WO2019075898A1 - 一种硅通孔电镀的三步预浸润方法 - Google Patents

一种硅通孔电镀的三步预浸润方法 Download PDF

Info

Publication number
WO2019075898A1
WO2019075898A1 PCT/CN2017/117068 CN2017117068W WO2019075898A1 WO 2019075898 A1 WO2019075898 A1 WO 2019075898A1 CN 2017117068 W CN2017117068 W CN 2017117068W WO 2019075898 A1 WO2019075898 A1 WO 2019075898A1
Authority
WO
WIPO (PCT)
Prior art keywords
wafer
immersed
silicon via
immersion
silicon
Prior art date
Application number
PCT/CN2017/117068
Other languages
English (en)
French (fr)
Inventor
李操
费鹏
刘胜
Original Assignee
华中科技大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华中科技大学 filed Critical 华中科技大学
Publication of WO2019075898A1 publication Critical patent/WO2019075898A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • H01L21/76882Reflowing or applying of pressure to better fill the contact hole
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D7/00Electroplating characterised by the article coated
    • C25D7/12Semiconductors
    • C25D7/123Semiconductors first coated with a seed layer or a conductive layer

Definitions

  • the invention belongs to the field of 3D packaging, and more particularly to a three-step pre-wetting method for through-silicon via plating.
  • TSV plating small-aperture TSVs (through-silicon vias) can support higher circuit densities. However, a smaller aperture means a higher aspect ratio.
  • the TSV plating process is often done before the wafer is thinned, which means that the plating fill depth to diameter ratio must exceed 10: 1 blind hole. Due to the surface tension of the plating solution, such a deep-diameter ratio makes it difficult for the plating solution to completely infiltrate the inside of the blind hole, which may result in voids inside the blind hole plating or even complete failure to fill.
  • the high vacuum can be used to infiltrate the deep aspect ratio, so for high aspect ratio TSVs, expensive vacuum pumps and complex process procedures are required.
  • the boiling point of water is greatly reduced in a high vacuum environment, it is easy to boil, so vacuum infiltration also requires strict control of the temperature environment.
  • a chip with a special structure such as a pressure sensor chip with a thin film structure, it is also easy to cause irreversible damage to its special structure, resulting in incompatibility between the TSV technology and the chip manufacturing process.
  • the ultrasonic bath method tends to cause the seed layer to fall off, and the TSV effect for high aspect ratio is not satisfactory, and the reliability is low.
  • the present invention provides a three-step pre-wetting method for through-silicon via plating, thereby solving the prior art, having high cost, complicated process, and easy The technical problem of falling off the seed layer, low efficiency and unsatisfactory effect.
  • the present invention provides a three-step pre-wetting method for through-silicon via plating, comprising:
  • the specific implementation manner of the step (1) is: immersing the silicon through-hole wafer of the seed copper layer in the immersion liquid, and the angle between the silicon through-hole wafer of the seed copper layer and the liquid surface of the immersion liquid is 0. ° to 90°, the immersion speed of the through-silicon via wafer of the seed copper layer is less than or equal to 20 mm/s, and when the through-silicon via wafer of the seed copper layer is completely wetted, an initial wetted wafer is obtained, the through-silicon via The pore diameter is from 3 ⁇ m to 50 ⁇ m, and the pore depth to diameter ratio is from 15:1 to 1:1.
  • step (2) immersing the first immersed wafer in the deionized water, the initial immersion wafer and the deionized water have an angle of 0° to 90°, and the initial immersion wafer The immersion speed is greater than or equal to 3 mm/s to obtain a re-wetting wafer.
  • step (3) immersing and immersing the re-wetting wafer in the plating solution, and then immersing the liquid surface of the wafer and the plating solution at an angle of 0° to 90°, and then immersing the wafer.
  • the immersion speed is greater than or equal to 3 mm/s, at which time the solute in the plating solution diffuses into the inside of the through silicon via, thereby achieving infiltration of the inside of the through hole of the through silicon via.
  • the immersion liquid is anhydrous ethanol, acetone or isopropyl alcohol.
  • the present invention is directed to some chips or wafers having a particularly fragile structure, such as a pressure sensor chip with a thin film cavity structure, since it does not produce a relatively obvious mechanical process, and therefore does not cause damage to its special structure;
  • the pre-wetting method of the present invention with respect to the ultrasonic bath can achieve a high infiltration of TSV with a large aspect ratio and does not cause problems such as falling off of the seed layer.
