WO2019078018A1 - 減速機 - Google Patents

減速機 Download PDF

Info

Publication number
WO2019078018A1
WO2019078018A1 PCT/JP2018/037180 JP2018037180W WO2019078018A1 WO 2019078018 A1 WO2019078018 A1 WO 2019078018A1 JP 2018037180 W JP2018037180 W JP 2018037180W WO 2019078018 A1 WO2019078018 A1 WO 2019078018A1
Authority
WO
WIPO (PCT)
Prior art keywords
gear
output
output gear
displacement sensors
output shaft
Prior art date
Application number
PCT/JP2018/037180
Other languages
English (en)
French (fr)
Inventor
岡田 徹
山口 和郎
啓太 金井
Original Assignee
株式会社神戸製鋼所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神戸製鋼所 filed Critical 株式会社神戸製鋼所
Priority to EP18868662.0A priority Critical patent/EP3699550B1/en
Priority to CN201880068057.1A priority patent/CN111213030B/zh
Priority to US16/755,735 priority patent/US11268594B2/en
Publication of WO2019078018A1 publication Critical patent/WO2019078018A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/087Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears
    • F16H3/089Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts characterised by the disposition of the gears all of the meshing gears being supported by a pair of parallel shafts, one being the input shaft and the other the output shaft, there being no countershaft involved
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/01Monitoring wear or stress of gearing elements, e.g. for triggering maintenance
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/02Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
    • F16C19/04Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly
    • F16C19/06Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for radial load mainly with a single row or balls
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H3/00Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion
    • F16H3/02Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion
    • F16H3/08Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts
    • F16H3/083Toothed gearings for conveying rotary motion with variable gear ratio or for reversing rotary motion without gears having orbital motion exclusively or essentially with continuously meshing gears, that can be disengaged from their shafts with radially acting and axially controlled clutching members, e.g. sliding keys
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H57/00General details of gearing
    • F16H57/0018Shaft assemblies for gearings
    • F16H57/0031Shaft assemblies for gearings with gearing elements rotatable supported on the shaft
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
    • G01B21/22Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring angles or tapers; for testing the alignment of axes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M13/00Testing of machine parts
    • G01M13/04Bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/52Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions
    • F16C19/527Bearings with rolling contact, for exclusively rotary movement with devices affected by abnormal or undesired conditions related to vibration and noise
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2220/00Shaping
    • F16C2220/40Shaping by deformation without removing material
    • F16C2220/48Shaping by deformation without removing material by extrusion, e.g. of metallic profiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/61Toothed gear systems, e.g. support of pinion shafts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2361/00Apparatus or articles in engineering in general
    • F16C2361/65Gear shifting, change speed gear, gear box
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/30Constructional features of the final output mechanisms
    • F16H2063/3093Final output elements, i.e. the final elements to establish gear ratio, e.g. dog clutches or other means establishing coupling to shaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/041Ratio selector apparatus consisting of a final output mechanism, e.g. ratio selector being directly linked to a shiftfork
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H59/00Control inputs to control units of change-speed-, or reversing-gearings for conveying rotary motion
    • F16H59/02Selector apparatus
    • F16H59/04Ratio selector apparatus
    • F16H59/042Ratio selector apparatus comprising a final actuating mechanism
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16HGEARING
    • F16H63/00Control outputs from the control unit to change-speed- or reversing-gearings for conveying rotary motion or to other devices than the final output mechanism
    • F16H63/02Final output mechanisms therefor; Actuating means for the final output mechanisms
    • F16H63/04Final output mechanisms therefor; Actuating means for the final output mechanisms a single final output mechanism being moved by a single final actuating mechanism

