example 1 2 kg of an acrylic resin was mixed with 30 mL of a hexane dispersion solution of Cd G-QD (the concentration was determined from the optical absorption rate and the required solution amount was calculated from this value), and the dispersion solution was applied to the whole pellet. The hexane solution was evaporated to obtain resin pellets coated with QD.
  • ZnSt (6.0 g: 0.3 wt%), and ZnSt was applied to the pellet surface by dry mixing the pellet and powder.
  • the pellets thus obtained were kneaded with a twin-screw extruder at a molding temperature of 200 to 230 ° C., and the obtained strands were cut with a pelletizer to obtain acrylic resin pellets in which QDs were dispersed in the resin.
  • the obtained G-QD-containing acrylic resin pellet was dried at 60 ° C. for 24 hours or more in a vacuum drying oven, and used as a Cd-based G-QD-containing acrylic resin master batch in the next step.
  • Example 2 An acrylic resin, 2 kg, was mixed with 25 mL of a Cd-based R-QD hexane dispersion solution, and the dispersion solution was applied to the entire pellet. By evaporating the hexane solution, QD coated acrylic resin pellets were obtained.
  • ZnSt (4.0 g: 0.2 wt%) was added, and ZnSt was applied to the pellet surface by dry mixing the pellet and powder.
  • the pellets thus obtained were kneaded by a twin screw extruder at a molding temperature of 200 to 230 ° C., and the obtained strands were cut with a pelletizer to obtain acrylic resin pellets in which QDs were dispersed in an acrylic resin.
  • the obtained R-QD-containing acrylic resin pellet was dried at 60 ° C. for 24 hours or more in a vacuum drying oven, and used as a Cd-based R-QD-containing acrylic resin master batch in the next step.
  • Example 3 2 kg of COP was mixed with 30 mL of a hexane dispersion solution of Cd-based G-QD, and while evaporating the hexane solution quickly, a COP resin pellet having QD coated on the pellet surface was obtained.
  • ZnSt (6.0 g: 0.3 wt%), and ZnSt was applied to the pellet surface by dry mixing the pellet and powder.
  • the pellets thus obtained were kneaded by a twin-screw extruder at a molding temperature of 200 to 220 ° C., and the obtained strands were cut with a pelletizer to obtain pellets in which QDs were dispersed in the COP resin.
  • the obtained G-QD-containing COP resin pellet was dried at 60 ° C. for 24 hours or more in a vacuum drying oven, and used as a Cd-based G-QD-containing COP resin master batch in the next step.
  • Example 4 2 kg of COP was mixed with 25 mL of a Cd-based R-QD hexane dispersion solution, and while evaporating the hexane solution rapidly, a COP resin pellet having QD coated on the pellet surface was obtained.
  • ZnSt (4.0 g: 0.2 wt%) was added, and ZnSt was applied to the pellet surface by dry mixing the pellet and powder.
  • the pellets thus obtained were kneaded by a twin-screw extruder at a molding temperature of 200 to 220 ° C., and the obtained strands were cut with a pelletizer to obtain pellets in which QDs were dispersed in the COP resin.
  • the obtained R-QD-containing COP resin pellet was dried at 60 ° C. for 24 hours or more in a vacuum drying oven, and used as a Cd-based R-QD-containing COP resin master batch in the next step.
  • Example 5 2 kg of PET resin was mixed with 30 mL of a Cd-based G-QD hexane dispersion solution to obtain PET resin pellets coated with QD on the pellet surface.
  • ZnSt (6.0 g: 0.3 wt%), and ZnSt was applied to the pellet surface by dry mixing the pellet and powder.
  • the pellets thus obtained were kneaded by a twin screw extruder at a molding temperature of 220 to 230 ° C., and the obtained strands were cut with a pelletizer to obtain pellets in which QDs were dispersed in a PET resin.
  • the obtained G-QD-containing PET resin pellet was dried at 60 ° C. for 24 hours or more in a vacuum drying oven, and used as a Cd-based G-QD-containing PET resin master batch in the next step.
  • Example 6 2 kg of PET resin was mixed with 25 mL of a Cd-based G-QD hexane dispersion solution to obtain a PET resin pellet coated with QD on the surface of the pellet.
  • ZnSt (4.0 g: 0.2 wt%), and ZnSt was applied to the surface of the PET pellet by dry mixing the pellet and powder.
  • the mixture was charged into a raw material inlet of a twin screw extruder and kneaded at a temperature of 220 ° C. to 230 ° C.
  • the obtained strand was cut with a pelletizer to obtain pellets in which QDs were dispersed in a PET resin.
  • the obtained R-QD-containing PET resin pellet was dried in a vacuum drying oven and used as a Cd-based R-QD-containing PET resin master batch in the next step.
  • Example 7 2 kg of acrylic resin was mixed with 40 mL of a Cd-free solution of G-QD in hexane, and the dispersion was applied to the whole pellet. The hexane solution was evaporated to obtain resin pellets coated with QD.
  • ZnSt (10.0 g: 0.5 wt%) was added, and ZnSt was applied to the pellet surface by dry mixing the pellet and powder.
  • the pellets thus obtained were kneaded with a twin-screw extruder at a molding temperature of 200 to 230 ° C., and the obtained strands were cut with a pelletizer to obtain acrylic resin pellets in which QDs were dispersed in the resin.
  • the obtained G-QD-containing acrylic resin pellet was dried at 60 ° C. for 24 hours or more in a vacuum drying oven, and used as a Cd-free G-QD-containing acrylic resin master batch in the next step.
  • Example 8 2 kg of acrylic resin was mixed with 60 mL of a Cd-free R-QD hexane dispersion solution, and the dispersion solution was applied to the whole pellet. The hexane solution was evaporated to obtain resin pellets coated with QD.
  • ZnSt (6.0 g: 0.3 wt%), and ZnSt was applied to the pellet surface by dry mixing the pellet and powder.
  • the pellets thus obtained were kneaded at a molding temperature of 200 to 230 ° C. by a twin-screw extruder, and the obtained strands were cut with a pelletizer to obtain pellets in which QDs were dispersed in an acrylic resin.
  • the obtained R-QD-containing acrylic resin pellet was dried at 60 ° C. for 24 hours or more in a vacuum drying oven, and used as a Cd-free R-QD-containing acrylic resin master batch in the next step.
  • Examples 1 to 8 are summarized in Table 1.
  • the QD concentration shown in Table 1 is a calculated value determined from the correlation between the optically determined concentration and the QD weight (wt%) by Thermo Gravimetric Analysis (TGA).
  • Example 9 1 kg of PET resin pellet raw material is put into the raw material inlet 1 of a molding machine (resin layer 1), and 400 g of the Cd-based G-QD containing acrylic resin master batch prepared in Example 1 is mixed with 600 g of acrylic resin raw material The raw material inlet 2 of the machine was charged (resin layer 2), and 1 kg of the PET resin pellet raw material was charged into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 320 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 10 1 kg of PET resin pellet raw material was put into the raw material inlet 1 of a molding machine (resin layer 1), and 800 g of the Cd R-QD containing acrylic resin master batch prepared in Example 2 was mixed with 200 g of acrylic resin raw material The raw material inlet 2 of the machine was charged (resin layer 2), and the PET resin pellet raw material was charged into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 350 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 11 500 g of PET resin pellet raw material was put into the raw material inlet 1 of a molding machine (resin layer 1), 250 g of Cd-based G-QD containing acrylic resin master batch prepared in Example 1 and Cd-based R- made in Example 2 A mixture of 500 g of QD-containing acrylic resin master batch and 250 g of acrylic resin pellet raw material was introduced into the raw material inlet 2 of the molding machine (resin layer 2), and an acrylic resin pellet raw material was introduced into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 360 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 12 500 g of the Cd-based R-QD-containing acrylic resin master batch prepared in Example 2 was introduced into the raw material inlet 1 of the molding machine (resin layer 1), and the Cd-based G-QD-containing acrylic resin master batch prepared in Example 1 A mixture of 250 g of acrylic resin and acrylic resin pellet raw material 250 g was introduced into the raw material inlet 2 of the molding machine (resin layer 2), and 500 g of acrylic resin pellet raw material was introduced into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 350 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 13 1 kg of the acrylic resin pellet raw material was charged into the raw material inlet 1 of the molding machine (resin layer 1), 250 g of the Cd-based G-QD-containing acrylic resin master batch produced in Example 1, the Cd-based R- produced in Example 2 A total of 1 kg of pellet mixture of 500 g of QD-containing acrylic resin master batch and 250 g of acrylic resin pellet raw material is charged into raw material inlet 2 of molding machine (resin layer 2), 1 kg of acrylic resin pellet raw material is charged into raw material inlet 3 (Resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 380 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 14 500 g of the Cd-based R-QD-containing COP resin pellet raw material masterbatch prepared in Example 4 was introduced into the raw material inlet 1 of the molding machine (resin layer 1), and the G-QD-containing COP resin master batch prepared in Example 3 A mixture of 250 g of the COP resin pellet raw material and 250 g of the COP resin pellet raw material was charged into the raw material inlet 2 of the molding machine (resin layer 2), and 500 g of the COP resin pellet raw material was charged into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 320 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 15 500 g of the PET resin pellet raw material was put into the raw material inlet 1 of the molding machine (resin layer 1), and 250 g of the Cd R-QD containing COP resin master batch prepared in Example 4 was mixed with 250 g of the COP resin pellet raw material The raw material inlet 2 of the molding machine was charged (resin layer 2), and 500 g of the PET resin pellet raw material was charged into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 360 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 16 A mixture of 250 g of the Cd-based R-QD-containing PET resin masterbatch prepared in Example 6 and 250 g of PET resin pellet raw material was charged into the raw material inlet 1 of a molding machine (resin layer 1). A mixture of 250 g of a Cd-based G-QD-containing acrylic resin master batch and 250 g of an acrylic resin pellet raw material is charged into the raw material inlet 2 of a molding machine (resin layer 2), and 500 g of PET resin pellet raw material is charged into the raw material inlet 3 (Resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 200 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 17 A mixture of 250 g of the Cd-based R-QD-containing COP resin masterbatch prepared in Example 4 and 250 g of the COP resin pellet raw material was charged into the raw material inlet 1 of the molding machine (resin layer 1). A mixture of 250 g of the Cd-based G-QD-containing COP resin masterbatch and 250 g of the Cd-based R-QD-containing COP resin master batch prepared in Example 4 is charged into the raw material inlet 2 of the molding machine (resin layer 2) A mixture of 250 g of the Cd-based G-QD-containing COP resin masterbatch prepared in Example 3 and 250 g of COP resin pellet raw material was charged into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a thickness of 140 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 18 500 g of the Cd-free R-QD-containing acrylic resin master batch prepared in Example 8 was introduced into the raw material inlet 1 of the molding machine (resin layer 1), and the Cd-free G-QD-containing acrylic resin master batch prepared in Example 7 A mixture of 250 g of acrylic resin pellet raw material and 250 g of acrylic resin pellet raw material was charged into the raw material inlet 2 of the molding machine (resin layer 2), and 500 g of PET resin pellet raw material was charged into the raw material inlet 3 (resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 240 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Example 19 A mixture of 250 g of the Cd-free R-QD-containing acrylic resin masterbatch prepared in Example 8 and 250 g of the acrylic resin pellet raw material was charged into the raw material inlet 1 of a molding machine (Resin layer 1). A mixture of 250 g of a Cd-based G-QD-containing acrylic resin master batch and 250 g of an acrylic resin pellet raw material is charged into the raw material inlet 2 of a molding machine (resin layer 2), and 500 g of an acrylic resin pellet raw material is charged into the raw material inlet 3. (Resin layer 3).
  • the resultant was extruded from a T-die while being melted at a molding temperature of 200 to 240 ° C. by a co-extrusion molding machine to obtain a film having a three-layer structure.
  • a film with a total thickness of 220 ⁇ m was formed by adjusting the extrusion speed and the winding speed.
  • the obtained film was rolled up with a roll, and the one which had been cut to the required size was spectrally measured with a spectroradiometer.
  • Examples 9 to 19 are summarized in Table 2.
  • the QD concentration shown in Table 2 is a calculated value determined from the correlation between the optically determined concentration and the QD weight (wt%) by Thermo Gravimetric Analysis (TGA).
  • TGA Thermo Gravimetric Analysis
  • the total thickness shown in Table 2 is an actual value measured using a micrometer.
  • the film is actually composed of three layers, and the target quantum dots (QDs) have a uniformly dispersed structure. .
  • Example 15 had an integral structure except Example 15, and peeling of the surface layer did not occur at all from the film which became a fragment even when finely crushed. .
  • Example 15 peels between layers, which is considered to be due to the low compatibility between the PET resin and the COP resin.
  • RGB spectra when the quantum dot-containing resin film is back lit The measurement was performed with SR-A of Topcon Technohouse. In addition, it measured using the brightness enhancement film (Brightness Enhancement Film: BEF) by 3M company.
  • BEF Brightness Enhancement Film
  • Cd system G-QD (Example 9), Cd system R-QD (Example 10), and Cd system R-QD (Example 15) are respectively contained in the middle layer in a single color.
  • the film Of the film to be Peaks where the excitation light (450 nm) was converted to green and red by QD were confirmed. From this, it was confirmed that QD is contained and wavelength conversion of the excitation light is performed.
  • FIG. 16, FIG. 17, FIG. 19, and FIG. 20 are the spectra of the films of Example 11, Example 12, Example 13, and Example 14, respectively. Both films contain both G-QD and R-QD in the same layer in the film, or in separate layers. It was confirmed from the peaks in each figure that the excitation light was converted to both green and red by a single film.
  • Example 11 and Example 13 both G-QD and R-QD were dispersed in the middle layer, and the concentration of each QD was adjusted so that the absorption of excitation light would be equal.
  • G-QD and R-QD are designed to have ideally equal peak intensities.
  • the intensity of the red fluorescence peak is overwhelmingly greater than that of green. This is because R-QD absorbs the fluorescence of G-QD, so the green fluorescence intensity decreases greatly and the red fluorescence intensity increases accordingly.
  • the luminance is largely lost, which is a problem of the reduction of the light conversion efficiency using the QD film described at the beginning.
  • G-QD and R-QD exist in different layers.
  • the green fluorescence peak and the red fluorescence peak have close intensities. That is, it has been proved that the above problems can be ameliorated to a considerable extent by having G-QD and R-QD in separate layers.
  • FIGS. 18 and 21 show the films of Example 12 and Example 14 measured on the backlight with the front and back sides reversed. That is, FIGS. 17 and 18 show the spectrum of the film of Example 12, and FIG. 18 shows the result obtained by reversing the front and back of the film of Example 12 of FIG. Moreover, FIG. 20 and FIG. 21 are the spectra of the film of Example 14, and FIG. 21 is measured by reversing the front and back of Example 14 shown in FIG.
  • the intensity ratio of the green and red fluorescence is different. That is, when the layer containing R-QD is higher than the G-QD layer (FIG. 17), the spectrum is also higher when the G-QD layer is higher than the R-QD layer (FIG. 18). There was no change and the RGB ratio became equal.
  • the layer structure of the film was asymmetric, but no difference between the front and back was observed in the optical properties (FIG. 20, FIG. 21).
  • BEF brightness enhancement film
  • Example 12 In order to confirm that the asymmetry of the film structure affects the optical properties, the film produced in Example 12 was similarly measured without using BEF. The spectra of FIG. 27 and FIG. 28 actually proved to have different G / R ratios, and the optical properties of the film to differ from front to back.
  • FIG. 23 is a spectrum of Example 16. It is designed to increase the concentration of R-QD from the lower layer to the upper layer.
  • FIG. 25 is a spectrum of the Cd-free G-QD produced in Example 18 and a film of a three-layer structure containing Cd-free R-QD. The spectrum indeed proved that the film contained green and red fluorescence.
  • FIG. 26 is a spectrum of a hybrid QD film of a three-layer structure including the Cd-based G-QD prepared in Example 19 in the middle layer and the Cd-free R-QD outer layer. The spectra indeed proved that the film contained green and red fluorescence converted with Cd-based G-QD.
  • a quantum dot-containing resin sheet or film excellent in light conversion efficiency can be suitably used as a wavelength conversion member.