  • the immersed wafer is immersed and immersed in deionized water at a immersion speed of 3 mm/s or more to ensure the hole.
  • the inner immersion liquid is immersed in deionized water before volatilization, the deionized water does not affect the plating solution, and the re-wet wafer is immersed and immersed in the plating solution, and the immersion speed is greater than or equal to 3 mm/s to ensure that the deionized water in the hole is immersed in the plating before volatilization.
  • the liquid it is possible to achieve a high infiltration of through-silicon vias with a large aspect ratio, without causing problems such as falling off of the seed layer, reducing the cost, greatly shortening the process time, and improving the efficiency.
  • FIG. 1 is a flow chart of a three-step pre-wetting method for through-silicon via plating according to an embodiment of the present invention
  • FIG. 2 is a schematic diagram of a three-step pre-wetting method for through-silicon via plating according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing the vertical downward immersion into the immersion liquid, deionized water, and plating solution according to Embodiment 1 of the present invention
  • FIG. 4 is a schematic view showing the immersion into the immersion liquid, deionized water, and plating solution when the angle between the downward and the liquid surface is 45° according to the second embodiment of the present invention
  • 1 is a TSV wafer of a seed copper layer
  • 2 is a TSV in a TSV wafer of a seed copper layer
  • 3 is an immersed liquid
  • 4 is a water tank.
  • a three-step pre-wetting method for through-silicon via plating includes:
  • the silicon through hole wafer of the seed copper layer and the liquid surface of the immersion liquid are at an angle of 0° to 90°, and the silicon of the seed copper layer
  • the immersion speed of the through-wafer wafer is less than or equal to 20 mm/s.
  • the through-silicon via wafer of the seed copper layer is completely wetted, the initial immersion wafer is obtained, and the through-hole diameter of the through-silicon via is 3 ⁇ m to 50 ⁇ m.
  • the infiltrate is anhydrous ethanol, acetone or isopropanol.
  • the first infiltrated wafer is immersed and immersed in deionized water, and the angle between the initial infiltrated wafer and the deionized water is 0° to 90°, and the immersion speed of the first infiltrated wafer is greater than or equal to 3 mm/s. Re-wet the wafer.
  • the through silicon wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer and the liquid surface of the immersion liquid are at an angle of 90°, such as As shown in FIG. 3, the immersion speed of the through-silicon via wafer of the seed copper layer is 5 mm/s, and when the through-silicon via wafer of the seed copper layer is completely wetted, the initial immersion wafer is obtained, due to the height of the copper to the seed copper. With wetting properties (contact angle close to 0°), ethanol will completely infiltrate and fill the interior of the TSV.
  • the through-silicon via has a pore size of 3 ⁇ m and a pore-to-diameter ratio of 15:1, and the immersion liquid is anhydrous ethanol.
  • the primary immersed wafer is vertically immersed and immersed in deionized water. Due to the miscible nature of anhydrous ethanol and water, the ethanol in the TSV will dissolve in the water, so that the deionized water completely fills the TSV and realizes the TSV. Internal cleaning.
  • the angle between the surface of the first wetted wafer and the deionized water is 90°, and the immersion speed of the first wetted wafer is 10mm/s, re-wetting wafers.
  • the immersed wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 10 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 45° with the liquid surface of the immersion liquid, as shown in FIG. 4, the silicon of the seed copper layer.
  • the immersion speed of the via wafer is 5mm/s.
  • the immersed wafer is immersed and immersed in deionized water. Due to the miscible nature of anhydrous ethanol and water, the ethanol in the TSV will dissolve in the water, so that the deionized water completely fills the TSV to achieve internal cleaning of the TSV.
  • the initial immersion wafer has a 45° angle with the deionized water, and the initial immersion wafer has an immersion speed of 10 mm/s to obtain a re-wet wafer.
  • the re-wet wafer is immersed and immersed in the plating solution, and the angle between the surface of the impregnated wafer and the plating solution is 45°, and the immersion speed of the immersed wafer is 10 mm/s, at which time the solute in the plating solution is diffused to
