WO2019077878A1 - Silicon carbide semiconductor device, and manufacturing method of silicon carbide semiconductor device - Google Patents

Silicon carbide semiconductor device, and manufacturing method of silicon carbide semiconductor device Download PDF

Info

Publication number
WO2019077878A1
WO2019077878A1 PCT/JP2018/031239 JP2018031239W WO2019077878A1 WO 2019077878 A1 WO2019077878 A1 WO 2019077878A1 JP 2018031239 W JP2018031239 W JP 2018031239W WO 2019077878 A1 WO2019077878 A1 WO 2019077878A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon carbide
type
semiconductor
semiconductor device
carbide semiconductor
Prior art date
Application number
PCT/JP2018/031239
Other languages
French (fr)
Japanese (ja)
Inventor
保幸 星
悠一 橋爪
熊田 恵志郎
Original Assignee
富士電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士電機株式会社 filed Critical 富士電機株式会社
Publication of WO2019077878A1 publication Critical patent/WO2019077878A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Definitions

  • the present invention relates to a silicon carbide semiconductor device and a method of manufacturing the silicon carbide semiconductor device.
  • silicon is used as a constituent material of a power semiconductor device that controls high voltage and large current.
  • power semiconductor devices such as bipolar transistors, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), and these are used according to applications. It is done.
  • bipolar transistors and IGBTs have higher current densities and can be made larger than MOSFETs, but can not be switched at high speed.
  • the use of the bipolar transistor is limited at a switching frequency of about several kHz
  • the use of an IGBT is limited at a switching frequency of about several tens of kHz.
  • power MOSFETs have lower current density and are difficult to increase in current as compared to bipolar transistors and IGBTs, but high-speed switching operation up to about several MHz is possible.
  • SiC silicon carbide
  • Silicon carbide is a chemically very stable semiconductor material, has a wide band gap of 3 eV, and can be used extremely stably as a semiconductor even at high temperatures.
  • silicon carbide is expected as a semiconductor material that can sufficiently reduce the on-resistance because the maximum electric field strength is also larger by one digit or more than that of silicon.
  • Such characteristics of silicon carbide also apply to other wide band gap semiconductors having a wider band gap than silicon, such as gallium nitride (GaN). Therefore, by using the wide band gap semiconductor, the breakdown voltage of the semiconductor device can be increased.
  • FIG. 14 is a top view showing the structure of a conventional silicon carbide semiconductor device.
  • FIG. 15 is a cross-sectional view of a portion A-A 'in FIG. 14 showing a structure of a conventional silicon carbide semiconductor device.
  • FIG. 15 is a top view from which a gate insulating film 106, a gate electrode 108, an interlayer insulating film 109, and a source electrode 110 which will be described later are removed.
  • a silicon carbide semiconductor device a silicon carbide MOSFET (hereinafter, SiC-MOSFET) is taken as an example.
  • an n ⁇ -type silicon carbide epitaxial layer 102 is deposited on the front surface of the n + -type silicon carbide substrate 101, and a p-type on the surface of the n ⁇ -type silicon carbide epitaxial layer 102
  • the base layer 103 is selectively provided.
  • an n + -type source region 104 and a p ++ -type contact region 105 are selectively provided on the surface of the p-type base layer 103.
  • a stripe-shaped gate electrode 108 is provided on the surface of the p-type base layer 103 and the n + -type source region 104 with the gate insulating film 106 interposed therebetween.
  • source electrodes 110 are provided on the surfaces of n ⁇ type silicon carbide epitaxial layer 102, p ++ type contact region 105 and n + type source region 104.
  • the interlayer insulating film 109 insulates the source electrode 110 from the gate electrode 108.
  • a drain electrode 114 is provided on the back surface of the n + -type silicon carbide substrate 101.
  • the p-type base layer 103 is provided in a stripe shape, and p-type base layers 103 and n + -type source regions 104 are alternately provided in a direction parallel to the stripe shape.
  • a p-type impurity region is formed on the source region, an n-type impurity region is formed on the p-type impurity region, and the side surfaces of the p-type impurity region and the n-type impurity region are with respect to the main surface of the substrate.
  • a semiconductor device which may have an angle other than 90 degrees, and each side surface may have a curvature (see, for example, Patent Document 1).
  • a semiconductor device is known in which a C surface or a corner is formed on an R surface in a device region of a semiconductor substrate, the corner being cut off using a straight line intersecting the corner of the rectangle at an angle of 45 ° (See, for example, Patent Document 2).
  • Patent No. 5223041 Unexamined-Japanese-Patent No. 9-320979
  • FIG. 16 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon semiconductor device.
  • the n ⁇ -type silicon epitaxial layer 202 is formed on the front surface of the n + -type silicon substrate 201.
  • gate insulating film 106, gate electrode 108 and interlayer insulating film 109 are formed on the surface of n - type silicon epitaxial layer 202, and then p type base layer 103 and n + type source region 104 are formed by ion implantation and ion diffusion. It was
  • p-type impurities are ion-implanted by ion implantation using the interlayer insulating film 109 as a mask.
  • the p-type impurity is thermally diffused to the gate electrode 108 side to form the p-type base layer 103.
  • n-type impurities are ion-implanted by ion implantation to form an n + -type source region 104.
  • FIG. 17 and FIG. 18 are cross-sectional views showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device.
  • a mask 120 having a desired opening is formed of, for example, an oxide film by photolithography.
  • p-type impurities are ion-implanted by the ion implantation method using the oxide film 120 as a mask.
  • p-type base layer 103 is formed on the surface layer of n ⁇ -type silicon carbide epitaxial layer 102.
  • a mask 121 having a desired opening is formed of, for example, an oxide film by photolithography. Then, n-type impurities are ion-implanted by the ion implantation method using the oxide film 121 as a mask. Thereby, n + -type source region 104 is formed in the surface layer of p-type base layer 103.
  • FIG. 19 is a top view showing the structure of the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device.
  • the corner S of the n + -type source region 104 is formed to have a higher impurity concentration than other portions.
  • the corner S has a high impurity concentration, so the resistance is low. Therefore, due to the overvoltage of the gate electrode 108 and the strong electric field applied to the gate electrode 108 when applied to the drain electrode 114, the electric field is concentrated at the corner S and faces the corner S of the n + -type source region 104.
  • a high electric field is applied to the gate insulating film 106, and the gate insulating film 106 may be broken.
  • the gate insulating film 106 facing the corner S of the n + -type source region 104 is broken.
  • the present invention improves the breakdown resistance of the gate insulating film with respect to the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode.
  • An object of the present invention is to provide a method of manufacturing a silicon semiconductor device and a silicon carbide semiconductor device.
  • the silicon carbide semiconductor device has the following features.
  • a first conductivity type first semiconductor layer having an impurity concentration lower than that of the silicon carbide semiconductor substrate is provided on the front surface of the first conductivity type silicon carbide semiconductor substrate.
  • a second semiconductor layer of the second conductivity type is selectively provided on the surface layer of the first semiconductor layer opposite to the silicon carbide semiconductor substrate side.
  • a first semiconductor region of a first conductivity type is selectively provided in the surface layer of the second semiconductor layer opposite to the silicon carbide semiconductor substrate side.
  • a stripe-shaped gate electrode is provided on at least a portion of the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer via a gate insulating film.
  • a first electrode is provided on the surface of the first semiconductor region and the second semiconductor layer.
  • a second electrode is provided on the back surface of the silicon carbide semiconductor substrate.
  • the impurity concentration of the surface corner of the first semiconductor region is the same as or lower than the impurity concentration of the portion other than the corner of the surface of the first semiconductor region.
  • the surface corner portion of the first semiconductor region is chamfered.
  • the second semiconductor of the second conductivity type is selectively provided on the surface layer opposite to the silicon carbide semiconductor substrate side of the second semiconductor layer.
  • the semiconductor device may further include a region, and a surface corner of the second semiconductor region is chamfered.
  • the first semiconductor region has a rectangular surface, and the corners of the rectangle are rounded or the corners of the rectangle are cut off. It is characterized by
  • the first semiconductor region has a length of 5% to 30% of the width of the first semiconductor region, and the rectangular corner is rounded. Or the corners of the rectangle are cut off.
  • the method for manufacturing a silicon carbide semiconductor device has the following features. First, a first step of forming a first semiconductor layer of the first conductivity type having a lower impurity concentration than the silicon carbide semiconductor substrate is performed on the front surface of the silicon carbide semiconductor substrate of the first conductivity type. Next, a second step of selectively forming a second semiconductor layer of the second conductivity type on the surface layer opposite to the silicon carbide semiconductor substrate side of the first semiconductor layer is performed. Next, a third step of selectively forming a first semiconductor region of the first conductivity type is performed in the surface layer of the second semiconductor layer opposite to the silicon carbide semiconductor substrate side.
  • a fourth step of forming a stripe-shaped gate electrode via a gate insulating film on at least a part of the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer is described. Do. Next, a fifth step of forming a first electrode on the surfaces of the first semiconductor region and the second semiconductor layer is performed. Next, a sixth step of forming a second electrode on the back surface of the silicon carbide semiconductor substrate is performed. The third step is characterized in that the first semiconductor region is formed such that the impurity concentration of the surface corner is equal to or lower than the impurity concentration of the portion other than the surface corner.
  • the first semiconductor region in which a corner is chamfered is formed.
  • the second conductive layer is selectively formed on the surface layer opposite to the silicon carbide semiconductor substrate side of the second semiconductor layer.
  • the method further includes the step of forming a semiconductor region, wherein a surface corner of the second semiconductor region is chamfered.
  • the n + -type source region (the first semiconductor region of the first conductivity type) has a rectangular shape, and all four corners are chamfered.
  • the concentration of the electric field at the corners is reduced by the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode. Therefore, in the silicon carbide semiconductor device of the present configuration, the breakdown resistance of the gate insulating film is improved.
  • the breakdown resistance of the gate insulating film against the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode is improved.
  • FIG. 1A is a top view showing a structure of a silicon carbide semiconductor device according to a first embodiment.
  • FIG. 1B is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 1C is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the A-A ′ portion of FIG. 1B showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 3 is an enlarged view of a portion B of FIG. 1A showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 4 is an enlarged view of a portion B of FIG. 1A showing another structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 1A is a top view showing a structure of a silicon carbide semiconductor device according to a first embodiment.
  • FIG. 1B is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 5 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (part 1).
  • FIG. 6 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (part 2).
  • FIG. 7 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (No. 3).
  • FIG. 8 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (part 4).
  • FIG. 9 is a top view showing a state in the middle of manufacture of the n + -type source region of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 10 is a top view showing the structure of the silicon carbide semiconductor device according to the second embodiment.
  • 11 is an enlarged view of a portion B of FIG. 10 showing the structure of the silicon carbide semiconductor device according to the second embodiment.
  • FIG. 12 is an enlarged view of a portion B of FIG. 10 showing another structure of the silicon carbide semiconductor device according to the second embodiment.
  • FIG. 13 is a cross-sectional view showing a structure of a trench type silicon carbide MOSFET according to the first and second embodiments.
  • FIG. 14 is a top view showing the structure of a conventional silicon carbide semiconductor device.
  • FIG. 15 is a cross-sectional view of a portion A-A 'in FIG. 14 showing a structure of a conventional silicon carbide semiconductor device.
  • FIG. 16 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon semiconductor device.
  • FIG. 17 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device (part 1).
  • FIG. 18 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device (part 2).
  • FIG. 19 is a top view showing the structure of the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device.
  • n and p in the layer or region having n or p, it is meant that electrons or holes are majority carriers, respectively.
  • + and-attached to n and p mean that the impurity concentration is higher and the impurity concentration is lower than that of the layer or region to which it is not attached, respectively.
  • the notation of n and p including + and-is the same it indicates that the concentration is close, and the concentration is not necessarily the same.
  • Embodiment 1 The semiconductor device according to the present invention is configured using a wide band gap semiconductor.
  • a silicon carbide semiconductor device manufactured using, for example, silicon carbide (SiC) as a wide band gap semiconductor will be described by taking a MOSFET as an example.
  • 1A, 1B, and 1C are top views showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • FIG. 2 is a cross-sectional view of the AA ′ portion of FIG. 1B showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • the silicon carbide semiconductor device includes a semiconductor substrate made of silicon carbide (hereinafter, referred to as a silicon carbide semiconductor substrate (semiconductor substrate (semiconductor chip)) 40.
  • a MOS insulated gate made of metal-oxide film-semiconductor
  • an n ⁇ -type silicon carbide epitaxial layer (first conductive) made of silicon carbide is formed on the front surface of an n + -type silicon carbide substrate (silicon carbide semiconductor substrate of the first conductivity type) made of silicon carbide (first conductive)
  • the first semiconductor layer 2 of the mold is laminated.