Definitions

  • the present invention relates to a reduction gear provided with a detection device that detects the state of a rolling bearing provided on an output shaft.
  • a two-speed switching reduction gear described in Patent Document 1 As a reduction gear of a kneading extruder for kneading and extruding resin, rubber and the like, for example, a two-speed switching reduction gear described in Patent Document 1 is known.
  • the processing speed of the kneaded material, the kneading temperature, and the kneading quality are adjusted by switching the rotational speed of the rotor of the kneading extruder by the two-speed switching reducer between the high speed condition and the low speed condition.
  • This two-speed switching reducer includes an input shaft having an outer peripheral surface to which a low speed side pinion and a high speed side pinion are fixed, an output shaft arranged parallel to the input axis, and a rotational speed switching mechanism. Prepare. On the output shaft, a low speed gear engaged with the low speed pinion and a high speed gear engaged with the high speed pinion are rotatably mounted via bearings. The rotational speed switching mechanism selectively connects the low speed gear and the high speed gear to the output shaft.
  • the bearings between the low speed gear and the output shaft and the bearings between the high speed gear and the output shaft rotate integrally with the output shaft and the gears at the time of power transmission. For this reason, relative speed does not occur between the inner ring and the outer ring constituting the bearing. Since there is no relative speed between the inner ring and the outer ring, the rolling elements of the bearing continue to contact at the same location as the inner ring and the outer ring under load. In addition, mechanical vibration is applied to the contact points, and damage called fretting corrosion (surface damage (abrasion) caused by the minute relative motion periodically and repeatedly acting between the contact surfaces) occurs with the passage of time, proceed.
  • fretting corrosion surface damage (abrasion) caused by the minute relative motion periodically and repeatedly acting between the contact surfaces
  • the vibration of the bearing box (inner ring / outer ring) is measured, and the vibration of the frequency (bearing damage frequency) caused by the inner ring ridge and the outer ring ridge is monitored to determine the presence or absence of the bearing abnormality. It is known to do.
  • the present invention has been made in view of the above situation, and its object is to provide a bearing state detection device capable of detecting the state of a rolling bearing integrally rotating with an output shaft and an output gear at the time of power transmission. It is to provide a reduction gear.
  • a reduction gear comprising at least one of a casing, an input shaft rotatably supported by the casing, and the input shaft fixed to the input shaft and rotating with the input shaft.
  • at least one output gear fixed to the outer ring of the at least one rolling bearing and meshed with the at least one input gear, the at least one output gear, and the output shaft
  • One input gear includes an input gear outer peripheral portion on which a helical rib is formed, and the at least one output gear is an output gear outer peripheral portion on which a helical rib is formed which meshes with the helical rib of the input gear outer peripheral portion And an output gear side surface orthogonal to the axial direction of the output shaft, wherein the detection device is positioned at a predetermined distance in the radial direction from the rotation axis of the output shaft.
  • the front A processing unit configured to acquire an amount of inclination of the output gear side surface with respect to the rotation shaft based on the displacement amount of the output gear side surface detected by a plurality of displacement sensors, and detect the state of the rolling bearing from the inclination amount; And.
  • FIG. 1 is a plan sectional view of a reduction gear according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a clutch gear of a connection mechanism of a reduction gear according to an embodiment of the present invention.
  • FIG. 3 is a perspective view of a connection mechanism according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of the connection mechanism of FIG. 1 taken along the line II.
  • FIG. 5A is a view schematically showing a gap ⁇ between a bearing ring of a rolling bearing and rolling elements generated due to wear or the like.
  • FIG. 5B is a view schematically showing a state where the low speed side output gear is inclined and rotated by the clearance ⁇ shown in FIG.
  • FIG. 6 is a schematic view of the low speed output gear as viewed from the axial direction, showing a state in which four displacement sensors are disposed laterally of the low speed output gear.
  • FIG. 7A is a schematic view of the low speed output gear as viewed from the axial direction, showing a state in which three displacement sensors are disposed laterally of the low speed output gear.
  • FIG. 7B is a perspective view of the low-speed output gear in which the amount of fluctuation in the measurement position of the output gear side surface detected by the three displacement sensors shown in FIG. 7A is indicated by a vector.
  • a two-speed switching reducer is taken as an example.
  • This two-speed switching type reduction gear is, for example, a reduction gear used for a kneading extruder which kneads and extrudes resin, rubber and the like.
  • the bearing state detection apparatus of this invention is applicable not only to a 2nd speed switching type reducer, but also to the reducer which does not have a speed switching mechanism in particular.
  • FIG. 1 is a plan sectional view of a two-speed switching reducer 100 according to the present embodiment.
  • the two-speed switching reducer 100 includes an input shaft 21 having a casing 31, a low speed pinion 22 and a high speed pinion 23, and an output shaft 25 disposed parallel to the input shaft 21. And have.
  • the input shaft 21 and the output shaft 25 are rotatably supported by the casing 31 respectively.
  • the low speed side pinion 22 (input gear, low speed side input gear) and the high speed side pinion 23 (input gear, high speed side input gear) are fixed to the input shaft 21 and rotate together with the input shaft 21.
  • the output shaft 25 includes a low speed gear 26 (output gear, low speed output gear) meshing with the low speed pinion 22 and a high speed gear 27 (output gear, high speed output gear) meshing with the high speed pinion 23.
  • a low speed gear 26 output gear, low speed output gear
  • a high speed gear 27 output gear, high speed output gear
  • Each is rotatably mounted via a pair of rolling bearings 29 and 30.
  • the pair of rolling bearings 29 (30) is disposed inward of the low speed gear 26 (high speed gear 27) and disposed between the low speed gear 26 (high speed gear 27) and the output shaft 25. That is, the pair of rolling bearings 29 (30) includes an inner ring fixed to the output shaft 25 and an outer ring rotatable relative to the inner ring. The low speed gear 26 (high speed gear 27) is fixed to the outer ring of the rolling bearing 29 (30).
  • the input shaft 21 is rotatably supported by a bearing 24 fixed to the casing 31, and the output shaft 25 is rotatably supported by a bearing 28 fixed to the casing 31.
  • the input shaft 21 is rotated by a drive unit such as an electric motor (not shown).
  • the low speed side pinion 22 is a helical gear
  • the high speed side pinion 23 is a helical gear larger in diameter than the low speed side pinion 22.
  • the low speed side pinion 22 includes the outer peripheral portion 22a (input gear outer peripheral portion) on which the flyback is formed
  • the high speed side pinion 23 has the outer peripheral portion 23a (input gear outer peripheral portion) on which the flyback is formed. Including.
  • the number of teeth of the high speed side pinion 23 is larger than the number of teeth of the low speed side pinion 22.
  • the low-speed side pinion 22 and the high-speed side pinion 23, that is, the pinion gears (22, 23), and the input shaft 21 may be an integral product formed by cutting from one material, or the like. After being formed separately, the pinion gears (22, 23) may be fixed to each other by press-fitting on the input shaft 21 or the like.
  • the outer peripheral surface (output gear outer peripheral portion) of the low speed gear 26 is formed with a collar 35a that meshes with the low speed pinion 22 and the outer peripheral surface (output gear outer peripheral portion) of the high speed gear 27
  • a helical gear 37a is formed to mesh with the high speed pinion 23.
  • the outer diameter of the low speed gear 26 is larger than the outer diameter of the high speed gear 27.
  • the number of teeth of the low speed gear 26 is larger than the number of teeth of the high speed gear 27.
  • the low speed gear 26 has a side surface 26a (output gear side surface) orthogonal to the axial direction of the output shaft 25, and the high speed gear 27 has a side surface 27a (output gear side surface) orthogonal to the axial direction of the output shaft 25. .
  • the outer diameters of the low speed pinion 22, the high speed pinion 23, the low speed gear 26, and the high speed gear 27 are the same along the axial direction, and the low speed pinion 22 and the high speed pinion 23 of FIG. As shown in the low speed gear 26 of FIG. 3, the gear teeth formed on the respective outer peripheral surfaces are inclined along the rotational direction.
  • FIG. 2 is a perspective view of the clutch gear 33 of the rotational speed switching mechanism 32 of the two-speed switching reducer 100 according to the present embodiment.
  • FIG. 3 is a perspective view of the rotational speed switching mechanism 32.
  • FIG. 4 is a cross-sectional view of the rotational speed switching mechanism 32 of FIG.
  • the rotational speed switching mechanism 32 connects the low speed gear 26 to the output shaft 25 by bypassing the bearing 29 so that the low speed gear 26 and the output shaft 25 integrally rotate, the low speed gear 26 and the output shaft It is possible to switch between a release state for releasing the connection with 25. Further, the rotational speed switching mechanism 32 has a connected state in which the high speed gear 27 is connected to the output shaft 25 by bypassing the bearing 30 so that the high speed gear 27 and the output shaft 25 integrally rotate, It is possible to switch between a release state in which the connection with the output shaft 25 is released.
  • the reduction gear provided with the bearing state detection device includes an input shaft having an input gear formed into a helical gear, and an output that is disposed parallel to the input shaft and meshes with the input gear. It is good as long as it has an output shaft on which a gear (a gear whose outer peripheral surface is formed with a brim is formed idle) rotatably through a rolling bearing, and a connection mechanism for connecting the output gear to the output shaft.
  • the invention is not limited to a two-speed gear reducer 100 having a pair of input gears (22, 23) and a pair of output gears (26, 27) meshing therewith, as shown in FIG. . That is, the reduction gear according to the present invention may include at least one input gear, at least one output gear, and at least one rolling bearing.
  • the low speed gear 26 has a large diameter portion 35 and a small diameter portion 36 coaxial with the large diameter portion 35.
  • the above-mentioned helical ring 35a which meshes with the low speed side pinion 22 is formed.
  • a bearing ring 29b (an outer ring, refer to FIGS. 5A and 5B) constituting the rolling bearing 29 is fixed.
  • an inner collar 36a is formed which is engaged with (is fitted with) the outer collar 41a of the clutch gear 33 described later. ing.