Abstract

特に、量子ドットの凝集の問題や散乱剤使用の問題を解決し、光変換効率の低下を抑え、量子ドットを含有する樹脂成形体の光変換効率の向上を図ることが可能な量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材を提供することを目的とする。本発明の量子ドット含有樹脂シート又はフィルムは、複数の樹脂層が積層され、少なくとも一層の樹脂層に量子ドットを含有し、前記複数の樹脂層が、共押出成形にて一体化されていることを特徴とする。

Description

量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材
 本発明は、量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材に関する。
 量子ドットは、数百~数千個程度の原子から構成された、粒径が数nm~数十nm程度のナノ粒子である。量子ドットは、蛍光ナノ粒子、半導体ナノ粒子、またはナノクリスタルとも呼ばれる。
 量子ドットは、ナノ粒子の粒径や組成によってピーク発光波長を種々変更することができ、従って目的とする波長に調整することができる。量子ドットを樹脂中に分散させ、波長変換材料として用いることが可能であり、例えば、特許文献1では量子ドットを樹脂中に分散させたフィルムが記載されている。
特開2017-167320号公報
 しかしながら、特許文献1に示すフィルムでは、フィルムを貼り合せており、複雑な作業が必要になり、また光変換効率が低下しやすい問題があった。
 本発明はかかる点に鑑みてなされたものであり、特に、量子ドットを含有する樹脂成形体の光変換効率の向上を図ることが可能な量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材を提供することを目的とする。
 本発明における量子ドット含有樹脂シート又はフィルムは、複数の樹脂層が積層され、少なくとも一層の樹脂層に量子ドットを含有し、前記複数の樹脂層が、共押出成形にて一体化されていることを特徴とする。
 本発明では、前記量子ドットを含む樹脂層と、前記量子ドットを含まない樹脂層とが一体化されていることが好ましい。
 本発明では、前記量子ドットを含まない樹脂層に、機能性添加剤が含まれることが好ましい。
 本発明では、蛍光波長が異なる複数の量子ドットが、夫々、異なる前記樹脂層に含有されることが好ましい。
 本発明では、前記量子ドットは、少なくとも、緑色発光の量子ドットと、赤色発光の量子ドットを含むことが好ましい。
 本発明では、前記緑色発光の量子ドットを含むが前記赤色発光の量子ドットを含まない第1の樹脂層と、前記赤色発光の量子ドットを含むが前記緑色発光の量子ドットを含まない第2の樹脂層と、前記第1の樹脂層と前記第2の樹脂層との間に位置し前記赤色発光の量子ドットと前記緑色発光の量子ドットの双方を含む中間樹脂層と、を有し、前記第1の樹脂層から前記第2の樹脂層にかけて、前記緑色発光の量子ドット及び前記赤色発光の量子ドットそれぞれの濃度勾配が形成されていることが好ましい。
 本発明では、前記赤色発光の量子ドットを含む前記樹脂層が、励起光側に配置されており、前記緑色発光の量子ドットを含む前記樹脂層が、前記励起光から離れた側に配置されることが好ましい。
 本発明では、前記樹脂層には、非晶性樹脂が用いられることが好ましい。
 本発明における量子ドット含有樹脂シート又はフィルムは、樹脂層に量子ドットが含有されており、前記量子ドットは、前記樹脂層の膜厚方向に偏在していることを特徴とする。
 本発明における量子ドット含有樹脂シート又はフィルムは、樹脂層に蛍光波長が異なる複数の量子ドットが含有されており、異なる前記量子ドットは、前記樹脂層の膜厚方向に、夫々異なる濃度勾配を有していることを特徴とする。
 本発明では、前記樹脂層の全体に占める量子ドットの濃度が、0.05%以上1.5%以下であることが好ましい。
 本発明では、前記樹脂層の総厚みが、50μm以上500μm以下であることが好ましい。
 本発明では、青色光強度に対する緑色光強度比、及び青色光強度に対する赤色光強度比はそれぞれ、0.3以上であることが好ましい。
 本発明では、青色光強度、緑色光強度、及び赤色光強度の各蛍光半値幅が、100nm以下であることが好ましい。
 本発明における波長変換部材は、上記のいずれかに記載の量子ドット含有樹脂シート又はフィルムを用いて成形加工されてなることを特徴とする。
 本発明における量子ドット含有樹脂シート又はフィルムの製造方法は、量子ドットを含有する樹脂ペレットを形成する工程、2層以上の樹脂層を、共押出成形により一体化する工程、を有することを特徴とする。
 本発明の量子ドット含有樹脂シート又はフィルムによれば、共押し出しで一体成形することで、複雑な製造工程が必要とならず、光変換効率を向上させることができる。
 また、本発明の量子ドット含有樹脂シート又はフィルムを用いることで、量子ドットを用いた高効率な波長変換部材を製造することが可能である。
 また、本発明の量子ドット含有樹脂シート又はフィルムの製造方法によれば、複雑な張り合わせ工程を挟まずに製造することが可能である。
第1実施形態における量子ドット含有樹脂シート又はフィルムの断面図である。 図2Aは本実施形態における量子ドットの模式図である。図2Bは本実施形態における量子ドットの模式図である。 第2実施形態における量子ドット含有樹脂シート又はフィルムの断面図である。 第3実施形態における量子ドット含有樹脂シート又はフィルムの断面図である。 第4実施形態における量子ドット含有樹脂シート又はフィルムの断面図である。 本実施形態における量子ドット含有樹脂シート又はフィルムの製造工程を示すフローチャートである。 実施例9における量子ドット含有樹脂フィルムの断面図の拡大写真である。 実施例10における量子ドット含有樹脂フィルムの断面図の拡大写真である。 実施例11における量子ドット含有樹脂フィルムの断面図の拡大写真である。 実施例12における量子ドット含有樹脂フィルムの断面図の拡大写真である。 実施例13における量子ドット含有樹脂フィルムの断面図の拡大写真である。 実施例14における量子ドット含有樹脂フィルムの断面図の拡大写真である。 実施例15における量子ドット含有樹脂フィルムの断面図の拡大写真である。 実施例9における量子ドット含有樹脂フィルムのスペクトルである。 実施例10における量子ドット含有樹脂フィルムのスペクトルである。 実施例11における量子ドット含有樹脂フィルムのスペクトルである。 実施例12における量子ドット含有樹脂フィルムのスペクトルである。 実施例12における量子ドット含有樹脂フィルムのスペクトルである(図17で測定した実施例12を上下裏返しにして測定)。 実施例13における量子ドット含有樹脂フィルムのスペクトルである。 実施例14における量子ドット含有樹脂フィルムのスペクトルである。 実施例14における量子ドット含有樹脂フィルムのスペクトルである。 実施例15における量子ドット含有樹脂フィルムのスペクトルである。 実施例16における量子ドット含有樹脂フィルムのスペクトルである。 実施例17における量子ドット含有樹脂フィルムのスペクトルである。 実施例18における量子ドット含有樹脂フィルムのスペクトルである。 実施例19における量子ドット含有樹脂フィルムのスペクトルである。 実施例12における量子ドット含有樹脂フィルムのスペクトルである(ただし、BEF無しで測定した)。 実施例12における量子ドット含有樹脂フィルムのスペクトルである(ただし、BEF無しで測定した)(図27で測定した実施例12を上下裏返しにして測定)。 実施例14における量子ドット含有樹脂フィルムのスペクトルである(ただし、BEF無しで測定した)。 実施例14における量子ドット含有樹脂フィルムのスペクトルである(ただし、BEF無しで測定した)(図29で測定した実施例14を上下裏返しにして測定)。
 以下、本発明の一実施形態(以下、「実施形態」と略記する。)について、詳細に説明する。なお、本発明は以下の実施形態に限定されるものではなく、その要旨の範囲内で種々変形して実施することができる。
 図1は、第1実施形態における量子ドット含有樹脂フィルムの断面図を示す。ここで、「フィルム」とは、可撓性のあるシート物であると定義される。また、「シート」とは、一般的に、その厚さが長さ及び幅の割に小さい構成とされる。特に、量子ドット含有樹脂フィルムやシートの長さ寸法L、幅寸法W、及び厚さ寸法Tは、限定されるものでなく、製品によって種々寸法は変更される。例えば、テレビのように大型の製品のバックライト用として用いる場合もあれば、スマートフォンのように小型の携帯機器のバックライト用として用いる場合もある。したがって製品に合わせて大きさが決定されることになる。
 以下では、量子ドット含有樹脂フィルムとして説明するが、量子ドット含有樹脂シートと読み替えることも可能である。
 図1に示すように、量子ドット含有樹脂フィルム1は、例えば、3層フィルム構造である。図1に示す中層1bが、量子ドット(QD)を含有する層である。量子ドットについて説明する。
 量子ドットは、バンド端発光による蛍光特性を有し、その粒子の大きさから量子サイズ効果を発現する。
 量子ドットは、数nm~数十nm程度の粒径を有するナノ粒子を指す。例えば、量子ドットは、CdS、CdSe、ZnS、ZnSe、ZnSeS、ZnTe、ZnTeS、InP、AgInS、CuInS等、若しくはそれら量子ドットをコアとしてシェルで被覆した構造の量子ドット等で形成される。Cdはその毒性から各国でその使用に規制があるため、量子ドットに、Cdは含まないことが好適である。
 図2Aに示すように、量子ドット10の表面には多数の有機配位子11が配位していることが好ましい。これにより、量子ドット10同士の凝集を抑制でき、目的とする光学特性が発現する。反応に用いることのできる配位子は特に限定されないが、例えば、以下の配位子が、代表的なものとして挙げられる。
脂肪族1級アミン系、オレイルアミン:C1835NH、ステアリル(オクタデシル)アミン:C1837NH、ドデシル(ラウリル)アミン:C1225NH、デシルアミン:C1021NH、オクチルアミン:C17NH