  • a p-type base layer (a second semiconductor layer of the second conductivity type) is provided on the surface layer of the n - type silicon carbide epitaxial layer 2 on the opposite side (base front side) to the n-type silicon carbide substrate 1 side. 3) is provided selectively.
  • n + -type source region (first semiconductor region of the first conductivity type) 4 and a p ++ -type contact region 5 are provided on the surface of the p-type base layer 3. Also, the n + -type source region 4 and the p ++ -type contact region 5 are in contact with each other. The n + -type source region 4 is disposed at the outer periphery of the p ++ -type contact region 5.
  • gate electrode 8 is provided on the surface of a portion of p-type base layer 3 sandwiched by n + -type source region 4 and n ⁇ -type silicon carbide epitaxial layer 2 through gate insulating film 6. . Gate electrode 8 may be provided on the surface of n -- type silicon carbide epitaxial layer 2 via gate insulating film 6.
  • Interlayer insulating film 9 is provided on the entire top surface of silicon carbide semiconductor substrate 40 so as to cover gate electrode 8.
  • Source electrode (first electrode) 10 is in contact with n + -type source region 4 and p ++ -type contact region 5 via a contact hole opened in interlayer insulating film 9.
  • Source electrode 10 is electrically insulated from gate electrode 8 by interlayer insulating film 9.
  • An electrode pad (not shown) is provided on the source electrode 10.
  • the p-type base layer 3 is provided in a stripe shape. Tapered p-type base layer 3 by miniaturization, since the n + -type source region 4 and the like can not be patterned, striped n + -type source region 4 in the p-type base layer 3 is formed, n + -type A plurality of p ++ -type contact regions 5 are provided in source region 4. Thus, p ++ -type contact regions 5 and n + -type source regions 4 are alternately provided in the direction parallel to the stripe shape. In the first embodiment, the n + -type source region 4 has a rectangular shape, and all four corners are chamfered.
  • the corner portion is a corner portion of the n + -type source region 4 surrounded by the p-type base layer 3, and the chamfering is to cut the corner to form a surface.
  • the p ++ -type contact region 5 is also rectangular in shape, and all four corners are chamfered.
  • the corners of n + -type source region 4 and p ++ -type contact region 5 are chamfered, so the corners of n + -type source region 4 and p ++ -type contact region 5 There is no part where the impurity concentration is high. Therefore, the concentration of the electric field at the corners is alleviated by the overvoltage of the gate electrode 8 and the strong electric field applied to the gate electrode 8 when applied to the drain electrode 14, and the breakdown resistance of the gate insulating film 6 is improved. Ru.
  • FIG. 3 is an enlarged view of a portion B of FIG. 1A showing the structure of the silicon carbide semiconductor device according to the first embodiment.
  • the corners can be chamfered by rounding the corners of the rectangle. If the amount of rounding the corners of the rectangle is too small, concentration of the electric field at the corners can not be alleviated, and if too large, the area of the n + -type source region 4 decreases and the ineffective region increases. Therefore, it is preferable that the amount of rounding the corner of the rectangle is 5% or more and 30% or less of the width W of the n + -type source region 4. The amount by which the corner of the rectangle is rounded is the distance R1 between the corner of the rectangle before chamfering and the surface after chamfering. Similarly, the amount of rounding the corners of a rectangle of p ++ type contact region 5 is also preferably 30% or less than 5% of the width of the p ++ type contact region 5.
  • FIG. 4 is an enlarged view of a portion B of FIG. 1A showing another structure of the silicon carbide semiconductor device according to the first embodiment.
  • the corners can be chamfered by cutting the corners.
  • the amount by which the corner of the rectangle is cut out is preferably 5% or more and 30% or less of the width W of the n + -type source region 4 for the same reason as the amount by which the corner of the rectangle in FIG. 3 is rounded.
  • the amount by which the corner of the rectangle is cut is the distance R2 between the corner before the cut and the surface after being cut.
  • the amount by which the rectangular corner of the p ++ -type contact region 5 is cut out is preferably 5% or more and 30% or less of the width of the p ++ -type contact region 5.
  • the corners of both the n + -type source region 4 and the p ++ -type contact region 5 are chamfered, but the chamfering of the corners is the n + -type source region Only 4 may be used. This configuration can reduce the concentration of the electric field at the corners.
  • one n + -type source region 4 is provided in one stripe-like p-type base layer 3 in FIG. 1A, a plurality of n + -type source regions 4 may be provided.
  • the p ++ -type contact region 5 may be provided in the n + -type source region 4 as shown in FIG. 1B or may be alternately arranged with the n + -type source region 4 as shown in FIG. 1C.
  • FIG. 5 to 8 are cross sectional views schematically showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment.
  • an n + -type silicon carbide substrate 1 doped with nitrogen (N 2 ) at an impurity concentration of, for example, about 2 ⁇ 10 19 / cm 3 is prepared.
  • the n + -type silicon carbide substrate 1 may have, for example, a (000-1) plane whose main surface has an off angle of about 4 degrees in the ⁇ 11-20> direction.
  • an n ⁇ -type silicon carbide epitaxial layer with a thickness of about 10 ⁇ m doped with nitrogen at an impurity concentration of 1.0 ⁇ 10 16 / cm 3 on the (000-1) plane of n + -type silicon carbide substrate 1 Grow two.
  • the structure shown in FIG. 5 is obtained.
  • the dopant may be aluminum (Al), and the dose may be set so that the impurity concentration of the p-type base layer 3 is 1 ⁇ 10 16 to 1 ⁇ 10 18 / cm 3 .
  • the structure shown in FIG. 6 is obtained.
  • the n + -type source region 4 is selectively formed in the surface layer of the p-type base layer 3 by photolithography and ion implantation.
  • the p ++ -type contact region 5 is selectively formed in the surface layer of the p-type base layer 3 by photolithography and ion implantation.
  • the dose may be set such that the dopant is aluminum and the impurity concentration of the p ++ -type contact region 5 is 1 ⁇ 10 17 to 1 ⁇ 10 19 / cm 3 .
  • the structure shown in FIG. 7 is obtained.
  • FIG. 9 is a top view showing a state in the middle of manufacture of the n + -type source region of the silicon carbide semiconductor device according to the first embodiment.
  • the mask 12 having openings at the corners of the n + -type source region 4 is used. be able to.
  • the p ++ -type contact region 5 is formed in a rectangular shape in which all four corners are chamfered.
  • all the four corners can also be formed by reducing the concentration of the impurity implanted by ion implantation toward the corner of the region where the n + -type source region 4 and the p ++ -type contact region 5 are formed. Can be formed to be chamfered.
  • n + -type source region 4 and the p ++ -type contact region 5 can be changed variously.
  • heat treatment is performed to activate the p-type base layer 3, the n + -type source region 4 and the p ++ -type contact region 5.
  • the heat treatment temperature and the heat treatment time at this time may be 1620 ° C. and 2 minutes, respectively.
  • each ion implantation region may be activated collectively by one heat treatment, or may be activated by heat treatment every time ion implantation is performed.
  • the front surface side of silicon carbide semiconductor substrate 40 is thermally oxidized to form an oxide film to be gate insulating film 6.
  • This thermal oxidation may be performed by heat treatment at a temperature of about 1000 ° C. in a mixed atmosphere of oxygen (O 2 ) and hydrogen (H 2 ).
  • O 2 oxygen
  • H 2 hydrogen
  • a polycrystalline silicon layer (polysilicon (poly-Si) layer) doped with, for example, phosphorus (P) is formed as the gate electrode 8 on the gate insulating film 6.
  • the polycrystalline silicon layer is patterned and selectively removed, and polycrystalline silicon is formed on the portion of p-type base layer 3 sandwiched between n + -type source region 4 and n ⁇ -type silicon carbide epitaxial layer 2 Leave a layer. At this time, a polycrystalline silicon layer may be left on the n ⁇ -type silicon carbide epitaxial layer 2.
  • phosphorus glass PSG: Phospho Silicate Glass
  • the thickness of the interlayer insulating film 9 may be 1.0 ⁇ m.
  • interlayer insulating film 9 and gate insulating film 6 are patterned and selectively removed to form a contact hole, thereby exposing n + -type source region 4 and p ++ -type contact region 5.
  • heat treatment is performed to planarize the interlayer insulating film 9.
  • FIG. 8 the structure shown in FIG. 8 is obtained.
  • the source electrode 10 is formed on the surface of the interlayer insulating film 9 on the gate electrode 8. At this time, the source electrode 10 is buried also in the contact hole, and the n + -type source region 4 and the p ++ -type contact region 5 are brought into contact with the source electrode 10. Next, the source electrode 10 other than the contact hole is selectively removed.
  • a nickel film for example, is formed as the drain electrode 14 on the surface of the n + -type silicon carbide substrate 1 (the back surface of the silicon carbide semiconductor substrate 40). Then, heat treatment is performed, for example, at a temperature of 970 ° C. to form an ohmic junction between the n + -type silicon carbide substrate 1 and the drain electrode 14.
  • an electrode pad serving as a gate electrode pad (not shown) and a source electrode pad is covered by, for example, sputtering to cover source electrode 10 and interlayer insulating film 9 on the entire front surface of silicon carbide semiconductor substrate 40. accumulate.
  • the thickness of the portion on the interlayer insulating film 9 of the electrode pad may be, for example, 5 ⁇ m.
  • the electrode pad may be made of, for example, aluminum (Al—Si) containing silicon at a ratio of 1%.
  • the electrode pad is selectively removed.
  • titanium (Ti), nickel (Ni) and gold (Au), for example, are formed in this order as drain electrode pads on the surface of the drain electrode 14.
  • a protective film may be formed on the surface. Thereby, the silicon carbide semiconductor device shown in FIG. 1 and FIG. 2 is completed.
  • the n + -type source region has a rectangular shape, and all four corner portions are chamfered.
  • the concentration of the electric field at the corners is reduced by the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode. Therefore, in the silicon carbide semiconductor device of the present configuration, the breakdown resistance of the gate insulating film is improved.
  • FIG. 10 is a top view showing the structure of the silicon carbide semiconductor device according to the second embodiment.
  • the cross-sectional view taken along the line AA 'of FIG. 10 showing the structure of the silicon carbide semiconductor device according to the second embodiment is the same as the cross-sectional view of the first embodiment (FIG. 2).
  • the impurity concentration of the corner of the n + -type source region 4 is n + -type It is lower than the impurity concentration of the portion other than the corner of the source region 4 and that the p ++ -type contact region 5 is not chamfered.
  • the n + -type source region 4 according to the second embodiment includes the corner S and a portion T other than the corner, and the impurity concentration of the corner S is the same as the portion T other than the corner or Lower than part T.
  • the corner S here corresponds to the portion removed when rounding the rectangular corner of the n + -type source region 4 in the first embodiment.
  • the distance R3 from the rectangular corner P of the n + -type source region 4 to the portion T other than the corner be 5% or more and 30% or less of the width W of the n + -type source region 4.
  • FIG. 12 is an enlarged view of a portion B of FIG. 10 showing another structure of the silicon carbide semiconductor device according to the second embodiment.
  • the corner S in FIG. 12 corresponds to the portion removed when the rectangle of the n + -type source region 4 is cut out in the first embodiment.
  • the distance R4 from the corner P of the rectangle of the n + -type source region 4 to the portion T other than the corner is 5% or more and 30% or less of the width W of the n + -type source region 4 Is preferred.
  • the n + -type source region 4 is formed in a portion where the impurity concentration in the corner is other than the corner. It may be formed to be the same as or lower than the impurity concentration.
  • n-type impurities are ion-implanted into the p-type base layer 3 using the mask 12 of FIG. 9 of the first embodiment. Thereafter, using a mask having an opening in a region where the n + type source region 4 of p-type base layer 3 is formed, the n-type impurity is formed by performing ion implantation into the p-type base layer 3.
  • two-stage ion implantation is used here, three or more stages of ion implantation may be used.
  • the impurity concentration of the corner is It can be lower than the impurity concentration of the part.
  • the impurity concentration of the corners of the n + -type source region is lower than the impurity concentration of the portion other than the corner portion of the n + -type source region .
  • FIG. 13 is a cross-sectional view showing a structure of a trench type silicon carbide MOSFET according to the first and second embodiments.
  • reference numerals 21 to 32 and 38 denote an n + -type silicon carbide substrate, an n ⁇ -type drift layer, a first p + -type region, a second p + -type region, an n-type region, a p-type base layer, and an n + -type, respectively.
  • the gate electrode 30 is provided in a stripe shape.
  • planarized carbonization is performed by chamfering the corner of the n + -type source region 27 or setting the impurity concentration of the corner lower than the impurity concentration of the portion other than the corner. Similar to the silicon MOSFET, the breakdown tolerance of the gate insulating film 29 can be improved.
  • the first p + -type region 23 in contact with the gate insulating film 29 is provided at the bottom of the trench 38. Therefore, by chamfering the corner of the first p + -type region 23 or setting the impurity concentration of the corner lower than the impurity concentration of the portion other than the corner, the gate is the same as in the case of the n + -type source region 27. The breakdown resistance of the insulating film 29 can be improved.
  • the main surface of the silicon carbide substrate made of silicon carbide is described as the (0001) plane and the MOS is formed on the (0001) plane.
  • the present invention is not limited thereto.
  • the semiconductor, the plane orientation of the main surface of the substrate, and the like can be variously changed.
  • planar and trench MOSFETs have been described as an example, but the present invention is not limited to this, and semiconductor devices of various configurations such as MOS semiconductor devices such as IGBTs having stripe-shaped gate electrodes are described. It is applicable.
  • MOS semiconductor devices such as IGBTs having stripe-shaped gate electrodes
  • GaN gallium nitride
  • the first conductivity type is n-type
  • the second conductivity type is p-type.
  • the present invention similarly applies the first conductivity type to p-type and the second conductivity type to n-type. It holds.
  • the silicon carbide semiconductor device and the method for manufacturing the silicon carbide semiconductor device according to the present invention are useful for a high breakdown voltage semiconductor device used for a power conversion device or a power supply device such as various industrial machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