  • the inner portion 36a may be a spline (female spline) instead of a portion.
  • the outer ring 41a of the clutch gear 33 may be a spline (male spline) fitted to the female spline. That is, the inner ring 36a portion and the outer ring 41a portion may be splines, not helical.
  • the high speed gear 27 has a large diameter portion 37 and a small diameter portion 38 coaxial with the large diameter portion 37.
  • the above-mentioned helical collar 37a which meshes with the high speed side pinion 23 is formed.
  • a bearing ring (outer ring) constituting the rolling bearing 30 is fixed to the inner circumferential surface of the large diameter portion 37.
  • an inner collar 38a is formed which is engaged with (is fitted with) the collar 42a outside the clutch gear 33 described later. ing.
  • the inner portion 38a may be a spline (female spline) instead of a portion.
  • the outer ring 42a of the clutch gear 33 may be a spline (male spline) fitted to the female spline. That is, the inner ring 38a portion and the outer ring 42a portion may be splines, not helical.
  • the rotational speed switching mechanism 32 includes a clutch gear 33 and an operation unit 34 for moving the clutch gear 33 in the axial direction of the output shaft 25.
  • a male spline 25 a is formed on the outer peripheral surface of a portion of the output shaft 25 between the low speed gear 26 and the high speed gear 27.
  • a female spline 33a is formed on the inner peripheral surface of the hole formed at the center of the clutch gear 33.
  • the female spline 33 a of the clutch gear 33 is fitted to the male spline 25 a of the output shaft 25 so as to be movable in the axial direction.
  • the clutch gear 33 also has a low speed side clutch gear portion 41 and a high speed side clutch gear portion 42.
  • An outer ring 41 a is formed on the outer peripheral surface of the low speed clutch gear portion 41 so as to be fitted to the inner ring 36 a of the small diameter portion 36 of the low speed gear 26.
  • An outer ring 42 a is formed on the outer peripheral surface of the high speed clutch gear portion 42 so as to be fitted to the inner ring 38 a of the small diameter portion 38 of the high speed gear 27.
  • a groove 43 is provided between the low speed side clutch gear portion 41 and the high speed side clutch gear portion 42.
  • the operation unit 34 for moving the clutch gear 33 in the axial direction includes a switching lever 51 of a predetermined length, a position fixing pin 52 for fixing the switching lever 51, and rotation.
  • a shaft 53, a pair of arms 54, and a cam follower 55 (pushing member) are provided.
  • the pivot shaft 53 is connected to an end of the switching lever 51, extends in a direction perpendicular to the input shaft 21 and the output shaft 25 in a plan view, and is rotatably attached to the casing 31.
  • the pair of arms 54 are disposed opposite to each other so as to sandwich the clutch gear 33, and the base end side thereof is fixed to the pivot shaft 53.
  • the cam follower 55 is attached to the tip of the arm 54 in a state of being disposed in the groove 43 of the clutch gear 33, and pushes the inner side surface of the groove 43 to move the clutch gear 33 in the axial direction of the output shaft 25 when switching gears.
  • the cam follower 55 has, for example, a cylindrical shape, and is rotatably attached to the tip of the arm 54.
  • the input shaft 21 is rotated by a drive unit such as an electric motor, whereby the low speed gear 26 engaged with the low speed pinion 22 is rotated, and the clutch gear 33 fitted to the low speed gear 26 is output. It rotates integrally with the shaft 25. That is, the rotational driving force is transmitted from the input shaft 21 to the output shaft 25 with a predetermined reduction ratio.
  • a drive unit such as an electric motor
  • the high-speed gear 27 has a spiral 38a and a clutch.
  • the outer ring 42 a of the high speed clutch gear 42 of the gear 33 is engaged with the outside.
  • the input shaft 21 is rotated by a drive unit such as an electric motor, whereby the high speed gear 27 meshing with the high speed pinion 23 is rotated, and the clutch gear 33 engaged with the high speed gear 27 is output. It rotates integrally with the shaft 25.
  • the two-speed switching reducer 100 includes the bearing state detection device 100S.
  • the pinion gears (22, 23) provided on the input shaft 21 and the gears (26, 27) provided on the output shaft 25 corresponding thereto For example, since it is a gear, a thrust force (force in the axial direction) is generated at the time of power transmission.
  • the bearing state detection device 100S according to the present embodiment detects the state (the degree of damage) of the rolling bearing 29 (30) using the phenomenon that the gear 26 (27) is inclined by this thrust force.
  • the gear 26 (27) is located radially outward of the rolling bearing 29 (30), and its diameter is larger than the diameter of the rolling bearing 29 (30), so slight wear of the rolling bearing 29 (30) It is expanded as the inclination of the gear 26 (27) and appears as a relatively large displacement (axial movement amount).
  • the bearing state detection device 100S includes a plurality of displacement sensors 1, 2, 11, 12, and a data processing unit 5 (processing unit).
  • the displacement sensors 1 and 2 are disposed to the side of the low speed gear 26, and the displacement sensors 11 and 12 are disposed to the side of the high speed gear 27.
  • the data processing unit 5 receives signals from the displacement sensors 1, 2, 11, and 12, and the data processing unit 5 (processing unit) processes the signals.
  • the plurality of displacement sensors 1, 2, 11, 12 face the side surface 26a (27a) (FIG. 1, FIG. 5A) of the gear 26 (27) at a predetermined distance from the rotation axis of the output shaft 25 in the radial direction.
  • the displacement sensor may be disposed on the side of at least one of the low speed gear 26 and the high speed gear 27.
  • the data processing unit 5 is detected by the plurality of displacement sensors 1 and 2 (11, 12) when the low speed gear 26 (high speed gear 27) connected to the output shaft 25 by the rotation speed switching mechanism 32 rotates.
  • the amount of inclination of the side surface 26a (27a) with respect to the rotation axis of the output shaft 25 is calculated based on the amount of displacement, and the state of the bearing 29 (30) is detected from the amount of inclination.
  • Non-contact displacement sensors such as eddy current displacement sensors, ultrasonic displacement sensors, optical displacement sensors, and capacitive displacement sensors are used as the displacement sensors 1, 2, 11 and 12.
  • the displacement sensors 1, 2, 11 and 12 are, for example, screw type, and are screwed into holes formed in the casing 31 and fixed to the casing 31.
  • the two displacement sensors 1 and 2 are arranged at intervals of 180 ° around the axis of the output shaft 25 (along the rotational direction of the output shaft 25). Further, in the present embodiment, viewed from a direction parallel to the rotation axis of the output shaft 25, a direction connecting the two displacement sensors 1 and 2 facing each other, (the center of the low speed side pinion 22) and the low speed side The direction in which the gear 26 (the center thereof) is connected is the same.
  • FIG. 5A is a view schematically showing a gap ⁇ (a gap amount) between the race 29 b of the rolling bearing 29 and the rolling elements 29 a generated due to wear or the like.
  • 5B is a view schematically showing a state in which the low speed gear 26 is inclined and rotated by the clearance ⁇ shown in FIG. 5A and the thrust force acting on the low speed gear 26 at the time of power transmission.
  • the displacement sensors 1 and 2 shift the axial displacement of the side surface 26a of the low speed gear 26 at a distance r in the radial direction from the center (rotational axis) of the output shaft 25 It is arranged to be able to detect the amount).
  • the distance from the output shaft 25 to the displacement sensor 1 may be different from the distance from the output shaft 25 to the displacement sensor 2.
  • the two-dot chain line shown in FIG. 5B indicates that the low speed gear 26 is connected to the output shaft 25 by the rotational speed switching mechanism 32.
  • the initial stage of operation after the reduction gear is assembled (the wear and the like are not particularly generated on the rolling bearing 29) 7 shows the position of the side surface 26a of the rotating low speed gear 26 in the initial state).
  • the displacement sensors 1 and 2 measure the position (reference position) of the side surface 26a of the rotating low speed gear 26 at this time, and the data processing unit 5 stores the measured value as a reference value.
  • the displacement sensors 1 and 2 measure the distance between the sensor unit and the measurement point, D1 and D2 can be calculated by the data processing unit 5.
  • the displacement (movement amount) detected by the displacement sensors 1 and 2 also includes the swinging component of the low speed gear 26 according to the rotation of the output shaft 25.
  • the data processing unit 5 executes averaging processing, and the average value of the detected displacements is stored in the data processing unit 5 and used in calculation.
  • (D1 + D2) / 2r is the amount of inclination of the low speed gear 26.
  • the data processing unit 5 periodically estimates the gap ⁇ by the above method to detect the state of the rolling bearing 29. Then, for example, when the estimated gap ⁇ largely changes so as to exceed the predetermined threshold value, the data processing unit 5 determines that the state of the rolling bearing 29 is abnormal, and outputs a signal regarding bearing abnormality information.
  • the said signal is input into the display part which the 2-speed switching type reduction gear 100 or the machine in which the said reduction gear was equipped has, and it is displayed so that an operator can visually recognize.
  • the determination of the state abnormality of the rolling bearing 29 may be automatically performed by the data processing unit 5 or the like, or the worker periodically checks the information of the gap ⁇ output by the data processing unit 5. It may be In this case, the value of the calculated gap ⁇ is output by the data processing unit 5 and displayed on the display unit described above.
  • the clearance ⁇ and the inclination amount i of the low speed gear 26 have a one-to-one relationship. Therefore, the data processing unit 5 can omit the estimation of the gap ⁇ by calculation, and can grasp the state of the rolling bearing 29 only by calculating the inclination amount i of the low speed gear 26 by calculation. That is, it is not always necessary to estimate the gap ⁇ (gap amount) between the bearing ring 29 b and the rolling element 29 a by calculation in the data processing unit 5, and the data processing unit 5 determines the inclination of the low speed gear 26.
  • the state of the rolling bearing 29 may be grasped based on the amount i. However, estimation based on the gap ⁇ rather than the inclination amount i is preferable because it represents the state of the bearing 29 more directly.
  • the bearing state detection device 100S According to the two-speed switching type reduction gear 100 provided with the bearing state detection device 100S according to the present embodiment, even if the rolling bearing 29 (30) does not rotate relatively during power transmission and it is difficult to directly observe the state, It is possible to grasp the state.
  • two displacement sensors are used for one gear (26, 27), and the configuration is simpler than in the case where three or more displacement sensors are used, and the data processing unit 5 Does not require complicated operations.
  • the direction in which the two displacement sensors 1 and 2 are connected is the same as the direction in which the low speed pinion 22 and the low speed gear 26 are connected.