脂肪酸、オレイン酸:C1733COOH、ステアリン酸:C1735COOH、パルミチン酸:C1531COOH、ミリスチン酸:C1327COOH、ラウリル(ドデカン)酸:C1123COOH、デカン酸:C19COOH、オクタン酸:C15COOH
チオール系、オクタデカンチオール:C1837SH、ヘキサンデカンチオール:C1633SH、テトラデカンチオール:C1429SH、ドデカンチオール:C1225SH、デカンチオール:C1021SH、オクタンチオール:C17SH
ホスフィン系、トリオクチルホスフィン:(C17P、トリフェニルホスフィン:(CP、トリブチルホスフィン:(C
ホスフィンオキシド系、トリオクチルホスフィンオキシド:(C17P=O、トリフェニルホスフィンオキシド:(CP=O、トリブチルホスフィンオキシド:(CP=O
 また、図2Bに示す量子ドット10は、コア10aと、コア10aの表面に被覆されたシェル10bと、を有するコアシェル構造である。図2Bに示すように、量子ドット10の表面には多数の有機配位子11が配位していることが好ましい。図2Bに示す量子ドット10のコア10aは、図2Aに示すナノ粒子である。したがって、コア10aは、例えば、上記に挙げた材質により形成される。シェル10bの材質を問うものではないが、例えば、硫化亜鉛(ZnS)等で形成される。シェル10bもコア10aと同様に、カドミウム(Cd)を含まないことが好ましい。
 なお、シェル10bは、コア10aの表面に固溶化した状態であってもよい。図2Bでは、コア10aとシェル10bとの境界を点線で示したが、これは、コア10aとシェル10bとの境界を分析により確認できてもできなくてもどちらでもよいことを指す。
 中層1bに含まれる量子ドット10は、1種類だけではなく、必要に応じて蛍光波長の異なる2種類以上のQDを含有させることができる。
 中層1bは、量子ドット10を分散した樹脂組成物により形成される。上層1a、中層1b及び下層1cはいずれも樹脂層であり、樹脂層には、非晶性樹脂が用いられることが好ましい。非晶性樹脂は、特に限定されるものでないが、透明度の高い樹脂が用いられる。一般的に全光線透過率が85%以上の樹脂が好ましいが、特に限定されるものではない。非晶性の樹脂としては、環状ポリオレフィンポリマー(Cyclic Olefin Polymer: COP)、環状ポリオレフィンコポリマー(Cyclic Olefin Copolymer: COC)、ポリスチレン(Poly(styrene): PS)、アクリル樹脂(Acrylic resin)、ポリカーボネート(Poly(carbonate):PC)、変性ポリフェニレンエーテル(modified-Poly(phenyleneether): PPE)、ポリエチレンテレフタレート(Poly(ethylene terephthalate): PET)、エチレンビニルアルコール(EVAL)、ポリメチルペンテン(Polymethylpentene: PMP)、透明度の高い半結晶樹脂としては、ポリエチレン(Polyethylene: PE)、ポリプロピレン(Polypropylene: PP)、ポリフッ化ビニリデン(Poly(vinylidene fluoride): PVDFなど、溶融押出成形可能な樹脂を使用することができる。
 また本実施形態で用いる非晶性樹脂の組み合わせは、部材に必要な物性や機能に合わせて行うため、特に限定はしない。
 また、量子ドットを分散させる樹脂成形体を構成する非晶性樹脂としては、量子ドットの樹脂への分散性や分散後の蛍光強度から、アクリル樹脂や環状オレフィン樹脂のホモポリマー(COP)やコポリマー(COC)、ポリエチレンテレフタレート(PET)、あるいは耐熱性の観点からはポリカーボネート(PC)が好ましい。
 図1に示す上層1aと下層1cは、量子ドット10を含有しない樹脂層となっており、中層1bの保護層としての役割を果たす。上層1a及び下層1cは、上記に挙げた樹脂材料等により形成される。上層1a及び下層1cは、例えば、アクリル樹脂等にて、中層1bの外層に形成されることで、中層1bを外傷から保護することができる。あるいは、上層1a及び下層1cが、ポリエチレンテレフタレート樹脂(PET)やエチレンビニルアルコール(EVAL)等にて、中層1bの外層に形成されることによって、水や酸素からのバリア層として機能する。又は、上層1a及び下層1cが、PETやポリカーボネート(PC)、或いは、環状ポリオレフィン(COP)や環状ポリオレフィンコポリマー(COC)等にて、中層1bの外層に用いられることで、フィルムを割れにくくでき、フィルムのハンドリング性を向上させることができる。
 また、量子ドット10を含有する中層1bの上下に形成される外層(上層1a及び下層1c)は、フィルムの平坦化やフィルム総厚みの調整にも用いられる。
 なお、上層1a及び下層1cは、必ずしも同じ厚みで形成される必要はなく、また、同じ樹脂材料である必要もない。上層1a及び下層1cは、機能的に、非対称な構造であってもよい。
 また、上層1a或いは下層1c、又は、上層1a及び下層1cには、量子ドット以外の蛍光顔料や蛍光染料等の蛍光体が含まれていてもよい。
 図1に示す量子ドット含有樹脂フィルム1は、量子ドット10を含む樹脂層(中層1b)と、量子ドット10を含まない樹脂層(上層1aと下層1c)とが共押出成形にて一体化されている。すなわち、中層1bと上層1aとの界面、及び、中層1bと下層1cとの界面には接着層がなく、各樹脂層が直接接合されている。よって、量子ドット含有樹脂フィルム1を適切に薄型化することが可能であり、また、光変換効率を高めることができる。
 図1において、量子ドットを含む樹脂層を、上層1a或いは下層1cに用いることもできる。これにより、量子ドットを膜厚方向に偏在させることができる。
 図3に示す第2実施形態の量子ドット含有樹脂フィルム2は、量子ドット10を含む中層2bと、中層2bの上下に形成された、量子ドット10を含まない上層2a及び下層2cの3層フィルム構造である。
 量子ドット含有樹脂フィルム2の上層2a及び下層2cには、夫々、添加剤が含有されている。添加剤は1種以上含まれる。添加剤の種類を限定するものではないが、例えば、添加剤としては、シリカ(SiO)、酸化亜鉛(ZnO)等の光散乱剤や、タルク及び金属石鹸などの滑剤、アンチブロッキング剤、或いは、ガラス繊維やビーズなど補強剤などを加えて、各種機能を持たせることが可能である。また、上層1aや下層1cには、量子ドット以外の蛍光顔料や蛍光染料等の蛍光体が含まれていてもよい。なお、上層1aと下層1cには、必ずしも同じ添加剤が含まれていなくてもよい。
 図4に示す第3実施形態の量子ドット含有樹脂フィルム3は、上層3a及び中層3bに夫々、量子ドットが含まれている。また、下層3cは、量子ドットを含まない樹脂層である。上層3aに含まれる量子ドットと、中層3bに含まれる量子ドットとを異なる種類とすることができる。なお、下層3cには、量子ドット以外の蛍光顔料や蛍光染料等の蛍光体が含まれていてもよい。
 例えば、上層3aに赤色発光の量子ドットを含有し、中層3bに、緑色発光の量子ドットを含有することができる。中層3bに赤色発光の量子ドットを含有し、上層3aに、緑色発光の量子ドットを含有してもよい。
 例えば、量子ドット含有樹脂フィルム3を、波長変換部材として用いる場合、赤色発光の量子ドットが緑色発光の量子ドットの蛍光を吸収することを回避するために、赤色発光の量子ドットを含有する層を励起光側に配置し、励起光から離れた側の層に、緑色発光の量子ドットを含有させることが好ましい。
 すなわち、量子ドットを波長変換材料として用いる場合、蛍光波長の異なる量子ドットを2種類以上用いる。例えば、ディスプレイ用途の波長変換部材では、バックライトの励起光として青色LED光を用いて、2種類の緑色発光の量子ドットと赤色発光の量子ドットにより励起光を変換する方法が採られる。
 このとき、赤色発光の量子ドットは励起光のみではなく緑色発光の量子ドットの蛍光を吸収しうるため、緑色蛍光の強度が低下する。
 この緑色発光の強度低下を補うため、すなわち緑色の光変換効率を高く保つために量子ドットをより高濃度で用いる必要がある。この場合、粒子の凝集が起こりやすくなり、緑色単色での自己吸収も起こるため、高濃度になるに従って量子ドットの光変換効率は低くなってしまうという問題があった。
 また、光散乱剤を併用して、量子ドットの濃度を低く保つ方法が一般的に採られるが、すべての光が散乱されるため、散乱効果の増大とともに緑色光が赤色発光の量子ドットに吸収されて赤色に変換されてしまい、結果として色度に影響を与えるという弊害があった。このため散乱剤の使用によって光変換効率を上げることができても十分ではなかった。
 これに対して、本実施形態では、上層3aに赤色発光の量子ドットを含有し、中層3bに、緑色発光の量子ドットを含有する。このため、各層での量子ドット濃度を低く抑えることができる。このとき、赤色発光の量子ドットを含有する層を励起光側に配置し、励起光から離れた側の層に、緑色発光の量子ドットを含有させることで、赤色発光の量子ドットが緑色発光の量子ドットの蛍光を吸収することを回避でき、光変換効率を向上させることができる。
 図4に示す下層3cは、図3の上層2aや下層2cと同様に機能性添加剤を含んでいてもよい。また、図4の量子ドット含有樹脂フィルム3は、上層3aと中層3bの2層で形成され、下層3cが形成されていなくてもよい。
 また、図4に示す上層3aと下層3cに、量子ドットを含有し、中層3bは、量子ドットを含有しない樹脂層としてもよい。このとき、中層3bには、量子ドット以外の蛍光顔料や蛍光染料等の蛍光体が含まれていてもよい。
 なお、量子ドットを含有しない層は、層間の界面での光の反射や屈折などを考慮して、光線透過率や屈折率を適宜選択することが好ましい。