This silicon carbide semiconductor device is provided with a first conductivity-type first semiconductor layer (2) provided on the front surface of a first conductivity-type silicon carbide semiconductor substrate (1), a second conductivity-type second conductor layer (3), a first conductivity-type first semiconductor region (4), and stripe-shaped gate electrodes (8) provided with a gate insulating film (6) interposed therebetween. The second semiconductor layer (3) and the first semiconductor region (4) are provided alternately in a direction parallel to the aforementioned stripe shape, and the corners of the first semiconductor region (4) are chamfered.

Description

炭化珪素半導体装置および炭化珪素半導体装置の製造方法Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
 この発明は、炭化珪素半導体装置および炭化珪素半導体装置の製造方法に関する。 The present invention relates to a silicon carbide semiconductor device and a method of manufacturing the silicon carbide semiconductor device.
 従来、高電圧や大電流を制御するパワー半導体装置の構成材料として、シリコン(Si)が用いられている。パワー半導体装置は、バイポーラトランジスタやIGBT(Insulated Gate Bipolar Transistor:絶縁ゲート型バイポーラトランジスタ)、MOSFET(Metal Oxide Semiconductor Field Effect Transistor:絶縁ゲート型電界効果トランジスタ)など複数種類あり、これらは用途に合わせて使い分けられている。 Conventionally, silicon (Si) is used as a constituent material of a power semiconductor device that controls high voltage and large current. There are multiple types of power semiconductor devices such as bipolar transistors, IGBTs (Insulated Gate Bipolar Transistors), MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), and these are used according to applications. It is done.
 例えば、バイポーラトランジスタやIGBTは、MOSFETに比べて電流密度は高く大電流化が可能であるが、高速にスイッチングさせることができない。具体的には、バイポーラトランジスタは数kHz程度のスイッチング周波数での使用が限界であり、IGBTは数十kHz程度のスイッチング周波数での使用が限界である。一方、パワーMOSFETは、バイポーラトランジスタやIGBTに比べて電流密度が低く大電流化が難しいが、数MHz程度までの高速スイッチング動作が可能である。 For example, bipolar transistors and IGBTs have higher current densities and can be made larger than MOSFETs, but can not be switched at high speed. Specifically, the use of the bipolar transistor is limited at a switching frequency of about several kHz, and the use of an IGBT is limited at a switching frequency of about several tens of kHz. On the other hand, power MOSFETs have lower current density and are difficult to increase in current as compared to bipolar transistors and IGBTs, but high-speed switching operation up to about several MHz is possible.
 しかしながら、市場では大電流と高速性とを兼ね備えたパワー半導体装置への要求が強く、IGBTやパワーMOSFETはその改良に力が注がれ、現在ではほぼ材料限界に近いところまで開発が進んでいる。パワー半導体装置の観点からシリコンに代わる半導体材料が検討されており、低オン電圧、高速特性、高温特性に優れた次世代のパワー半導体装置を作製(製造)可能な半導体材料として炭化珪素(SiC)が注目を集めている。 However, in the market, there is a strong demand for power semiconductor devices having both high current and high speed, and efforts are being made to improve IGBTs and power MOSFETs, and development is currently progressing to near the material limit. . From the viewpoint of power semiconductor devices, semiconductor materials to replace silicon have been studied, and silicon carbide (SiC) as a semiconductor material capable of producing (manufacturing) next-generation power semiconductor devices excellent in low on voltage, high speed characteristics, and high temperature characteristics. Is attracting attention.
 炭化珪素は、化学的に非常に安定した半導体材料であり、バンドギャップが3eVと広く、高温でも半導体として極めて安定的に使用することができる。また、炭化珪素は、最大電界強度もシリコンより1桁以上大きいため、オン抵抗を十分に小さくすることができる半導体材料として期待される。このような炭化珪素の特長は、他の、シリコンよりバンドギャップが広いワイドバンドギャップ半導体である、例えば窒化ガリウム(GaN)にもあてはまる。このため、ワイドバンドギャップ半導体を用いることにより、半導体装置の高耐圧化を図ることができる。 Silicon carbide is a chemically very stable semiconductor material, has a wide band gap of 3 eV, and can be used extremely stably as a semiconductor even at high temperatures. In addition, silicon carbide is expected as a semiconductor material that can sufficiently reduce the on-resistance because the maximum electric field strength is also larger by one digit or more than that of silicon. Such characteristics of silicon carbide also apply to other wide band gap semiconductors having a wider band gap than silicon, such as gallium nitride (GaN). Therefore, by using the wide band gap semiconductor, the breakdown voltage of the semiconductor device can be increased.
 図14は、従来の炭化珪素半導体装置の構造を示す上面図である。図15は、従来の炭化珪素半導体装置の構造を示す図14のA-A’部分の断面図である。ここで、図15は、後述するゲート絶縁膜106、ゲート電極108、層間絶縁膜109およびソース電極110を除去した上面図である。炭化珪素半導体装置として、炭化珪素MOSFET(以下、SiC-MOSFET)を例にしている。 FIG. 14 is a top view showing the structure of a conventional silicon carbide semiconductor device. FIG. 15 is a cross-sectional view of a portion A-A 'in FIG. 14 showing a structure of a conventional silicon carbide semiconductor device. Here, FIG. 15 is a top view from which a gate insulating film 106, a gate electrode 108, an interlayer insulating film 109, and a source electrode 110 which will be described later are removed. As a silicon carbide semiconductor device, a silicon carbide MOSFET (hereinafter, SiC-MOSFET) is taken as an example.
 図15に示すように、SiC-MOSFETは、n+型炭化珪素基板101のおもて面にn-型炭化珪素エピタキシャル層102が堆積され、n-型炭化珪素エピタキシャル層102の表面にp型ベース層103が選択的に設けられる。また、p型ベース層103の表面にn+型ソース領域104、p++型コンタクト領域105が選択的に設けられる。 As shown in FIG. 15, in the SiC-MOSFET, an n -type silicon carbide epitaxial layer 102 is deposited on the front surface of the n + -type silicon carbide substrate 101, and a p-type on the surface of the n -type silicon carbide epitaxial layer 102 The base layer 103 is selectively provided. Further, an n + -type source region 104 and a p ++ -type contact region 105 are selectively provided on the surface of the p-type base layer 103.
 p型ベース層103およびn+型ソース領域104との表面に、ゲート絶縁膜106を介してストライプ形状のゲート電極108が設けられている。また、n-型炭化珪素エピタキシャル層102、p++型コンタクト領域105およびn+型ソース領域104の表面に、ソース電極110が設けられている。層間絶縁膜109によって、ソース電極110とゲート電極108とが絶縁されている。また、n+型炭化珪素基板101の裏面には、ドレイン電極114が設けられている。 A stripe-shaped gate electrode 108 is provided on the surface of the p-type base layer 103 and the n + -type source region 104 with the gate insulating film 106 interposed therebetween. In addition, source electrodes 110 are provided on the surfaces of n type silicon carbide epitaxial layer 102, p ++ type contact region 105 and n + type source region 104. The interlayer insulating film 109 insulates the source electrode 110 from the gate electrode 108. In addition, a drain electrode 114 is provided on the back surface of the n + -type silicon carbide substrate 101.
 また、図14に示すように、p型ベース層103はストライプ形状に設けられ、ストライプ形状と平行な方向にp型ベース層103とn+型ソース領域104が交互に設けられている。 Further, as shown in FIG. 14, the p-type base layer 103 is provided in a stripe shape, and p-type base layers 103 and n + -type source regions 104 are alternately provided in a direction parallel to the stripe shape.
 また、ソース領域の上にp型不純物領域が形成され、p型不純物領域の上にn型不純物領域が形成され、p型不純物領域及びn型不純物領域の各側面が、基板の主面に対して90度以外の角度を有していてもよいし、該各側面が曲率を持っていてもよい半導体装置が公知である(例えば、特許文献1参照)。また、半導体基板の素子領域において、隅部を矩形の角部にそれと45゜の角度で交わる直線を用いて切り取った形状からなるC面または隅部をR面に形成する半導体装置が公知である(例えば、特許文献2参照)。 Further, a p-type impurity region is formed on the source region, an n-type impurity region is formed on the p-type impurity region, and the side surfaces of the p-type impurity region and the n-type impurity region are with respect to the main surface of the substrate. There is known a semiconductor device which may have an angle other than 90 degrees, and each side surface may have a curvature (see, for example, Patent Document 1). In addition, a semiconductor device is known in which a C surface or a corner is formed on an R surface in a device region of a semiconductor substrate, the corner being cut off using a straight line intersecting the corner of the rectangle at an angle of 45 ° (See, for example, Patent Document 2).
特許第5223041号公報Patent No. 5223041 特開平9-320979号公報Unexamined-Japanese-Patent No. 9-320979
 ここで、図16は、従来のシリコン半導体装置のp型ベース層、n+型ソース領域の製造途中の状態を示す断面図である。シリコン半導体装置の場合は、まず、n+型珪素基板201のおもて面にn-型珪素エピタキシャル層202を形成する。その後、n-型珪素エピタキシャル層202の表面にゲート絶縁膜106、ゲート電極108および層間絶縁膜109を形成後、イオン注入とイオン拡散によりp型ベース層103、n+型ソース領域104を形成していた。 Here, FIG. 16 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon semiconductor device. In the case of a silicon semiconductor device, first, the n -type silicon epitaxial layer 202 is formed on the front surface of the n + -type silicon substrate 201. Thereafter, gate insulating film 106, gate electrode 108 and interlayer insulating film 109 are formed on the surface of n - type silicon epitaxial layer 202, and then p type base layer 103 and n + type source region 104 are formed by ion implantation and ion diffusion. It was
 具体的には、層間絶縁膜109を形成後、層間絶縁膜109をマスクとして、イオン注入法によって、p型の不純物をイオン注入する。この後の熱処理(アニール)により、p型の不純物をゲート電極108側に熱拡散させてp型ベース層103を形成した。その後、層間絶縁膜109をマスクとして、イオン注入法によって、n型の不純物をイオン注入し、n+型ソース領域104を形成した。 Specifically, after the interlayer insulating film 109 is formed, p-type impurities are ion-implanted by ion implantation using the interlayer insulating film 109 as a mask. By the subsequent heat treatment (annealing), the p-type impurity is thermally diffused to the gate electrode 108 side to form the p-type base layer 103. Thereafter, using the interlayer insulating film 109 as a mask, n-type impurities are ion-implanted by ion implantation to form an n + -type source region 104.
 これに対して、炭化珪素は、不純物が熱拡散しにくい材料であり、長時間の熱処理では炭化珪素の表面の結晶構造が損傷するため、炭化珪素半導体装置は、シリコン半導体装置と同様に製造することができなかった。図17、図18は、従来の炭化珪素半導体装置のp型ベース層、n+型ソース領域の製造途中の状態を示す断面図である。まず、図17に示すように、フォトリソグラフィ技術によって所望の開口部を有するマスク120を、例えば酸化膜で形成する。そして、この酸化膜120をマスクとしてイオン注入法によってp型の不純物をイオン注入する。それによって、n-型炭化珪素エピタキシャル層102の表面層に、p型ベース層103が形成される。 On the other hand, silicon carbide is a material in which the impurities are not easily diffused thermally, and the long-term heat treatment damages the crystal structure of the surface of silicon carbide, so the silicon carbide semiconductor device is manufactured in the same manner as the silicon semiconductor device. I could not. FIG. 17 and FIG. 18 are cross-sectional views showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device. First, as shown in FIG. 17, a mask 120 having a desired opening is formed of, for example, an oxide film by photolithography. Then, p-type impurities are ion-implanted by the ion implantation method using the oxide film 120 as a mask. Thereby, p-type base layer 103 is formed on the surface layer of n -type silicon carbide epitaxial layer 102.
 次に、図18に示すように、フォトリソグラフィ技術によって所望の開口部を有するマスク121を、例えば酸化膜で形成する。そして、この酸化膜121をマスクとしてイオン注入法によってn型の不純物をイオン注入する。それによって、p型ベース層103の表面層に、n+型ソース領域104が形成される。 Next, as shown in FIG. 18, a mask 121 having a desired opening is formed of, for example, an oxide film by photolithography. Then, n-type impurities are ion-implanted by the ion implantation method using the oxide film 121 as a mask. Thereby, n + -type source region 104 is formed in the surface layer of p-type base layer 103.
 図19は、従来の炭化珪素半導体装置のp型ベース層、n+型ソース領域の構造を示す上面図である。上述のように、n+型ソース領域104はイオン注入により形成されるため、n+型ソース領域104の隅部Sは、他の部分に比べて不純物濃度が高く形成されてしまう。隅部Sは、不純物濃度が高いため、抵抗が低くなる。このため、ゲート電極108の過電圧、ドレイン電極114に印加された際に加わるゲート電極108への強い電界により、隅部Sに電界が集中し、n+型ソース領域104の隅部Sと対向するゲート絶縁膜106に高い電界が印加され、ゲート絶縁膜106が破壊されるおそれがある。例えば、ゲート絶縁膜106に対する破壊試験を行うとn+型ソース領域104の隅部Sと対向するゲート絶縁膜106が破壊される。 FIG. 19 is a top view showing the structure of the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device. As described above, since the n + -type source region 104 is formed by ion implantation, the corner S of the n + -type source region 104 is formed to have a higher impurity concentration than other portions. The corner S has a high impurity concentration, so the resistance is low. Therefore, due to the overvoltage of the gate electrode 108 and the strong electric field applied to the gate electrode 108 when applied to the drain electrode 114, the electric field is concentrated at the corner S and faces the corner S of the n + -type source region 104. A high electric field is applied to the gate insulating film 106, and the gate insulating film 106 may be broken. For example, when a destructive test is performed on the gate insulating film 106, the gate insulating film 106 facing the corner S of the n + -type source region 104 is broken.
 この発明は、上述した従来技術による問題点を解消するため、ゲート電極の過電圧、ドレイン電極に印加された際に加わるゲート電極への強い電界に対して、ゲート絶縁膜の破壊耐量を改善する炭化珪素半導体装置および炭化珪素半導体装置の製造方法を提供することを目的とする。 In order to solve the above-mentioned problems of the prior art, the present invention improves the breakdown resistance of the gate insulating film with respect to the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode. An object of the present invention is to provide a method of manufacturing a silicon semiconductor device and a silicon carbide semiconductor device.
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置は、次の特徴を有する。第1導電型の炭化珪素半導体基板のおもて面に、前記炭化珪素半導体基板より低不純物濃度の第1導電型の第1半導体層が設けられる。前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第2導電型の第2半導体層が設けられる。前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第1導電型の第1半導体領域が設けられる。前記第1半導体領域と前記第1半導体層とに挟まれた前記第2半導体層の表面上の少なくとも一部にゲート絶縁膜を介してストライプ形状のゲート電極が設けられる。前記第1半導体領域と前記第2半導体層の表面に第1電極が設けられる。前記炭化珪素半導体基板の裏面に第2電極が設けられる。前記第1半導体領域の表面隅部の不純物濃度が、前記第1半導体領域の表面の隅部以外の部分の不純物濃度と同じもしくはより低い。 In order to solve the problems described above and to achieve the object of the present invention, the silicon carbide semiconductor device according to the present invention has the following features. A first conductivity type first semiconductor layer having an impurity concentration lower than that of the silicon carbide semiconductor substrate is provided on the front surface of the first conductivity type silicon carbide semiconductor substrate. A second semiconductor layer of the second conductivity type is selectively provided on the surface layer of the first semiconductor layer opposite to the silicon carbide semiconductor substrate side. A first semiconductor region of a first conductivity type is selectively provided in the surface layer of the second semiconductor layer opposite to the silicon carbide semiconductor substrate side. A stripe-shaped gate electrode is provided on at least a portion of the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer via a gate insulating film. A first electrode is provided on the surface of the first semiconductor region and the second semiconductor layer. A second electrode is provided on the back surface of the silicon carbide semiconductor substrate. The impurity concentration of the surface corner of the first semiconductor region is the same as or lower than the impurity concentration of the portion other than the corner of the surface of the first semiconductor region.