  • the low speed side gear 26 is inclined by this thrust force. Therefore, according to the measurement according to the above configuration, the moving amount detected by the displacement sensors 11 and 12 tends to be relatively large, and the inclination amount of the low speed gear 26 obtained by the data processing unit 5 tends to be large. The noise component due to the swinging phenomenon or the like is easily canceled, and the state of the rolling bearing 29 can be detected more accurately.
  • the low speed gear 26 tends to tilt easily in the direction connecting the low speed pinion 22 and the low speed gear 26.
  • the amount of tilt in this direction can not be said to be the largest in any reduction gear.
  • the direction in which the amount of inclination of the gears, such as the low speed gear 26 and the high speed gear 27, is maximized is determined by the shape of the reduction gear, the size of the applied load, and the like. Therefore, in order to further enhance the detection accuracy, the arrangement of the two opposing displacement sensors 1 and 2 is such that the amount of inclination of the low speed gear 26 is maximized based on experiment, past results, or analysis. It is more preferable that
  • the measurement position of the displacement sensors 1 and 2 be a position as close as possible to the outer periphery of the side surface 26 a of the low speed gear 26. In other words, it is desirable that the measurement positions of the displacement sensors 1 and 2 be disposed closer to the maximum outer diameter portion than the minimum outer diameter portion of the side surface 26 a of the low speed gear 26. In this case, since a larger amount of movement is detected, the inclination of the side surface 26 a of the low speed gear 26 can be detected with high accuracy.
  • the data processing unit 5 calculates the gap ⁇ (gap amount) between the bearing ring 29 b of the rolling bearing 29 and the rolling element 29 a by calculation based on the inclination amount i obtained by calculation. There is. As a method of estimating the gap ⁇ , it is also preferable to estimate the gap ⁇ from the estimation result from the inclination amount i and another estimation result.
  • the data processing unit 5 temporarily stores the gap amount estimated by calculation based on the inclination amount i as the gap ⁇ 1.
  • the data processing unit 5 estimates the gap ⁇ 2 by calculation based on the average value of the displacement amounts (movement amounts in the axial direction in a predetermined period) respectively detected by the displacement sensors 1 and 2. Then, the gap ⁇ 1 and the gap ⁇ 2 are compared, and the larger gap (gap amount) is selected as the gap ⁇ (gap amount) for detecting the state of the rolling bearing 29.
  • data processing unit 5 calculates gap ⁇ 1 (gap amount) by calculation based on inclination amount i obtained by calculation, and based on the average value of the movement amounts detected by displacement sensors 1 and 2
  • the gap ⁇ 2 (gap amount) is estimated by calculation, and the larger gap amount of the gaps ⁇ 1 and ⁇ 2 estimated by these two methods is defined as the gap amount of the rolling bearing 29.
  • a change caused by the gap of the rolling bearing 29 may be more prominent in the axial movement of the low speed gear 26 than the inclination of the low speed gear 26. Therefore, it is safer to grasp the state of the bearing if the larger gap (the gap amount) is compared with the gap ⁇ 1 and the gap ⁇ 2 as the gap ⁇ (the gap amount) of the rolling bearing 29.
  • two displacement sensors 1, 2 are disposed on the side of the gears (26, 27).
  • four displacement sensors may be disposed on the side of the gears (26, 27).
  • FIG. 6 shows an example in which four displacement sensors 1 to 4 are arranged at intervals of 90 ° around the rotational axis of the output shaft 25 on the side of the low speed gear 26.
  • the displacement sensors 1 and 2 and the displacement sensors 3 and 4 are disposed to face each other with the rotation axis of the output shaft 25 interposed therebetween.
  • the data processing unit 5 determines the inclination amounts i1 and i2 of the gears in two orthogonal directions on the basis of the axial movement amount of the side surface 26a of the output gear detected by the two pairs of opposing displacement sensors 1, 2 and 3 and 4.
  • the inclination amounts i1 and i2 in the two orthogonal directions obtained by the calculation are synthesized by the calculation.
  • the method of determining each of the inclination amounts i1 and i2 is the same as that of the first embodiment.
  • the synthesis of the inclination amount i1 and the inclination amount i2 is, for example, obtaining a square-sum route of the inclination amount i1 and the inclination amount i2.
  • the amount of inclination of the low speed gear 26 determined by the data processing unit 5 tends to be large, so the state of the rolling bearing 29 can be detected more accurately.
  • the four displacement sensors are concentrically arranged around the rotation axis of the output shaft 25, but the four displacement sensors do not necessarily have to be concentrically arranged.
  • two displacement sensors 1, 2 are arranged laterally of the gears (26, 27), and in the second embodiment laterally of the gears (26, 27).
  • Four displacement sensors are arranged.
  • three displacement sensors may be arranged on the side of the gears (26, 27).
  • FIG. 7A shows an example in which three displacement sensors 1 to 3 are arranged at intervals of 120 ° around the axis of the output shaft 25 on the side of the low speed gear 26.
  • FIG. 7B is a perspective view of the low-speed gear in which the amount of fluctuation of the measurement position of the gear side surface detected by the three displacement sensors 1 to 3 shown in FIG. 7A is indicated by a vector.
  • the vectors P1, P2 and P3 are the side surfaces of the low speed gear 26 with respect to the side surface 26a (reference plane) of the rotating low speed gear 26 at the initial stage of operation described above detected by the displacement sensors 1, 2 and 3, respectively. It is a vector which makes the amount of variation (movement amount) of the direction of an axis of 26a a size.
  • P1 x1, y1, z1
  • P2 x2, y2, z2
  • P3 x3, y3, z3
  • P1, P2 The normal vector n of the surface including P1 and P3 is obtained as shown in the following Expression 3 by the outer product of the vector a12 and the vector a13.
  • the data processing unit 5 performs the above calculation to determine the inclination ⁇ (inclination amount) of the low speed gear 26.
  • ⁇ (gap amount) a / 2 ⁇ tan ⁇
  • ⁇ (gap amount) a ⁇ tan ⁇ .
  • the data processing unit 5 performs the above calculation to estimate ⁇ (gap amount).
  • the three displacement sensors are arranged concentrically at equal intervals (120 ° intervals) around the rotation axis of the output shaft 25.
  • the three displacement sensors are necessarily concentrically, It does not have to be equally spaced.
  • the measurement accuracy is improved by arranging the three displacement sensors concentrically at equal intervals (120 ° intervals) around the rotation axis of the output shaft 25.
  • a reduction gear wherein the reduction gear is fixed to a casing, an input shaft rotatably supported by the casing, and the input shaft, and rotates with the input shaft.
  • At least one rolling bearing including an outer ring, at least one output gear fixed to the outer ring of the at least one rolling bearing and meshing with the at least one input gear, the at least one output gear and the output
  • a connection mechanism for connecting the at least one output gear to the output shaft by bypassing the at least one rolling bearing so that the shaft rotates with it.
  • the at least one input gear includes an input gear outer periphery having a helical rib formed thereon, and the at least one output gear has a helical rib formed to mesh with the helical rib of the input gear outer peripheral segment
  • the detection device includes a gear outer peripheral portion and an output gear side surface orthogonal to the axial direction of the output shaft, and the detection device performs the at least one output at a position radially away from the rotational shaft of the output shaft.
  • the plurality of displacement sensors respectively facing the output gear side surface of the gear and detecting the displacement of the output gear side surface in the axial direction, and the rotation of the output gear coupled to the output shaft by the connection mechanism
  • a processing unit for acquiring an amount of inclination of the side surface of the output gear with respect to the rotation axis based on the displacement amount of the side surface of the output gear detected by a plurality of displacement sensors.
  • the plurality of displacement sensors include four displacement sensors disposed at intervals of 90 ° around the rotation axis of the output shaft, and the processing unit is configured to select the rotation shaft among the four displacement sensors.
  • the inclination amounts in two directions perpendicular to the output gear side surface are respectively calculated based on the displacement amounts of the output gear side surface detected by the displacement sensor pair opposed to each other across the two sides, and the calculated perpendicular two directions It is desirable to combine slope amounts.
  • the plurality of displacement sensors include three displacement sensors disposed spaced apart from each other around the rotation axis of the output shaft, and the processing unit is detected by the three displacement sensors.
  • the inclination amount of the output gear side surface may be calculated based on the displacement amount of the output gear side surface.
  • the three displacement sensors may be arranged at intervals of 120 ° around the rotation axis of the output shaft.
  • the plurality of displacement sensors include two displacement sensors disposed at an interval of 180 ° around the rotation axis of the output shaft, viewed from a direction parallel to the rotation axis of the output shaft, It is desirable that the direction connecting the two displacement sensors be the same as the direction connecting the input gear and the output gear.
  • the rolling bearing further includes a rolling element disposed between the inner ring and the outer ring, and the processing unit is configured to adjust the rolling bearing based on the inclination amount of the output gear side surface. It is desirable to estimate the amount of clearance between the inner ring or the outer ring and the rolling element.
  • the rolling bearing further includes a rolling element disposed between the inner ring and the outer ring, and the processing unit is configured to adjust the rolling bearing based on the inclination amount of the output gear side surface. While estimating the gap amount between the inner ring or the outer ring and the rolling element, the gap amount is estimated based on the average value of the displacement amounts of the side surfaces of the output gear detected by the plurality of displacement sensors, It is desirable to select the larger gap amount of the two estimated gap amounts as the final gap amount.
  • the at least one input gear includes a low speed input gear and a high speed input gear
  • the at least one output gear is a low speed output gear meshing with the low speed input gear
  • a high speed side output gear meshing with the high speed side input gear
  • the coupling mechanism selectively connects one of the low speed side output gear and the high speed side output gear to the output shaft, and the plurality of displacements
  • a sensor be disposed to face the output gear side surface of at least one of the low speed output gear and the high speed output gear.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Rolling Contact Bearings (AREA)
  • Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Structure Of Transmissions (AREA)
  • Gear Transmission (AREA)