  • the inside of the through-silicon via is such that the inside of the via of the through-silicon via is infiltrated.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 0° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 5mm/s.
  • the primary immersed wafer is vertically immersed and immersed in deionized water. Due to the miscible nature of anhydrous ethanol and water, the ethanol in the TSV will dissolve in the water, so that the deionized water completely fills the TSV and realizes the TSV. Internal cleaning.
  • the initial immersion wafer has a 0° angle with the deionized water, and the initial immersion wafer has an immersion speed of 10 mm/s to obtain a re-wet wafer.
  • Will The immersed wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 0°, and the immersion speed of the immersed wafer is 10 mm/s, at this time in the plating solution.
  • the solute diffuses into the inside of the through silicon via to achieve internal infiltration of the via of the through silicon via.
  • the variable in Example 1 - Example 3 is the immersion angle.
  • the angle between the silicon via wafer of the seed copper layer and the liquid level of the immersion liquid is 90°
  • the angle between the surface of the initially immersed wafer and the deionized water is At 90°
  • the infiltration effect is best when the angle between the surface of the re-impregnated wafer and the plating solution is 90°.
  • the silicon through-wafer of the seed copper layer is at an angle of 45° with the liquid level of the immersion liquid, the angle between the surface of the initially immersed wafer and the deionized water is 45°, and then the liquid surface of the wafer and the plating solution is immersed.
  • the angle is 45°
  • the infiltration effect is better.
  • the silicon through-wafer of the seed copper layer has an angle of 0° with the liquid level of the immersion liquid, the angle between the surface of the initially immersed wafer and the deionized water is 0°, and then the liquid surface of the wafer and the plating solution is immersed.
  • the angle is 0°, the infiltration effect is general.
  • the immersion liquid and the plating solution are soluble, and the immersion liquid residue does not affect the plating effect of the plating solution, the deionized water infiltration step can be omitted. That is, it is first immersed in the immersion liquid and then immersed in the plating solution.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 2mm/s.
  • the through-silicon via has a pore size of 3 ⁇ m and a pore-to-diameter ratio of 15:1, and the immersion liquid is anhydrous ethanol.
  • the first immersed wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 50 mm/s. The solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 20mm/s, and when the through-silicon via wafer of the seed copper layer is completely wetted, the initial immersion wafer is obtained.
  • the through silicon via has a pore size of 10 ⁇ m, a pore depth to diameter ratio of 12:1, and the immersion liquid is anhydrous ethanol.
  • the primary immersed wafer is vertically immersed and immersed in deionized water.
  • the initial wetted wafer has a 90° angle to the surface of the deionized water, and the initial immersion wafer has an immersion speed of 3 mm/s to obtain a re-wet wafer.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 3 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 13 mm/s, and when the through-silicon via wafer of the seed copper layer is completely wetted, the initial immersion wafer is obtained, and the through-silicon via has a hole diameter of 10 ⁇ m and a hole depth-to-diameter ratio of 12:1.
  • the immersion liquid is anhydrous ethanol.
  • the primary immersed wafer is vertically immersed and immersed in deionized water.
  • the initial wetted wafer has a 90° angle to the surface of the deionized water, and the initial immersion wafer has an immersion speed of 5 mm/s to obtain a re-wet wafer.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 5 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 10 mm/s.
  • the initial wetted wafer has a 90° angle to the surface of the deionized water, and the initial immersion wafer has an immersion speed of 10 mm/s to obtain a re-wet wafer.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the impregnated wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 20 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 1 mm/s, and when the through-silicon via wafer of the seed copper layer is completely wetted, the first wetted wafer is obtained, and the through-silicon via has a hole diameter of 10 ⁇ m and a hole depth-to-diameter ratio of 12:1.
  • the immersion liquid is anhydrous ethanol.
  • the primary immersed wafer is vertically immersed and immersed in deionized water.