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体領域の表面隅部が面取りされていることを特徴とする。 In the silicon carbide semiconductor device according to the present invention, in the above-mentioned invention, the surface corner portion of the first semiconductor region is chamfered.
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第2導電型の第2半導体領域をさらに有し、前記第2半導体領域の表面隅部は面取りされていることを特徴とする。 Further, in the silicon carbide semiconductor device according to the present invention, in the above-described invention, the second semiconductor of the second conductivity type is selectively provided on the surface layer opposite to the silicon carbide semiconductor substrate side of the second semiconductor layer. The semiconductor device may further include a region, and a surface corner of the second semiconductor region is chamfered.
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体領域は表面が矩形の形状であり、前記矩形の角が丸められている、または、前記矩形の角が切り取られていることを特徴とする。 In the silicon carbide semiconductor device according to the present invention, in the above-described invention, the first semiconductor region has a rectangular surface, and the corners of the rectangle are rounded or the corners of the rectangle are cut off. It is characterized by
 また、この発明にかかる炭化珪素半導体装置は、上述した発明において、前記第1半導体領域は、前記第1半導体領域の幅の5%以上30%以下の長さ、前記矩形の角が丸められている、または、前記矩形の角が切り取られていることを特徴とする。 In the silicon carbide semiconductor device according to the present invention, in the above-described invention, the first semiconductor region has a length of 5% to 30% of the width of the first semiconductor region, and the rectangular corner is rounded. Or the corners of the rectangle are cut off.
 上述した課題を解決し、本発明の目的を達成するため、この発明にかかる炭化珪素半導体装置の製造方法は、次の特徴を有する。まず、第1導電型の炭化珪素半導体基板のおもて面に、前記炭化珪素半導体基板より低不純物濃度の第1導電型の第1半導体層を形成する第1工程を行う。次に、前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第2導電型の第2半導体層を形成する第2工程を行う。次に、前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第1導電型の第1半導体領域を形成する第3工程を行う。次に、前記第1半導体領域と前記第1半導体層とに挟まれた前記第2半導体層の表面上の少なくとも一部にゲート絶縁膜を介してストライプ形状のゲート電極を形成する第4工程を行う。次に、前記第1半導体領域と前記第2半導体層の表面に第1電極を形成する第5工程を行う。次に、前記炭化珪素半導体基板の裏面に第2電極を形成する第6工程を行う。前記第3工程では、表面隅部の不純物濃度が表面の隅部以外の部分の不純物濃度と同じもしくはより低い前記第1半導体領域を形成することを特徴とする。 In order to solve the problems described above and to achieve the object of the present invention, the method for manufacturing a silicon carbide semiconductor device according to the present invention has the following features. First, a first step of forming a first semiconductor layer of the first conductivity type having a lower impurity concentration than the silicon carbide semiconductor substrate is performed on the front surface of the silicon carbide semiconductor substrate of the first conductivity type. Next, a second step of selectively forming a second semiconductor layer of the second conductivity type on the surface layer opposite to the silicon carbide semiconductor substrate side of the first semiconductor layer is performed. Next, a third step of selectively forming a first semiconductor region of the first conductivity type is performed in the surface layer of the second semiconductor layer opposite to the silicon carbide semiconductor substrate side. Next, a fourth step of forming a stripe-shaped gate electrode via a gate insulating film on at least a part of the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer is described. Do. Next, a fifth step of forming a first electrode on the surfaces of the first semiconductor region and the second semiconductor layer is performed. Next, a sixth step of forming a second electrode on the back surface of the silicon carbide semiconductor substrate is performed. The third step is characterized in that the first semiconductor region is formed such that the impurity concentration of the surface corner is equal to or lower than the impurity concentration of the portion other than the surface corner.
 また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第3工程では、隅部が面取りされた前記第1半導体領域を形成することを特徴とする。 Further, in the method for manufacturing a silicon carbide semiconductor device according to the present invention, in the above-mentioned invention, in the third step, the first semiconductor region in which a corner is chamfered is formed.
 また、この発明にかかる炭化珪素半導体装置の製造方法は、上述した発明において、前記第2半導体層の前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第2導電型の第2半導体領域を形成する工程さらに有し、前記第2半導体領域の表面隅部は面取りされていることを特徴とする。 Further, in the method for manufacturing a silicon carbide semiconductor device according to the present invention, in the above-described invention, the second conductive layer is selectively formed on the surface layer opposite to the silicon carbide semiconductor substrate side of the second semiconductor layer. The method further includes the step of forming a semiconductor region, wherein a surface corner of the second semiconductor region is chamfered.
 上述した発明によれば、n+型ソース領域(第1導電型の第1半導体領域)は矩形の形状であり、4つの隅部すべてが面取りされている。これにより、ゲート電極の過電圧、ドレイン電極に印加された際に加わるゲート電極への強い電界により、隅部に電界が集中することが軽減される。このため、本構成の炭化珪素半導体装置は、ゲート絶縁膜の破壊耐量が改善される。 According to the invention described above, the n + -type source region (the first semiconductor region of the first conductivity type) has a rectangular shape, and all four corners are chamfered. As a result, the concentration of the electric field at the corners is reduced by the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode. Therefore, in the silicon carbide semiconductor device of the present configuration, the breakdown resistance of the gate insulating film is improved.
 本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法によれば、ゲート電極の過電圧、ドレイン電極に印加された際に加わるゲート電極への強い電界に対して、ゲート絶縁膜の破壊耐量を改善するという効果を奏する。 According to the silicon carbide semiconductor device and the method for manufacturing the silicon carbide semiconductor device according to the present invention, the breakdown resistance of the gate insulating film against the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode. The effect of improving the
図1Aは、実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。FIG. 1A is a top view showing a structure of a silicon carbide semiconductor device according to a first embodiment. 図1Bは、実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。FIG. 1B is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment. 図1Cは、実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。FIG. 1C is a top view showing the structure of the silicon carbide semiconductor device according to the first embodiment. 図2は、実施の形態1にかかる炭化珪素半導体装置の構造を示す図1BのA-A’部分の断面図である。FIG. 2 is a cross-sectional view of the A-A ′ portion of FIG. 1B showing the structure of the silicon carbide semiconductor device according to the first embodiment. 図3は、実施の形態1にかかる炭化珪素半導体装置の構造を示す図1AのB部分の拡大図である。FIG. 3 is an enlarged view of a portion B of FIG. 1A showing the structure of the silicon carbide semiconductor device according to the first embodiment. 図4は、実施の形態1にかかる炭化珪素半導体装置の他の構造を示す図1AのB部分の拡大図である。FIG. 4 is an enlarged view of a portion B of FIG. 1A showing another structure of the silicon carbide semiconductor device according to the first embodiment. 図5は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その1)。FIG. 5 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (part 1). 図6は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その2)。FIG. 6 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (part 2). 図7は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その3)。FIG. 7 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (No. 3). 図8は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を示す断面図である(その4)。FIG. 8 is a cross-sectional view showing the state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment (part 4). 図9は、実施の形態1にかかる炭化珪素半導体装置のn+型ソース領域の製造途中の状態を示す上面図である。FIG. 9 is a top view showing a state in the middle of manufacture of the n + -type source region of the silicon carbide semiconductor device according to the first embodiment. 図10は、実施の形態2にかかる炭化珪素半導体装置の構造を示す上面図である。FIG. 10 is a top view showing the structure of the silicon carbide semiconductor device according to the second embodiment. 図11は、実施の形態2にかかる炭化珪素半導体装置の構造を示す図10のB部分の拡大図である。11 is an enlarged view of a portion B of FIG. 10 showing the structure of the silicon carbide semiconductor device according to the second embodiment. 図12は、実施の形態2にかかる炭化珪素半導体装置の他の構造を示す図10のB部分の拡大図である。FIG. 12 is an enlarged view of a portion B of FIG. 10 showing another structure of the silicon carbide semiconductor device according to the second embodiment. 図13は、実施の形態1、2にかかるトレンチ型の炭化珪素MOSFETの構造を示す断面図である。FIG. 13 is a cross-sectional view showing a structure of a trench type silicon carbide MOSFET according to the first and second embodiments. 図14は、従来の炭化珪素半導体装置の構造を示す上面図である。FIG. 14 is a top view showing the structure of a conventional silicon carbide semiconductor device. 図15は、従来の炭化珪素半導体装置の構造を示す図14のA-A’部分の断面図である。FIG. 15 is a cross-sectional view of a portion A-A 'in FIG. 14 showing a structure of a conventional silicon carbide semiconductor device. 図16は、従来のシリコン半導体装置のp型ベース層、n+型ソース領域の製造途中の状態を示す断面図である。FIG. 16 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon semiconductor device. 図17は、従来の炭化珪素半導体装置のp型ベース層、n+型ソース領域の製造途中の状態を示す断面図である(その1)。FIG. 17 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device (part 1). 図18は、従来の炭化珪素半導体装置のp型ベース層、n+型ソース領域の製造途中の状態を示す断面図である(その2)。FIG. 18 is a cross-sectional view showing a state in the middle of manufacturing the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device (part 2). 図19は、従来の炭化珪素半導体装置のp型ベース層、n+型ソース領域の構造を示す上面図である。FIG. 19 is a top view showing the structure of the p-type base layer and the n + -type source region of the conventional silicon carbide semiconductor device.
 以下に添付図面を参照して、この発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法の好適な実施の形態を詳細に説明する。本明細書および添付図面においては、nまたはpを冠記した層や領域では、それぞれ電子または正孔が多数キャリアであることを意味する。また、nやpに付す+および-は、それぞれそれが付されていない層や領域よりも高不純物濃度および低不純物濃度であることを意味する。+および-を含めたnやpの表記が同じ場合は近い濃度であることを示し濃度が同等とは限らない。なお、以下の実施の形態の説明および添付図面において、同様の構成には同一の符号を付し、重複する説明を省略する。また、本明細書では、ミラー指数の表記において、“-”はその直後の指数につくバーを意味しており、指数の前に“-”を付けることで負の指数をあらわしている。 Hereinafter, preferred embodiments of a silicon carbide semiconductor device and a method of manufacturing the silicon carbide semiconductor device according to the present invention will be described in detail with reference to the attached drawings. In the present specification and the accompanying drawings, in the layer or region having n or p, it is meant that electrons or holes are majority carriers, respectively. In addition, + and-attached to n and p mean that the impurity concentration is higher and the impurity concentration is lower than that of the layer or region to which it is not attached, respectively. When the notation of n and p including + and-is the same, it indicates that the concentration is close, and the concentration is not necessarily the same. In the following description of the embodiments and the accompanying drawings, the same components are denoted by the same reference numerals and redundant description will be omitted. Further, in the present specification, in the notation of Miller index, "-" means a bar attached to the index immediately after that, and a negative index is represented by putting "-" in front of the index.
(実施の形態1)
 本発明にかかる半導体装置は、ワイドバンドギャップ半導体を用いて構成される。実施の形態においては、ワイドバンドギャップ半導体として例えば炭化珪素(SiC)を用いて作製された炭化珪素半導体装置について、MOSFETを例に説明する。図1A、図1B、図1Cは、実施の形態1にかかる炭化珪素半導体装置の構造を示す上面図である。これ以降、図1A、図1B、図1Cのすべてに対応する場合、図1と記載する。図2は、実施の形態1にかかる炭化珪素半導体装置の構造を示す図1BのA-A’部分の断面図である。
Embodiment 1
The semiconductor device according to the present invention is configured using a wide band gap semiconductor. In the embodiment, a silicon carbide semiconductor device manufactured using, for example, silicon carbide (SiC) as a wide band gap semiconductor will be described by taking a MOSFET as an example. 1A, 1B, and 1C are top views showing the structure of the silicon carbide semiconductor device according to the first embodiment. Hereinafter, when corresponding to all of FIG. 1A, FIG. 1B, and FIG. 1C, it describes as FIG. FIG. 2 is a cross-sectional view of the AA ′ portion of FIG. 1B showing the structure of the silicon carbide semiconductor device according to the first embodiment.
 図1および図2に示すように、実施の形態にかかる炭化珪素半導体装置は、炭化珪素からなる半導体基体(以下、炭化珪素半導体基体(半導体基板(半導体チップ))とする)40のおもて面側には、MOS(金属-酸化膜-半導体からなる絶縁ゲート)構造(素子構造)が形成されている。具体的には、炭化珪素からなるn+型炭化珪素基板(第1導電型の炭化珪素半導体基板)1のおもて面上に、炭化珪素からなるn-型炭化珪素エピタキシャル層(第1導電型の第1半導体層)2を積層してなる。n-型炭化珪素エピタキシャル層2の、n型炭化珪素基板1側に対して反対側(基体おもて面側)の表面層には、p型ベース層(第2導電型の第2半導体層)3が選択的に設けられている。 As shown in FIGS. 1 and 2, the silicon carbide semiconductor device according to the embodiment includes a semiconductor substrate made of silicon carbide (hereinafter, referred to as a silicon carbide semiconductor substrate (semiconductor substrate (semiconductor chip)) 40. On the surface side, a MOS (insulated gate made of metal-oxide film-semiconductor) structure (element structure) is formed. Specifically, an n -type silicon carbide epitaxial layer (first conductive) made of silicon carbide is formed on the front surface of an n + -type silicon carbide substrate (silicon carbide semiconductor substrate of the first conductivity type) made of silicon carbide (first conductive) The first semiconductor layer 2 of the mold is laminated. A p-type base layer (a second semiconductor layer of the second conductivity type) is provided on the surface layer of the n - type silicon carbide epitaxial layer 2 on the opposite side (base front side) to the n-type silicon carbide substrate 1 side. 3) is provided selectively.