Abstract

動力伝達時に出力軸および出力ギヤと一体的に回転する転がり軸受の状態を検出することができる軸受状態検出装置を備えた減速機を提供する。軸受状態検出装置は、外周面にはすば(35a、37a)が形成された出力ギヤ(26、27)の側方において相互に異なる位置に配置され、当該出力ギヤの側面の軸方向の変位量を検出する複数の変位センサ(1、2、11、12)と、連結機構(32)により出力軸(25)に連結された状態における出力ギヤ(26、27)の回転時の、複数の変位センサ(1、2、11、12)により検出された前記変位量に基づいて、前記ギヤ(26、27)の傾き量を求める処理部(5)と、を備えている。

Description

減速機
 本発明は、出力軸に設けられた転がり軸受の状態を検出する検出装置を備えた減速機に関する。
 樹脂、ゴムなどを混練、押出しする混練押出機の減速機として、例えば特許文献1に記載の二速切換式減速機が知られている。混練押出機のロータの回転速度が、この二速切換式減速機により、高速条件と低速条件との間で切換えられることで、混練物の処理量、混練温度、混練品質が調整される。
 この二速切換式減速機は、低速側ピニオンおよび高速側ピニオンが固定された外周面を有する入力軸と、この入力軸に対して平行に配置される出力軸と、回転速度切換機構と、を備える。出力軸には、低速側ピニオンと噛合う低速側ギヤと、高速側ピニオンと噛合う高速側ギヤとが、それぞれ軸受を介して空転自在に装着されている。回転速度切換機構は、低速側ギヤおよび高速側ギヤを選択的に出力軸に連結する。
 低速側ギヤが出力軸に連結された場合、入力軸の回転(動力)は、低速側ピニオンおよび低速側ギヤを介して出力軸に伝達され、その結果、出力軸は低速で回転する。一方、高速側ギヤが出力軸に連結された場合、入力軸の回転(動力)は、高速側ピニオンおよび高速側ギヤを介して出力軸に伝達され、その結果、出力軸は高速で回転する。なお、いずれの場合も、低速側ギヤおよび高速側ギヤのうち出力軸に連結されていない方のギヤは、回転する出力軸の周りを出力軸とは異なる回転速度で空転する。
特開2010-159826号公報
 ここで、低速側ギヤと出力軸との間の軸受、および高速側ギヤと出力軸との間の軸受は、動力伝達時にいずれも出力軸および各ギヤと一体的に回転する。このため、軸受を構成する内輪と外輪との間に相対速度は生じない。内輪と外輪との間に相対速度が生じないため、軸受の転動体は、荷重を受けた状態で、内輪および外輪と同一箇所で接触し続ける。また、その接触箇所には機械振動が加わり、フレッチングコロージョン(接触2面間に微小な相対運動が周期的に繰り返し作用することで生じる表面損傷(摩耗))と呼ばれる損傷が時間の経過とともに発生、進行する。
 軸受の異常診断として、通常、軸受箱(内輪・外輪)の振動を計測し、内輪疵や外輪疵に起因する周波数(軸受損傷周波数)の振動を監視することで、軸受の異常の有無を判断することが知られている。
 しかしながら、特許文献1に記載のような構造の二速切換式減速機では、ギヤ(低速側ギヤおよび高速側ギヤ)の内部に軸受が位置するため、当該軸受の振動を計測することは困難である。また、動力伝達時に軸受の内輪と外輪とが相対回転しないことから、異常判定に用いる軸受損傷周波数が発現しないため、軸受の前記した通常の異常診断方法を適用することができない。そのため、軸受の異常を診断するために、従来とは異なる、軸受の状態検出方法を確立することが望まれていた。
 本発明は、上記実情に鑑みてなされたものであり、その目的は、動力伝達時に出力軸および出力ギヤと一体的に回転する転がり軸受の状態を検出することができる軸受状態検出装置を備えた減速機を提供することである。
 本発明によって提供されるのは減速機であって、当該減速機は、ケーシングと、前記ケーシングに回転可能に支持された入力軸と、前記入力軸に固定され、前記入力軸とともに回転する少なくとも一つの入力ギヤと、前記入力軸に対して平行に配置されるように前記ケーシングに回転可能に支持された出力軸と、前記出力軸に固定された内輪と前記内輪に対して相対回転可能な外輪とを含む、少なくとも一つの転がり軸受と、前記少なくとも一つの転がり軸受の前記外輪に固定され、前記少なくとも一つの入力ギヤと噛み合う、少なくとも一つの出力ギヤと、前記少なくとも一つの出力ギヤと前記出力軸とが一体回転するように前記少なくとも一つの転がり軸受を迂回して前記少なくとも一つの出力ギヤを前記出力軸に連結する連結状態と、前記少なくとも一つの出力ギヤと前記出力軸との連結を解除する解除状態との間で切換可能な連結機構と、前記少なくとも一つの転がり軸受の状態を検出する検出装置と、を備え、前記少なくとも一つの入力ギヤは、はすばが形成された入力ギヤ外周部を含み、前記少なくとも一つの出力ギヤは、前記入力ギヤ外周部の前記はすばと噛み合うはすばが形成された出力ギヤ外周部と、前記出力軸の軸方向と直交する出力ギヤ側面と、を含み、前記検出装置は、前記出力軸の回転軸から半径方向に所定の距離をおいた位置で前記少なくとも一つの出力ギヤの前記出力ギヤ側面にそれぞれ対向し、前記出力ギヤ側面の前記軸方向の変位量を検出する複数の変位センサと、前記連結機構によって前記出力軸に連結された前記出力ギヤの回転時に、前記複数の変位センサによって検出された前記出力ギヤ側面の前記変位量に基づいて、前記出力ギヤ側面の前記回転軸に対する傾き量を取得し、当該傾き量から前記転がり軸受の状態を検出する処理部と、を備える。
図1は、本発明の一実施形態に係る減速機の平断面図である。 図2は、本発明の一実施形態に係る減速機の連結機構のクラッチギヤの斜視図である。 図3は、本発明の一実施形態に係る連結機構の斜視図である。 図4は、図1の連結機構のI-I断面図である。 図5Aは、摩耗などにより発生した転がり軸受の軌道輪と転動体との間の隙間δを模式的に示す図である。 図5Bは、図5Aに示す隙間δおよび動力伝達時の低速側出力ギヤに作用するスラスト力により低速側出力ギヤが傾いて回転する状態を模式的に示す図である。 図6は、低速側出力ギヤの側方に4個の変位センサが配置された状態を示す、軸方向から見たときの低速側出力ギヤの模式図である。 図7Aは、低速側出力ギヤの側方に3個の変位センサが配置された状態を示す、軸方向から見たときの低速側出力ギヤの模式図である。 図7Bは、図7Aに示す3個の変位センサにより検出された出力ギヤ側面の計測位置の変動量をベクトルで示した低速側出力ギヤの斜視図である。
 以下、本発明を実施するための形態について図面を参照しつつ説明する。以下の説明では、本発明の軸受状態検出装置が適用される減速機として、二速切換式減速機を例にしている。この二速切換式減速機は、例えば樹脂やゴムなどを混練、押出しする混練押出機に用いられる減速機である。なお、本発明の軸受状態検出装置は、二速切換式減速機に限らず、速度切換機構を特に有さない減速機にも適用することができる。
 まず、本発明の軸受状態検出装置の適用対象の一例として示す二速切換式減速機の構成と、その動作について説明する。図1は、本実施形態に係る二速切換式減速機100の平断面図である。
 (二速切換式減速機の構成)
 図1に示すように、二速切換式減速機100は、ケーシング31と、低速側ピニオン22および高速側ピニオン23を有する入力軸21と、入力軸21に対して平行に配置された出力軸25と、を備えている。入力軸21および出力軸25は、それぞれケーシング31に回転可能に支持されている。低速側ピニオン22(入力ギヤ、低速側入力ギヤ)および高速側ピニオン23(入力ギヤ、高速側入力ギヤ)は、入力軸21に固定され、入力軸21とともに回転する。出力軸25には、低速側ピニオン22と噛合う低速側ギヤ26(出力ギヤ、低速側出力ギヤ)、および高速側ピニオン23と噛合う高速側ギヤ27(出力ギヤ、高速側出力ギヤ)が、それぞれ、一対の転がり軸受29、30を介することで空転自在に装着されている。
 一対の転がり軸受29(30)は、低速側ギヤ26(高速側ギヤ27)の内方であって、低速側ギヤ26(高速側ギヤ27)と出力軸25との間に配置されている。すなわち、一対の転がり軸受29(30)は、出力軸25に固定された内輪と前記内輪に対して相対回転可能な外輪とをそれぞれ含む。また、低速側ギヤ26(高速側ギヤ27)は、転がり軸受29(30)の外輪に固定されている。
 また、入力軸21は、ケーシング31に固定された軸受24で回転自在に支持され、出力軸25は、ケーシング31に固定された軸受28で回転自在に支持されている。なお、入力軸21は、図示を省略する電動モーターなどの駆動部によって回転される。
 ここで、低速側ピニオン22は、はすば歯車であり、高速側ピニオン23は、低速側ピニオン22よりも大径のはすば歯車である。具体的に、低速側ピニオン22は、はずばが形成された外周部22a(入力ギヤ外周部)を含み、高速側ピニオン23は、はずばが形成された外周部23a(入力ギヤ外周部)を含む。高速側ピニオン23の歯数は、低速側ピニオン22の歯数よりも大きい。
 なお、低速側ピニオン22および高速側ピニオン23、すなわちこれらピニオンギヤ(22、23)と、入力軸21とは、一つの素材から削り出し加工などで形成された一体品であってもよいし、それぞれ別に形成されたのち、ピニオンギヤ(22、23)が入力軸21に圧入されるなどして相互に固定されたものであってもよい。
 一方、低速側ギヤ26の外周面(出力ギヤ外周部)には、低速側ピニオン22と噛合うはすば35aが形成されており、高速側ギヤ27の外周面(出力ギヤ外周部)には、高速側ピニオン23と噛合うはすば37aが形成されている。低速側ギヤ26の外径は、高速側ギヤ27の外径よりも大きい。また、低速側ギヤ26の歯数は、高速側ギヤ27の歯数よりも大きい。低速側ギヤ26は、出力軸25の軸方向と直交する側面26a(出力ギヤ側面)を有し、高速側ギヤ27は、出力軸25の軸方向と直交する側面27a(出力ギヤ側面)を有する。
 なお、低速側ピニオン22、高速側ピニオン23、低速側ギヤ26および高速側ギヤ27の各ギヤの外径はそれぞれ軸方向に沿って同じであり、図1の低速側ピニオン22および高速側ピニオン23、図3の低速側ギヤ26に示すように、それぞれの外周面に形成されたギヤ歯が回転方向に沿って傾斜している。
 また、二速切換式減速機100は、低速側ギヤ26および高速側ギヤ27を出力軸25に選択的に連結する連結機構としての回転速度切換機構32を備えている。図2は、本実施形態に係る二速切換式減速機100の回転速度切換機構32のクラッチギヤ33の斜視図である。図3は、回転速度切換機構32の斜視図である。図4は、図1の回転速度切換機構32のI-I断面図である。回転速度切換機構32は、低速側ギヤ26と出力軸25とが一体回転するように軸受29を迂回して低速側ギヤ26を出力軸25に連結する連結状態と、低速側ギヤ26と出力軸25との連結を解除する解除状態との間で切換可能である。また、回転速度切換機構32は、高速側ギヤ27と出力軸25とが一体回転するように軸受30を迂回して高速側ギヤ27を出力軸25に連結する連結状態と、高速側ギヤ27と出力軸25との連結を解除する解除状態との間で切換可能である。
 なお、本発明に係る軸受状態検出装置を備えた減速機は、はすば歯車とされた入力ギヤを有する入力軸と、この入力軸に対して平行に配置され、当該入力ギヤと噛合う出力ギヤ(外周面にはすばが形成されたギヤ)が転がり軸受を介することで空転自在に装着された出力軸と、当該出力ギヤを出力軸に連結する連結機構と、を備えていればよく、図1に示すような、1組の入力ギヤ(22、23)、およびこれと噛合う1組の出力ギヤ(26、27)を備える二速切換式減速機100に限定されることはない。すなわち、本発明に係る減速機は、少なくとも一つの入力ギヤ、少なくとも一つの出力ギヤおよび少なくとも一つの転がり軸受を備えるものであればよい。
 ここで、低速側ギヤ26は、大径部35と、大径部35と同軸の小径部36とを有する。大径部35の外周面には、低速側ピニオン22と噛合う前記したはすば35aが形成されている。大径部35の内周面には、転がり軸受29を構成する軌道輪29b(外輪、図5A・図5B参照)が固定される。また、大径部35よりも径が小さい小径部36の内周面には、後述するクラッチギヤ33の外はすば41aと噛合わされる(嵌合される)内はすば36aが形成されている。なお、内はすば36a部分は、はすばではなく、スプライン(雌スプライン)でもよい。また、クラッチギヤ33の外はすば41a部分は、当該雌スプラインに嵌合されるスプライン(雄スプライン)でもよい。すなわち、内はすば36a部分および外はすば41a部分は、はすばではなく、スプラインでもよい。