 図5に示す第4実施形態の量子ドット含有樹脂フィルム4は、第1の量子ドットを含む樹脂層としての上層4aと、第2の量子ドットを含む樹脂層としての下層4cと、上層4aと下層4cとの間に位置し、第1の量子ドットと第2の量子ドットの双方を含む中層4bとの積層フィルム構造で形成される。例えば、第1の量子ドットが緑色発光の量子ドットであり、第2の量子ドットが赤色発光の量子ドットである。したがって、中層4bには、緑色発光の量子ドットと赤色発光の量子ドットの双方が含まれる。
 緑色発光の量子ドットは、下層4cに含まれておらず、中層4bと上層4aの双方に含まれるが、上層4aのほうが中層4bより多く含まれる。したがって、緑色発光の量子ドットは、下層4cから上層4aにかけて濃度が大きくなる濃度勾配(グラジエント)を有する。
 一方、赤色発光の量子ドットは、上層4aに含まれておらず、中層4bと下層4cの双方に含まれる。下層4cのほうが中層4bより多く含まれる。したがって、赤色発光の量子ドットは、上層4aから下層4cにかけて濃度が大きくなる濃度勾配(グラジエント)を有する。
 なお、図5では、2種類の異なる量子ドットを用いたが、例えば、1種類の量子ドットを各樹脂層に異なる濃度で含有し、1種類の量子ドットのみに対して濃度勾配(グラジエント)をつけてもよい。
 なお、図1、図3から図5に示す各実施形態は、3層フィルム構造であるが、層数を限定するものではない。また各層に用いる樹脂層も2種以上であればよい。
 また、樹脂成形体は2層、3層以上の積層体であり、量子ドットがそれぞれの樹脂層に分散していることが重要である。この構造を応用して、量子ドットの自己吸収の抑制や、発光波長の異なる量子ドットによる蛍光吸収の抑制や、酸素や水分からの保護、光変換効率の増大、光散乱などの機能を発現できる。必要な機能は各層の厚みや組み合わせによって調整可能である。必要とされる機能は用途によって異なるため、本実施形態では多層フィルムの層構造を厳密には限定しない。
 本実施形態では、樹脂層の全体に占める量子ドットの濃度は、0.05%以上1.5%以下であることが好ましい。このように、本実施形態では、量子ドットの含有量を低減することが可能であるため、量子ドットの凝集の問題を根本的に回避することが可能である。
 また、本実施形態では、樹脂層の総厚みが、50μm以上500μm以下であることが好ましい。本実施形態では、各樹脂層を一体化でき、接着層が必要ないため、薄型化できる。
 また、本実施形態では、青色光強度に対する緑色光強度比、及び青色光強度に対する赤色光強度比をそれぞれ、0.3以上とすることができる。特に、励起光側に赤色発光の量子ドットを含む樹脂層を形成し、励起側から離れた樹脂層に緑色発光の量子ドットを含有することで、赤色発光の量子ドットが緑色発光の量子ドットの蛍光を吸収することを回避でき、上記強度比を適切に得ることができる。
 また、本実施形態では、青色光強度、緑色光強度、及び赤色光強度の各蛍光半値幅を、100nm以下とすることができる。
 次に、本実施形態の量子ドット含有樹脂フィルム及び波長変換部材の製造方法について説明する。図6に示すように、まず量子ドット溶液と樹脂ペレットとを混合、乾燥させる(ステップST1、ST2)。これにより、表面に量子ドットが塗された樹脂ペレットを得る。
 続いて、樹脂ペレットを、例えば、2軸押出機により混練し、得られたストランドをペレタイザーで切断することによって、量子ドットが樹脂中に分散した樹脂ペレットを得る(ステップST3、ST4)。
 次に、複数種類の樹脂ペレットを、成形機の別々の原料投入口に投入し、共押出成形機によって溶融しつつ、Tダイから押し出すことによって積層構造を有する量子ドット含有樹脂フィルムを得る(ステップST5)。
 そして、量子ドット含有樹脂フィルムを成形加工して所望の波長変換部材を得ることができる(ステップST6)。
 本実施形態では、2種類以上の層分離した樹脂層を共押出成形など一般的な樹脂成形で成形可能であるため、Tダイのサイズを変えれば幅広のフィルム成形が可能である。また、樹脂層の並びを自由に変更できるため、自由度の高い機能性多層フィルムの設計を可能とする。
 また、本実施形態では、張り合わせの積層フィルムとは異なり光学接着剤を用いないため、接着層による光線透過率の低下などが抑制される。また、不必要な厚みの増大も抑えられる。
 また、本実施形態の製造方法で形成された量子ドット含有フィルムでは、量子ドットの自己吸収に起因する変換効率の低下を抑制し、発光効率を上げることが可能である。
 本実施形態では、2種類以上の量子ドットを、2種類以上の樹脂層のそれぞれに独立して分散させており、各樹脂層の積層の順番を自由に設計することが可能である。例えば、波長変換部材として用いる場合は、赤色発光の量子ドットが緑色発光の量子ドットの蛍光を吸収することを回避するために、赤色発光の量子ドットの含有する層を励起光側に配置し、その上に緑色発光の量子ドットを含有する層を配置することが好ましい。
 本実施形態では、量子ドットを含有する樹脂層以外に、光拡散機能を有する層やフィルム保護となる外層などを適宜配置できる。量子ドットを含有しない樹脂層には、量子ドット以外の蛍光顔料や蛍光染料等の蛍光体を含むことができる。
 また、本実施形態で用いることのできる樹脂は、基本的には、屈折率の異なる透明樹脂であるが、各層に同一の材料を用いてもかまわない。これらの樹脂の種類の組み合わせは数多くあるため、目的に応じた製品設計をする際に、多くの選択肢が得られるという利点がある。
 本実施形態では、押出機よる混錬によって、樹脂に量子ドットを機械的に練り込むため、分散の前処理の必要がない。従って、用いる量子ドットの組成や形状、シェル構造は特に限定されず、カドミウム(Cd)を含有するCd系の量子ドットや、Cdを含有しないCdフリーの量子ドットなどを用いることができる。
 本実施形態で用いられる樹脂層は、非晶性の透明樹脂であり、それらの屈折率が異なることから、樹脂層の界面において光の反射が起こる。樹脂層の界面における2種類の樹脂の屈折率差を調節することによって、量子ドットによって波長変換された光が漏洩するのを抑えたり、効率よく取り出したりすることができる。
 本実施形態では、量子ドットを含む樹脂層の多層化以外に、必要な機能を追加することが可能であり、図3で説明したように、様々な添加剤を使用することが可能である。例えば、光散乱剤、安定剤や酸化防止剤、滑剤やアンチブロッキング剤、可塑剤などが代表的な添加剤として挙げられるがこれらに限定されるものではない。
 本実施形態では、有機系または無機系の光散乱剤などを用いることが可能である。この場合、光散乱剤は押出成形の際にパウダーと樹脂ペレットの形式で直接混錬することも可能であるが、特定の相に分散させるべく、あらかじめ光散乱剤を練り込んだ樹脂を原料として用いることによって光拡散層を形成することが可能である。
 また、量子ドットを分散させる樹脂層以外に最外層を配置する場合、例えば、酸素や水からの保護とする場合は、酸素や水の透過率が比較的低いポリエチレンテレフタレート(PET)などの樹脂、ポリビニルアルコール(Poly(vinylalchol): PVA)やポリエチレンビニルアルコール(Poly(ethylenevinylalchol): EVAL)などを用いることが望ましい。
 このように本実施形態では、量子ドットを含有した透明樹脂を任意のサイズ、形状に成形することができる。成形方法は従来の押出成形を応用した共押出成形であるため、連続的な生産が可能であり、フィルムの張り合わせ工程を含む製造方法などと比較すると、光学的機能を備えた多層フィルムを安価に製造することが可能である。
 また、量子ドットを分散させる多層フィルムを構成する非晶性樹脂としては、用いる樹脂の屈折率差が大きいほうが望ましい。このため、屈折率の低い樹脂と屈折率の高い樹脂の組み合わせが好ましい。代表的なものとしてアクリル樹脂と環状ポリオレフィンポリマーといった組み合わせ、アクリル樹脂とポリエチレンテレフタレート樹脂などの組み合わせなどが好ましい。これによって、樹脂層の界面での光の反射、屈折によって散乱剤を用いずに光の変換効率の増大が可能となる。
 本実施形態では、樹脂成形体は2層または3層以上の透明樹脂からなっているが、層構造は共押出成形によって1工程で製造されるため、基本的に端面や切断面が剥離することがない一体構造となる。この層構造はマイクロスコープなどの光学機器で確認することが可能である。
 以下、本発明の実施例により本発明の効果を説明する。なお、本発明の実施形態は以下の実施例によって何ら限定されるものではない。
[材料]
 実験では、樹脂成形体を作製するにあたり以下の材料を用いた。なお、いずれの原料も使用前には真空乾燥オーブン内で、減圧下80℃以上の条件で1日以上乾燥した。
 樹脂:
環状オレフィンポリマー(COP):日本ゼオン株式会社 ゼオノア(登録商標)1060R
アクリル系樹脂(PMMA):三菱ガス化学株式会社 オプティマス(登録商標)7500FS
ポリエステル系樹脂(PET):三菱ガス化学株式会社 アルテスタ(登録商標)4203F
 添加剤:
ステアリン酸亜鉛(ZnSt):Aldrich株式会社製
 実験では、量子ドット(QD)として以下の材料を用いた。なお、いずれの量子ドット(QD)も、ヘキサン(Hexane:C12)溶媒に分散させた状態で用いた。また濃度は日本分光株式会社製の紫外-可視分光光度計(UV-Vis Spectrophotometer)V-770を用いて吸収率を定量することによって光学的に求めた。
 Cd系量子ドット(QD):コア/シェル構造を有する緑色発光量子ドット(以下、G-QDと称する)と赤色発光量子ドット(以下、R-QDと称する)
 Cdフリー量子ドット(QD):コア/シェル構造を有する緑色発光量子ドット(G-QD)と赤色発光のCdフリー量子ドット(R-QD)
[押出機]
 ペレット製造用押出機
 メーカー名 テクノベル株式会社
 仕様 スクリュ径:25mmの2軸押出機
    L/D:40
 最高混練温度:400℃
 共押出用フィルム押出機
 メーカー名 テクノベル株式会社
 仕様 スクリュ径:15mmの2軸押出機、15mmの単軸押出機2機の計3機
    L/D:40
 最高射出温度:400℃
 Tダイ幅200mm
[光学測定機器]
 分光放射計
 メーカー名 トプコンテクノハウス株式会社 SR3-AR、及び、SR3A
[光学測定機器]