 p型ベース層3の表面には、n+型ソース領域(第1導電型の第1半導体領域)4およびp++型コンタクト領域5が設けられている。また、n+型ソース領域4およびp++型コンタクト領域5は互いに接する。n+型ソース領域4は、p++型コンタクト領域5の外周に配置されている。 An n + -type source region (first semiconductor region of the first conductivity type) 4 and a p ++ -type contact region 5 are provided on the surface of the p-type base layer 3. Also, the n + -type source region 4 and the p ++ -type contact region 5 are in contact with each other. The n + -type source region 4 is disposed at the outer periphery of the p ++ -type contact region 5.
 また、p型ベース層3の、n+型ソース領域4とn-型炭化珪素エピタキシャル層2とに挟まれた部分の表面には、ゲート絶縁膜6を介してゲート電極8が設けられている。ゲート電極8は、ゲート絶縁膜6を介して、n-型炭化珪素エピタキシャル層2の表面に設けられていてもよい。 Further, gate electrode 8 is provided on the surface of a portion of p-type base layer 3 sandwiched by n + -type source region 4 and n -type silicon carbide epitaxial layer 2 through gate insulating film 6. . Gate electrode 8 may be provided on the surface of n -- type silicon carbide epitaxial layer 2 via gate insulating film 6.
 層間絶縁膜9は、炭化珪素半導体基体40のおもて面側の全面に、ゲート電極8を覆うように設けられている。ソース電極(第1電極)10は、層間絶縁膜9に開口されたコンタクトホールを介して、n+型ソース領域4およびp++型コンタクト領域5に接する。ソース電極10は、層間絶縁膜9によって、ゲート電極8と電気的に絶縁されている。ソース電極10上には、電極パッド(不図示)が設けられている。 Interlayer insulating film 9 is provided on the entire top surface of silicon carbide semiconductor substrate 40 so as to cover gate electrode 8. Source electrode (first electrode) 10 is in contact with n + -type source region 4 and p ++ -type contact region 5 via a contact hole opened in interlayer insulating film 9. Source electrode 10 is electrically insulated from gate electrode 8 by interlayer insulating film 9. An electrode pad (not shown) is provided on the source electrode 10.
 図1に示すように、p型ベース層3はストライプ形状に設けられている。微細化によりp型ベース層3が細くなって、n+型ソース領域4等がパターニングできなくなるため、p型ベース層3の中にストライプ状のn+型ソース領域4が設けられ、n+型ソース領域4の中に複数のp++型コンタクト領域5が設けられている。このようにして、ストライプ形状と平行な方向にp++型コンタクト領域5とn+型ソース領域4とが交互に設けられている。また、実施の形態1では、n+型ソース領域4は矩形の形状であり、4つの隅部すべてが面取りされている。ここで、隅部とは、p型ベース層3で囲まれたn+型ソース領域4の角の部分であり、面取りとは、角を削り取って面を作ることである。また、p++型コンタクト領域5も矩形の形状であり、4つの隅部すべてが面取りされている。 As shown in FIG. 1, the p-type base layer 3 is provided in a stripe shape. Tapered p-type base layer 3 by miniaturization, since the n + -type source region 4 and the like can not be patterned, striped n + -type source region 4 in the p-type base layer 3 is formed, n + -type A plurality of p ++ -type contact regions 5 are provided in source region 4. Thus, p ++ -type contact regions 5 and n + -type source regions 4 are alternately provided in the direction parallel to the stripe shape. In the first embodiment, the n + -type source region 4 has a rectangular shape, and all four corners are chamfered. Here, the corner portion is a corner portion of the n + -type source region 4 surrounded by the p-type base layer 3, and the chamfering is to cut the corner to form a surface. The p ++ -type contact region 5 is also rectangular in shape, and all four corners are chamfered.
 このように、実施の形態1ではn+型ソース領域4とp++型コンタクト領域5の隅部が面取りされているため、n+型ソース領域4とp++型コンタクト領域5の隅部に不純物濃度が高い部分がない。このため、ゲート電極8の過電圧、ドレイン電極14に印加された際に加わるゲート電極8への強い電界により、隅部に電界が集中することが軽減され、ゲート絶縁膜6の破壊耐量が改善される。 Thus, in the first embodiment, the corners of n + -type source region 4 and p ++ -type contact region 5 are chamfered, so the corners of n + -type source region 4 and p ++ -type contact region 5 There is no part where the impurity concentration is high. Therefore, the concentration of the electric field at the corners is alleviated by the overvoltage of the gate electrode 8 and the strong electric field applied to the gate electrode 8 when applied to the drain electrode 14, and the breakdown resistance of the gate insulating film 6 is improved. Ru.
 また、図3は、実施の形態1にかかる炭化珪素半導体装置の構造を示す図1AのB部分の拡大図である。図3に示すように、矩形の角を丸めることで、隅部を面取りすることができる。矩形の角を丸める量は、少なすぎると隅部に電界が集中することを軽減できず、多すぎるとn+型ソース領域4の面積が減り無効領域が増える。このため、矩形の角を丸める量は、n+型ソース領域4の幅Wの5%以上30%以下であることが好ましい。矩形の角を丸める量とは、面取りする前の矩形の角と面取りした後の面との距離R1である。同様に、p++型コンタクト領域5の矩形の角を丸める量も、p++型コンタクト領域5の幅の5%以上30%以下であることが好ましい。 3 is an enlarged view of a portion B of FIG. 1A showing the structure of the silicon carbide semiconductor device according to the first embodiment. As shown in FIG. 3, the corners can be chamfered by rounding the corners of the rectangle. If the amount of rounding the corners of the rectangle is too small, concentration of the electric field at the corners can not be alleviated, and if too large, the area of the n + -type source region 4 decreases and the ineffective region increases. Therefore, it is preferable that the amount of rounding the corner of the rectangle is 5% or more and 30% or less of the width W of the n + -type source region 4. The amount by which the corner of the rectangle is rounded is the distance R1 between the corner of the rectangle before chamfering and the surface after chamfering. Similarly, the amount of rounding the corners of a rectangle of p ++ type contact region 5 is also preferably 30% or less than 5% of the width of the p ++ type contact region 5.
 また、図4は、実施の形態1にかかる炭化珪素半導体装置の他の構造を示す図1AのB部分の拡大図である。図4に示すように、角を切り取ることで、隅部を面取りすることができる。矩形の角を切り取る量は、図3の矩形の角を丸める量と同様の理由により、n+型ソース領域4の幅Wの5%以上30%以下であることが好ましい。矩形の角を切り取る量とは、切り取る前の矩形の角と切り取った後の面との距離R2である。p++型コンタクト領域5の矩形の角を切り取る量も同様に、p++型コンタクト領域5の幅の5%以上30%以下であることが好ましい。 4 is an enlarged view of a portion B of FIG. 1A showing another structure of the silicon carbide semiconductor device according to the first embodiment. As shown in FIG. 4, the corners can be chamfered by cutting the corners. The amount by which the corner of the rectangle is cut out is preferably 5% or more and 30% or less of the width W of the n + -type source region 4 for the same reason as the amount by which the corner of the rectangle in FIG. 3 is rounded. The amount by which the corner of the rectangle is cut is the distance R2 between the corner before the cut and the surface after being cut. Similarly, the amount by which the rectangular corner of the p ++ -type contact region 5 is cut out is preferably 5% or more and 30% or less of the width of the p ++ -type contact region 5.
 なお、図1、図3、図4では、n+型ソース領域4とp++型コンタクト領域5の双方の隅部が面取りされているが、隅部を面取りするのはn+型ソース領域4のみとしてもよい。この構成でも隅部に電界が集中することを軽減できる。また、図1Aでは1つのストライプ状のp型ベース層3の中に1つのn+型ソース領域4を設けているが、複数のn+型ソース領域4を設けても構わない。この場合、p++型コンタクト領域5は、図1Bのようにn+型ソース領域4の中に設けてもよいし、図1Cのようにn+型ソース領域4と交互に並べてもよい。 In FIG. 1, FIG. 3 and FIG. 4, the corners of both the n + -type source region 4 and the p ++ -type contact region 5 are chamfered, but the chamfering of the corners is the n + -type source region Only 4 may be used. This configuration can reduce the concentration of the electric field at the corners. Although one n + -type source region 4 is provided in one stripe-like p-type base layer 3 in FIG. 1A, a plurality of n + -type source regions 4 may be provided. In this case, the p ++ -type contact region 5 may be provided in the n + -type source region 4 as shown in FIG. 1B or may be alternately arranged with the n + -type source region 4 as shown in FIG. 1C.
(実施の形態1にかかる炭化珪素半導体装置の製造方法)
 次に、実施の形態1にかかる炭化珪素半導体装置の製造方法について説明する。図5~図8は、実施の形態1にかかる炭化珪素半導体装置の製造途中の状態を模式的に示す断面図である。
(Method of Manufacturing Silicon Carbide Semiconductor Device According to First Embodiment)
Next, a method of manufacturing the silicon carbide semiconductor device according to the first embodiment will be described. 5 to 8 are cross sectional views schematically showing a state in the middle of manufacturing the silicon carbide semiconductor device according to the first embodiment.
 まず、例えば2×1019/cm3程度の不純物濃度で窒素(N2)がドーピングされたn+型炭化珪素基板1を用意する。n+型炭化珪素基板1は、主面が例えば、<11-20>方向に4度程度のオフ角を有する(000-1)面であってもよい。次に、n+型炭化珪素基板1の(000-1)面上に、1.0×1016/cm3の不純物濃度で窒素がドーピングされた厚さ10μm程度のn-型炭化珪素エピタキシャル層2を成長させる。ここで、図5に示される構造となる。 First, an n + -type silicon carbide substrate 1 doped with nitrogen (N 2 ) at an impurity concentration of, for example, about 2 × 10 19 / cm 3 is prepared. The n + -type silicon carbide substrate 1 may have, for example, a (000-1) plane whose main surface has an off angle of about 4 degrees in the <11-20> direction. Next, an n -type silicon carbide epitaxial layer with a thickness of about 10 μm doped with nitrogen at an impurity concentration of 1.0 × 10 16 / cm 3 on the (000-1) plane of n + -type silicon carbide substrate 1 Grow two. Here, the structure shown in FIG. 5 is obtained.
 次に、フォトリソグラフィおよびエッチングによりイオン注入用の酸化膜マスクを形成し、イオン注入によってn-型炭化珪素エピタキシャル層2の表面層に、p型ベース層3を選択的に形成する。このイオン注入では、例えば、ドーパントをアルミニウム(Al)とし、p型ベース層3の不純物濃度が1×1016~1×1018/cm3となるようにドーズ量を設定してもよい。ここで、図6に示される構造となる。 Next, by photolithography and etching to form an oxide film mask for ion implantation, n by ion implantation - the mold surface layer of the silicon carbide epitaxial layer 2 is selectively formed p-type base layer 3. In this ion implantation, for example, the dopant may be aluminum (Al), and the dose may be set so that the impurity concentration of the p-type base layer 3 is 1 × 10 16 to 1 × 10 18 / cm 3 . Here, the structure shown in FIG. 6 is obtained.
 次に、フォトリソグラフィおよびイオン注入によって、p型ベース層3の表面層に、n+型ソース領域4を選択的に形成する。次に、フォトリソグラフィおよびイオン注入によって、p型ベース層3の表面層に、p++型コンタクト領域5を選択的に形成する。例えば、ドーパントをアルミニウムとし、p++型コンタクト領域5の不純物濃度が1×1017~1×1019/cm3となるようにドーズ量を設定してもよい。ここで、図7に示される構造となる。 Next, the n + -type source region 4 is selectively formed in the surface layer of the p-type base layer 3 by photolithography and ion implantation. Next, the p ++ -type contact region 5 is selectively formed in the surface layer of the p-type base layer 3 by photolithography and ion implantation. For example, the dose may be set such that the dopant is aluminum and the impurity concentration of the p ++ -type contact region 5 is 1 × 10 17 to 1 × 10 19 / cm 3 . Here, the structure shown in FIG. 7 is obtained.
 ここで、n+型ソース領域4を矩形の形状に、4つの隅部すべてが面取りされるように形成する。図9は、実施の形態1にかかる炭化珪素半導体装置のn+型ソース領域の製造途中の状態を示す上面図である。例えば、図9に示すように、p型ベース層3のn+型ソース領域4が形成される領域に、n+型ソース領域4の隅部に開口部を有するマスク12を用いることで形成することができる。p++型コンタクト領域5も同様にして、4つの隅部すべてが面取りされた矩形の形状に形成する。 Here, the n + -type source region 4 is formed in a rectangular shape so that all four corners are chamfered. FIG. 9 is a top view showing a state in the middle of manufacture of the n + -type source region of the silicon carbide semiconductor device according to the first embodiment. For example, as shown in FIG. 9, in the region of the p-type base layer 3 where the n + -type source region 4 is formed, the mask 12 having openings at the corners of the n + -type source region 4 is used. be able to. Similarly, the p ++ -type contact region 5 is formed in a rectangular shape in which all four corners are chamfered.
 また、例えば、n+型ソース領域4やp++型コンタクト領域5が形成される領域の隅に近づくにつれ、イオン注入で注入される不純物の濃度を薄くすることによっても、4つの隅部すべてが面取りされるように形成することができる。 Further, for example, all the four corners can also be formed by reducing the concentration of the impurity implanted by ion implantation toward the corner of the region where the n + -type source region 4 and the p ++ -type contact region 5 are formed. Can be formed to be chamfered.
 また、n+型ソース領域4、p++型コンタクト領域5を形成する順序は種々変更可能である。 In addition, the order of forming the n + -type source region 4 and the p ++ -type contact region 5 can be changed variously.
 次に、p型ベース層3、n+型ソース領域4およびp++型コンタクト領域5を活性化させるための熱処理(アニール)を行う。このときの熱処理温度および熱処理時間は、それぞれ1620℃および2分間であってもよい。なお、上述したように1回の熱処理によって各イオン注入領域をまとめて活性化してもよいし、イオン注入を行うたびに熱処理を行って活性化してもよい。 Next, heat treatment (annealing) is performed to activate the p-type base layer 3, the n + -type source region 4 and the p ++ -type contact region 5. The heat treatment temperature and the heat treatment time at this time may be 1620 ° C. and 2 minutes, respectively. As described above, each ion implantation region may be activated collectively by one heat treatment, or may be activated by heat treatment every time ion implantation is performed.
 次に、炭化珪素半導体基体40のおもて面側を熱酸化し、ゲート絶縁膜6となる酸化膜を形成する。この熱酸化は、酸素(O2)と水素(H2)の混合雰囲気中において1000℃程度の温度の熱処理によって行ってもよい。これにより、p型ベース層3およびn-型炭化珪素エピタキシャル層2の表面に形成された各領域がゲート絶縁膜6で覆われる。 Next, the front surface side of silicon carbide semiconductor substrate 40 is thermally oxidized to form an oxide film to be gate insulating film 6. This thermal oxidation may be performed by heat treatment at a temperature of about 1000 ° C. in a mixed atmosphere of oxygen (O 2 ) and hydrogen (H 2 ). Thereby, each region formed on the surface of p type base layer 3 and n type silicon carbide epitaxial layer 2 is covered with gate insulating film 6.
 次に、ゲート絶縁膜6上に、ゲート電極8として、例えばリン(P)がドープされた多結晶シリコン層(ポリシリコン(poly-Si)層)を形成する。次に、多結晶シリコン層をパターニングして選択的に除去し、p型ベース層3の、n+型ソース領域4とn-型炭化珪素エピタキシャル層2とに挟まれた部分上に多結晶シリコン層を残す。このとき、n-型炭化珪素エピタキシャル層2上に多結晶シリコン層を残してもよい。 Next, a polycrystalline silicon layer (polysilicon (poly-Si) layer) doped with, for example, phosphorus (P) is formed as the gate electrode 8 on the gate insulating film 6. Next, the polycrystalline silicon layer is patterned and selectively removed, and polycrystalline silicon is formed on the portion of p-type base layer 3 sandwiched between n + -type source region 4 and n -type silicon carbide epitaxial layer 2 Leave a layer. At this time, a polycrystalline silicon layer may be left on the n -type silicon carbide epitaxial layer 2.
 次に、ゲート絶縁膜6を覆うように、層間絶縁膜9として例えばリンガラス(PSG:Phospho Silicate Glass)を成膜する。層間絶縁膜9の厚さは1.0μmであってもよい。次に、層間絶縁膜9およびゲート絶縁膜6をパターニングして選択的に除去してコンタクトホールを形成し、n+型ソース領域4およびp++型コンタクト領域5を露出させる。次に、層間絶縁膜9を平坦化するための熱処理(リフロー)を行う。ここで、図8に示される構造となる。 Next, phosphorus glass (PSG: Phospho Silicate Glass), for example, is formed as the interlayer insulating film 9 so as to cover the gate insulating film 6. The thickness of the interlayer insulating film 9 may be 1.0 μm. Next, interlayer insulating film 9 and gate insulating film 6 are patterned and selectively removed to form a contact hole, thereby exposing n + -type source region 4 and p ++ -type contact region 5. Next, heat treatment (reflow) is performed to planarize the interlayer insulating film 9. Here, the structure shown in FIG. 8 is obtained.
 次に、ゲート電極8上の層間絶縁膜9の表面に、ソース電極10を成膜する。このとき、コンタクトホール内にもソース電極10を埋め込み、n+型ソース領域4およびp++型コンタクト領域5とソース電極10とを接触させる。次に、コンタクトホール以外のソース電極10を選択的に除去する。 Next, the source electrode 10 is formed on the surface of the interlayer insulating film 9 on the gate electrode 8. At this time, the source electrode 10 is buried also in the contact hole, and the n + -type source region 4 and the p ++ -type contact region 5 are brought into contact with the source electrode 10. Next, the source electrode 10 other than the contact hole is selectively removed.