 低速側ギヤ26と同様に、高速側ギヤ27は、大径部37と、大径部37と同軸の小径部38とを有する。大径部37の外周面には、高速側ピニオン23と噛合う前記したはすば37aが形成されている。大径部37の内周面には、転がり軸受30を構成する軌道輪(外輪)が固定される。また、大径部37よりも径が小さい小径部38の内周面には、後述するクラッチギヤ33の外はすば42aと噛合わされる(嵌合される)内はすば38aが形成されている。なお、内はすば38a部分は、はすばではなく、スプライン(雌スプライン)でもよい。また、クラッチギヤ33の外はすば42a部分は、当該雌スプラインに嵌合されるスプライン(雄スプライン)でもよい。すなわち、内はすば38a部分および外はすば42a部分は、はすばではなく、スプラインでもよい。
 更に、回転速度切換機構32は、クラッチギヤ33と、クラッチギヤ33を出力軸25の軸方向に移動させる操作部34とを備えている。
 出力軸25のうち低速側ギヤ26と高速側ギヤ27との間の部分の外周面には、雄スプライン25aが形成されている。一方、クラッチギヤ33の中心部に形成された孔の内周面には、雌スプライン33aが形成されている。クラッチギヤ33の雌スプライン33aは、出力軸25の雄スプライン25aに軸方向に沿って移動可能に嵌合される。
 また、このクラッチギヤ33は、低速側クラッチギヤ部41と、高速側クラッチギヤ部42と、を有している。低速側クラッチギヤ部41の外周面には、低速側ギヤ26の小径部36の内はすば36aに嵌合するように、外はすば41aが形成されている。高速側クラッチギヤ部42の外周面には、高速側ギヤ27の小径部38の内はすば38aに嵌合するように、外はすば42aが形成されている。また、低速側クラッチギヤ部41と高速側クラッチギヤ部42との間には、溝43が設けられている。
 図3、図4などに示すように、クラッチギヤ33を軸方向に移動させる操作部34は、所定長さの切換レバー51と、切換レバー51を固定するための位置固定ピン52と、回動軸53と、一対のアーム54と、カムフォロア55(押部材)と、を備えている。回動軸53は、切換レバー51の端部に連結され、平面視において入力軸21および出力軸25と直交する方向に延び、回動可能にケーシング31に取り付けられている。一対のアーム54は、クラッチギヤ33を挟むように対向配置されており、その基端側が回動軸53に固定されている。カムフォロア55は、クラッチギヤ33の溝43内に配置された状態でアーム54の先端部に取り付けられ、ギヤ切換に際し、溝43の内側面を押してクラッチギヤ33を出力軸25の軸方向に移動させる。なお、カムフォロア55は、例えば円柱形状とされ、回転自在にアーム54の先端部に取り付けられている。
 (二速切換式減速機の動作)
 入力軸21の回転停止状態において、作業者が切換レバー51を操作して、例えば、一対のアーム54を低速側ギヤ26側へ回動させると、一対のカムフォロア55によってクラッチギヤ33が押され、当該クラッチギヤ33は出力軸25上を中立位置から低速側ギヤ26側へ移動したのち、低速側ギヤ26の小径部36内に嵌まり込む。これにより、低速側ギヤ26の内はすば36aとクラッチギヤ33の低速側クラッチギヤ部41の外はすば41aとが噛合わされる。なお、上記中立位置とは、クラッチギヤ33が低速側ギヤ26および高速側ギヤ27のいずれにも回転を伝達することのない位置である。
 その後、電動モーターなどの駆動部により入力軸21が回転されることで、低速側ピニオン22と噛合う低速側ギヤ26が回転し、この低速側ギヤ26に嵌合しているクラッチギヤ33が出力軸25と一体的に回転する。すなわち、所定の減速比をもって入力軸21から出力軸25に回転駆動力が伝達される。
 なお、入力軸21の回転停止状態において、作業者が切換レバー51を操作して、一対のアーム54を高速側ギヤ27側へ回動させると、高速側ギヤ27の内はすば38aとクラッチギヤ33の高速側クラッチギヤ部42の外はすば42aとが噛合わされる。その後、電動モーターなどの駆動部により入力軸21が回転されることで、高速側ピニオン23と噛合う高速側ギヤ27が回転し、この高速側ギヤ27に嵌合しているクラッチギヤ33が出力軸25と一体的に回転する。
 (軸受状態検出装置)
 前記した二速切換式減速機100では、入力軸21から出力軸25への動力伝達時、低速側ギヤ26(または高速側ギヤ27)と出力軸25との間の転がり軸受29(または転がり軸受30)は、低速側ギヤ26(または高速側ギヤ27)および出力軸25と一体的に回転する。そして、転がり軸受29(または転がり軸受30)を構成する軌道輪29b(内輪・外輪)同士の間に相対速度は生じない。このため、転がり軸受29(または転がり軸受30)の転動体29aは、荷重を受けた状態で、軌道輪29bと同一箇所で接触し続ける。
 従来、軸受の異常診断として、軸受箱(内輪・外輪)の振動を計測し、内輪疵や外輪疵に起因する周波数(軸受損傷周波数)の振動を監視することで、軸受の異常の有無を判断する場合が多かった。しかしながら、上記のように、二速切換式減速機100では、動力伝達時に、軌道輪29b(内輪・外輪)同士が相対回転しないので、異常判定に用いる軸受損傷周波数が発現せず、従来の軸受の異常診断方法を適用することができない。また、転がり軸受29(30)の振動を仮に計測しようとしても、当該転がり軸受29(30)は、低速側ギヤ26(高速側ギヤ27)の内部に位置するため、その振動を計測することは困難であった。本実施形態では、このような問題を解決するために、二速切換式減速機100が、軸受状態検出装置100Sを備える。
 ここで、前記した二速切換式減速機100では、入力軸21に設けられたピニオンギヤ(22、23)、およびこれに対応する出力軸25に設けられたギヤ(26、27)は、はすば歯車とされているため、動力伝達時にスラスト力(軸方向への力)が発生する。本実施形態に係る軸受状態検出装置100Sは、このスラスト力によってギヤ26(27)が傾く現象を利用して、転がり軸受29(30)の状態(損傷の程度)を検出する。ギヤ26(27)は、転がり軸受29(30)の径方向外側に位置し、その径は、転がり軸受29(30)の径よりも大きいので、転がり軸受29(30)の僅かな摩耗が、ギヤ26(27)の傾きとして拡大されて、比較的大きな変位(軸方向の移動量)として現れる。
 <第1実施形態>
 本実施形態に係る軸受状態検出装置100Sは、複数の変位センサ1、2、11、12と、データ処理部5(処理部)と、を備えている。複数の変位センサのうち、変位センサ1、2は、低速側ギヤ26の側方に配置され、変位センサ11、12は高速側ギヤ27の側方に配置されている。データ処理部5(処理部)には各変位センサ1、2、11、12からの信号が入力され、データ処理部5(処理部)は当該信号を処理する。複数の変位センサ1、2、11、12は、出力軸25の回転軸から半径方向に所定の距離の位置で、ギヤ26(27)の側面26a(27a)(図1、図5A)に対向して配置され、当該側面26a(27a)の軸方向の変位量(所定期間中の移動量)を検出する。1つのギヤ26(27)の側方に、少なくとも2つの変位センサが、相互に異なる位置に配置される。なお、転がり軸受29、30のうちの一方の軸受を、状態検出の対象としない場合には、その側の変位センサ1、2(または11、12)の設置は不要である。すなわち、変位センサは、低速側ギヤ26および高速側ギヤ27のうちの少なくとも一方のギヤの側方に配置されればよい。データ処理部5は、回転速度切換機構32によって出力軸25に連結された低速側ギヤ26(高速側ギヤ27)の回転時に、複数の変位センサ1、2(11、12)によって検出された前記変位量に基づいて、出力軸25の回転軸に対する側面26a(27a)の傾き量を演算し、当該傾き量から軸受29(30)の状態を検出する。
 変位センサ1、2、11、12としては、渦電流式変位センサ、超音波式変位センサ、光学式変位センサ、静電容量式変位センサなどの非接触式変位センサが用いられる。変位センサ1、2、11、12は、例えば、ねじ込み式とされ、ケーシング31にあけられた孔にねじ込まれてケーシング31に固定される。
 以下、軸受(転がり軸受)の状態が検出される方法について具体的に説明する。なお、変位センサ1、2を用いた低速側の転がり軸受29の状態検出と、変位センサ11、12を用いた高速側の転がり軸受30の状態検出とは、同じ構成・方法によるため、代表して、変位センサ1、2を用いた低速側の転がり軸受29の状態検出について説明する。
 本実施形態に係る2つの変位センサ1、2は、出力軸25の軸周りに(出力軸25の回転方向に沿って)互いに180°間隔で配置されている。また、本実施形態では、出力軸25の回転軸と平行な方向から見て、これらの対向する2個の変位センサ1、2同士を結ぶ方向と、低速側ピニオン22(の中心)と低速側ギヤ26(の中心)とを結ぶ方向とが同じ方向とされている。
 ここで、図5Aは、摩耗などにより発生した転がり軸受29の軌道輪29bと転動体29aとの間の隙間δ(隙間量)を模式的に示す図である。また、図5Bは、図5Aに示す隙間δおよび動力伝達時の低速側ギヤ26に作用するスラスト力により低速側ギヤ26が傾いて回転する状態を模式的に示す図である。
 図5Bに示すように、変位センサ1、2は、例えば、出力軸25の中心(回転軸)から半径方向にrの距離の位置の低速側ギヤ26の側面26aの軸方向の変位量(移動量)を検出できるように配置されている。なお、出力軸25から変位センサ1までの距離と、出力軸25から変位センサ2までの距離とは、異なっていてもよい。
 図5B中に示す二点鎖線は、低速側ギヤ26が回転速度切換機構32により出力軸25に連結された状態における減速機組立後の運転初期(転がり軸受29に摩耗等が特に発生していない初期状態)の回転する低速側ギヤ26の側面26aの位置を示す。変位センサ1、2にて、このときの回転する低速側ギヤ26の側面26aの位置(基準位置)が計測され、データ処理部5は、その計測値を基準値として記憶する。
 減速機が使用され続けていくと、摩耗などにより、転がり軸受29の軌道輪29bと転動体29aとの間の隙間δが大きくなっていく。変位センサ1、2は、運転初期の上記基準位置に対する、低速側ギヤ26が回転速度切換機構32により出力軸25に連結された状態における回転する低速側ギヤ26の側面26aの位置、すなわち、低速側ギヤ26側面26aの軸方向の移動量(変位量)を検出する。図5B中に示すD1は、変位センサ1により検出された移動量(変位量)であり、図5B中に示すD2は、変位センサ2により検出された移動量(変位量)である。
 なお、変位センサ1、2は、そのセンサ部と、測定点との間の距離を測定するものであるので、D1およびD2は、データ処理部5にて演算により求められる。また、変位センサ1、2により検出される変位(移動量)には、出力軸25の回転に応じた低速側ギヤ26の振れ回り成分も含まれる。この振れ回り成分の影響を低減するために、データ処理部5が平均化処理を実行し、検出された変位の平均値がデータ処理部5にて記憶され、且つ演算で使用される。
 ここで、図5Aに示すように、出力軸25と低速側ギヤ26との間に配置された2つの転がり軸受29の中心間の距離をaとすると、a、δ、D1、D2の間には、次の式1の関係が成立する。
(D1+D2)/2r≒2δ/a ・・・・・・(式1)
 (D1+D2)/2rは、低速側ギヤ26の傾き量である。データ処理部5は、回転速度切換機構32により出力軸25に連結された状態における、変位センサ1、2により検出された低速側ギヤ26回転時の移動量D1、D2に基づいて、低速側ギヤ26の傾き量=(D1+D2)/2rを演算により求める。
 低速側ギヤ26の上記傾き量((D1+D2)/2r)をiとすると、上記(式1)より、隙間δは、次の式2で表される。
δ=i×a/2 ・・・・・・・・・・・・・(式2)
 データ処理部5は、さらに、演算により求めた上記傾き量iに基づいて、上記(式2)より、転がり軸受29の軌道輪29bと転動体29aとの間の隙間δ(隙間量)を演算により推定する。なお、出力軸25と低速側ギヤ26との間に配置された2つの転がり軸受29のうちの片側の転がり軸受29のみにδの隙間が生じる場合は、δ=i×aとなる。
 上記方法で、データ処理部5が、定期的に隙間δを推定することで、転がり軸受29の状態を検出する。そして、例えば、データ処理部5は、推定した隙間δが所定の閾値を超えるように大きく変化した場合、転がり軸受29の状態が異常であると判断し、軸受異常情報に関する信号を出力する。当該信号は、二速切換式減速機100または当該減速機が備えられた機械が有する表示部に入力され、作業者が視認可能なように表示される。なお、転がり軸受29の状態異常の判断は、データ処理部5などによって自動で行われてもよいし、データ処理部5が出力する隙間δの情報を作業員が定期的にチェックすることによって行われてもよい。この場合、演算された隙間δの値がデータ処理部5によって出力され、上記の表示部に表示される。