 マイクロスコープ
 メーカー名 キーエンス株式会社 VHX-5000
[実施例1]
 アクリル樹脂2kgをCd系G-QDのヘキサン分散溶液、30mL(濃度は、光学的な吸収率より求め、この値から必要溶液量を計算した)と混合し、分散溶液をペレット全体に塗した。ヘキサン溶液を蒸発させることによってQDが表面に塗された樹脂ペレットを得た。
 これにZnSt(6.0g:0.3wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをペレット表面に塗した。
 こうして得られたペレットを2軸押出機によって、成形温度200~230℃で混錬し、得られたストランドをペレタイザーで切断することによって、QDが樹脂中に分散したアクリル樹脂ペレットを得た。
 得られたG-QD含有アクリル樹脂ペレットは、真空乾燥オーブンにて60℃で24時間以上乾燥し、Cd系G-QD含有アクリル樹脂マスターバッチとして次の工程で用いた。
[実施例2]
 アクリル樹脂、2kgをCd系R-QDのヘキサン分散溶液、25mLと混合し、分散溶液をペレット全体に塗した。ヘキサン溶液を蒸発させることによってQDが表面に塗されたアクリル樹脂ペレットを得た。
 これにZnSt(4.0g:0.2wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをペレット表面に塗した。
 こうして得られたペレットを2軸押出機によって、成形温度200~230℃で混錬し、得られたストランドをペレタイザーで切断することによって、QDがアクリル樹脂中に分散したアクリル樹脂ペレットを得た。
 得られたR-QD含有アクリル樹脂ペレットは、真空乾燥オーブンにて60℃で24時間以上乾燥し、Cd系R-QD含有アクリル樹脂マスターバッチとして次の工程で用いた。
[実施例3]
 COP2kgをCd系G-QDのヘキサン分散溶液、30mLと混合し、ヘキサン溶液を素早く蒸発させつつ、QDがペレット表面に塗されたCOP樹脂ペレットを得た。
 これにZnSt(6.0g:0.3wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをペレット表面に塗した。
 こうして得られたペレットを2軸押出機によって、成形温度200~220℃で混錬し、得られたストランドをペレタイザーで切断することによって、QDがCOP樹脂中に分散したペレットを得た。
 得られたG-QD含有COP樹脂ペレットは、真空乾燥オーブンにて60℃で24時間以上乾燥し、Cd系G-QD含有COP樹脂マスターバッチとして次の工程で用いた。
[実施例4]
 COP2kgをCd系R-QDのヘキサン分散溶液、25mLと混合し、ヘキサン溶液を素早く蒸発させつつ、QDがペレット表面に塗されたCOP樹脂ペレットを得た。
 これにZnSt(4.0g:0.2wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをペレット表面に塗した。
 こうして得られたペレットを2軸押出機によって、成形温度200~220℃で混錬し、得られたストランドをペレタイザーで切断することによって、QDがCOP樹脂中に分散したペレットを得た。
 得られたR-QD含有COP樹脂ペレットは、真空乾燥オーブンにて60℃で24時間以上乾燥し、Cd系R-QD含有COP樹脂マスターバッチとして次の工程で用いた。
[実施例5]
 PET樹脂2kgをCd系G-QDのヘキサン分散溶液、30mLと混合し、QDがペレット表面に塗されたPET樹脂ペレットを得た。
 これにZnSt(6.0g:0.3wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをペレット表面に塗した。
 こうして得られたペレットを2軸押出機によって成形温度220~230℃で混錬し、得られたストランドをペレタイザーで切断することによって、QDがPET樹脂中に分散したペレットを得た。
 得られたG-QD含有PET樹脂ペレットは、真空乾燥オーブンにて60℃で24時間以上乾燥し、Cd系G-QD含有PET樹脂マスターバッチとして次の工程で用いた。
[実施例6]
 PET樹脂2kgをCd系G-QDのヘキサン分散溶液、25mLと混合し、QDがペレット表面に塗されたPET樹脂ペレットを得た。
 これにZnSt(4.0g:0.2wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをPETペレット表面に塗した。
 これを2軸押出機の原料投入口に投入し、220℃~230℃の温度で混錬した。得られたストランドをペレタイザーで切断することによって、QDがPET樹脂中に分散したペレットを得た。
 得られたR-QD含有PET樹脂ペレットは、真空乾燥オーブンで乾燥し、Cd系R-QD含有PET樹脂マスターバッチとして次の工程で用いた。
[実施例7]
 アクリル樹脂2kgをCdフリーのG-QDのヘキサン分散溶液、40mLと混合し、分散溶液をペレット全体に塗した。ヘキサン溶液を蒸発させることによってQDが表面に塗された樹脂ペレットを得た。
 これにZnSt(10.0g:0.5wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをペレット表面に塗した。
 こうして得られたペレットを2軸押出機によって、成形温度200~230℃で混錬し、得られたストランドをペレタイザーで切断することによって、QDが樹脂中に分散したアクリル樹脂ペレットを得た。
 得られたG-QD含有アクリル樹脂ペレットは、真空乾燥オーブンにて60℃で24時間以上乾燥し、CdフリーG-QD含有アクリル樹脂マスターバッチとして次の工程で用いた。
[実施例8]
 アクリル樹脂2kgをCdフリーのR-QDのヘキサン分散溶液、60mLと混合し、分散溶液をペレット全体に塗した。ヘキサン溶液を蒸発させることによってQDが表面に塗された樹脂ペレットを得た。
 これにZnSt(6.0g:0.3wt%)を添加して、ペレットとパウダーをドライミキシングすることによってZnStをペレット表面に塗した。
 こうして得られたペレットを2軸押出機によって成形温度200~230℃で混錬し、得られたストランドをペレタイザーで切断することによって、QDがアクリル樹脂中に分散したペレットを得た。
 得られたR-QD含有アクリル樹脂ペレットは、真空乾燥オーブンにて60℃で24時間以上乾燥し、CdフリーR-QD含有アクリル樹脂マスターバッチとして次の工程で用いた。
 実施例1から実施例8を表1にまとめた。なお表1に示すQD濃度は、光学的に求めた濃度と熱重量分析(Thermo Gravimetric Analysis:TGA)によるQD重量(wt%)の相関より求めた計算値である。
Figure JPOXMLDOC01-appb-T000001
[実施例9]
 PET樹脂ペレット原料1kgを成形機の原料投入口1に投入し(樹脂層1)、実施例1で作製したCd系G-QD含有アクリル樹脂マスターバッチ400gをアクリル樹脂原料600gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、PET樹脂ペレット原料1kgを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み320μmのフィルムを成形した。得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例10]
 PET樹脂ペレット原料1kgを成形機の原料投入口1に投入し(樹脂層1)、実施例2で作製したCd系R-QD含有アクリル樹脂マスターバッチ800gをアクリル樹脂原料200gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、PET樹脂ペレット原料を原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み350μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例11]
 PET樹脂ペレット原料500gを成形機の原料投入口1に投入し(樹脂層1)、実施例1で作製したCd系G-QD含有アクリル樹脂マスターバッチ250gと実施例2で作製したCd系R-QD含有アクリル樹脂マスターバッチ500gとアクリル樹脂ペレット原料250gとを混合したものを成形機の原料投入口2に投入し(樹脂層2)、アクリル樹脂ペレット原料を原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み360μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例12]
 実施例2で作製したCd系R-QD含有アクリル樹脂マスターバッチ500gを成形機の原料投入口1に投入し(樹脂層1)、実施例1で作製したCd系G-QD含有アクリル樹脂マスターバッチ250gをアクリル樹脂アクリル樹脂ペレット原料250gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、アクリル樹脂ペレット原料500gを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み350μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例13]
 アクリル樹脂ペレット原料1kgを成形機の原料投入口1に投入し(樹脂層1)、実施例1で作製したCd系G-QD含有アクリル樹脂マスターバッチ250g、実施例2で作製したCd系R-QD含有アクリル樹脂マスターバッチ500gとアクリル樹脂ペレット原料250gを混合した計1kgのペレット混合物を成形機の原料投入口2に投入し(樹脂層2)、アクリル樹脂ペレット原料1kgを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み380μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例14]