  • the initial wetted wafer has a 90° angle to the surface of the deionized water, and the initial immersion wafer has an immersion speed of 30 mm/s to obtain a re-wet wafer.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 40 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 0.01 mm/s.
  • the through-silicon via wafer of the seed copper layer is completely wetted, the first wetted wafer is obtained.
  • the through-silicon via has a hole diameter of 10 ⁇ m and a hole depth-to-diameter ratio of 12:1.
  • the infiltrate is anhydrous ethanol.
  • the primary immersed wafer is vertically immersed and immersed in deionized water.
  • the initial wetted wafer has a 90° angle to the surface of the deionized water.
  • the immersion speed of the wet wafer was 100 mm/s, and the re-wetting wafer was obtained.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 100 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the immersion speed in Example 5 - Example 9 is a variable.
  • the immersion speed of the TSV wafer of the seed copper layer is small, the immersion speed of the first immersion wafer and the immersion speed of the re-wetting wafer are large, the wetting effect is obtained.
  • the immersion speed of the TSV wafer of the seed copper layer is 0.01 mm/s
  • the immersion speed of the first immersion wafer is 100 mm/s
  • the immersion speed of the immersed wafer is 100 mm/s
  • the wetting effect is the most. it is good.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 0.01 mm/s.
  • the through-silicon via wafer of the seed copper layer is completely wetted, the first wetted wafer is obtained.
  • the through-silicon via has a pore size of 20 ⁇ m and a hole depth-to-diameter ratio of 10:1.
  • the infiltrate is acetone.
  • the initial immersion wafer is immersed vertically and immersed in deionized water to achieve internal cleaning of the TSV.
  • the initial immersion wafer has a liquid phase angle of 90° with deionized water, and the initial immersion wafer has an immersion speed of 15 mm/s to obtain a re-wet wafer.
  • the re-impregnated wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 15 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 0.1 mm/s.
  • the through-silicon via wafer of the seed copper layer is completely wetted, the first wetted wafer is obtained.
  • the through-silicon via has a hole diameter of 30 ⁇ m and a hole depth-to-diameter ratio of 8:1.
  • the immersion liquid is isopropyl alcohol.
  • the initial immersion wafer is immersed vertically and immersed in deionized water to achieve internal cleaning of the TSV.
  • the initial immersion wafer has a liquid phase angle of 90° with deionized water, and the initial immersion wafer has an immersion speed of 25 mm/s.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 25 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 3 mm/s, and when the through-silicon via wafer of the seed copper layer is completely wetted, the first wetted wafer is obtained, and the through-silicon via has a hole diameter of 40 ⁇ m and a hole depth-to-diameter ratio of 5:1.
  • the immersion liquid is isopropyl alcohol.
  • the initial immersion wafer is immersed vertically and immersed in deionized water to achieve internal cleaning of the TSV.
  • the initial wetted wafer has a 90° angle to the surface of the deionized water, and the initial immersion wafer has an immersion speed of 35 mm/s to obtain a re-wet wafer.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 45 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.
  • the silicon via wafer of the seed copper layer is vertically immersed and immersed in the immersion liquid, and the silicon through hole wafer of the seed copper layer has an angle of 90° with the liquid surface of the immersion liquid, and the through silicon hole of the seed copper layer
  • the immersion speed of the wafer is 2 mm/s.
  • the through-silicon via wafer of the seed copper layer is completely wetted, the first wetted wafer is obtained, and the through-silicon via has a pore diameter of 50 ⁇ m and a hole depth-to-diameter ratio of 1:1.
  • the immersion liquid is isopropyl alcohol.
  • the initial immersion wafer is immersed vertically and immersed in deionized water to achieve internal cleaning of the TSV.
  • the initial wetted wafer has a 90° angle to the surface of the deionized water, and the initial immersion wafer has an immersion speed of 55 mm/s to obtain a re-wet wafer.
  • the re-wetting wafer is vertically immersed and immersed in the plating solution, and the angle between the surface of the immersed wafer and the plating solution is 90°, and the immersion speed of the immersed wafer is 75 mm/s.
  • the solute diffuses into the inside of the through silicon via, thereby infiltrating the inside of the via of the through silicon via.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Electroplating Methods And Accessories (AREA)