 なお、隙間δと、低速側ギヤ26の傾き量iとは、一対一の関係にある。そのため、データ処理部5は、隙間δを演算により推定することを省略し、低速側ギヤ26の傾き量iを演算により求めることのみでも、転がり軸受29の状態を把握することができる。すなわち、データ処理部5にて、軌道輪29bと転動体29aとの間の隙間δ(隙間量)を演算により推定することは必ずしも必要ではなく、データ処理部5は、低速側ギヤ26の傾き量iに基づいて転がり軸受29の状態を把握してもよい。しかしながら、傾き量iよりも隙間δに基づく推定の方が、軸受29の状態をより直接的に表すため、好ましい。
 本実施形態に係る軸受状態検出装置100Sを備えた二速切換式減速機100によると、動力伝達時に相対回転せず、且つ状態を直接観測しづらい転がり軸受29(30)であっても、その状態を把握することができる。
 また、本実施形態では、1つのギヤ(26、27)当たり、2個の変位センサを用いており、3個以上の変位センサを用いる場合よりも、構成が簡易、且つデータ処理部5での複雑な演算を要しない。
 また、本実施形態では、2個の変位センサ1、2同士を結ぶ方向と、低速側ピニオン22と低速側ギヤ26とを結ぶ方向とが同方向とされている(変位センサ11、12についても同様)。ここで、低速側ピニオン22と低速側ギヤ26とを結ぶ線上には、ギヤ同士の噛合い部があり、この噛合い部でスラスト力が発生し、このスラスト力によって低速側ギヤ26が傾く。このため、上記構成による計測によると、変位センサ11、12により検出される移動量が比較的大きくなり易く、データ処理部5が取得する低速側ギヤ26の傾き量も大きくなり易いので、ギヤの振れ回り現象などによるノイズ成分がキャンセルされ易く、転がり軸受29の状態をより正確に検出することができる。
 なお、低速側ギヤ26は、低速側ピニオン22と低速側ギヤ26とを結ぶ方向に対して傾きやすい傾向にあるが、この方向に対する傾き量が、どのような減速機でも最大になるとは言えない。低速側ギヤ26、高速側ギヤ27などのギヤの傾き量が最も大きくなる方向は、減速機の形状、作用する荷重の大きさなどにより決まる。そのため、検出精度をより高めるためには、対向する2個の変位センサ1、2の配置が、実験、過去の実績、または解析に基づいて、低速側ギヤ26の傾き量が最大となる配置とされていることがより好ましい。
 また、変位センサ1、2の計測位置は、低速側ギヤ26の側面26aのうち、できるだけ外周に近い位置とされることが好ましい。換言すれば、変位センサ1、2の計測位置は、低速側ギヤ26の側面26aの最小外径部よりも最大外径部に近い位置に配置されることが望ましい。この場合、より大きな移動量が検出されるため、低速側ギヤ26の側面26aの傾きを精度良く検出することができる。
 <隙間δのさらなる推定方法>
 上記の実施形態では、データ処理部5が、演算により求めた傾き量iに基づいて、転がり軸受29の軌道輪29bと転動体29aとの間の隙間δ(隙間量)を演算により推定している。隙間δの推定方法として、傾き量iからの推定結果と、これとは別の推定結果とから、隙間δを推定することも好ましい。
 具体的には、データ処理部5は、傾き量iに基づいて演算により推定した隙間量を隙間δ1として一旦記憶する。一方で、データ処理部5は、変位センサ1、2によりそれぞれ検出された前記変位量(所定期間中の軸方向の移動量)の平均値に基づいて隙間δ2を演算により推定する。そして、隙間δ1と隙間δ2とを比較して大きい方の隙間(隙間量)を、転がり軸受29の状態を検出するための隙間δ(隙間量)として選択する。
 すなわち、データ処理部5は、演算により求めた傾き量iに基づいて隙間δ1(隙間量)を演算により推定し、且つ、変位センサ1、2により検出された前記移動量の平均値に基づいて、隙間δ2(隙間量)を演算により推定し、これら2つの方法で推定した隙間δ1、δ2のうちの大きい方の隙間量を、転がり軸受29の隙間量とする。
 荷重条件によっては、低速側ギヤ26の傾きよりも、低速側ギヤ26の軸方向の移動量の方に、転がり軸受29の隙間に起因して発生する変化が顕著に現れる場合がある。そのため、隙間δ1と隙間δ2とを比較して大きい方の隙間(隙間量)を、転がり軸受29の隙間δ(隙間量)とした方が、軸受の状態把握としてより安全となる。
 転がり軸受29が例えば、テーパコロ軸受であるとする。このテーパコロ軸受の接触角をα、変位センサ1、2により検出された前記移動量の平均値をbとすると、隙間δ2=b×tanαとなる。
 <第2実施形態>
 第1実施形態では、ギヤ(26、27)の側方に、2個の変位センサ1、2(11、12)を配置している。これに代えて、ギヤ(26、27)の側方に、4個の変位センサが配置されてもよい。図6は、低速側ギヤ26の側方であって、出力軸25の回転軸周りに、互いに90°間隔で4個の変位センサ1~4が配置されている例が示されている。変位センサ1、2および変位センサ3、4は、それぞれ、出力軸25の回転軸を挟んで互いに対向して配置されている。
 データ処理部5は、2組の対向する変位センサ1、2および3、4により検出された出力ギヤの側面26aの軸方向の移動量に基づいて直角2方向のギヤの傾き量i1、i2を演算により求め、求めた直角2方向の傾き量i1、i2を演算により合成する。傾き量i1、i2のそれぞれの求め方は、第1実施形態の場合と同じである。傾き量i1と傾き量i2との合成は、例えば、傾き量i1と傾き量i2との二乗和ルートを求めることである。
 本実施形態によると、データ処理部5にて求まる低速側ギヤ26の傾き量が大きくなり易いので、転がり軸受29の状態をより精度良く検出することができる。
 本実施形態では、4個の変位センサが、出力軸25の回転軸周りにおいて、同心円上に配置されているが、4個の変位センサは、必ずしも同心円上に配置される必要はない。
 <第3実施形態>
 第1実施形態では、ギヤ(26、27)の側方に、2個の変位センサ1、2(11、12)が配置され、第2実施形態では、ギヤ(26、27)の側方に、4個の変位センサが配置されている。これに代えて、ギヤ(26、27)の側方に、3個の変位センサが配置されてもよい。
 図7Aには、低速側ギヤ26の側方であって、出力軸25の軸周りに、互いに120°間隔で3個の変位センサ1~3が配置されている例が示されている。
 ここで、図7Bは、図7Aに示す3個の変位センサ1~3により検出されたギヤ側面の計測位置の変動量がベクトルで示された低速側ギヤの斜視図である。ベクトルP1、P2、およびP3は、それぞれ、変位センサ1、2、および3で検出された、前述の運転初期の回転する低速側ギヤ26の側面26a(基準面)に対する、低速側ギヤ26の側面26aの軸方向の変動量(移動量)を大きさとするベクトルである。
 ベクトルP1、P2、およびP3のx、y、z方向における成分が、それぞれ、P1(x1、y1、z1)、P2(x2、y2、z2)、およびP3(x3、y3、z3)と表記される。
 ベクトルa12=ベクトルP2-ベクトルP1=(x2-x1、y2-y1、z2-z1)、ベクトルa13=ベクトルP3-ベクトルP1=(x3-x1、y3-y1、z3-z1)となり、P1、P2、P3を含む面の法線ベクトルnは、ベクトルa12とベクトルa13との外積により、次の式3のように求められる。
 法線ベクトルn=ベクトルa12×ベクトルa13
=((y2-y1)×(z3-z1)-(y3-y1)×(z2-z1
)、(x3-x1)×(z2-z1)-(x2-x1)×(z3-z1)、(x2-x1)×(y3-y1)-(y2-y1)×(x3-x1)) ・・・(式3)
 そして、法線ベクトルnのz軸に対する傾きθ(=低速側ギヤ26の傾き量)は、内積計算に基づいて次の式4から求まる。
 zベクトルを(0、0、1)とおくと、
cosθ=n・z/|n||z|
=[(x2-x1)×(y3-y1)-(y2-y1)×(x3-x1)]/|n| ・・・(式4)
 データ処理部5は、上記演算をおこなって、低速側ギヤ26の傾きθ(傾き量)を求める。
 なお、出力軸25と低速側ギヤ26との間に配置された2つの転がり軸受29のうちの両方の転がり軸受29でδの隙間が生じる場合、δ(隙間量)=a/2×tanθとなり、片側の転がり軸受29のみにδの隙間が生じる場合は、δ(隙間量)=a×tanθとなる。データ処理部5は、上記の演算をおこなって、δ(隙間量)を推定する。
 本実施形態では、3個の変位センサが、出力軸25の回転軸周りにおいて、同心円上に等間隔(120°間隔)で配置されているが、3個の変位センサは、必ずしも同心円上、且つ等間隔に配置される必要はない。なお、3個の変位センサが、出力軸25の回転軸周りにおいて、同心円上に等間隔(120°間隔)で配置されていることで、計測精度が向上する。
 以上、本発明の実施形態について説明した。なお、その他に、当業者が想定できる範囲で種々の変更を行うことは可能である。
 本発明によって提供されるのは、減速機であって、当該減速機は、ケーシングと、前記ケーシングに回転可能に支持された入力軸と、前記入力軸に固定され、前記入力軸とともに回転する少なくとも一つの入力ギヤと、前記入力軸に対して平行に配置されるように前記ケーシングに回転可能に支持された出力軸と、前記出力軸に固定された内輪と前記内輪に対して相対回転可能な外輪とを含む、少なくとも一つの転がり軸受と、前記少なくとも一つの転がり軸受の前記外輪に固定され、前記少なくとも一つの入力ギヤと噛み合う、少なくとも一つの出力ギヤと、前記少なくとも一つの出力ギヤと前記出力軸とが一体回転するように前記少なくとも一つの転がり軸受を迂回して前記少なくとも一つの出力ギヤを前記出力軸に連結する連結機構と、前記少なくとも一つの転がり軸受の状態を検出する検出装置と、を備える。前記少なくとも一つの入力ギヤは、はすばが形成された入力ギヤ外周部を含み、前記少なくとも一つの出力ギヤは、前記入力ギヤ外周部の前記はすばと噛み合うはすばが形成された出力ギヤ外周部と、前記出力軸の軸方向と直交する出力ギヤ側面と、を含み、前記検出装置は、前記出力軸の回転軸から半径方向に所定の距離をおいた位置で前記少なくとも一つの出力ギヤの前記出力ギヤ側面にそれぞれ対向し、前記出力ギヤ側面の前記軸方向の変位量を検出する複数の変位センサと、前記連結機構によって前記出力軸に連結された前記出力ギヤの回転時に、前記複数の変位センサによって検出された前記出力ギヤ側面の前記変位量に基づいて、前記出力ギヤ側面の前記回転軸に対する傾き量を取得する処理部と、を備える。
 上記の構成において、前記複数の変位センサは、前記出力軸の回転軸回りに互いに90°間隔で配置された4つの変位センサを含み、前記処理部は、前記4つの変位センサのうち前記回転軸を挟んで互いに対向する変位センサ対によって検出された前記出力ギヤ側面の前記変位量に基づいて前記出力ギヤ側面の直角2方向の前記傾き量をそれぞれ演算し、当該演算された直角2方向の前記傾き量を合成することが望ましい。
 上記の構成において、前記複数の変位センサは、前記出力軸の回転軸回りに互いに間隔を隔てて配置された3つの変位センサを含み、前記処理部は、前記3つの変位センサによってそれぞれ検出された前記出力ギヤ側面の前記変位量に基づいて前記出力ギヤ側面の前記傾き量を演算するものでもよい。
 上記の構成において、前記3つの変位センサは、前記出力軸の回転軸回りに互いに120°間隔で配置されているものでもよい。
 上記の構成において、前記複数の変位センサは、前記出力軸の回転軸回りに互いに180°間隔で配置された2つの変位センサを含み、前記出力軸の前記回転軸と平行な方向から見て、前記2つの変位センサを結ぶ方向と、前記入力ギヤと前記出力ギヤとを結ぶ方向とが同じ方向であることが望ましい。
 上記の構成において、前記転がり軸受は、前記内輪と前記外輪との間に配置された転動体を更に有し、前記処理部は、前記出力ギヤ側面の前記傾き量に基づいて、前記転がり軸受の前記内輪または前記外輪と前記転動体との間の隙間量を推定することが望ましい。
 上記の構成において、前記転がり軸受は、前記内輪と前記外輪との間に配置された転動体を更に有し、前記処理部は、前記出力ギヤ側面の前記傾き量に基づいて、前記転がり軸受の前記内輪または前記外輪と前記転動体との間の隙間量を推定する一方、前記複数の変位センサによって検出された前記出力ギヤ側面の前記変位量の平均値に基づいて前記隙間量を推定し、当該推定された2つの隙間量のうちの大きい方の隙間量を、最終的な前記隙間量として選択することが望ましい。
 上記の構成において、前記少なくとも一つの入力ギヤは、低速側入力ギヤと、高速側入力ギヤとを含み、前記少なくとも一つの出力ギヤは、前記低速側入力ギヤと噛合う低速側出力ギヤと、前記高速側入力ギヤと噛合う高速側出力ギヤとを含み、前記連結機構は、前記低速側出力ギヤおよび前記高速側出力ギヤのうちの一方を前記出力軸に選択的に連結し、前記複数の変位センサは、前記低速側出力ギヤおよび前記高速側出力ギヤのうちの少なくとも一方の出力ギヤの前記出力ギヤ側面に対向して配置されていることが望ましい。
 