 次に、n+型炭化珪素基板1の表面(炭化珪素半導体基体40の裏面)に、ドレイン電極14として例えばニッケル膜を成膜する。そして、例えば970℃の温度で熱処理し、n+型炭化珪素基板1とドレイン電極14とのオーミック接合を形成する。次に、例えばスパッタ法によって、炭化珪素半導体基体40のおもて面の全面にソース電極10および層間絶縁膜9を覆うように、ゲート電極パッド(不図示)およびソース電極パッドとなる電極パッドを堆積する。電極パッドの層間絶縁膜9上の部分の厚さは、例えば5μmであってもよい。電極パッドは、例えば、1%の割合でシリコンを含んだアルミニウム(Al-Si)で形成してもよい。次に、電極パッドを選択的に除去する。 Next, a nickel film, for example, is formed as the drain electrode 14 on the surface of the n + -type silicon carbide substrate 1 (the back surface of the silicon carbide semiconductor substrate 40). Then, heat treatment is performed, for example, at a temperature of 970 ° C. to form an ohmic junction between the n + -type silicon carbide substrate 1 and the drain electrode 14. Next, an electrode pad serving as a gate electrode pad (not shown) and a source electrode pad is covered by, for example, sputtering to cover source electrode 10 and interlayer insulating film 9 on the entire front surface of silicon carbide semiconductor substrate 40. accumulate. The thickness of the portion on the interlayer insulating film 9 of the electrode pad may be, for example, 5 μm. The electrode pad may be made of, for example, aluminum (Al—Si) containing silicon at a ratio of 1%. Next, the electrode pad is selectively removed.
 次に、ドレイン電極14の表面に、ドレイン電極パッドとして例えばチタン(Ti)、ニッケル(Ni)および金(Au)をこの順に成膜する。次に、保護膜を表面に形成してもよい。これにより、図1、図2に示す炭化珪素半導体装置が完成する。 Next, titanium (Ti), nickel (Ni) and gold (Au), for example, are formed in this order as drain electrode pads on the surface of the drain electrode 14. Next, a protective film may be formed on the surface. Thereby, the silicon carbide semiconductor device shown in FIG. 1 and FIG. 2 is completed.
 以上、説明したように、実施の形態1にかかる炭化珪素半導体装置によれば、n+型ソース領域は矩形の形状であり、4つの隅部すべてが面取りされている。これにより、ゲート電極の過電圧、ドレイン電極に印加された際に加わるゲート電極への強い電界により、隅部に電界が集中することが軽減される。このため、本構成の炭化珪素半導体装置は、ゲート絶縁膜の破壊耐量が改善される。 As described above, according to the silicon carbide semiconductor device according to the first embodiment, the n + -type source region has a rectangular shape, and all four corner portions are chamfered. As a result, the concentration of the electric field at the corners is reduced by the overvoltage of the gate electrode and the strong electric field applied to the gate electrode when applied to the drain electrode. Therefore, in the silicon carbide semiconductor device of the present configuration, the breakdown resistance of the gate insulating film is improved.
(実施の形態2)
 次に、実施の形態2にかかる炭化珪素半導体装置の構造について説明する。図10は、実施の形態2にかかる炭化珪素半導体装置の構造を示す上面図である。実施の形態2にかかる炭化珪素半導体装置の構造を示す図10のA-A’部分の断面図は、実施の形態1の断面図と同様であるために記載を省略する(図2参照)。実施の形態2にかかる炭化珪素半導体装置が実施の形態1にかかる炭化珪素半導体装置の変形例(図1B)と異なる点は、n+型ソース領域4の隅部の不純物濃度が、n+型ソース領域4の隅部以外の部分の不純物濃度より低いこと、およびp++型コンタクト領域5を面取りしていない点である。
Second Embodiment
Next, the structure of the silicon carbide semiconductor device according to the second embodiment will be described. FIG. 10 is a top view showing the structure of the silicon carbide semiconductor device according to the second embodiment. The cross-sectional view taken along the line AA 'of FIG. 10 showing the structure of the silicon carbide semiconductor device according to the second embodiment is the same as the cross-sectional view of the first embodiment (FIG. 2). The difference between the silicon carbide semiconductor device according to the second embodiment and the modification (FIG. 1B) of the silicon carbide semiconductor device according to the first embodiment is that the impurity concentration of the corner of the n + -type source region 4 is n + -type It is lower than the impurity concentration of the portion other than the corner of the source region 4 and that the p ++ -type contact region 5 is not chamfered.
 図11は、実施の形態2にかかる炭化珪素半導体装置の構造を示す図10のB部分の拡大図である。図11に示すように、実施の形態2のn+型ソース領域4は、隅部Sと隅部以外の部分Tからなり、隅部Sの不純物濃度は、隅部以外の部分Tと同じもしくは部分Tより低い。また、ここでの隅部Sは、実施の形態1においてn+型ソース領域4の矩形の角を丸める際に取り除いた部分に該当する。実施の形態1と同様に、隅部Sの面積が少なすぎると隅部に電界が集中することを軽減できず、多すぎると不純物濃度の高い部分が減り無効領域が増える。このため、n+型ソース領域4の矩形の角Pから隅部以外の部分Tまでの距離R3が、n+型ソース領域4の幅Wの5%以上30%以下であることが好ましい。 11 is an enlarged view of a portion B of FIG. 10 showing the structure of the silicon carbide semiconductor device according to the second embodiment. As shown in FIG. 11, the n + -type source region 4 according to the second embodiment includes the corner S and a portion T other than the corner, and the impurity concentration of the corner S is the same as the portion T other than the corner or Lower than part T. Also, the corner S here corresponds to the portion removed when rounding the rectangular corner of the n + -type source region 4 in the first embodiment. As in the first embodiment, when the area of the corner S is too small, the concentration of the electric field at the corner can not be reduced. When it is too large, the portion with high impurity concentration decreases and the ineffective region increases. Therefore, it is preferable that the distance R3 from the rectangular corner P of the n + -type source region 4 to the portion T other than the corner be 5% or more and 30% or less of the width W of the n + -type source region 4.
 また、図12は、実施の形態2にかかる炭化珪素半導体装置の他の構造を示す図10のB部分の拡大図である。図12での隅部Sは、実施の形態1においてn+型ソース領域4の矩形を切り取った際に取り除いた部分に該当する。図11と同様の理由により、n+型ソース領域4の矩形の角Pから隅部以外の部分Tまでの距離R4が、n+型ソース領域4の幅Wの5%以上30%以下であることが好ましい。 12 is an enlarged view of a portion B of FIG. 10 showing another structure of the silicon carbide semiconductor device according to the second embodiment. The corner S in FIG. 12 corresponds to the portion removed when the rectangle of the n + -type source region 4 is cut out in the first embodiment. For the same reason as FIG. 11, the distance R4 from the corner P of the rectangle of the n + -type source region 4 to the portion T other than the corner is 5% or more and 30% or less of the width W of the n + -type source region 4 Is preferred.
(実施の形態2にかかる炭化珪素半導体装置の製造方法)
 実施の形態2にかかる炭化珪素半導体装置の製造方法は、実施の形態1にかかる炭化珪素半導体装置の製造方法において、n+型ソース領域4を、隅部の不純物濃度が隅部以外の部分の不純物濃度と同じもしくはより低くなるように形成すればよい。
(Method of Manufacturing Silicon Carbide Semiconductor Device According to Second Embodiment)
In the method of manufacturing a silicon carbide semiconductor device according to the second embodiment, in the method of manufacturing the silicon carbide semiconductor device according to the first embodiment, the n + -type source region 4 is formed in a portion where the impurity concentration in the corner is other than the corner. It may be formed to be the same as or lower than the impurity concentration.
 例えば、実施の形態1の図9のマスク12を用いて、n型の不純物をp型ベース層3にイオン注入を行う。この後、p型ベース層3のn+型ソース領域4が形成される領域に開口部を持つマスクを用いて、n型の不純物をp型ベース層3にイオン注入を行うことで形成する。ここでは2段のイオン注入であったが、3段以上のイオン注入にしてもよい。 For example, n-type impurities are ion-implanted into the p-type base layer 3 using the mask 12 of FIG. 9 of the first embodiment. Thereafter, using a mask having an opening in a region where the n + type source region 4 of p-type base layer 3 is formed, the n-type impurity is formed by performing ion implantation into the p-type base layer 3. Although two-stage ion implantation is used here, three or more stages of ion implantation may be used.
 また、例えば、n+型ソース領域4が形成される領域の隅に近づくにつれ、イオン注入で注入されるn型の不純物の濃度を薄くすることによっても、隅部の不純物濃度を隅部以外の部分の不純物濃度より低くすることができる。 Also, for example, as the concentration of the n-type impurity implanted by ion implantation is reduced toward the corner of the region in which the n + -type source region 4 is formed, the impurity concentration of the corner is It can be lower than the impurity concentration of the part.
 以上、説明したように、実施の形態2にかかる炭化珪素半導体装置によれば、n+型ソース領域の隅部の不純物濃度が、n+型ソース領域の隅部以外の部分の不純物濃度より低い。これにより、実施の形態1と同様の効果を得ることができる。 As described above, according to the silicon carbide semiconductor device according to the second embodiment, the impurity concentration of the corners of the n + -type source region is lower than the impurity concentration of the portion other than the corner portion of the n + -type source region . Thereby, the same effect as that of the first embodiment can be obtained.
 上記実施の形態では、プレーナ型の炭化珪素MOSFETを例に説明してきたが、本発明は、トレンチ型の炭化珪素MOSFETにも適用可能である。図13は、実施の形態1、2にかかるトレンチ型の炭化珪素MOSFETの構造を示す断面図である。 Although the planar silicon carbide MOSFET has been described as an example in the above embodiment, the present invention is also applicable to a trench silicon carbide MOSFET. FIG. 13 is a cross-sectional view showing a structure of a trench type silicon carbide MOSFET according to the first and second embodiments.
 図13において、符号21~32、38は、それぞれn+型炭化珪素基板、n-型ドリフト層、第1p+型領域、第2p+型領域、n型領域、p型ベース層、n+型ソース領域、p+型コンタクト領域、ゲート絶縁膜、ゲート電極、層間絶縁膜、ソース電極、トレンチである。このようなトレンチゲート構造のような縦型MOSFETは、ゲート電極30がストライプ形状に設けられる。 In FIG. 13, reference numerals 21 to 32 and 38 denote an n + -type silicon carbide substrate, an n -type drift layer, a first p + -type region, a second p + -type region, an n-type region, a p-type base layer, and an n + -type, respectively. A source region, ap + -type contact region, a gate insulating film, a gate electrode, an interlayer insulating film, a source electrode, and a trench. In a vertical MOSFET such as such a trench gate structure, the gate electrode 30 is provided in a stripe shape.
 また、トレンチ型の炭化珪素MOSFETの上面図は、プレーナ型の炭化珪素MOSFETのn-型炭化珪素エピタキシャル層2をゲート絶縁膜29、ゲート電極30に変更する以外同様であるために記載は省略する。このようなトレンチ型の炭化珪素MOSFETでも、n+型ソース領域27の隅部を面取りする、または、隅部の不純物濃度を隅部以外の部分の不純物濃度より低くすることで、プレーナ型の炭化珪素MOSFETと同様にゲート絶縁膜29の破壊耐量を改善することができる。 Further, the top view of a silicon carbide MOSFET trench type, n of the planar-type silicon carbide MOSFET - according to the same except for changing the type silicon carbide epitaxial layer 2 gate insulating film 29, the gate electrode 30 is omitted . Even in such a trench type silicon carbide MOSFET, planarized carbonization is performed by chamfering the corner of the n + -type source region 27 or setting the impurity concentration of the corner lower than the impurity concentration of the portion other than the corner. Similar to the silicon MOSFET, the breakdown tolerance of the gate insulating film 29 can be improved.
 また、トレンチ型の炭化珪素MOSFETでは、トレンチ38の底にゲート絶縁膜29と接する第1p+型領域23が設けられている。このため、第1p+型領域23の隅部を面取りする、または、隅部の不純物濃度を隅部以外の部分の不純物濃度より低くすることで、n+型ソース領域27の場合と同様にゲート絶縁膜29の破壊耐量を改善することができる。 Further, in the trench type silicon carbide MOSFET, the first p + -type region 23 in contact with the gate insulating film 29 is provided at the bottom of the trench 38. Therefore, by chamfering the corner of the first p + -type region 23 or setting the impurity concentration of the corner lower than the impurity concentration of the portion other than the corner, the gate is the same as in the case of the n + -type source region 27. The breakdown resistance of the insulating film 29 can be improved.
 以上において本発明では、炭化珪素でできた炭化珪素基板の主面を(0001)面とし当該(0001)面上にMOSを構成した場合を例に説明したが、これに限らず、ワイドバンドギャップ半導体、基板主面の面方位などを種々変更可能である。 In the present invention, the main surface of the silicon carbide substrate made of silicon carbide is described as the (0001) plane and the MOS is formed on the (0001) plane. However, the present invention is not limited thereto. The semiconductor, the plane orientation of the main surface of the substrate, and the like can be variously changed.
 また、本発明の実施の形態では、プレーナ型およびトレンチ型MOSFETを例に説明したが、これに限らず、ストライプ形状のゲート電極を有するIGBTなどのMOS型半導体装置など様々な構成の半導体装置に適用可能である。また、上述した各実施の形態では、ワイドバンドギャップ半導体として炭化珪素を用いた場合を例に説明したが、窒化ガリウム(GaN)など炭化珪素以外のワイドバンドギャップ半導体を用いた場合においても同様の効果が得られる。また、各実施の形態では第1導電型をn型とし、第2導電型をp型としたが、本発明は第1導電型をp型とし、第2導電型をn型としても同様に成り立つ。 In the embodiments of the present invention, planar and trench MOSFETs have been described as an example, but the present invention is not limited to this, and semiconductor devices of various configurations such as MOS semiconductor devices such as IGBTs having stripe-shaped gate electrodes are described. It is applicable. In each of the above-described embodiments, although the case of using silicon carbide as the wide band gap semiconductor has been described as an example, the same applies to the case of using a wide band gap semiconductor other than silicon carbide such as gallium nitride (GaN). An effect is obtained. In each embodiment, the first conductivity type is n-type, and the second conductivity type is p-type. However, the present invention similarly applies the first conductivity type to p-type and the second conductivity type to n-type. It holds.
 以上のように、本発明にかかる炭化珪素半導体装置および炭化珪素半導体装置の製造方法は、電力変換装置や種々の産業用機械などの電源装置などに使用される高耐圧半導体装置に有用である。 As described above, the silicon carbide semiconductor device and the method for manufacturing the silicon carbide semiconductor device according to the present invention are useful for a high breakdown voltage semiconductor device used for a power conversion device or a power supply device such as various industrial machines.
 1、101 n+型炭化珪素基板
 2、102 n-型炭化珪素エピタキシャル層
 3、103 p型ベース層
 4、104 n+型ソース領域
 5、105 p++型コンタクト領域
 6、106 ゲート絶縁膜
 8、108 ゲート電極
 9、109 層間絶縁膜
10、110 ソース電極
12、120、121 マスク
14、114 ドレイン電極
21 n+型炭化珪素基板
22 n-型ドリフト層
23 第1p+型領域
24 第2p+型領域
25 n型領域
26 p型ベース層
27 n+型ソース領域
28 p+型コンタクト領域
29 ゲート絶縁膜
30 ゲート電極
31 層間絶縁膜
32 ソース電極
38 トレンチ
40、140 炭化珪素半導体基体
201 n+型珪素基板
202 n-型珪素エピタキシャル層
1, 101 n + type silicon carbide substrate 2, 102 n type silicon carbide epitaxial layer 3, 103 p type base layer 4, 104 n + type source region 5, 105 p ++ type contact region 6, 106 gate insulating film 8 , 108 gate electrode 9, 109 interlayer insulating film 10, 110 source electrode 12, 120, 121 mask 14, 114 drain electrode 21 n + type silicon carbide substrate 22 n type drift layer 23 first p + type region 24 second p + type Region 25 n-type region 26 p-type base layer 27 n + -type source region 28 p + -type contact region 29 gate insulating film 30 gate electrode 31 interlayer insulating film 32 source electrode 38 trench 40, 140 silicon carbide semiconductor substrate 201 n + -type silicon Substrate 202 n - type silicon epitaxial layer