Abstract

一种硅通孔电镀的三步预浸润方法,包括:将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆;将初浸润晶圆浸入并浸泡在去离子水中,得到再浸润晶圆;将再浸润晶圆浸入并浸泡在电镀液中,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。上述方法可以实现高得多的深径比的硅通孔的浸润,而且不会导致种子层脱落等问题,降低了成本,大大缩短了工艺时间,提高了效率。

Description

一种硅通孔电镀的三步预浸润方法 [技术领域]
本发明属于3D封装领域,更具体地,涉及一种硅通孔电镀的三步预浸润方法。
[背景技术]
硅通孔电镀中,小孔径的TSV(硅通孔)可以支持更高的电路密度。然而,较小的孔径意味着更高的深径比,此外,为了兼容其他3D集成过程,TSV电镀过程中往往是在晶圆减薄之前完成,这意味着必须电镀填充深径比超过10:1的盲孔。由于电镀液表面张力的存在,这样的深径比会使镀液很难完全浸润盲孔内部,这会导致盲孔电镀后内部存在孔隙甚至完全无法填充。
高的真空度可浸润的深径比越高,因此对于高深径比的TSV,需要使用昂贵的真空泵和复杂的工艺程序。同时,由于水的沸点在高真空度环境中会大大降低,容易沸腾,因此抽真空浸润还需要对温度环境进行严格控制。此外,对于有特殊结构的芯片,例如带薄膜结构的压力传感器芯片,还容易对其特殊结构造成不可逆损坏,导致TSV技术与芯片制造工艺的不兼容问题。超声波浴方法容易导致种子层脱落,且对于高深径比的TSV效果不理想,可靠性低。
由此可见,现有技术存在成本高、工艺复杂、容易导致种子层脱落、效率低且效果不理想的技术问题。
[发明内容]
针对现有技术的以上缺陷或改进需求,本发明提供了一种硅通孔电镀的三步预浸润方法,由此解决现有技术存在成本高、工艺复杂、容易导致 种子层脱落、效率低且效果不理想的技术问题。
为实现上述目的,本发明提供了一种硅通孔电镀的三步预浸润方法,包括:
(1)将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆;
(2)将初浸润晶圆浸入并浸泡在去离子水中,得到再浸润晶圆;
(3)将再浸润晶圆浸入并浸泡在电镀液中,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
进一步的,步骤(1)的具体实现方式为:将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为0°至90°,种子铜层的硅通孔晶圆的浸入速度小于等于20mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为3μm-50μm、孔深径比为15:1-1:1。
进一步的,步骤(2)的具体实现方式为:将初浸润晶圆浸入并浸泡在去离子水中,初浸润晶圆与去离子水的液面夹角为0°至90°,初浸润晶圆的浸入速度大于等于3mm/s,得到再浸润晶圆。
进一步的,步骤(3)的具体实现方式为:将再浸润晶圆浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为0°至90°,再浸润晶圆的浸入速度大于等于3mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
进一步的,浸润液为无水乙醇、丙酮或者异丙醇。
总体而言,通过本发明所构思的以上技术方案与现有技术相比,能够取得下列有益效果:
(1)采用本发明的预浸润方法,可以实现与抽真空相同的预浸润效果,且省去了昂贵抽真空设备,降低了成本,同时相对于较长的抽真空过程,大大缩短了工艺时间,提高了效率;
(2)本发明对于一些具有特殊脆弱结构的芯片或晶圆,例如带薄膜空腔结构的压力传感器芯片,由于其没有产生较明显的力学过程,因此也不对其特殊结构造成破坏;
(3)本发明相对于超声波浴的预浸润方法,可以实现高的多的深径比的TSV的浸润,而且不会导致种子层脱落等问题。
(4)将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,确保TSV完全被浸润,将初浸润晶圆浸入并浸泡在去离子水中,浸入速度大于等于3mm/s,保证孔内浸润液挥发之前浸入到去离子水中,去离子水不影响电镀液,将再浸润晶圆浸入并浸泡在电镀液中,浸入速度大于等于3mm/s,保证孔内去离子水挥发之前浸入电镀液中,可以实现高的多的深径比的硅通孔的浸润,而且不会导致种子层脱落等问题,降低了成本,大大缩短了工艺时间,提高了效率。
[附图说明]
图1是本发明实施例提供的一种硅通孔电镀的三步预浸润方法的流程图;
图2是本发明实施例1提供的一种硅通孔电镀的三步预浸润方法的示意图;
图3是本发明实施例1提供的竖直向下浸入浸润液、去离子水、电镀液的示意图;
图4是本发明实施例2提供的向下与液面夹角为45°时浸入浸润液、去离子水、电镀液的示意图;
在所有附图中,相同的附图标记用来表示相同的元件或结构,其中:
1为种子铜层的硅通孔晶圆,2为种子铜层的硅通孔晶圆中的TSV,3为浸入的液体,4为水槽。
[具体实施方式]
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图 及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
如图1所示,一种硅通孔电镀的三步预浸润方法,包括:
(1)将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为0°至90°,种子铜层的硅通孔晶圆的浸入速度小于等于20mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为3μm-50μm、孔深径比为15:1-1:1,浸润液为无水乙醇、丙酮或者异丙醇。
(2)将初浸润晶圆浸入并浸泡在去离子水中,初浸润晶圆与去离子水的液面夹角为0°至90°,初浸润晶圆的浸入速度大于等于3mm/s,得到再浸润晶圆。
(3)将再浸润晶圆浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为0°至90°,再浸润晶圆的浸入速度大于等于3mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例1
如图2所示,将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,如图3所示,种子铜层的硅通孔晶圆的浸入速度为5mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于乙醇对种子铜的高度浸润性质(接触角接近于0°),乙醇将可以完全浸润并填充TSV内部。所述硅通孔的孔径为3μm、孔深径比为15:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为 10mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为10mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例2
将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为45°,如图4所示,种子铜层的硅通孔晶圆的浸入速度为5mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于乙醇对种子铜的高度浸润性质(接触角接近于0°),乙醇将可以完全浸润并填充TSV内部。所述硅通孔的孔径为3μm、孔深径比为15:1,浸润液为无水乙醇。将初浸润晶圆浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为45°,初浸润晶圆的浸入速度为10mm/s,得到再浸润晶圆。将再浸润晶圆浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为45°,再浸润晶圆的浸入速度为10mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例3