 実施例4で作製したCd系R-QD含有COP樹脂ペレット原料マスターバッチ500gを成形機の原料投入口1に投入し(樹脂層1)、実施例3で作製したG-QD含有COP樹脂マスターバッチ250gをCOP樹脂ペレット原料250gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、COP樹脂ペレット原料500gを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み320μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例15]
 PET樹脂ペレット原料500gを成形機の原料投入口1に投入し(樹脂層1)、実施例4で作製したCd系R-QD含有COP樹脂マスターバッチ250gをCOP樹脂ペレット原料250gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、PET樹脂ペレット原料500gを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み360μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例16]
 実施例6で作製したCd系R-QD含有PET樹脂マスターバッチ250gとPET樹脂ペレット原料250gを混合したものを成形機の原料投入口1に投入し(樹脂層1)、実施例1で作製したCd系G-QD含有アクリル樹脂マスターバッチ250gをアクリル樹脂ペレット原料250gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、PET樹脂ペレット原料500gを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み200μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例17]
 実施例4で作製したCd系R-QD含有COP樹脂マスターバッチ250gとCOP樹脂ペレット原料250gを混合したものを成形機の原料投入口1に投入し(樹脂層1)、実施例3で作製したCd系G-QD含有COP樹脂マスターバッチ250gを実施例4で作製したCd系R-QD含有COP樹脂マスターバッチ250gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、実施例3で作製したCd系G-QD含有COP樹脂マスターバッチ250gとCOP樹脂ペレット原料250gを混合したものを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、厚さ140μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例18]
 実施例8で作製したCdフリーR-QD含有アクリル樹脂マスターバッチ500gを成形機の原料投入口1に投入し(樹脂層1)、実施例7で作製したCdフリーG-QD含有アクリル樹脂マスターバッチ250gをアクリル樹脂ペレット原料250gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、PET樹脂ペレット原料500gを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み240μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
[実施例19]
 実施例8で作製したCdフリーR-QD含有アクリル樹脂マスターバッチ250gとアクリル樹脂ペレット原料250gを混合したものを成形機の原料投入口1に投入し(樹脂層1)、実施例1で作製したCd系G-QD含有アクリル樹脂マスターバッチ250gをアクリル樹脂ペレット原料250gと混合したものを成形機の原料投入口2に投入し(樹脂層2)、アクリル樹脂ペレット原料500gを原料投入口3に投入した(樹脂層3)。
 これを共押出成形機によって成形温度200~240℃で溶融しつつ、Tダイから押し出すことによって3層構造を有するフィルムを得た。
 押出速度や巻き取り速度の調節によって、総厚み220μmのフィルムを成形した。
 得られたフィルムはロールで巻き取られ、必要サイズにカットされたものを分光放射計でスペクトル測定した。
 実施例9から実施例19を表2にまとめた。ここで、表2に示すQD濃度は、光学的に求めた濃度と熱重量分析(Thermo Gravimetric Analysis:TGA)によるQD重量(wt%)の相関より求めた計算値である。また、表2に示す総厚みは、マイクロメーターを用いて測定した実測値である。
Figure JPOXMLDOC01-appb-T000002
 図7から図13のフィルム断面の拡大観察の結果により、フィルムが実際に3つの層から成っており、目的とする量子ドット(QD)が均一に分散した構造になっていることが証明された。
 また、実施例9から実施例19における3層フィルムは、実施例15を除いていずれも一体構造をとっており、細かく粉砕しても断片となったフィルムからは表層の剥離は一切起こらなかった。実施例15のみは力を加えると、層間で剥離するが、これはPET樹脂とCOP樹脂との相溶性が低いためであると考えられる。
 図14から図26は、量子ドット含有樹脂フィルムを、バックライト点灯した際のRGBスペクトルである。測定はトプコンテクノハウス社のSR3-Aで行った。なお、3M社製輝度上昇フィルム(Brightness Enhancement Film:BEF)を用いて測定した。
 図14、図15、図22はそれぞれ、Cd系G-QD(実施例9)、Cd系R-QD(実施例10)、Cd系R-QD(実施例15)を中層にそれぞれ単色で含有するフィルムのスペクトルである。励起光(450nm)がQDによってそれぞれ緑色、赤色に変換されたピークが確認された。これにより、確かにQDが含有され、且つ励起光の波長変換が行われていることが確認された。
 図16、図17、図19、図20はそれぞれ、実施例11、実施例12、実施例13、実施例14のフィルムのスペクトルである。いずれのフィルムもG-QDとR-QDの両方をフィルム内の同一の層、または別々の層に含有する。単一のフィルムによって、励起光が緑色と赤色の両方に変換されていることが各図のピークより確認された。
 実施例11、及び、実施例13は、中層にG-QDとR-QDの両方が分散しており、各QDの濃度を励起光の吸収率(absorbance)が同等となるように調整した。このように、G-QDとR-QDは、理想的には同等の強度のピーク強度となるよう設計されている。しかしながら、図16、及び、図19では赤色の蛍光ピークの強度が緑色と比較して圧倒的に大きくなっている。これは、R-QDがG-QDの蛍光を吸収するためであり、このため緑の蛍光強度は大きく低下し、赤の蛍光強度はその分増大する。フィルム全体としては、輝度を大きく損なっており、このことが冒頭で記述したQDフィルムを用いた光変換効率の低下の問題である。
 一方、実施例12、及び、実施例14ではG-QDとR-QDは別々の層に存在している。図17、及び、図20では緑の蛍光ピークと赤の蛍光ピークは近い強度となっている。すなわち、G-QDとR-QDを別々の層に存在させることによって、上記の問題をかなりの程度で改善できることが証明された。
 図18、及び、図21は実施例12、及び、実施例14のフィルムの表裏を逆にしてバックライト上で測定したものである。すなわち、図17と図18は実施例12のフィルムのスペクトルであり、図18は、図17の実施例12のフィルムの表裏を逆にして測定したものである。また、図20と図21は実施例14のフィルムのスペクトルであり、図21は、図20に示す実施例14の表裏を逆にして測定したものである。
 実施例12のフィルムの表裏を逆にして測定することによって緑と赤の蛍光の強度比が異なる。すなわち、R-QDを含む層がG-QD層よりも上になる場合(図17)も、逆にG-QD層がR-QD層よりも上になる場合(図18)も、スペクトルは変化なく、RGB比は等しくなった。
 同様に実施例14のフィルムに関しても、フィルムの層構造は非対称であるが、光学特性に裏表の差異は見られなかった(図20、図21)。
 この原因として、輝度上昇フィルム(BEF)を用いて測定していることが原因として考えられる。BEFを載せて測定することによって、光がフィルム内を何度も繰り返し反射することから、すなわち光が下から上のみならず、上から下にも吸収、散乱、波長変換しつつ透過するため、フィルム構造の非対称性が光学特性に発現しなかったと考えられる。
 フィルム構造の非対称性が光学特性に影響することを確認するために、実施例12で作製したフィルムを、BEFを用いずに同様の測定をした。図27と図28のスペクトルはG/Rの比が実際に異なり、フィルムの光学特性が表裏によって異なることが証明された。
 実施例14で作製したフィルムに関しても同様に表裏の違いが確認された(図29と図30)。励起光側に配置されたQDが最初に光変換することと、R-QDが励起光のみならず、緑の蛍光を吸収し赤色に変換することの両方が影響していると考えられる。
 図23は、実施例16のスペクトルである。下層から上層に向けてR-QDの濃度が増す設計となっている。
 図25は、実施例18で作製したCdフリーのG-QDとCdフリーのR-QDを含んだ3層構造のフィルムのスペクトルである。スペクトルからは確かにフィルムは緑の蛍光と赤の蛍光を含んでいることが証明された。
 図26は、実施例19で作製したCd系のG-QDを中層に、CdフリーのR-QD外層に含んだ3層構造のハイブリッドQDフィルムのスペクトルである。スペクトルからは確かにフィルムはCd系のG-QDで変換された緑の蛍光と赤の蛍光を含んでいることが証明された。
 本発明によれば、光変換効率に優れた量子ドット含有樹脂シート又はフィルムを、波長変換部材として好適に用いることができる。
 本出願は、2017年10月16日出願の特願2017-200602に基づく。この内容は全てここに含めておく。
 