Claims (8)

  1.  第1導電型の炭化珪素半導体基板と、
     前記炭化珪素半導体基板のおもて面に設けられた、前記炭化珪素半導体基板より低不純物濃度の第1導電型の第1半導体層と、
     前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に設けられた第2導電型の第2半導体層と、
     前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に設けられた第1導電型の第1半導体領域と、
     前記第1半導体領域と前記第1半導体層とに挟まれた前記第2半導体層の表面上の少なくとも一部にゲート絶縁膜を介して設けられたストライプ形状のゲート電極と、
     前記第1半導体領域と前記第2半導体層の表面に設けられた第1電極と、
     前記炭化珪素半導体基板の裏面に設けられた第2電極と、
     を備え、
     前記第1半導体領域の表面隅部の不純物濃度が、前記第1半導体領域の表面の隅部以外の部分の不純物濃度と同じもしくはより低いことを特徴とする炭化珪素半導体装置。
    A first conductivity type silicon carbide semiconductor substrate,
    A first semiconductor layer of a first conductivity type provided on the front surface of the silicon carbide semiconductor substrate and having a lower impurity concentration than the silicon carbide semiconductor substrate;
    A second semiconductor layer of a second conductivity type selectively provided on a surface layer opposite to the silicon carbide semiconductor substrate side of the first semiconductor layer;
    A first semiconductor region of a first conductivity type selectively provided in a surface layer of the second semiconductor layer opposite to the silicon carbide semiconductor substrate side;
    A stripe-shaped gate electrode provided via a gate insulating film on at least a portion of the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer;
    A first electrode provided on the surface of the first semiconductor region and the second semiconductor layer;
    A second electrode provided on the back surface of the silicon carbide semiconductor substrate;
    Equipped with
    The silicon carbide semiconductor device characterized in that the impurity concentration of the surface corner of the first semiconductor region is the same as or lower than the impurity concentration of the portion other than the corner of the surface of the first semiconductor region.
  2.  前記第1半導体領域の表面隅部が面取りされていることを特徴とする請求項1に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to claim 1, wherein a surface corner of the first semiconductor region is chamfered.
  3.  前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第2導電型の第2半導体領域をさらに有し、
     前記第2半導体領域の表面隅部は面取りされていることを特徴とする請求項2に記載の炭化珪素半導体装置。
    The semiconductor device further comprises a second semiconductor region of the second conductivity type selectively on the surface layer of the second semiconductor layer opposite to the silicon carbide semiconductor substrate side,
    The silicon carbide semiconductor device according to claim 2, wherein a surface corner of the second semiconductor region is chamfered.
  4.  前記第1半導体領域は表面が矩形の形状であり、前記矩形の角が丸められている、または、前記矩形の角が切り取られていることを特徴とする請求項2に記載の炭化珪素半導体装置。 The silicon carbide semiconductor device according to claim 2, wherein the first semiconductor region has a rectangular surface, and the corners of the rectangle are rounded or the corners of the rectangle are cut off. .
  5.  前記第1半導体領域は、前記第1半導体領域の幅の5%以上30%以下の長さ、前記矩形の角が丸められている、または、前記矩形の角が切り取られていることを特徴とする請求項4に記載の炭化珪素半導体装置。 The first semiconductor region has a length of 5% to 30% of the width of the first semiconductor region, and the corner of the rectangle is rounded, or the corner of the rectangle is cut off. The silicon carbide semiconductor device according to claim 4.
  6.  第1導電型の炭化珪素半導体基板のおもて面に、前記炭化珪素半導体基板より低不純物濃度の第1導電型の第1半導体層を形成する第1工程と、
     前記第1半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第2導電型の第2半導体層を形成する第2工程と、
     前記第2半導体層の、前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第1導電型の第1半導体領域を形成する第3工程と、
     前記第1半導体領域と前記第1半導体層とに挟まれた前記第2半導体層の表面上の少なくとも一部にゲート絶縁膜を介してストライプ形状のゲート電極を形成する第4工程と、
     前記第1半導体領域と前記第2半導体層の表面に第1電極を形成する第5工程と、
     前記炭化珪素半導体基板の裏面に第2電極を形成する第6工程と、
     を含み、
     前記第3工程では、表面隅部の不純物濃度が表面の隅部以外の部分の不純物濃度と同じもしくはより低い前記第1半導体領域を形成することを特徴とする炭化珪素半導体装置の製造方法。
    A first step of forming a first conductive first semiconductor layer having a lower impurity concentration than the silicon carbide semiconductor substrate on a front surface of the first conductive silicon carbide semiconductor substrate;
    A second step of selectively forming a second semiconductor layer of a second conductivity type on a surface layer of the first semiconductor layer opposite to the silicon carbide semiconductor substrate side;
    A third step of selectively forming a first semiconductor region of a first conductivity type in a surface layer of the second semiconductor layer opposite to the silicon carbide semiconductor substrate side;
    Forming a stripe-shaped gate electrode via a gate insulating film on at least a portion of the surface of the second semiconductor layer sandwiched between the first semiconductor region and the first semiconductor layer;
    Forming a first electrode on surfaces of the first semiconductor region and the second semiconductor layer;
    A sixth step of forming a second electrode on the back surface of the silicon carbide semiconductor substrate;
    Including
    In the third step, the first semiconductor region is formed, wherein the impurity concentration of the surface corner is the same as or lower than the impurity concentration of the portion other than the corner of the surface.
  7.  前記第3工程では、隅部が面取りされた前記第1半導体領域を形成することを特徴とする請求項6に記載の炭化珪素半導体装置の製造方法。 The method of manufacturing a silicon carbide semiconductor device according to claim 6, wherein in the third step, the first semiconductor region whose corner is chamfered is formed.
  8.  前記第2半導体層の前記炭化珪素半導体基板側に対して反対側の表面層に選択的に第2導電型の第2半導体領域を形成する工程さらに有し、
     前記第2半導体領域の表面隅部は面取りされていることを特徴とする請求項7に記載の炭化珪素半導体装置の製造方法。
    The method further includes the step of selectively forming a second semiconductor region of the second conductivity type in a surface layer opposite to the silicon carbide semiconductor substrate side of the second semiconductor layer.
    8. The method for manufacturing a silicon carbide semiconductor device according to claim 7, wherein a surface corner of the second semiconductor region is chamfered.
PCT/JP2018/031239 2017-10-17 2018-08-23 Silicon carbide semiconductor device, and manufacturing method of silicon carbide semiconductor device WO2019077878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017201313 2017-10-17
JP2017-201313 2017-10-17