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为0°,种子铜层的硅通孔晶圆的浸入速度为5mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于乙醇对种子铜的高度浸润性质(接触角接近于0°),乙醇将可以完全浸润并填充TSV内部。所述硅通孔的孔径为3μm、孔深径比为15:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为0°,初浸润晶圆的浸入速度为10mm/s,得到再浸润晶圆。将 再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为0°,再浸润晶圆的浸入速度为10mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例1-实施例3中的变量为浸入角度,当种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,初浸润晶圆与去离子水的液面夹角为90°,再浸润晶圆与电镀液的液面夹角为90°时,浸润效果最好。当种子铜层的硅通孔晶圆与浸润液的液面夹角为45°,初浸润晶圆与去离子水的液面夹角为45°,再浸润晶圆与电镀液的液面夹角为45°时,浸润效果较好。当种子铜层的硅通孔晶圆与浸润液的液面夹角为0°,初浸润晶圆与去离子水的液面夹角为0°,再浸润晶圆与电镀液的液面夹角为0°时,浸润效果一般。
实施例4
对于部分情形,例如浸润液与电镀液可溶,且浸润液残留不影响电镀液的电镀效果,则可以省略掉利用去离子水浸润步骤。即先浸入浸润液中,然后浸入电镀液中。将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为2mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,由于无水乙醇对种子铜的高度浸润性质(接触角接近于0°),无水乙醇将可以完全浸润并填充TSV内部。所述硅通孔的孔径为3μm、孔深径比为15:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为50mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例5
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为20mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆, 所述硅通孔的孔径为10μm、孔深径比为12:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为3mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为3mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例6
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为13mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为5mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为5mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例7
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为10mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例 互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为10mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为20mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例8
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为1mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为30mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为40mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例9
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为0.01mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为10μm、孔深径比为12:1,浸润液为无水乙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,由于无水乙醇与水的任意比例互溶性质,TSV中的乙醇将溶解于水中,从而使得去离子水完全填充TSV,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸 润晶圆的浸入速度为100mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为100mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例5-实施例9中浸入速度为变量,当种子铜层的硅通孔晶圆的浸入速度较小,初浸润晶圆的浸入速度和再浸润晶圆的浸入速度较大时,浸润效果最好,当种子铜层的硅通孔晶圆的浸入速度为0.01mm/s,初浸润晶圆的浸入速度为100mm/s,再浸润晶圆的浸入速度为100mm/s时,浸润效果最好。
实施例10
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为0.01mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为20μm、孔深径比为10:1,浸润液为丙酮。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为15mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为15mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例11
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为0.1mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为30μm、孔深径比为8:1,浸润液为异丙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为25mm/s,得 到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为25mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例12
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为3mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为40μm、孔深径比为5:1,浸润液为异丙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为35mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为45mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
实施例13
将种子铜层的硅通孔晶圆竖直向下浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为90°,种子铜层的硅通孔晶圆的浸入速度为2mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为50μm、孔深径比为1:1,浸润液为异丙醇。将初浸润晶圆竖直向下浸入并浸泡在去离子水中,实现对TSV内部的清洗。初浸润晶圆与去离子水的液面夹角为90°,初浸润晶圆的浸入速度为55mm/s,得到再浸润晶圆。将再浸润晶圆竖直向下浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为90°,再浸润晶圆的浸入速度为75mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
本领域的技术人员容易理解,以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (5)

  1. 一种硅通孔电镀的三步预浸润方法,其特征在于,包括:
    (1)将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆;
    (2)将初浸润晶圆浸入并浸泡在去离子水中,得到再浸润晶圆;
    (3)将再浸润晶圆浸入并浸泡在电镀液中,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
  2. 如权利要求1所述的一种硅通孔电镀的三步预浸润方法,其特征在于,所述步骤(1)的具体实现方式为:将种子铜层的硅通孔晶圆浸入并浸泡在浸润液中,种子铜层的硅通孔晶圆与浸润液的液面夹角为0°至90°,种子铜层的硅通孔晶圆的浸入速度小于等于20mm/s,当种子铜层的硅通孔晶圆完全被浸润时,得到初浸润晶圆,所述硅通孔的孔径为3μm-50μm、孔深径比为15:1-1:1。
  3. 如权利要求1所述的一种硅通孔电镀的三步预浸润方法,其特征在于,所述步骤(2)的具体实现方式为:将初浸润晶圆浸入并浸泡在去离子水中,初浸润晶圆与去离子水的液面夹角为0°至90°,初浸润晶圆的浸入速度大于等于3mm/s,得到再浸润晶圆。
  4. 如权利要求1所述的一种硅通孔电镀的三步预浸润方法,其特征在于,所述步骤(3)的具体实现方式为:将再浸润晶圆浸入并浸泡在电镀液中,再浸润晶圆与电镀液的液面夹角为0°至90°,再浸润晶圆的浸入速度大于等于3mm/s,此时电镀液中的溶质扩散至硅通孔内部,从而实现硅通孔的孔内部浸润。
  5. 如权利要求1-4任意一项所述的一种硅通孔电镀的三步预浸润方法,其特征在于,所述浸润液为无水乙醇、丙酮或者异丙醇。
PCT/CN2017/117068 2017-10-19 2017-12-19 一种硅通孔电镀的三步预浸润方法 WO2019075898A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710992119.5 2017-10-19
CN201710992119.5A CN107833858B (zh) 2017-10-19 2017-10-19 一种硅通孔电镀的三步预浸润方法

Publications (1)

Publication Number Publication Date
WO2019075898A1 true WO2019075898A1 (zh) 2019-04-25