 
 
 
 

Claims (16)

  1.  複数の樹脂層が積層され、少なくとも一層の樹脂層に量子ドットを含有し、
     前記複数の樹脂層が、共押出成形にて一体化されていることを特徴とする量子ドット含有樹脂シート又はフィルム。
  2.  前記量子ドットを含む樹脂層と、前記量子ドットを含まない樹脂層とが一体化されていることを特徴とする請求項1に記載の量子ドット含有樹脂シート又はフィルム。
  3.  前記量子ドットを含まない樹脂層に、機能性添加剤が含まれることを特徴とする請求項2に記載の量子ドット含有樹脂シート又はフィルム。
  4.  蛍光波長が異なる複数の量子ドットが、夫々、異なる前記樹脂層に含有されることを特徴とする請求項1から請求項3のいずれかに記載の量子ドット含有樹脂シート又はフィルム。
  5.  前記量子ドットは、少なくとも、緑色発光の量子ドットと、赤色発光の量子ドットを含むことを特徴とする請求項4に記載の量子ドット含有樹脂シート又はフィルム。
  6.  前記緑色発光の量子ドットを含むが前記赤色発光の量子ドットを含まない第1の樹脂層と、前記赤色発光の量子ドットを含むが前記緑色発光の量子ドットを含まない第2の樹脂層と、前記第1の樹脂層と前記第2の樹脂層との間に位置し前記赤色発光の量子ドットと前記緑色発光の量子ドットの双方を含む中間樹脂層と、を有し、
     前記第1の樹脂層から前記第2の樹脂層にかけて、前記緑色発光の量子ドット及び前記赤色発光の量子ドットそれぞれの濃度勾配が形成されていることを特徴とする請求項5に記載の量子ドット含有樹脂シート又はフィルム。
  7.  前記赤色発光の量子ドットを含む前記樹脂層が、励起光側に配置されており、前記緑色発光の量子ドットを含む前記樹脂層が、前記励起光から離れた側に配置されることを特徴とする請求項5又は請求項6に記載の量子ドット含有樹脂シート又はフィルム。
  8.  前記樹脂層には、非晶性樹脂が用いられることを特徴とする請求項1から請求項7のいずれかに記載の量子ドット含有樹脂シート又はフィルム。
  9.  樹脂層に量子ドットが含有されており、前記量子ドットは、前記樹脂層の膜厚方向に偏在していることを特徴とする量子ドット含有樹脂シート又はフィルム。
  10.  樹脂層に蛍光波長が異なる複数の量子ドットが含有されており、異なる前記量子ドットは、前記樹脂層の膜厚方向に、夫々異なる濃度勾配を有していることを特徴とする量子ドット含有樹脂シート又はフィルム。
  11.  前記樹脂層の全体に占める量子ドットの濃度が、0.05%以上1.5%以下であることを特徴とする請求項1から請求項10のいずれかに記載の量子ドット含有樹脂シート又はフィルム。
  12.  前記樹脂層の総厚みが、50μm以上500μm以下であることを特徴とする請求項1から請求項11のいずれかに記載の量子ドット含有樹脂シート又はフィルム。
  13.  青色光強度に対する緑色光強度比、及び青色光強度に対する赤色光強度比はそれぞれ、0.3以上であることを特徴とする請求項1から請求項12のいずれかに記載の量子ドット含有樹脂シート又はフィルム。
  14.  青色光強度、緑色光強度、及び赤色光強度の各蛍光半値幅が、100nm以下であることを特徴とする請求項1から請求項13のいずれかに記載の量子ドット含有樹脂シート又はフィルム。
  15.  請求項1から請求項14のいずれかに記載の量子ドット含有樹脂シート又はフィルムを用いて成形加工されてなることを特徴とする波長変換部材。
  16.  量子ドットを含有する樹脂ペレットを形成する工程、
     2層以上の樹脂層を、共押出成形により一体化する工程、を有することを特徴とする量子ドット含有樹脂シート又はフィルムの製造方法。
PCT/JP2018/038244 2017-10-16 2018-10-15 量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材 WO2019078135A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP18867724.9A EP3699650A4 (en) 2017-10-16 2018-10-15 RESIN SHEET OR FILM CONTAINING QUANTUM POINTS, ITS MANUFACTURING PROCESS AND WAVELENGTH CONVERSION ELEMENT
JP2019549257A JP7387949B2 (ja) 2017-10-16 2018-10-15 量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材
CN201880067203.9A CN111226144A (zh) 2017-10-16 2018-10-15 含有量子点的树脂片或膜、和其制造方法、以及波长转换构件
US16/754,995 US11629288B2 (en) 2017-10-16 2018-10-15 Quantum-dot containing resin sheet or film, method for producing the same, and wavelength conversion member
US18/116,105 US11905443B2 (en) 2017-10-16 2023-03-01 Quantum-dot containing resin sheet or film, method for producing the same, and wavelength conversion member
JP2023171678A JP2023182725A (ja) 2017-10-16 2023-10-02 バックライト用波長変換部材、及びその製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017200602 2017-10-16
JP2017-200602 2017-10-16