Claims (8)

  1.  ケーシングと、
     前記ケーシングに回転可能に支持された入力軸と、
     前記入力軸に固定され、前記入力軸とともに回転する少なくとも一つの入力ギヤと、
     前記入力軸に対して平行に配置されるように前記ケーシングに回転可能に支持された出力軸と、
     前記出力軸に固定された内輪と前記内輪に対して相対回転可能な外輪とを含む、少なくとも一つの転がり軸受と、
     前記少なくとも一つの転がり軸受の前記外輪に固定され、前記少なくとも一つの入力ギヤと噛み合う、少なくとも一つの出力ギヤと、
     前記少なくとも一つの出力ギヤと前記出力軸とが一体回転するように前記少なくとも一つの転がり軸受を迂回して前記少なくとも一つの出力ギヤを前記出力軸に連結する連結機構と、
     前記少なくとも一つの転がり軸受の状態を検出する検出装置と、
    を備え、
     前記少なくとも一つの入力ギヤは、はすばが形成された入力ギヤ外周部を含み、
     前記少なくとも一つの出力ギヤは、前記入力ギヤ外周部の前記はすばと噛み合うはすばが形成された出力ギヤ外周部と、前記出力軸の軸方向と直交する出力ギヤ側面と、を含み、
     前記検出装置は、
     前記出力軸の回転軸から半径方向に所定の距離をおいた位置で前記少なくとも一つの出力ギヤの前記出力ギヤ側面にそれぞれ対向し、前記出力ギヤ側面の前記軸方向の変位量を検出する複数の変位センサと、
     前記連結機構によって前記出力軸に連結された前記出力ギヤの回転時に、前記複数の変位センサによって検出された前記出力ギヤ側面の前記変位量に基づいて、前記出力ギヤ側面の前記回転軸に対する傾き量を取得する処理部と、
    を備える、減速機。
  2.  請求項1に記載の減速機であって、
     前記複数の変位センサは、前記出力軸の回転軸回りに互いに90°間隔で配置された4つの変位センサを含み、
     前記処理部は、前記4つの変位センサのうち前記回転軸を挟んで互いに対向する2組の変位センサ対によって検出された前記出力ギヤ側面の前記変位量に基づいて前記出力ギヤ側面の直角2方向の前記傾き量をそれぞれ演算し、当該演算された直角2方向の前記傾き量を合成する、減速機。
  3.  請求項1に記載の減速機であって、
     前記複数の変位センサは、前記出力軸の回転軸回りに互いに間隔を隔てて配置された3つの変位センサを含み、
     前記処理部は、前記3つの変位センサによってそれぞれ検出された前記出力ギヤ側面の前記変位量に基づいて前記出力ギヤ側面の前記傾き量を演算する、減速機。
  4.  請求項3に記載の減速機であって、
     前記3つの変位センサは、前記出力軸の回転軸回りに互いに120°間隔で配置されている、減速機。
  5.  請求項1に記載の減速機であって、
     前記複数の変位センサは、前記出力軸の回転軸回りに互いに180°間隔で配置された2つの変位センサを含み、
     前記出力軸の前記回転軸と平行な方向から見て、前記2つの変位センサを結ぶ方向と、前記入力ギヤと前記出力ギヤとを結ぶ方向とが同じ方向である、減速機。
  6.  請求項1~5のいずれか1項に記載の減速機であって、
     前記転がり軸受は、前記内輪と前記外輪との間に配置された転動体を更に有し、
     前記処理部は、前記出力ギヤ側面の前記傾き量に基づいて、前記転がり軸受の前記内輪または前記外輪と前記転動体との間の隙間量を推定する、減速機。
  7.  請求項1~5のいずれか1項に記載の減速機であって、
     前記転がり軸受は、前記内輪と前記外輪との間に配置された転動体を更に有し、
     前記処理部は、前記出力ギヤ側面の前記傾き量に基づいて、前記転がり軸受の前記内輪または前記外輪と前記転動体との間の隙間量を推定する一方、前記複数の変位センサによって検出された前記出力ギヤ側面の前記変位量の平均値に基づいて前記隙間量を推定し、当該推定された2つの隙間量のうちの大きい方の隙間量を、最終的な前記隙間量として選択する、減速機。
  8.  請求項1~5のいずれか1項に記載の減速機であって、
     前記少なくとも一つの入力ギヤは、低速側入力ギヤと、高速側入力ギヤとを含み、
     前記少なくとも一つの出力ギヤは、前記低速側入力ギヤと噛合う低速側出力ギヤと、前記高速側入力ギヤと噛合う高速側出力ギヤとを含み、
     前記連結機構は、前記低速側出力ギヤおよび前記高速側出力ギヤのうちの一方を前記出力軸に選択的に連結し、
     前記複数の変位センサは、前記低速側出力ギヤおよび前記高速側出力ギヤのうちの少なくとも一方の出力ギヤの前記出力ギヤ側面に対向して配置されている、減速機。
PCT/JP2018/037180 2017-10-17 2018-10-04 減速機 WO2019078018A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18868662.0A EP3699550B1 (en) 2017-10-17 2018-10-04 Reduction gear
CN201880068057.1A CN111213030B (zh) 2017-10-17 2018-10-04 减速器
US16/755,735 US11268594B2 (en) 2017-10-17 2018-10-04 Reduction gear

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-200903 2017-10-17
JP2017200903A JP6704887B2 (ja) 2017-10-17 2017-10-17 軸受状態検出装置

Publications (1)

Publication Number Publication Date
WO2019078018A1 true WO2019078018A1 (ja) 2019-04-25

Family

ID=66172918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037180 WO2019078018A1 (ja) 2017-10-17 2018-10-04 減速機

Country Status (6)

Country Link
US (1) US11268594B2 (ja)
EP (1) EP3699550B1 (ja)
JP (1) JP6704887B2 (ja)
CN (1) CN111213030B (ja)
TW (1) TWI679362B (ja)
WO (1) WO2019078018A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20210032638A (ko) * 2019-09-17 2021-03-25 주식회사 만도 스티어 바이 와이어식 조향장치
CN112728011A (zh) * 2020-12-25 2021-04-30 中国船舶重工集团公司第七0三研究所 一种用于对构斜齿轮传动性能测试的齿轮传动结构
CN115157134A (zh) * 2022-05-27 2022-10-11 山西柴油机工业有限责任公司 一种齿轮磨损疲劳用夹持装置及测试方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020157470A1 (en) * 1999-04-27 2002-10-31 Jens Noetzel Device for measuring bearing data
JP2004218681A (ja) * 2003-01-10 2004-08-05 Nsk Ltd 鉄道車両車軸軸受のミスアライメント測定装置及び測定方法
JP2007205469A (ja) * 2006-02-01 2007-08-16 Sanyo Special Steel Co Ltd クラッチを有するフライホイールの挙動監視装置
JP2008275506A (ja) * 2007-05-01 2008-11-13 Jtekt Corp センサ付き転がり軸受装置
JP2010159826A (ja) 2009-01-08 2010-07-22 Kobe Steel Ltd 2速切換式減速歯車装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2165286Y (zh) * 1992-09-15 1994-05-18 武汉煤炭设计研究院 双电机双速减速器
JPH07332441A (ja) * 1994-06-01 1995-12-22 Fanuc Ltd 遊星歯車形減速装置
CN2270143Y (zh) * 1996-05-21 1997-12-10 江苏神力起重设备股份有限公司 单级双速比减速器
EP1255059A3 (en) * 2001-04-26 2009-04-15 Fuji Jukogyo Kabushiki Kaisha Center differential unit and planetary gear
US7651436B2 (en) * 2004-06-22 2010-01-26 Nobuyoshi Sugitani Gear mechanism, planetary gear device, rotating bearing device, and magical planetary gear speed reducer
EP1988376B1 (en) * 2007-05-01 2017-06-07 JTEKT Corporation Rolling bearing device with sensor
JP5808548B2 (ja) * 2011-02-23 2015-11-10 Ntn株式会社 転がり軸受および風力発電装置
CN102322796B (zh) * 2011-07-20 2013-07-03 唐大春 齿轮参数激光检测装置及方法
JP2014234880A (ja) * 2013-06-03 2014-12-15 日本精工株式会社 転がり軸受ユニット
JP6029576B2 (ja) * 2013-12-20 2016-11-24 株式会社神戸製鋼所 密閉式混練装置のロータに加わるスラスト荷重の計測装置
CN103698126B (zh) * 2013-12-26 2019-02-12 北京配天技术有限公司 减速器测试设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020157470A1 (en) * 1999-04-27 2002-10-31 Jens Noetzel Device for measuring bearing data
JP2004218681A (ja) * 2003-01-10 2004-08-05 Nsk Ltd 鉄道車両車軸軸受のミスアライメント測定装置及び測定方法
JP2007205469A (ja) * 2006-02-01 2007-08-16 Sanyo Special Steel Co Ltd クラッチを有するフライホイールの挙動監視装置
JP2008275506A (ja) * 2007-05-01 2008-11-13 Jtekt Corp センサ付き転がり軸受装置
JP2010159826A (ja) 2009-01-08 2010-07-22 Kobe Steel Ltd 2速切換式減速歯車装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3699550A4

Also Published As

Publication number Publication date
EP3699550B1 (en) 2022-06-01
CN111213030B (zh) 2021-10-26
EP3699550A1 (en) 2020-08-26
TWI679362B (zh) 2019-12-11
CN111213030A (zh) 2020-05-29
EP3699550A4 (en) 2020-11-18
US11268594B2 (en) 2022-03-08
TW201923255A (zh) 2019-06-16
JP6704887B2 (ja) 2020-06-03
US20200332861A1 (en) 2020-10-22
JP2019074416A (ja) 2019-05-16

Similar Documents

Publication Publication Date Title
WO2019078018A1 (ja) 減速機
TWI655833B (zh) 具電動機的減速機
US20160223430A1 (en) Failure detection mechanism for electric actuator, and electric actuator having the same
US9995349B2 (en) Rotation transmission device and wind power generation device equipped with the same
JP2007333195A (ja) ボールねじ装置およびそのモニタ装置
KR20220150249A (ko) 기어 장치
JP5453951B2 (ja) 回転装置の応力測定方法
KR101671634B1 (ko) 동력전달 축계부품의 마모량 판별 방법
JPWO2016133100A1 (ja) 異常診断システム
US10828779B2 (en) Diagnostic device for link actuation device
US9354036B2 (en) System and method for developing fault diagnostics and failure prognosis of spline wear in a drive system
US11002621B2 (en) Method and device for determining torque exerted on a shaft including transferring torque to a gearbox by the shaft and exerting axial force on the shaft dependent on the torque exerted by the shaft to the gearbox
US20190265116A1 (en) Torque detection device
CN211145774U (zh) 内壁检测机器人和管道检测系统
WO2017051866A1 (ja) リンク作動装置の診断装置
JP5829736B2 (ja) 電動アクチュエータ
JP7351142B2 (ja) 転がり軸受の状態監視方法及び状態監視装置
KR102090446B1 (ko) 입력과 출력을 연결하는 탄성부재를 갖는 구동장치
KR20170093407A (ko) 각도 센서를 이용한 사륜구동 디스커넥터 장치 및 그 장치를 포함하는 사륜구동 차량
KR101696020B1 (ko) 열간 압연 설비에서 동력 전달 계통의 이상 진단 장치
CN111537229A (zh) 一种可测量轴承不同位置运行参数的轴承座装置
JP2007205469A (ja) クラッチを有するフライホイールの挙動監視装置
JP7003610B2 (ja) トルク測定装置付回転伝達装置
JP3767535B2 (ja) ボルト軸力計内蔵式ナットランナ
JP6278066B2 (ja) ギヤ歯面の異常検出装置及びギヤ歯面の異常検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868662

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018868662

Country of ref document: EP

Effective date: 20200518