Family

ID=61648858

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/117068 WO2019075898A1 (zh) 2017-10-19 2017-12-19 一种硅通孔电镀的三步预浸润方法

Country Status (2)

Country Link
CN (1) CN107833858B (zh)
WO (1) WO2019075898A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2574177B (en) 2018-01-25 2021-07-14 Semsysco Gmbh Method and device for plating a recess in a substrate
CN113512743B (zh) * 2021-09-14 2021-12-10 新恒汇电子股份有限公司 智能卡载带盲孔电镀方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804343A (zh) * 2009-06-17 2012-11-28 诺发系统有限公司 用于增强型镶嵌金属填充的润湿预处理的设备
CN103021933A (zh) * 2012-09-18 2013-04-03 上海集成电路研发中心有限公司 一种化学电镀工艺前晶圆沟槽预处理的方法
CN103726085A (zh) * 2013-12-17 2014-04-16 上海交通大学 深孔电镀的预处理方法
CN105047529A (zh) * 2015-05-28 2015-11-11 上海集成电路研发中心有限公司 改善小尺寸高深宽比结构的湿法工艺润湿性的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6730597B1 (en) * 2000-08-03 2004-05-04 Texas Instruments Incorporated Pre-ECD wet surface modification to improve wettability and reduced void defect

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102804343A (zh) * 2009-06-17 2012-11-28 诺发系统有限公司 用于增强型镶嵌金属填充的润湿预处理的设备
CN103021933A (zh) * 2012-09-18 2013-04-03 上海集成电路研发中心有限公司 一种化学电镀工艺前晶圆沟槽预处理的方法
CN103726085A (zh) * 2013-12-17 2014-04-16 上海交通大学 深孔电镀的预处理方法
CN105047529A (zh) * 2015-05-28 2015-11-11 上海集成电路研发中心有限公司 改善小尺寸高深宽比结构的湿法工艺润湿性的方法

Also Published As

Publication number Publication date
CN107833858B (zh) 2020-07-10
CN107833858A (zh) 2018-03-23

Similar Documents

Publication Publication Date Title
JP6058664B2 (ja) 低応力ビア
JP6067679B2 (ja) 多孔質基板内のビア
JP6201663B2 (ja) 貫通電極基板の製造方法、貫通電極基板、および半導体装置
TWI522499B (zh) A method of modifying the reduced graphene layer on the surface of the substrate
TWI618675B (zh) 包含負熱膨脹材料之導電互連結構及相關系統、裝置及方法
US20160336262A1 (en) Microstructure, multilayer wiring board, semiconductor package and microstructure manufacturing method
WO2019075898A1 (zh) 一种硅通孔电镀的三步预浸润方法
US10030308B2 (en) Plating method, plating system and storage medium
JP2018510264A (ja) 金属ナノワイヤアレイ及び犠牲テンプレートを用いた熱的インターフェース材料
JP6369436B2 (ja) 貫通電極基板および貫通電極基板の製造方法
US10535595B2 (en) Conductive base embedded interconnect
JP2016063114A (ja) 貫通電極基板及びその製造方法
US9012324B2 (en) Through silicon via process
KR20160102895A (ko) 촉매층 형성 방법, 촉매층 형성 시스템 및 기억 매체
CN105070682A (zh) 一种高效制备硅转接板的方法
ES2615522T3 (es) Capa dieléctrica de aerogel
JP5917297B2 (ja) めっき処理方法、めっき処理装置および記憶媒体
CN105448816B (zh) 一种半导体基片的预湿方法
US20160013101A1 (en) Pre-treatment method of plating, plating system, and recording medium
US20170167029A1 (en) Substrate processing apparatus, substrate processing method and recording medium
US9761485B2 (en) Catalyst layer forming method, catalyst layer forming system, and recording medium
US20160204066A1 (en) Semiconductor device and fabrication method thereof
JP7280011B2 (ja) 半導体装置製造用部材の製造方法
CN111081632A (zh) 一种减小热应力的硅通孔结构及其制造方法
CN104233422A (zh) 一种用于在衬底上沉积金属的设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929259

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929259

Country of ref document: EP

Kind code of ref document: A1