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/754,995 A-371-Of-International US11629288B2 (en) 2017-10-16 2018-10-15 Quantum-dot containing resin sheet or film, method for producing the same, and wavelength conversion member
US18/116,105 Division US11905443B2 (en) 2017-10-16 2023-03-01 Quantum-dot containing resin sheet or film, method for producing the same, and wavelength conversion member

Publications (1)

Publication Number Publication Date
WO2019078135A1 true WO2019078135A1 (ja) 2019-04-25

Family

ID=66173649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038244 WO2019078135A1 (ja) 2017-10-16 2018-10-15 量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材

Country Status (6)

Country Link
US (2) US11629288B2 (ja)
EP (1) EP3699650A4 (ja)
JP (2) JP7387949B2 (ja)
CN (1) CN111226144A (ja)
TW (1) TWI827556B (ja)
WO (1) WO2019078135A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210122972A1 (en) * 2019-10-24 2021-04-29 Ubright Optronics Corporation Quantum-dot film and the method to make the same
JP2022035917A (ja) * 2020-08-19 2022-03-04 大日本印刷株式会社 バリアフィルム、並びに、これを用いた波長変換シート、バックライト及び液晶表示装置、並びに、バリアフィルムの選定方法
WO2023188690A1 (ja) * 2022-03-31 2023-10-05 住友化学株式会社 透明樹脂フィルム及び表示装置

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019078135A1 (ja) * 2017-10-16 2019-04-25 Nsマテリアルズ株式会社 量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材
CN110738940B (zh) * 2019-11-28 2022-02-01 京东方科技集团股份有限公司 量子点膜、彩膜层和显示装置
CN111370557B (zh) * 2020-03-18 2021-02-23 马鞍山微晶光电材料有限公司 一种多层共挤制备光学基片的方法以及一种光学基片

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130169904A1 (en) * 2011-12-29 2013-07-04 Samsung Electronics Co., Ltd. Backlight unit and liquid crystal display including same
JP2013539598A (ja) * 2010-08-11 2013-10-24 キユーデイー・ビジヨン・インコーポレーテツド 量子ドット系照明
US20150085490A1 (en) * 2011-06-20 2015-03-26 Crystalplex Corporation Quantum dot containing light module
WO2015152116A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 光変換部材及び光変換部材の製造方法並びに光変換部材を含むバックライトユニットおよび液晶表示装置
CN106154364A (zh) * 2015-04-07 2016-11-23 宁波长阳科技股份有限公司 一种背光模组用量子点广色域聚酯膜、增亮膜及扩散膜
WO2017108568A1 (en) * 2015-12-23 2017-06-29 Avantama Ag Luminescent component
JP2017167320A (ja) 2016-03-16 2017-09-21 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
JP2017200602A (ja) 2009-02-25 2017-11-09 オーソボンド コーポレーション 抗感染性官能基表面とその製造方法
CN108128004A (zh) * 2018-01-08 2018-06-08 惠州市创亿达新材料有限公司 钙钛矿量子点光学功能板及其制备方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5388099B2 (ja) 2007-12-28 2014-01-15 国立大学法人大阪大学 コアシェル型量子ドット蛍光微粒子
JP2010283282A (ja) * 2009-06-08 2010-12-16 Nitto Denko Corp 波長変換シートの光学特性制御方法、波長変換シートの製造方法、カドミウムテルル系太陽電池用波長変換シートおよびカドミウムテルル系太陽電池
JP5937521B2 (ja) * 2011-01-28 2016-06-22 昭和電工株式会社 量子ドット蛍光体を含む組成物、量子ドット蛍光体分散樹脂成形体、量子ドット蛍光体を含む構造物、発光装置、電子機器、機械装置及び量子ドット蛍光体分散樹脂成形体の製造方法
WO2014006597A1 (en) * 2012-07-05 2014-01-09 Koninklijke Philips N.V. A stack of layers comprising luminescent material, a lamp, a luminaire and a method of manufacturing the stack of layers
KR20150100864A (ko) * 2012-12-28 2015-09-02 신에쓰 가가꾸 고교 가부시끼가이샤 형광체 함유 수지 성형체, 발광 장치 및 수지 펠릿
DE102013222702A1 (de) 2013-11-08 2015-05-13 Osram Opto Semiconductors Gmbh Optoelektronisches Bauelement, optoelektronische Anordnung, Verfahren zum Herstellen eines optischen Elements und Verfahren zum Herstellen eines optoelektronischen Bauelements
RU2581093C2 (ru) 2014-02-20 2016-04-10 ОБЩЕСТВО С ОГРАНИЧЕННОЙ ОТВЕТСТВЕННОСТЬЮ "Некс-Т" Способ изготовления флуоресцирующей полимерной пленки
TW201545598A (zh) * 2014-03-26 2015-12-01 Lintec Corp 薄片狀密封材、密封薄片及電子裝置密封體
KR101686713B1 (ko) * 2014-12-08 2016-12-14 엘지전자 주식회사 양자점-고분자 복합체의 제조 방법, 양자점-고분자 복합체, 이를 포함하는 광 변환 필름, 백라이트 유닛 및 표시장치
CN104728779B (zh) * 2015-04-21 2018-01-12 张家港康得新光电材料有限公司 发光膜层结构及背光模组
CN104777669B (zh) * 2015-04-24 2017-09-12 张家港康得新光电材料有限公司 量子点膜及背光模组
CN105856763A (zh) * 2016-02-25 2016-08-17 北京北达聚邦科技有限公司 一种双单色层结构量子点荧光膜及制造方法
CN106950750A (zh) * 2017-03-20 2017-07-14 青岛骐骥光电科技有限公司 一种量子点扩散板生产方法
WO2019078135A1 (ja) * 2017-10-16 2019-04-25 Nsマテリアルズ株式会社 量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017200602A (ja) 2009-02-25 2017-11-09 オーソボンド コーポレーション 抗感染性官能基表面とその製造方法
JP2013539598A (ja) * 2010-08-11 2013-10-24 キユーデイー・ビジヨン・インコーポレーテツド 量子ドット系照明
US20150085490A1 (en) * 2011-06-20 2015-03-26 Crystalplex Corporation Quantum dot containing light module
US20130169904A1 (en) * 2011-12-29 2013-07-04 Samsung Electronics Co., Ltd. Backlight unit and liquid crystal display including same
WO2015152116A1 (ja) * 2014-03-31 2015-10-08 富士フイルム株式会社 光変換部材及び光変換部材の製造方法並びに光変換部材を含むバックライトユニットおよび液晶表示装置
CN106154364A (zh) * 2015-04-07 2016-11-23 宁波长阳科技股份有限公司 一种背光模组用量子点广色域聚酯膜、增亮膜及扩散膜
WO2017108568A1 (en) * 2015-12-23 2017-06-29 Avantama Ag Luminescent component
JP2017167320A (ja) 2016-03-16 2017-09-21 大日本印刷株式会社 光波長変換組成物、光波長変換部材、光波長変換シート、バックライト装置、および画像表示装置
CN108128004A (zh) * 2018-01-08 2018-06-08 惠州市创亿达新材料有限公司 钙钛矿量子点光学功能板及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3699650A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210122972A1 (en) * 2019-10-24 2021-04-29 Ubright Optronics Corporation Quantum-dot film and the method to make the same
US11885987B2 (en) * 2019-10-24 2024-01-30 Ubright Optronics Corporation Quantum-dot film and the method to make the same
JP2022035917A (ja) * 2020-08-19 2022-03-04 大日本印刷株式会社 バリアフィルム、並びに、これを用いた波長変換シート、バックライト及び液晶表示装置、並びに、バリアフィルムの選定方法
JP7120287B2 (ja) 2020-08-19 2022-08-17 大日本印刷株式会社 バリアフィルム、並びに、これを用いた波長変換シート、バックライト及び液晶表示装置、並びに、バリアフィルムの選定方法
WO2023188690A1 (ja) * 2022-03-31 2023-10-05 住友化学株式会社 透明樹脂フィルム及び表示装置

Also Published As

Publication number Publication date
TWI827556B (zh) 2024-01-01
CN111226144A (zh) 2020-06-02
JP7387949B2 (ja) 2023-11-29
EP3699650A1 (en) 2020-08-26
JPWO2019078135A1 (ja) 2020-12-03
JP2023182725A (ja) 2023-12-26
US11905443B2 (en) 2024-02-20
TW201922500A (zh) 2019-06-16
US20230203366A1 (en) 2023-06-29
US11629288B2 (en) 2023-04-18
US20210189230A1 (en) 2021-06-24
EP3699650A4 (en) 2021-07-21

Similar Documents

Publication Publication Date Title
JP7387949B2 (ja) 量子ドット含有樹脂シート又はフィルム、及びその製造方法、並びに、波長変換部材
JP7046935B2 (ja) 表示装置用のバックライトユニット
US11092850B2 (en) Using multiple excitation wavelengths in nanostructure based display devices
EP3658983B1 (en) Nanostructure based display devices
EP3658984B1 (en) Nanostructure based display devices
JP7456435B2 (ja) 量子ドット色変換層における色域性能及び効率の増大
US11886073B2 (en) Nanostructure based display devices
TW202413109A (zh) 含量子點之樹脂片或膜、及其製造方法、及波長轉換構件
KR101436099B1 (ko) Led용 이중 양자점-고분자 복합체 플레이트 및 그 제조 방법
KR20240024378A (ko) 양자점 광학시트 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867724

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549257

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018867724

Country of ref document: EP

Effective date: 20200518