Publications (1)

Publication Number Publication Date
WO2019077878A1 true WO2019077878A1 (en) 2019-04-25

Family

ID=66174465

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031239 WO2019077878A1 (en) 2017-10-17 2018-08-23 Silicon carbide semiconductor device, and manufacturing method of silicon carbide semiconductor device

Country Status (1)

Country Link
WO (1) WO2019077878A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093453A (en) * 2019-12-10 2021-06-17 富士電機株式会社 Semiconductor device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154469A (en) * 1988-12-06 1990-06-13 Fuji Electric Co Ltd Vertical field effect transistor
WO2009139140A1 (en) * 2008-05-13 2009-11-19 パナソニック株式会社 Semiconductor element
JP2012033809A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Mos type semiconductor device
JP2012178536A (en) * 2011-02-02 2012-09-13 Rohm Co Ltd Semiconductor apparatus and manufacturing method thereof
JP2012235001A (en) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2015076437A (en) * 2013-10-07 2015-04-20 三菱電機株式会社 Semiconductor device and manufacturing method of the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02154469A (en) * 1988-12-06 1990-06-13 Fuji Electric Co Ltd Vertical field effect transistor
WO2009139140A1 (en) * 2008-05-13 2009-11-19 パナソニック株式会社 Semiconductor element
JP2012033809A (en) * 2010-08-02 2012-02-16 Fuji Electric Co Ltd Mos type semiconductor device
JP2012178536A (en) * 2011-02-02 2012-09-13 Rohm Co Ltd Semiconductor apparatus and manufacturing method thereof
JP2012235001A (en) * 2011-05-06 2012-11-29 Mitsubishi Electric Corp Semiconductor device and manufacturing method therefor
JP2015076437A (en) * 2013-10-07 2015-04-20 三菱電機株式会社 Semiconductor device and manufacturing method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021093453A (en) * 2019-12-10 2021-06-17 富士電機株式会社 Semiconductor device
JP7451981B2 (en) 2019-12-10 2024-03-19 富士電機株式会社 semiconductor equipment

Similar Documents

Publication Publication Date Title
WO2018135147A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6052481B2 (en) Semiconductor device
JP6631632B2 (en) Semiconductor device
JP7087280B2 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
WO2013161451A1 (en) Semiconductor device
JP6848316B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6705155B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP2018133377A (en) Semiconductor device and semiconductor device manufacturing method
JP6194779B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2018082055A (en) Semiconductor device and semiconductor device manufacturing method
JP6919713B2 (en) Silicon Carbide Semiconductor Device and Method for Manufacturing Silicon Carbide Semiconductor Device
JP6880637B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6862782B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP2017199926A (en) Semiconductor device and semiconductor device manufacturing method
JP6589263B2 (en) Semiconductor device
JP6884803B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
WO2019077878A1 (en) Silicon carbide semiconductor device, and manufacturing method of silicon carbide semiconductor device
JP7074173B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices
JP6651801B2 (en) Semiconductor device and method of manufacturing semiconductor device
JP7106882B2 (en) Semiconductor device and method for manufacturing semiconductor device
JP2016058661A (en) Semiconductor device
JP2021002597A (en) Semiconductor device
JP2019165245A (en) Semiconductor device
WO2017047283A1 (en) Semiconductor device and method for manufacturing semiconductor device
JP6891448B2 (en) Semiconductor devices and methods for manufacturing semiconductor devices

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP