WO2019074140A1 - 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법 - Google Patents

센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법 Download PDF

Info

Publication number
WO2019074140A1
WO2019074140A1 PCT/KR2017/011273 KR2017011273W WO2019074140A1 WO 2019074140 A1 WO2019074140 A1 WO 2019074140A1 KR 2017011273 W KR2017011273 W KR 2017011273W WO 2019074140 A1 WO2019074140 A1 WO 2019074140A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
prism
sensor chip
fixing
film
Prior art date
Application number
PCT/KR2017/011273
Other languages
English (en)
French (fr)
Inventor
이문근
정순우
이경균
배남호
이태재
이석재
Original Assignee
한국과학기술원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국과학기술원 filed Critical 한국과학기술원
Publication of WO2019074140A1 publication Critical patent/WO2019074140A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/21Polarisation-affecting properties
    • G01N21/211Ellipsometry
    • G01N2021/212Arrangement with total internal reflection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/41Refractivity; Phase-affecting properties, e.g. optical path length
    • G01N21/4133Refractometers, e.g. differential
    • G01N2021/414Correcting temperature effect in refractometers

Definitions

  • the present invention relates to a multi-channel microchannel measuring device and a method of measuring the same, and more particularly, to a multi-channel microchannel measuring device and a measuring method thereof that are excellent in airtightness of a microfluidic channel, Channel microchannel measuring apparatus and a measuring method therefor.
  • Reflectometry and Ellipsometry are optical techniques that detect the thickness or optical properties of a sample by measuring the change in reflectance or polarization state of the reflected light reflected from the surface of the sample and analyzing the measured value.
  • Reflectometer and Ellipsometer are used as measuring instruments. They are used to evaluate various nano-scale film thicknesses and physical properties in the nanofiltration process of the semiconductor industry. In addition, efforts to extend the application range to bio-industry and apply it to the interface analysis of biomaterials such as protein, DNA, virus, and new drug substance are continuing.
  • the conventional assembly is sealed with an adhesive between the prism and the silicon sensor chip to integrate them. Therefore, in the conventional assembly, it is difficult to separate the silicon chip and the prism, and after the experiment, the silicon sensor chip and the prism have all to be replaced.
  • An object of the present invention to solve the above problems is to provide a multichannel microchannel measuring device which is excellent in airtightness of a microfluidic channel and in which a sensor chip unit can be easily separated and a user can easily replace a sensor chip unit, Method.
  • a film-type unit including a microfluidic channel through which a sample containing a target material can pass;
  • a prism unit provided on the film type unit and made of an optical prism;
  • a sensor chip unit provided at a lower portion of the film-type unit and having a surface on which a reaction material reacting with the target material is fixed;
  • a prism fixing unit provided so as to closely contact the film-type unit and the prism unit;
  • a sensor chip fixing unit provided so as to closely contact the film-type unit and the sensor chip unit, wherein the prism fixing unit and the sensor chip fixing unit are arranged such that the film-type unit, the prism unit, Channel microchannel measurement device that is easy to replace the sensor chip unit.
  • the film-type unit comprises: a microfluidic film made of a material having elasticity; And a microfluidic channel extending in the longitudinal direction of the microfluidic film, the microfluidic channel being provided in at least one of the microfluidic channels.
  • the prism unit may include: a prism body forming a body and formed of an optical prism; An incident surface formed on one side surface of the prism body and having an inclined surface; And a reflective surface formed on the other surface of the prism body and provided with an inclined surface, wherein incident light enters the incident surface and reflected light is emitted from the reflective surface.
  • the incident surface and the reflection surface are inclined surfaces having an inclination angle of 25 degrees to 35 degrees.
  • the prism unit may include a sample injection port formed on one side surface of the prism body, the sample port formed below the incident surface; And a sample outlet formed on the other side of the prism body and formed on the lower side of the reflecting surface, wherein the sample inlet and the sample outlet are formed to extend toward the inside of the prism body to be connected to the microfluidic channel . ≪ / RTI >
  • the prism fixing unit may include: a first fixing part on which the prism unit is seated; A second fixing part which is located opposite to the first fixing part and on which the prism unit is mounted; And an upper fixing unit coupled to an upper portion of the first fixing unit and the second fixing unit to fix the prism unit.
  • the first fixing unit may include: a first fixing unit adapted to be in close contact with a side surface of the prism unit; A pair of first elongated bodies extending from the first fixing body so as to surround both side surfaces of one side of the prism unit; And a first mounting member formed stepwise in the inner direction of the first fixing member so that one side of the prism unit is seated.
  • the first fixing unit may further include a first light blocking inner surface formed on an upper surface of the first fixing member and having a downward inclined surface toward an incident surface of the prism unit .
  • the first fixing unit may include: a first conveying passage formed inside the first fixing unit and connected to a sample injection port of the prism unit; And a first tube connection port inserted into the first elongated body and having one side connected to the tube and the other side connected to the first transfer channel.
  • the second fixing portion may include: a second fixing body adapted to be in close contact with the other side surface of the prism unit; A pair of second elongated bodies extending from the second fixing body so as to surround opposite side surfaces of the other side of the prism unit; And a second mounting member formed in a stepped manner in an inner direction of the second fixing member so that the other side of the prism unit is seated.
  • the second fixing portion may further include a second light-blocking inner surface formed on the upper surface of the second fixing body, the second light-blocking inner surface being provided with a downward inclined surface toward the reflection surface of the prism unit .
  • the second fixing portion may include a second conveying path formed inside the second fixing member and connected to a sample outlet of the prism unit; And a second tube connection port inserted into the second elongated body and having one side connected to the tube and the other side connected to the second transfer channel.
  • the upper fixing portion may include: a pair of first upper fixing bodies connected to the first fixing portion and the second fixing portion; And a second upper fixing body extending to connect a pair of the first upper fixing bodies, wherein when the first upper fixing body is coupled to the first fixing portion and the second fixing portion, And the upper fixture may be configured to press the prism unit downward.
  • the sensor chip fixing unit may include: a sensor chip fixed body inserted into a lower portion of the prism fixing unit; And a sensor chip protrusion formed on the sensor chip fixed body and on which the film-type unit and the sensor chip unit are mounted, and the prism fixing unit And the second electrode is coupled to the second electrode.
  • the sensor chip protruding body, the film-like unit and the sensor chip unit are located inside the first and second seating bodies of the prism fixing unit,
  • the thickness of the film-type unit and the sensor chip unit may be the same as the thickness of the first and second seating members.
  • it may further comprise a polarization detection unit configured to irradiate light toward the prism unit and detect a change in polarization of the reflected light.
  • the polarization detection unit may include: a light source unit that emits light toward an incident surface of the prism unit; A polarizer for polarizing the light emitted from the light source unit; A lens unit receiving light emitted from the light source unit and providing parallel light to the polarizer; An analyzer for polarizing the reflected light that has passed through the reflection surface of the prism unit; And a photodetector for detecting the polarization change of the polarized reflected light.
  • a biosensor device using a multi-channel microchannel measurement device that is easy to replace a sensor chip unit.
  • a method for measuring a multi-channel microchannel measuring apparatus comprising the steps of: a) injecting a sample solution into the film- Reacting the target material with a reactive material immobilized on the sensor chip unit; b) illuminating the prism unit with light to detect a polarization change; And c) injecting air into the film-type unit to discharge the sample solution.
  • the method may further include d) after the step c), removing the sensor chip fixing unit to replace the sensor chip unit.
  • the sensor chip fixing unit and the prism fixing unit are provided so as to press the film-type unit, the prism unit, and the sensor chip unit in the up-and-down direction.
  • the sensor chip unit when the tightness of the sensor chip fixing unit is released, the sensor chip unit can be immediately separated, and the sensor chip unit can be easily replaced after the experiment.
  • the sensor chip unit and the prism unit must be exchanged at the same time.
  • the sensor chip unit since the sensor chip unit can be replaced only after the experiment, it is economical.
  • FIG. 1 is a perspective view of a multi-channel microchannel measuring apparatus according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a multi-channel microchannel measuring apparatus according to an embodiment of the present invention.
  • FIG. 3 is an exploded perspective view of a film-type unit, a prism unit, and a sensor chip unit according to an embodiment of the present invention.
  • FIG. 4 is a perspective view illustrating a combination of a film-type unit, a prism unit, and a sensor chip unit according to an embodiment of the present invention.
  • FIG. 5 is a front view of a film-type unit, a prism unit, and a sensor chip unit according to an embodiment of the present invention.
  • FIG. 6 is a front view showing a path of light of a multi-channel microchannel measuring apparatus that can be easily replaced with a sensor chip unit according to an embodiment of the present invention.
  • FIG. 7 is a flowchart illustrating a method of measuring a multi-channel microchannel measuring apparatus according to an embodiment of the present invention.
  • a most preferred embodiment of the present invention is a film-type unit in which a microfluidic channel through which a sample containing a target material can pass is formed;
  • a prism unit provided on the film type unit and made of an optical prism;
  • a sensor chip unit provided at a lower portion of the film-type unit and having a surface on which a reaction material reacting with the target material is fixed;
  • a prism fixing unit provided so as to closely contact the film-type unit and the prism unit;
  • a sensor chip fixing unit provided so as to closely contact the film-type unit and the sensor chip unit, wherein the prism fixing unit and the sensor chip fixing unit are arranged such that the film-type unit, the prism unit, Channel microchannel measurement device that is easy to replace the sensor chip unit.
  • FIG. 1 is a perspective view of a multi-channel microchannel measuring apparatus which can easily replace a sensor chip unit according to an embodiment of the present invention.
  • FIG. 2 is a perspective view of a multi-channel microchannel measuring apparatus according to an embodiment of the present invention
  • Fig. 3 is an exploded perspective view of a microchannel measurement device.
  • FIG. 3 is an exploded perspective view of a film-type unit, a prism unit, and a sensor chip unit according to an embodiment of the present invention.
  • FIG. And FIG. 5 is a front view of a film-type unit, a prism unit, and a sensor chip unit according to an embodiment of the present invention.
  • a multi-channel microchannel measuring apparatus 1000 that can easily replace a sensor chip unit includes a film-type unit 1100, a prism unit 1200, a sensor chip unit 1300, Unit 1400, a sensor chip fixing unit 1500, and a polarization detection unit 1600.
  • the prism fixing unit 1400 and the sensor chip fixing unit 1500 are mounted on the film-type unit 1100, the prism unit 1200 and the sensor chip unit 1300 are pressed and fixed so as to be in close contact with each other.
  • the film-type unit 1100 includes a microfluidic film 1110 and a microfluidic channel 1120, and a sample containing the target material may be passed through the film-like unit 1100.
  • the microfluidic film 1110 may be made of a material having elasticity. More specifically, the microfluidic film 1110 may be formed of a material having elasticity such as a soft polymer or silicon.
  • the thickness of the microfluidic film 1110 may be less than 1 mm.
  • the microfluidic channel 1120 may extend in the longitudinal direction of the microfluidic film 1110 to allow a sample containing the target material to pass therethrough, and may be provided in one or more of the microfluidic channels 1120.
  • the microfluidic channel 1120 may provide a space through which the injected sample solution can react with a reactive material fixed on the surface of the sensor chip unit 1300.
  • the prism unit 1200 may be provided on the upper portion of the film-type unit 1100 and may be formed of an optical prism.
  • the prism unit 1200 includes a prism body 1210, an incident surface 1220, a reflecting surface 1230, a sample inlet 1240, and a sample outlet 1250.
  • the prism body 1210 forms the body of the prism unit 1200 and may be formed of an optical prism. That is, the prism body 1210 may be formed of a material having a high optical characteristic such as glass.
  • the incident surface 1220 may be formed on one side of the prism body 1210 and may have an inclined surface.
  • the reflecting surface 1230 may be formed on the other surface of the prism body 1210 and may have an inclined surface.
  • the incident surface 1220 may be provided with incident light, and the reflection surface 1230 may be provided with reflected light.
  • the incident surface 1220 and the reflection surface 1230 may be inclined surfaces having an inclination angle of 25 degrees to 35 degrees.
  • the sample inlet 1240 is formed on one side of the prism body 1210 and may be formed on the lower side of the incident surface 1220.
  • the sample outlet 1250 is formed on the other side of the prism body 1210 and may be formed on the lower side of the reflecting surface 1230.
  • the sample inlet 1240 and the sample outlet 1250 may extend toward the inside of the prism body 1210 to be connected to the microfluidic channel 1120.
  • the sample inlet 1240 and the sample outlet 1250 may be the same as the number of the microfluidic channels 1120, respectively.
  • the sensor chip unit 1300 is provided below the film-type unit 1100, and a reaction material that reacts with the target material may be fixed on the surface.
  • the reactant may be a biomaterial or a chemical substance.
  • the prism fixing unit 1400 is provided to closely contact the film-type unit 1100 and the prism unit 1200 and includes a first fixing part 1410, a second fixing part 1420 and an upper fixing part 1430 ).
  • the first fixing part 1410 is adapted to receive the prism unit 1200 and includes a first fixing body 1411, a first extension body 1412, a first mounting body 1413, a first light blocking inner surface 1414 A first transfer passage 1415, a first tube connection port 1416,
  • the first fixing unit 1411 is provided to be in close contact with a side surface of the prism unit 1200.
  • the first extension 1412 may extend from the first fixing unit 1411 so as to surround both sides of the prism unit 1200, and may be provided in a pair. That is, a pair of the first extension bodies 1412 may extend from both ends of the first fixing body 1411 so as to surround both sides of the prism unit 1200 adjacent to one side of the prism unit 1200.
  • the first mounting member 1413 may be stepped inward of the first fixing member 1411 so that one side of the prism unit 1200 is seated on the upper side.
  • the first mounting member 1413 is formed so as to extend from the first fixing member 1411 in the direction of the second fixing unit 1420 so that a part of one side of the prism unit 1200 can be seated thereon
  • the first mounting member 1413 may be formed to have a step with the first fixing member 1411.
  • the first light blocking inner surface 1414 may be formed on the upper surface of the first fixing body 1411 and may have a downward inclined surface toward the incident surface 1220 of the prism unit 1200.
  • the first light source inner surface 1414 thus formed is irradiated with light toward the incident surface 1220 so that the irradiated light is incident on the incident surface 1220 by the first fixing body 1411 Can be prevented from being blocked before reaching.
  • the first transfer path 1415 is formed in the first fixing unit 1411 and may be connected to the sample inlet 1240 of the prism unit 1200.
  • a sealing member (not shown) may be formed between the first transfer path 1415 and the sample inlet 1240.
  • the sealing member includes a rubber ring, and the sealing member can prevent a fluid from leaking between the sample inlet 1240 and the transfer passage 1415.
  • the first tube connection port 1416 may be inserted into the first extension 1412 so that one side is connected to the tube and the other side is connected to the first transfer path 1415.
  • the first tube fittings 1416 may be connected to the respective first extensions 1412 as shown, and may be provided in pairs.
  • the first threaded hole 1417 may be provided on the upper portion of the first extension 1412.
  • the second fixing part 1420 is positioned to face the first fixing part 1410 and the prism unit 1200 can be seated.
  • the second fixing portion 1420 includes a second fixing body 1421, a second extension body 1422, a second mounting body, a second light inner surface 1424, a second transfer path 1425, A connecting hole 1426, and a second screw hole 1427.
  • the second fixing body 1421 is provided to be in close contact with the other side surface of the prism unit 1200.
  • the second extension 1422 may extend from the second fixing body 1421 to surround both sides of the other side of the prism unit 1200 and may be provided in a pair. That is, the pair of second extensions 1422 may extend from both ends of the second fixing body 1421 so as to enclose both sides of the prism unit 1200 adjacent to the other side of the prism unit 1200.
  • the second mount may be stepped inward of the second fixing body 1421 so that the other side of the prism unit 1200 is seated on the upper side. That is, the second mounting member may be provided on the upper portion of the second fixing member 1421 in a direction extending from the second fixing member 1421 toward the first fixing portion 1410 so that a portion of the other side of the prism unit 1200 may be seated.
  • the second mounting body may be formed to have a stepped portion with the second fixing body 1421.
  • the second optical inner surface 1424 may be formed on the upper surface of the second fixing body 1421 and may have a downward inclined surface toward the reflecting surface 1230 of the prism unit 1200.
  • the second light-blocking inner surface 1424 thus formed can prevent light reflected through the reflection surface 1230 from being blocked by the second fixing body 1421.
  • the second transfer path 1425 is formed inside the second fixing unit 1421 and may be connected to the sample outlet 1250 of the prism unit 1200.
  • a sealing member (not shown) may be formed between the second transfer path 1425 and the sample outlet 1250.
  • the sealing body includes a rubber ring, and the sealing body can prevent a fluid from leaking between the sample outlet 1250 and the transfer passage 1425.
  • the second tube connection port 1426 may be inserted into the second extension 1422 so that one end thereof is connected to the tube and the other end thereof is connected to the second transfer path 1425.
  • the second tube fittings 1426 may be connected to the respective second extensions 1422 as shown, and may be provided in pairs.
  • the second threaded hole 1427 may be provided on the upper portion of the second extension 1422.
  • the upper fixing part 1430 is coupled to the upper part of the first fixing part 1410 and the second fixing part 1420 to fix the prism unit 1200 and the first upper fixing part 1431 And a second upper fixing body 1432, as shown in Fig.
  • the first upper fixing body 1431 may be provided to connect the first fixing portion 1410 and the second fixing portion 1420.
  • first upper fixing body 1431 is fixed to the first extending portion 1412 of the first fixing portion 1410 and the second extending portion 1412 of the second fixing portion 1420, So that both ends thereof are located on the upper side.
  • Screw connection holes may be formed at both ends of the first upper fixing body 1431 at positions corresponding to the first screw holes 1417 and the second screw holes 1427.
  • the first upper fixture 1431 may be provided on a pair of the first extension 1412 and the second extension 1412 so as to be opposed to each other.
  • the second upper fixing body 1432 may extend to connect the pair of the first upper fixing bodies 1431.
  • the second upper fixing body 1432 is fixed to the prism unit 1200, So as to press against the lower part of the housing.
  • an upper fixing screw 1433 may be inserted and coupled to each of the screw connection holes formed in the first upper fixing body 1431.
  • the upper fixing screw 1433 may be inserted into and coupled to the screw connection hole, the first screw hole 1417, and the screw connection hole and the second screw hole 1427.
  • the second upper fixing body 1432 is inserted into the prism unit 1200, So that the prism unit 1200 can be pressed toward the film-type unit 1100. That is, depending on the degree of tightening of the upper fixing screw 1433, the degree of tightness between the prism unit 1200 and the film-type unit 1100 changes, and thus the airtightness may vary. Accordingly, when leakage occurs between the film type unit 1100 and the prism unit 1200, the upper fixing screw 1433 can be further tightened to easily prevent water leakage.
  • the sensor chip fixing unit 1500 includes a sensor chip fixing body 1510 and a sensor chip protrusion body 1520 which are provided to closely contact the film type unit 1100 and the sensor chip unit 1300.
  • the sensor chip fixing body 1510 may be inserted into the lower portion of the prism fixing unit 1400.
  • the sensor chip fixing body 1510 may be provided such that an upper edge portion of the sensor chip fixing body 1510 is engaged with the first mounting body 1413 and the second mounting body 1423 when inserted into the lower portion of the prism fixing unit 1400 .
  • the lower surface of the prism fixing unit 1400 and the lower surface of the sensor chip fixing body 1510 are provided so as not to have a step when the sensor chip fixing body 1510 is inserted into the lower portion of the prism fixing unit 1400 .
  • a plurality of sensor chip screw holes 1530 may be formed in the sensor chip fixed body 1510.
  • a lower fixing screw 1540 is inserted into the sensor chip screw hole 1530 to connect the sensor chip fixing body 1510 and the prism fixing unit 1400.
  • the prism fixing unit 1400 may have a lower screw hole (not shown) formed at a position corresponding to the sensor chip screw hole 1530 in advance.
  • the sensor chip protrusion 1520 may be formed on the sensor chip fixing body 1510 and the film type unit 1100 and the sensor chip unit 1300 may be sequentially mounted on the sensor chip fixing body 1510.
  • the sensor chip protrusion 1520 may be coupled to the prism fixing unit 1400 so as to press the film-type unit 1100 and the sensor chip unit 1300 upward.
  • the sensor chip protrusion 1520, the film unit 1100 and the sensor chip unit 1300 are fixed to the first and second seating members 1413 and 1413 of the prism fixing unit 1400
  • the thickness of the sensor chip protrusion 1520, the film unit 1100 and the sensor chip unit 1300 is located inside the first and second seating members 1413 and 1423, 1423, respectively.
  • the sensor chip protruding body 1520 is inserted into the screw hole provided in the sensor chip fixing body 1510 and the prism fixing unit 1400 so that the lower fixing screw 1540 is inserted into the screw hole provided in the prism fixing unit 1400, 1300 and the film-type unit 1100 by pressing the sensor chip unit 1300 and the film-type unit 1100 to the prism unit 1200.
  • the lower head screw 1540 is loosened to separate the sensor chip fixing unit 1500 from the prism fixing unit 1400, The chip unit 1300 can be quickly and simply replaced.
  • FIG. 6 is a front view showing a path of light of a multi-channel microchannel measuring apparatus which can easily replace the sensor chip unit 1300 according to an embodiment of the present invention.
  • the polarization detection unit 1600 is configured to irradiate light toward the prism unit 1200 and detect a change in polarization of the reflected light, and the polarization detection unit 1600 includes a light source unit 1610, The lens unit 1620, the polarizer 1630, the analyzer 1640, and the optical detector 1650.
  • the light source unit 1610 is arranged to emit light toward the incident surface 1220 of the prism unit 1200.
  • the lens unit 1620 may be provided between the light source unit 1610 and the polarizer 1620 to receive light emitted from the light source unit 1610 and to provide parallel light to the polarizer 1620.
  • the polarizer 1630 may be provided to polarize the light emitted from the light source unit 1610.
  • the analyzer 1640 may be provided to polarize the reflected light that has passed through the reflecting surface 1230 of the prism unit 1200.
  • the light detecting unit 1650 may be provided to detect a change in polarization of the polarized reflected light.
  • the multi-channel microchannel measuring apparatus 1000 which is easy to replace the sensor chip unit as described above, is applicable to a biosensor device as an experimental equipment for developing a new drug.
  • FIG. 7 is a flowchart illustrating a method of measuring a multi-channel microchannel measuring apparatus according to an embodiment of the present invention.
  • a method of measuring a multi-channel microchannel measuring apparatus 1000 in which the sensor chip unit can be easily replaced includes the steps of injecting a sample solution into the film-type unit, And reacting the reaction material fixed on the sensor chip unit (S110).
  • a tube (not shown) is attached to the first tube connector 1416 ) Can be connected to inject the sample solution.
  • the sample solution injected into the tube connection port 1416 may be transferred to the microfluidic channel 1120 through the first transfer path 1415 and the sample injection port 1240.
  • the target material contained in the sample solution transferred to the microfluidic channel 1120 may react with the reactive material fixed to the sensor chip unit 1300.
  • the prism unit After injecting the sample solution into the film-type unit and reacting the target material contained in the sample solution with the reactive material fixed to the sensor chip unit (S110), the prism unit is irradiated with light to detect a change in polarization (S120) may be performed.
  • the light source unit 1610 of the polarization detection unit 1600 irradiates light toward the incident surface 1220 of the prism unit 1200 in a step S120 of detecting a change in polarization by irradiating the prism unit with light, can do.
  • the irradiated light changes into parallel light while passing through the lens unit 1620, and the parallel light can be polarized through the polarizer 1630.
  • the polarized light may be incident on the incident surface 1220.
  • the prism fixing unit 1400 may include a first light-blocking inner surface 1414 to prevent light incident on the light incidence surface 1220 from being blocked.
  • the incident light incident through the incident surface 1220 is reflected by the fluid positioned in the microfluidic channel 1120 and the reflected light reflected from the fluid passes through the reflection surface 1230 to the analyzer 1640 Can be moved and polarized.
  • the polarized light reflected from the analyzer 1640 can be detected by the optical detector 1650. That is, the optical detector 1650 can detect the change in polarization of the reflected light to obtain optical data and convert it into an electrical signal.
  • the optical detector 1650 is provided with an analysis program that uses an reflectance measurement method and an ellipsometry method to extract and analyze optical data converted into an electrical signal to determine the absorption concentration of the sample solution, the thickness of the adsorption layer, A dissociation constant, a refractive index, and the like.
  • step S130 of injecting air into the film-type unit and discharging the sample solution may be performed.
  • Air may be injected into the first tube connection port 1416 in a step S130 of injecting air into the film-type unit and discharging the sample solution.
  • the air injected into the tube connection port 1416 passes through the first transfer passage 1415 and the sample injection port 1240 and passes through the sample outlet 1250, The second transfer passage 1425, and the second tube connection port 1426, and can be easily discharged.
  • a step S140 of removing the sensor chip fixing unit and replacing the sensor chip unit may be performed.
  • the sensor chip unit 1300 in which the reacted reaction material is fixed is separated from the sensor chip fixing unit,
  • the new sensor chip unit 1300 can be coupled to the multi-channel microchannel measuring apparatus 1000, which facilitates replacement of the sensor chip unit.

Abstract

본 발명은 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법에 관한 것으로, 보다 상세하게는 미세유체채널의 기밀성이 우수하고, 센서칩유닛이 쉽게 분리되어 사용 편의성이 우수한 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법에 관한 것이다. 본 발명의 구성은 타겟물질이 포함된 시료가 통과할 수 있는 미세유체채널이 형성된 필름형유닛; 상기 필름형유닛의 상부에 마련되며, 광학 프리즘으로 이루어진 프리즘유닛; 상기 필름형유닛의 하부에 마련되며, 표면에 상기 타겟물질과 반응하는 반응물질이 고정된 센서칩유닛; 상기 필름형유닛 및 상기 프리즘유닛을 밀착시키도록 마련된 프리즘고정유닛; 및 상기 필름형유닛 및 상기 센서칩유닛을 밀착시키도록 마련된 센서칩고정유닛을 포함하며, 상기 프리즘고정유닛 및 상기 센서칩고정유닛은 상기 필름형유닛, 상기 프리즘유닛 및 상기 센서칩유닛이 상호 밀착되도록 가압하여 고정시키는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치를 제공한다. (대표도 - 도 1)

Description

센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법
본 발명은 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법에 관한 것으로, 보다 상세하게는 미세유체채널의 기밀성이 우수하고, 센서칩유닛이 쉽게 분리되어 사용 편의성이 우수한 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법에 관한 것이다.
반사율 측정법(Reflectometry)과 타원계측법(Ellipsometry)은 시료의 표면에서 반사한 반사광의 반사율 변화 또는 편광상태를 측정하고, 그 측정값을 분석함으로써 시료의 두께나 광학적 물성을 찾아내는 광분석기술이다.
이를 이용한 계측장비로서 반사율 측정기(Reflectometer)와 타원계측기(Ellipsometer)가 있다. 이들은 반도체산업의 나노 박막 제조공정에서 다양한 나노수준의 박막 두께와 물성을 평가하는데 활용되고 있다. 또한, 바이오산업으로 그 활용범위를 넓혀 단백질, DNA, 바이러스, 신약물질 등과 같은 바이오물질의 계면 분석에 응용하고자 하는 노력이 계속되고 있다.
특히, 바이오센서 분야에서는, 프리즘과 실리콘 센서칩 사이에 미세유로를 형성하는 어셈블리의 개발도 이루어진 바 있다.
그러나, 종래의 어셈블리는 미세유체 채널의 기밀성 확보를 위해, 프리즘, 실리콘 센서칩 사이에 접착제로 실링을 하여 일체화시켰다. 따라서, 종래의 어셈블리는 실리콘 칩과 프리즘이 분리가 어려워 실험 후에, 실리콘 센서칩과 프리즘을 모두 교체해야만 했다.
따라서, 기밀성이 우수하되, 실리콘 센서칩과 프리즘이 쉽게 분리되어 실리콘 센서칩만 선택해서 교체할 수 있어, 경제적인 다채널 미세유로 측정장치가 필요하다.
(선행기술문헌) 한국등록특허 10-1105328
상기와 같은 문제를 해결하기 위한 본 발명의 목적은 미세유체채널의 기밀성이 우수하고, 센서칩유닛이 쉽게 분리되어 사용 편의성이 우수한 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법을 제공하는 것이다.
본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 타겟물질이 포함된 시료가 통과할 수 있는 미세유체채널이 형성된 필름형유닛; 상기 필름형유닛의 상부에 마련되며, 광학 프리즘으로 이루어진 프리즘유닛; 상기 필름형유닛의 하부에 마련되며, 표면에 상기 타겟물질과 반응하는 반응물질이 고정된 센서칩유닛; 상기 필름형유닛 및 상기 프리즘유닛을 밀착시키도록 마련된 프리즘고정유닛; 및 상기 필름형유닛 및 상기 센서칩유닛을 밀착시키도록 마련된 센서칩고정유닛을 포함하며, 상기 프리즘고정유닛 및 상기 센서칩고정유닛은 상기 필름형유닛, 상기 프리즘유닛 및 상기 센서칩유닛이 상호 밀착되도록 가압하여 고정시키는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치를 제공한다.
본 발명의 실시예에 있어서, 상기 필름형유닛은, 탄성을 갖는 재질로 이루어진 미세유체필름; 및 상기 미세유체필름의 길이 방향으로 연장되며, 하나 이상으로 마련된 미세유체채널을 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 프리즘유닛은, 몸체를 형성하며, 광학 프리즘으로 형성된 프리즘본체; 상기 프리즘본체의 일측면에 형성되며, 경사면을 갖도록 마련된 입사면; 및 상기 프리즘본체의 타측면에 형성되며, 경사면을 갖도록 마련된 반사면을 포함하며, 상기 입사면으로 입사광이 들어오고, 상기 반사면으로 반사광이 나가도록 마련된 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 입사면 및 상기 반사면은, 25도 내지 35도의 경사각을 갖는 경사면인 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 프리즘유닛은, 상기 프리즘본체의 일측면에 형성되되, 상기 입사면의 하측에 형성된 시료주입구; 및 상기 프리즘본체의 타측면에 형성되되, 상기 반사면의 하측에 형성된 시료배출구를 더 포함하며, 상기 시료주입구 및 상기 시료배출구는, 상기 미세유체채널과 연결되도록 상기 프리즘본체의 내부를 향해 연장된 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 프리즘고정유닛은, 상기 프리즘유닛이 안착되는 제1 고정부; 상기 제1 고정부와 대향되게 위치하며, 상기 프리즘유닛이 안착되는 제2 고정부; 및 상기 제1고정부 및 상기 제2 고정부의 상부에 결합되어 상기 프리즘유닛을 고정시키는 상부고정부를 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 제1 고정부는, 상기 프리즘유닛의 일측면과 밀착되도록 마련된 제1고정체; 상기 프리즘유닛의 일측면과 이웃하는 양측면을 감싸도록 제1 고정체로부터 연장 형성된 한 쌍의 제1 연장체; 및 상기 프리즘유닛의 일측면이 안착되도록 상기 제1 고정체의 내측 방향으로 단차 형성된 제1 안착체를 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 제1 고정부는, 상기 제1 고정체의 상면에 형성되며, 상기 프리즘유닛의 입사면을 향해 내리막 경사면을 갖도록 마련된 제1 광안내면을 더 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 제1 고정부는, 상기 제1 고정체의 내부에 형성되며, 상기 프리즘유닛의 시료주입구와 연결된 제1 이송유로; 및 상기 제1 연장체에 삽입되어 일측은 튜브와 연결되고, 타측은 상기 제1 이송유로와 연결되도록 마련된 제1 튜브연결구를 더 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 제2 고정부는, 상기 프리즘유닛의 타측면과 밀착되도록 마련된 제2고정체; 상기 프리즘유닛의 타측면과 이웃하는 양측면을 감싸도록 제2 고정체로부터 연장 형성된 한 쌍의 제2 연장체; 및 상기 프리즘유닛의 타측면이 안착되도록 상기 제2 고정체의 내측 방향으로 단차 형성된 제2 안착체를 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 제2 고정부는, 상기 제2 고정체의 상면에 형성되며, 상기 프리즘유닛의 반사면을 향해 내리막 경사면을 갖도록 마련된 제2 광안내면을 더 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 제2 고정부는, 상기 제2 고정체의 내부에 형성되며, 상기 프리즘유닛의 시료배출구와 연결된 제2 이송유로; 및 상기 제2 연장체에 삽입되어 일측은 튜브와 연결되고, 타측은 상기 제2 이송유로와 연결되도록 마련된 제2 튜브연결구를 더 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 상부고정부는, 상기 제1 고정부와 상기 제2 고정부를 연결하도록 마련된 한 쌍의 제1 상부고정체; 및 한 쌍의 상기 제1 상부 고정체를 연결하도록 연장된 제2 상부고정체를 포함하며, 상기 제1 상부고정체가 상기 제1 고정부 및 상기 제2 고정부에 결합될 때, 상기 제2 상부고정체는 상기 프리즘유닛을 하부를 향해 가압하도록 마련된 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 센서칩고정유닛은, 상기 프리즘고정유닛의 하부에 삽입되도록 마련된 센서칩고정체; 및 상기 센서칩고정체의 상부에 형성되며, 상기 필름형유닛 및 상기 센서칩유닛이 안착되는 센서칩돌출체를 포함하며, 상기 필름형유닛 및 상기 센서칩유닛을 상부를 향해 가압하도록 상기 프리즘고정유닛에 결합되는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 센서칩돌출체, 상기 필름형유닛 및 상기 센서칩유닛은 상기 프리즘고정유닛의 제1 안착체 및 제2 안착체의 내측에 위치하며, 상기 센서칩돌출체, 상기 필름형유닛 및 상기 센서칩유닛의 두께는 상기 제1 안착체 및 상기 제2 안착체의 두께와 동일하도록 마련된 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 프리즘유닛을 향해 광을 조사하고, 반사광의 편광변화를 검출하도록 마련된 편광검출유닛을 더 포함하는 것을 특징으로 할 수 있다.
본 발명의 실시예에 있어서, 상기 편광검출유닛은, 상기 프리즘유닛의 입사면을 향해 광을 조사하는 광원부; 상기 광원부로부터 조사된 광을 편광시키는 편광자; 상기 광원부로부터 조사된 광을 수광하여 상기 편광자에 평행광을 제공하는 렌즈부; 상기 프리즘유닛의 반사면을 통과한 상기 반사광을 편광시키는 검광자; 편광된 상기 반사광의 편광변화를 검출하는 광검출부를 포함하는 것을 특징으로 할 수 있다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치를 적용한 바이오 센서 디바이스를 제공한다.
상기와 같은 목적을 달성하기 위한 본 발명의 구성은 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 측정방법에 있어서, a) 상기 필름형유닛에 시료용액을 주입하여 상기 시료용액에 포함된 타겟물질과 상기 센서칩유닛에 고정된 반응물질을 반응시키는 단계; b) 상기 프리즘유닛에 광을 조사하여 편광변화를 검출하는 단계; 및 c) 상기 필름형유닛에 공기를 주입하여 상기 시료용액을 배출하는 단계를 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 측정방법을 제공한다.
본 발명의 실시예에 있어서, 상기 c) 단계 이후에, d) 상기 센서칩고정유닛을 분리하여 상기 센서칩유닛을 교체하는 단계를 더 포함하는 것을 특징으로 할 수 있다.
상기와 같은 구성에 따르는 본 발명의 효과는, 센서칩고정유닛과 프리즘고정유닛은, 필름형유닛, 프리즘유닛 및 센서칩유닛을 상하 방향에서 가압하도록 마련되어 기밀성이 우수하다.
또한, 본 발명은 센서칩고정유닛의 밀착을 해제하면, 센서칩유닛을 즉시 분리해낼 수 있어, 실험 후, 센서칩유닛의 교체가 용이하다.
그리고, 종래에는 실험 후, 센서칩유닛과 프리즘유닛을 동시에 교체해야만 했으나, 본 발명에 따르면, 실험 후, 센서칩유닛만 교체할 수 있기 때문에 경제적이다.
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.
도 1은 본 발명의 일실시예에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 사시도이다.
도 2는 본 발명의 일실시예에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 분해사시도이다.
도 3은 본 발명의 일실시예에 따른 필름형유닛, 프리즘유닛 및 센서칩유닛의 분해사시도이다.
도 4는 본 발명의 일실시예에 따른 필름형유닛, 프리즘유닛 및 센서칩유닛의 결합사시도이다.
도 5는 본 발명의 일실시예에 따른 필름형유닛, 프리즘유닛 및 센서칩유닛의 정면도이다.
도 6은 본 발명의 일실시예에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 광의 이동 경로를 나타낸 정면도이다.
도 7은 본 발명의 일실시예에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 측정방법의 순서도이다.
본 발명의 가장 바람직한 일 실시예는, 타겟물질이 포함된 시료가 통과할 수 있는 미세유체채널이 형성된 필름형유닛; 상기 필름형유닛의 상부에 마련되며, 광학 프리즘으로 이루어진 프리즘유닛; 상기 필름형유닛의 하부에 마련되며, 표면에 상기 타겟물질과 반응하는 반응물질이 고정된 센서칩유닛; 상기 필름형유닛 및 상기 프리즘유닛을 밀착시키도록 마련된 프리즘고정유닛; 및 상기 필름형유닛 및 상기 센서칩유닛을 밀착시키도록 마련된 센서칩고정유닛을 포함하며, 상기 프리즘고정유닛 및 상기 센서칩고정유닛은 상기 필름형유닛, 상기 프리즘유닛 및 상기 센서칩유닛이 상호 밀착되도록 가압하여 고정시키는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치이다.
이하에서는 첨부한 도면을 참조하여 본 발명을 설명하기로 한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며, 따라서 여기에서 설명하는 실시예로 한정되는 것은 아니다. 그리고 도면에서 본 발명을 명확하게 설명하기 위해서 설명과 관계없는 부분은 생략하였으며, 명세서 전체를 통하여 유사한 부분에 대해서는 유사한 도면 부호를 붙였다.
명세서 전체에서, 어떤 부분이 다른 부분과 "연결(접속, 접촉, 결합)"되어 있다고 할 때, 이는 "직접적으로 연결"되어 있는 경우뿐 아니라, 그 중간에 다른 부재를 사이에 두고 "간접적으로 연결"되어 있는 경우도 포함한다. 또한 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 구비할 수 있다는 것을 의미한다.
본 명세서에서 사용한 용어는 단지 특정한 실시예를 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다. 본 명세서에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
이하 첨부된 도면을 참고하여 본 발명의 실시예를 상세히 설명하기로 한다.
도 1은 본 발명의 일실시예에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 사시도이고, 도 2는 본 발명의 일실시예에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 분해사시도이다.
도 3은 본 발명의 일실시예에 따른 필름형유닛, 프리즘유닛 및 센서칩유닛의 분해사시도이고, 도 4는 본 발명의 일실시예에 따른 필름형유닛, 프리즘유닛 및 센서칩유닛의 결합사시도이며, 도 5는 본 발명의 일실시예에 따른 필름형유닛, 프리즘유닛 및 센서칩유닛의 정면도이다.
도 1 내지 도 5에 도시된 것처럼, 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치(1000)는 필름형유닛(1100), 프리즘유닛(1200), 센서칩유닛(1300), 프리즘고정유닛(1400), 센서칩고정유닛(1500) 및 편광검출유닛(1600)을 포함한다.
그리고, 상기 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치(1000)는 상기 프리즘고정유닛(1400) 및 상기 센서칩고정유닛(1500)은 상기 필름형유닛(1100), 상기 프리즘유닛(1200) 및 상기 센서칩유닛(1300)이 상호 밀착되도록 가압하여 고정시키는 것을 특징으로 할 수 있다.
상기 필름형유닛(1100)은 미세유체필름(1110) 및 미세유체채널(1120)을 포함하며, 상기 타겟물질이 포함된 시료가 통과하도록 마련될 수 있다.
상기 미세유체필름(1110)은 탄성을 갖는 재질로 이루어질 수 있다. 보다 구체적으로, 상기 미세유체필름(1110)은 연질의 폴리머(polymer), 실리콘 등의 탄성력을 갖는 소재로 마련될 수 있다.
또한, 상기 미세유체필름(1110)의 두께는 1mm이하로 마련될 수 있다.
상기 미세유체채널(1120)은 타겟물질이 포함된 시료가 통과할 수 있도록 상기 미세유체필름(1110)의 길이 방향으로 연장되어 마련되며, 하나 이상으로 마련될 수 있다.
그리고, 상기 미세유체채널(1120)은 주입된 상기 시료용액이 상기 센서칩유닛(1300)의 표면에 고정된 반응물질과 반응할 수 있는 공간을 제공할 수 있다.
상기 프리즘유닛(1200)은 상기 필름형유닛(1100)의 상부에 마련되며, 광학 프리즘으로 이루어진 것일 수 있다. 상게하게는, 상기 프리즘유닛(1200)은 프리즘본체(1210), 입사면(1220), 반사면(1230), 시료주입구(1240) 및 시료배출구(1250)를 포함한다.
상기 프리즘본체(1210)는 상기 프리즘유닛(1200)의 몸체를 형성하며, 광학 프리즘으로 형성될 수 있다. 즉, 상기 프리즘본체(1210)는 유리 등의 광학특성이 높은 재질로 마련될 수 있다.
상기 입사면(1220)은 상기 프리즘본체(1210)의 일측면에 형성되며, 경사면을 갖도록 마련될 수 있다.
상기 반사면(1230)은 상기 프리즘본체(1210)의 타측면에 형성되며, 경사면을 갖도록 마련될 수 있다.
이처럼 마련된 상기 입사면(1220)은 입사광이 들어오고, 상기 반사면(1230)은 반사광이 나가도록 마련될 수 있다.
그리고, 상기 입사면(1220) 및 상기 반사면(1230)은, 25도 내지 35도의 경사각을 갖는 경사면일 수 있다.
상기 시료주입구(1240)는 상기 프리즘본체(1210)의 일측면에 형성되되, 상기 입사면(1220)의 하측에 형성될 수 있다.
상기 시료배출구(1250)는 상기 프리즘본체(1210)의 타측면에 형성되되, 상기 반사면(1230)의 하측에 형성될 수 있다.
이처럼 마련된 상기 시료주입구(1240) 및 상기 시료배출구(1250)는, 상기 미세유체채널(1120)과 연결되도록 상기 프리즘본체(1210)의 내부를 향해 연장되어 마련될 수 있다.
상기 시료주입구(1240) 및 상기 시료배출구(1250)는 각각 상기 미세유체채널(1120)의 개수와 동일하게 마련될 수 있다.
상기 센서칩유닛(1300)은 상기 필름형유닛(1100)의 하부에 마련되며, 표면에 상기 타겟물질과 반응하는 반응물질이 고정될 수 있다. 여기서, 상기 반응물질은 바이오물질 또는 화학물질일 수 있다.
상기 프리즘고정유닛(1400)은 상기 필름형유닛(1100) 및 상기 프리즘유닛(1200)을 밀착시키도록 마련되며, 제1 고정부(1410), 제2 고정부(1420) 및 상부고정부(1430)를 포함한다.
상기 제1 고정부(1410)는 상기 프리즘유닛(1200)이 안착되도록 마련되며, 제1 고정체(1411), 제1 연장체(1412), 제1 안착체(1413), 제1 광안내면(1414), 제1 이송유로(1415), 제1 튜브연결구(1416), 제1 나사홀(1417)을 포함한다.
상기 제1 고정체(1411)는 상기 프리즘유닛(1200)의 일측면과 밀착되도록 마련된다.
상기 제1 연장체(1412)는 상기 프리즘유닛(1200)의 일측면과 이웃하는 양측면을 감싸도록 상기 제1 고정체(1411)로부터 연장 형성되며, 한 쌍으로 마련될 수 있다. 즉, 한 쌍의 상기 제1 연장체(1412)는 상기 제1고정체(1411)의 양단으로부터 상기 프리즘유닛(1200)의 일측면과 이웃하고 있는 양측면을 감싸도록 연장되어 마련될 수 있다.
상기 제1 안착체(1413)는 상기 프리즘유닛(1200)의 일측면이 상부에 안착되도록 상기 제1 고정체(1411)의 내측 방향으로 단차 형성될 수 있다. 즉, 상기 제1 안착체(1413)는 상부에 상기 프리즘유닛(1200)의 일측 일부분이 안착될 수 있도록 상기 제1 고정체(1411)로부터 상기 제2 고정부(1420) 방향으로 연장되어 마련될 수 있으며, 상기 제1 안착체(1413)는 상기 제1 고정체(1411)와 단차를 갖도록 형성될 수 있다.
상기 제1 광안내면(1414)은 상기 제1 고정체(1411)의 상면에 형성되며, 상기 프리즘유닛(1200)의 입사면(1220)을 향해 내리막 경사면을 갖도록 마련될 수 있다. 이처럼 마련된 상기 제1 광안내면(1414)은 상기 입사면(1220)을 향해 광이 조사되어 광이 입사될 때, 조사된 광이 상기 제1 고정체(1411)에 의해 상기 입사면(1220)에 도달하기 전에 차단되는 것을 방지할 수 있다.
상기 제1 이송유로(1415)는 상기 제1 고정체(1411)의 내부에 형성되며, 상기 프리즘유닛(1200)의 시료주입구(1240)와 연결될 수 있다. 그리고, 상기 제1 이송유로(1415)와 상기 시료주입구(1240) 사이에는 씰링체(미도시)가 형성될 수 있다. 여기서, 상기 씰링체는 고무링을 포함하며, 상기 씰링체는 상기 시료주입구(1240)와 상기 이송유로(1415) 사이에 유체가 누수되는 것을 방지할 수 있다.
상기 제1 튜브연결구(1416)는 상기 제1 연장체(1412)에 삽입되어 일측은 튜브와 연결되고, 타측은 상기 제1 이송유로(1415)와 연결되도록 마련될 수 있다. 또한, 상기 제1 튜브연결구(1416)는 도시된 바와 같이, 각각의 상기 제1 연장체(1412)에 연결되어 한 쌍으로 마련될 수 있다.
상기 제1 나사홀(1417)은 상기 제1 연장체(1412)의 상부에 마련될 수 있다.
상기 제2 고정부(1420)는 상기 제1 고정부(1410)와 대향되게 위치하며, 상기 프리즘유닛(1200)이 안착되도록 마련될 수 있다. 그리고, 상기 제2 고정부(1420)는 제2 고정체(1421), 제2 연장체(1422), 제2 안착체, 제2 광안내면(1424), 제2 이송유로(1425), 제2 튜브연결구(1426), 제2 나사홀(1427)을 포함한다.
상기 제2 고정체(1421)는 상기 프리즘유닛(1200)의 타측면과 밀착되도록 마련된다.
상기 제2 연장체(1422)는 상기 프리즘유닛(1200)의 타측면과 이웃하는 양측면을 감싸도록 상기 제2 고정체(1421)로부터 연장 형성되며, 한 쌍으로 마련될 수 있다. 즉, 한 쌍의 상기 제2 연장체(1422)는 상기 제2고정체(1421)의 양단으로부터 상기 프리즘유닛(1200)의 타측면과 이웃하고 있는 양측면을 감싸도록 연장되어 마련될 수 있다.
상기 제2 안착체는 상기 프리즘유닛(1200)의 타측면이 상부에 안착되도록 상기 제2 고정체(1421)의 내측 방향으로 단차 형성될 수 있다. 즉, 상기 제2 안착체는 상부에 상기 프리즘유닛(1200)의 타측 일부분이 안착될 수 있도록 상기 제2 고정체(1421)로부터 상기 제1 고정부(1410) 방향으로 연장되어 마련될 수 있으며, 상기 제2 안착체는 상기 제2 고정체(1421)와 단차를 갖도록 형성될 수 있다.
상기 제2 광안내면(1424)은 상기 제2 고정체(1421)의 상면에 형성되며, 상기 프리즘유닛(1200)의 반사면(1230)을 향해 내리막 경사면을 갖도록 마련될 수 있다. 이처럼 마련된 상기 제2 광안내면(1424)은 상기 반사면(1230)을 통해 반사되는 광이, 상기 제2 고정체(1421)에 의해 차단되는 것을 방지할 수 있다.
상기 제2 이송유로(1425)는 상기 제2 고정체(1421)의 내부에 형성되며, 상기 프리즘유닛(1200)의 시료배출구(1250)와 연결될 수 있다. 그리고, 상기 제2 이송유로(1425)와 상기 시료배출구(1250) 사이에는 씰링체(미도시)가 형성될 수 있다. 여기서, 상기 씰링체는 고무링을 포함하며, 상기 씰링체는 상기 시료배출구(1250)와 상기 이송유로(1425) 사이에 유체가 누수되는 것을 방지할 수 있다.
상기 제2 튜브연결구(1426)는 상기 제2 연장체(1422)에 삽입되어 일측은 튜브와 연결되고, 타측은 상기 제2 이송유로(1425)와 연결되도록 마련될 수 있다. 또한, 상기 제2 튜브연결구(1426)는 도시된 바와 같이, 각각의 상기 제2 연장체(1422)에 연결되어 한 쌍으로 마련될 수 있다.
상기 제2 나사홀(1427)은 상기 제2 연장체(1422)의 상부에 마련될 수 있다.
상기 상부고정부(1430)는 상기 제1고정부(1410) 및 상기 제2 고정부(1420)의 상부에 결합되어 상기 프리즘유닛(1200)을 고정시키도록 마련되며, 제1 상부고정체(1431), 제2 상부고정체(1432)를 포함한다.
상기 제1 상부고정체(1431)는 상기 제1 고정부(1410)와 상기 제2 고정부(1420)를 연결하도록 마련될 수 있다.
보다 구체적으로, 상기 제1 상부고정체(1431)는 상기 제1 고정부(1410)의 상기 제1 연장체(1412)와 이에 대향된 상기 제2 고정부(1420)의 제2 연장체(1412)의 상부에 양단이 위치하도록 연장되어 마련된다. 그리고, 상기 제1 상부고정체(1431)의 양단측에는 상기 제1 나사홀(1417) 및 상기 제2 나사홀(1427)과 대응되는 위치에 각각 나사연결홀이 형성될 수 있다.
이처럼 마련된 상기 제1 상부고정체(1431)는 상호 대향되게 마련된 한 쌍의 상기 제1 연장체(1412) 및 상기 제2 연장체(1412)의 상부에 마련되도록, 한 쌍으로 마련될 수 있다.
상기 제2 상부고정체(1432)는 한 쌍의 상기 제1 상부고정체(1431)를 연결하도록 연장되어 형성될 수 있다. 그리고, 상기 제2 상부고정체(1432)는 상기 제1 상부고정체(1431)가 상기 제1 고정부(1410) 및 상기 제2 고정부(1420)에 결합될 때, 상기 프리즘유닛(1200)을 하부를 향해 가압하도록 마련된 것을 특징으로 할 수 있다.
보다 구체적으로, 상기 제1 상부고정체(1431)에 형성된 각각의 상기 나사연결홀에는 상부고정나사(1433)가 삽입되어 결합될 수 있다. 상기 상부고정나사(1433)는 상기 나사연결홀과 상기 제1 나사홀(1417), 그리고, 상기 나사연결홀과 상기 제2 나사홀(1427)에 삽입되어 결합될 수 있다. 이때, 상기 상부고정나사(1433)가 상기 제1 나사홀(1417) 및 상기 제2 나사홀(1427)에 삽입되어 조여질수록, 상기 제2 상부고정체(1432)는 상기 프리즘유닛(1200)의 상부에 밀착되어 상기 프리즘유닛(1200)을 상기 필름형유닛(1100) 방향으로 가압할 수 있다. 즉, 상기 상부고정나사(1433)의 조임 정도에 따라, 상기 프리즘유닛(1200)과 상기 필름형유닛(1100) 사이의 밀착도가 변화하며, 이에 따라, 기밀성도 달라질 수 있다. 따라서, 상기 필름형유닛(1100)과 상기 프리즘유닛(1200) 사이에 누수가 발생할 경우, 상기 상부고정나사(1433)를 더욱 조여 간편하게 누수가 방지되도록 할 수 있다.
센서칩고정유닛(1500)은 상기 필름형유닛(1100) 및 상기 센서칩유닛(1300)을 밀착시키도록 마련되며, 센서칩고정체(1510) 및 센서칩돌출체(1520)를 포함한다.
상기 센서칩고정체(1510)는 상기 프리즘고정유닛(1400)의 하부에 삽입되도록 마련될 수 있다.
상기 센서칩고정체(1510)는 상기 프리즘고정유닛(1400)의 하부에 삽입되었을 때, 상면 테두리부분이 상기 제1 안착체(1413) 및 상기 제2 안착체(1423)에 걸리도록 마련될 수 있다. 그리고, 상기 센서칩고정체(1510)가 상기 프리즘고정유닛(1400)의 하부 내측에 삽입되었을 때, 상기 프리즘고정유닛(1400)의 하면과 상기 센서칩고정체(1510)의 하면은 단차가 없도록 마련될 수 있다.
또한, 상기 센서칩고정체(1510)에는 복수의 센서칩나사홀(1530)이 형성될 수 있다. 그리고, 상기 센서칩나사홀(1530)에는 하부고정나사(1540)가 삽입되어 상기 센서칩고정체(1510)와 상기 프리즘고정유닛(1400)을 결합시킬 수 있다. 따라서, 상기 프리즘고정유닛(1400)에는 미리 상기 센서칩나사홀(1530)과 대응되는 위치에 하부나사홀(미도시)이 형성된 상태일 수 있다.
상기 센서칩돌출체(1520)는 상기 센서칩고정체(1510)의 상부에 형성되며, 상부에 상기 필름형유닛(1100) 및 상기 센서칩유닛(1300)이 순차적으로 안착되도록 마련될 수 있다.
그리고, 상기 센서칩돌출체(1520)는 상기 필름형유닛(1100) 및 상기 센서칩유닛(1300)을 상부를 향해 가압하도록 상기 프리즘고정유닛(1400)에 결합될 수 있다.
구체적으로, 상기 센서칩돌출체(1520), 상기 필름형유닛(1100) 및 상기 센서칩유닛(1300)은 상기 프리즘고정유닛(1400)의 상기 제1 안착체(1413) 및 제2 안착체(1423)의 내측에 위치하며, 상기 센서칩돌출체(1520), 상기 필름형유닛(1100) 및 상기 센서칩유닛(1300)의 두께는 상기 제1 안착체(1413) 및 상기 제2 안착체(1423)의 두께와 동일하도록 마련될 수 있다.
이처럼 마련된, 상기 센서칩돌출체(1520)는 상기 하부고정나사(1540)가 상기 센서칩고정체(1510)와 상기 프리즘고정유닛(1400)에 마련된 나사홀에 삽입되어 조여질수록 상기 센서칩유닛(1300) 및 상기 필름형유닛(1100)을 가압하여 상기 센서칩유닛(1300) 및 상기 필름형유닛(1100)을 상기 프리즘유닛(1200)에 밀착시킬 수 있다.
따라서, 본 발명에 따르면, 상기 상부고정나사(1433) 및 상기 하부고정나사(1540)를 조이는 것으로 상기 필름형유닛(1110), 상기 프리즘유닛(1200), 상기 센서칩유닛(1300) 사이의 기밀성을 높일 수 있다.
그리고, 실험 후, 상기 센서칩유닛(1300)을 교체해야 하는 경우, 상기 하부곶어나사(1540)를 풀어서, 상기 센서칩고정유닛(1500)을 상기 프리즘고정유닛(1400)으로부터 분리시킴으로써, 상기 센서칩유닛(1300)을 신속하고, 간편하게 교체할 수 있다.
도 6은 본 발명의 일실시예에 따른 센서칩유닛(1300)의 교체가 용이한 다채널 미세유로 측정장치의 광의 이동 경로를 나타낸 정면도이다.
도 6을 더 참조하면, 상기 편광검출유닛(1600)은 상기 프리즘유닛(1200)을 향해 광을 조사하고, 반사광의 편광변화를 검출하도록 마련되며, 상기 편광검출유닛(1600)은 광원부(1610), 상기 렌즈부(1620), 상기 편광자(1630), 상기 검광자(1640) 및 상기 광검출부(1650)를 포함한다.
상기 광원부(1610)는 상기 프리즘유닛(1200)의 입사면(1220)을 향해 광을 조사하도록 마련된다.
상기 렌즈부(1620)는 상기 광원부(1610)로부터 조사된 광을 수광하여 상기 편광자(1620)에 평행광을 제공하도록 상기 광원부(1610)와 상기 편광자(1620) 사이에 마련될 수 있다.
상기 편광자(1630)는 상기 광원부(1610)로부터 조사된 광을 편광시키도록 마련될 수 있다.
상기 검광자(1640)는 상기 프리즘유닛(1200)의 반사면(1230)을 통과한 상기 반사광을 편광시키도록 마련될 수 있다.
상기 광검출부(1650)는 편광된 상기 반사광의 편광변화를 검출하도록 마련될 수 있다.
전술한 바와 같이 마련된 상기 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치(1000)는 신약 개발을 위한 실험 장비인 바이오 센서 디바이스에 적용 가능하다.
도 7은 본 발명의 일실시예에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 측정방법의 순서도이다.
도 7을 더 참조하면, 상기 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치(1000)의 측정방법은, 먼저, 상기 필름형유닛에 시료용액을 주입하여 상기 시료용액에 포함된 타겟물질과 상기 센서칩유닛에 고정된 반응물질을 반응시키는 단계(S110)를 수행할 수 있다.
상기 필름형유닛에 시료용액을 주입하여 상기 시료용액에 포함된 타겟물질과 상기 센서칩유닛에 고정된 반응물질을 반응시키는 단계(S110)에서, 상기 제1 튜브연결구(1416)에 튜브(미도시)가 연결되어 시료용액이 주입될 수 있다. 상기 튜브연결구(1416)에 주입된 시료용액은 상기 제1 이송유로(1415), 상기 시료주입구(1240)를 통과하여 상기 미세유체채널(1120)로 이송될 수 있다.
그리고, 상기 미세유체채널(1120)로 이송된 상기 시료용액에 포함된 상기 타겟물질은 은 상기 센서칩유닛(1300)에 고정된 상기 반응물질과 반응할 수 있다.
상기 필름형유닛에 시료용액을 주입하여 상기 시료용액에 포함된 타겟물질과 상기 센서칩유닛에 고정된 반응물질을 반응시키는 단계(S110) 이후에는, 상기 프리즘유닛에 광을 조사하여 편광변화를 검출하는 단계(S120)가 수행될 수 있다.
상기 프리즘유닛에 광을 조사하여 편광변화를 검출하는 단계(S120)에서, 상기 편광검출유닛(1600)의 상기 광원부(1610)는 상기 프리즘유닛(1200)의 입사면(1220)을 향해 광을 조사할 수 있다. 이때, 조사된 광은 상기 렌즈부(1620)를 통과하면서 평행광으로 변화하며, 상기 평행광은 상기 편광자(1630)를 통과하여 편광될 수 있다. 이처럼 편광된 광은 상기 입사면(1220)에 입사될 수 있다. 이때, 상기 프리즘고정유닛(1400)에는 제1 광안내면(1414)이 형성되어 상기 입사면(1220)에 입사되는 광이 차단되지 않도록 할 수 있다.
그리고, 상기 입사면(1220)을 통해 입사된 입사광은 상기 미세유체채널(1120)에 위치한 유체에 반사되며, 상기 유체로부터 반사된 반사광은 상기 반사면(1230)을 통해 상기 검광자(1640)로 이동하여 편광될 수 있다. 그리고, 상기 검광자(1640)에서 편광된 반사광은 상기 광검출부(1650)에서 편광변화 검출이 이루어질 수 있다. 즉, 상기 광검출부(1650)는 상기 반사광의 편광변화를 검출하여 광학데이터를 얻고, 이를 전기적인 신호로 바꿀 수 있다. 그리고, 상기 광검출부(1650)에는 반사율 측정법 및 타원계측법을 이용하여 해석 프로그램이 내장되어 있어 전기적인 신호로 변환된 광학데이터를 추출 및 해석하여 시료용액의 흡착농도, 흡착층의 두께, 흡착상수, 해리상수, 굴절률 등과 같은 측정값을 도출할 수 있다.
상기 프리즘유닛에 광을 조사하여 편광변화를 검출하는 단계(S120) 이후에는, 상기 필름형유닛에 공기를 주입하여 상기 시료용액을 배출하는 단계(S130)가 수행될 수 있다.
상기 필름형유닛에 공기를 주입하여 상기 시료용액을 배출하는 단계(S130)에서, 상기 제1 튜브연결구(1416)에 공기가 주입될 수 있다. 상기 튜브연결구(1416)에 주입된 공기는 상기 제1 이송유로(1415), 상기 시료주입구(1240)를 통과하여 상기 미세유체채널(1120)에 위치한 상기 시료용액을 상기 시료배출구(1250), 상기 제2 이송유로(1425), 상기 제2 튜브연결구(1426)로 순차적으로 밀어내어 간편하게 배출시킬 수 있다.
상기 필름형유닛에 공기를 주입하여 상기 시료용액을 배출하는 단계(S130) 이후에는, 상기 센서칩고정유닛을 분리하여 상기 센서칩유닛을 교체하는 단계(S140)가 수행될 수 있다.
상기 센서칩고정유닛을 분리하여 상기 센서칩유닛을 교체하는 단계(S140)에서는, 상기 센서칩고정유닛을 분리하여 반응이 완료된 반응물질이 고정된 상기 센서칩유닛(1300)을 제거하고, 반응물질이 고정된 새로운 센서칩유닛(1300)을 상기 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치(1000)에 결합할 수 있다.
전술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다. 예를 들어, 단일형으로 설명되어 있는 각 구성 요소는 분산되어 실시될 수도 있으며, 마찬가지로 분산된 것으로 설명되어 있는 구성 요소들도 결합된 형태로 실시될 수 있다.
본 발명의 범위는 후술하는 특허청구범위에 의하여 나타내어지며, 특허청구범위의 의미 및 범위 그리고 그 균등 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (20)

  1. 타겟물질이 포함된 시료가 통과할 수 있는 미세유체채널이 형성된 필름형유닛;
    상기 필름형유닛의 상부에 마련되며, 광학 프리즘으로 이루어진 프리즘유닛;
    상기 필름형유닛의 하부에 마련되며, 표면에 상기 타겟물질과 반응하는 반응물질이 고정된 센서칩유닛;
    상기 필름형유닛 및 상기 프리즘유닛을 밀착시키도록 마련된 프리즘고정유닛; 및
    상기 필름형유닛 및 상기 센서칩유닛을 밀착시키도록 마련된 센서칩고정유닛을 포함하며,
    상기 프리즘고정유닛 및 상기 센서칩고정유닛은 상기 필름형유닛, 상기 프리즘유닛 및 상기 센서칩유닛이 상호 밀착되도록 가압하여 고정시키는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  2. 제 1 항에 있어서,
    상기 필름형유닛은,
    탄성을 갖는 재질로 이루어진 미세유체필름; 및
    상기 미세유체필름의 길이 방향으로 연장되며, 하나 이상으로 마련된 미세유체채널을 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  3. 제 1 항에 있어서,
    상기 프리즘유닛은,
    몸체를 형성하며, 광학 프리즘으로 형성된 프리즘본체;
    상기 프리즘본체의 일측면에 형성되며, 경사면을 갖도록 마련된 입사면; 및
    상기 프리즘본체의 타측면에 형성되며, 경사면을 갖도록 마련된 반사면을 포함하며,
    상기 입사면으로 입사광이 들어오고, 상기 반사면으로 반사광이 나가도록 마련된 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  4. 제 3 항에 있어서,
    상기 입사면 및 상기 반사면은, 25도 내지 35도의 경사각을 갖는 경사면인 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  5. 제 3 항에 있어서,
    상기 프리즘유닛은,
    상기 프리즘본체의 일측면에 형성되되, 상기 입사면의 하측에 형성된 시료주입구; 및
    상기 프리즘본체의 타측면에 형성되되, 상기 반사면의 하측에 형성된 시료배출구를 더 포함하며,
    상기 시료주입구 및 상기 시료배출구는, 상기 미세유체채널과 연결되도록 상기 프리즘본체의 내부를 향해 연장된 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  6. 제 1 항에 있어서,
    상기 프리즘고정유닛은,
    상기 프리즘유닛이 안착되는 제1 고정부;
    상기 제1 고정부와 대향되게 위치하며, 상기 프리즘유닛이 안착되는 제2 고정부; 및
    상기 제1 고정부 및 상기 제2 고정부의 상부에 결합되어 상기 프리즘유닛을 고정시키는 상부고정부를 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  7. 제 6 항에 있어서,
    상기 제1 고정부는,
    상기 프리즘유닛의 일측면과 밀착되도록 마련된 제1고정체;
    상기 프리즘유닛의 일측면과 이웃하는 양측면을 감싸도록 제1 고정체로부터 연장 형성된 한 쌍의 제1 연장체; 및
    상기 프리즘유닛의 일측면이 안착되도록 상기 제1 고정체의 내측 방향으로 단차 형성된 제1 안착체를 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  8. 제 7 항에 있어서,
    상기 제1 고정부는,
    상기 제1 고정체의 상면에 형성되며, 상기 프리즘유닛의 입사면을 향해 내리막 경사면을 갖도록 마련된 제1 광안내면을 더 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  9. 제 7 항에 있어서,
    상기 제1 고정부는,
    상기 제1 고정체의 내부에 형성되며, 상기 프리즘유닛의 시료주입구와 연결된 제1 이송유로; 및
    상기 제1 연장체에 삽입되어 일측은 튜브와 연결되고, 타측은 상기 제1 이송유로와 연결되도록 마련된 제1 튜브연결구를 더 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  10. 제 6 항에 있어서,
    상기 제2 고정부는,
    상기 프리즘유닛의 타측면과 밀착되도록 마련된 제2고정체;
    상기 프리즘유닛의 타측면과 이웃하는 양측면을 감싸도록 제2 고정체로부터 연장 형성된 한 쌍의 제2 연장체; 및
    상기 프리즘유닛의 타측면이 안착되도록 상기 제2 고정체의 내측 방향으로 단차 형성된 제2 안착체를 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  11. 제 7 항에 있어서,
    상기 제2 고정부는,
    상기 제2 고정체의 상면에 형성되며, 상기 프리즘유닛의 반사면을 향해 내리막 경사면을 갖도록 마련된 제2 광안내면을 더 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  12. 제 7 항에 있어서,
    상기 제2 고정부는,
    상기 제2 고정체의 내부에 형성되며, 상기 프리즘유닛의 시료배출구와 연결된 제2 이송유로; 및
    상기 제2 연장체에 삽입되어 일측은 튜브와 연결되고, 타측은 상기 제2 이송유로와 연결되도록 마련된 제2 튜브연결구를 더 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  13. 제 6 항에 있어서,
    상기 상부고정부는,
    상기 제1 고정부와 상기 제2 고정부를 연결하도록 마련된 한 쌍의 제1 상부고정체; 및
    한 쌍의 상기 제1 상부 고정체를 연결하도록 연장된 제2 상부고정체를 포함하며,
    상기 제1 상부고정체가 상기 제1 고정부 및 상기 제2 고정부에 결합될 때, 상기 제2 상부고정체는 상기 프리즘유닛을 하부를 향해 가압하도록 마련된 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  14. 제 1 항에 있어서,
    상기 센서칩고정유닛은,
    상기 프리즘고정유닛의 하부에 삽입되도록 마련된 센서칩고정체; 및
    상기 센서칩고정체의 상부에 형성되며, 상기 필름형유닛 및 상기 센서칩유닛이 안착되는 센서칩돌출체를 포함하며,
    상기 필름형유닛 및 상기 센서칩유닛을 상부를 향해 가압하도록 상기 프리즘고정유닛에 결합되는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  15. 제 14 항에 있어서,
    상기 센서칩돌출체, 상기 필름형유닛 및 상기 센서칩유닛은 상기 프리즘고정유닛의 제1 안착체 및 제2 안착체의 내측에 위치하며, 상기 센서칩돌출체, 상기 필름형유닛 및 상기 센서칩유닛의 두께는 상기 제1 안착체 및 상기 제2 안착체의 두께와 동일하도록 마련된 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  16. 제 1 항에 있어서,
    상기 프리즘유닛을 향해 광을 조사하고, 반사광의 편광변화를 검출하도록 마련된 편광검출유닛을 더 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  17. 제 16 항에 있어서,
    상기 편광검출유닛은,
    상기 프리즘유닛의 입사면을 향해 광을 조사하는 광원부;
    상기 광원부로부터 조사된 광을 편광시키는 편광자;
    상기 광원부로부터 조사된 광을 수광하여 상기 편광자에 평행광을 제공하는 렌즈부;
    상기 프리즘유닛의 반사면을 통과한 상기 반사광을 편광시키는 검광자;
    편광된 상기 반사광의 편광변화를 검출하는 광검출부를 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치.
  18. 제 1 항에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치를 적용한 바이오 센서 디바이스.
  19. 제 1 항에 따른 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 측정방법에 있어서,
    a) 상기 필름형유닛에 시료용액을 주입하여 상기 시료용액에 포함된 타겟물질과 상기 센서칩유닛에 고정된 반응물질을 반응시키는 단계;
    b) 상기 프리즘유닛에 광을 조사하여 편광변화를 검출하는 단계; 및
    c) 상기 필름형유닛에 공기를 주입하여 상기 시료용액을 배출하는 단계를 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 측정방법.
  20. 제 19 항에 있어서,
    상기 c) 단계 이후에,
    d) 상기 센서칩고정유닛을 분리하여 상기 센서칩유닛을 교체하는 단계를 더 포함하는 것을 특징으로 하는 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치의 측정방법.
PCT/KR2017/011273 2017-10-11 2017-10-12 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법 WO2019074140A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170131673A KR101971634B1 (ko) 2017-10-11 2017-10-11 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법
KR10-2017-0131673 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019074140A1 true WO2019074140A1 (ko) 2019-04-18

Family

ID=66100759

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2017/011273 WO2019074140A1 (ko) 2017-10-11 2017-10-12 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법

Country Status (2)

Country Link
KR (1) KR101971634B1 (ko)
WO (1) WO2019074140A1 (ko)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102253947B1 (ko) * 2019-07-16 2021-05-20 순천향대학교 산학협력단 나노 입자를 제조하는 장치(100) 및 이를 이용한 나노 입자를 제조하는 방법
KR102328165B1 (ko) * 2021-05-25 2021-11-17 마이크로어낼리시스 (주) 유체 시료 분석을 위한 광학 검출 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065732A (ja) * 1998-08-24 2000-03-03 Nippon Laser Denshi Kk 表面プラズモン共鳴角検出装置及び試料温度制御方法
JP2002214134A (ja) * 2001-01-24 2002-07-31 Hachinohe National College Of Technology Spr測定用試料セルおよびセルホルダ
JP2011196716A (ja) * 2010-03-17 2011-10-06 Omron Corp 流路チップ及び治具
WO2014007134A1 (ja) * 2012-07-05 2014-01-09 コニカミノルタ株式会社 センサーチップ
KR101383652B1 (ko) * 2012-10-15 2014-04-09 한국표준과학연구원 분자접합특성 및 완충용액 굴절률 동시 측정장치 및 측정방법

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101105328B1 (ko) 2009-11-23 2012-01-16 한국표준과학연구원 분자 흡착 및 해리 동특성 측정장치 및 측정방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000065732A (ja) * 1998-08-24 2000-03-03 Nippon Laser Denshi Kk 表面プラズモン共鳴角検出装置及び試料温度制御方法
JP2002214134A (ja) * 2001-01-24 2002-07-31 Hachinohe National College Of Technology Spr測定用試料セルおよびセルホルダ
JP2011196716A (ja) * 2010-03-17 2011-10-06 Omron Corp 流路チップ及び治具
WO2014007134A1 (ja) * 2012-07-05 2014-01-09 コニカミノルタ株式会社 センサーチップ
KR101383652B1 (ko) * 2012-10-15 2014-04-09 한국표준과학연구원 분자접합특성 및 완충용액 굴절률 동시 측정장치 및 측정방법

Also Published As

Publication number Publication date
KR101971634B1 (ko) 2019-04-23
KR20190040839A (ko) 2019-04-19

Similar Documents

Publication Publication Date Title
WO2014061924A1 (ko) 분자접합특성 및 완충용액 굴절률 동시 측정장치 및 측정방법
WO2011062377A2 (en) Apparatus and method for quantifying binding and dissociation kinetics of molecular interactions
WO2019074140A1 (ko) 센서칩유닛의 교체가 용이한 다채널 미세유로 측정장치 및 이의 측정방법
WO2013162175A1 (ko) 생화학 분석 카트리지
WO1998038493B1 (en) Photometer and test sample holder for use therein, method and system
WO2011081437A2 (en) Sample analysis cartridge and sample analysis cartridge reader
KR20030087020A (ko) 유체의 색상 특성을 측정하기 위한 방법 및 장치
WO2019168236A1 (ko) 유체 검사 카트리지, 이를 포함하는 유체 검사장치 및 검사장치의 제어방법
WO2016182382A1 (ko) 일체화된 반응 및 검출 수단을 구비한 시험 장치에 사용되는 스테이션
WO1998010122A1 (en) Microfabricated hybrid capillary array and multichannel detection assembly
WO2018117549A1 (ko) 혈중 지질 측정용 스트립
JPS5848849B2 (ja) ナガレセルオフクムケイコウケイ
WO2022250353A1 (ko) 유체 시료 분석을 위한 광학 검출 장치
WO2017078504A2 (ko) 공정가스 분석장치
WO2018084337A1 (ko) 당화혈색소 비율의 측정 방법
KR101992861B1 (ko) 미세유로 제어시스템 및 이의 제어방법
WO2020096292A1 (ko) 체외진단용 분석장치의 카트리지
WO2018062587A1 (ko) 당화혈색소 측정용 분리형 카세트
WO2018190458A1 (ko) 임피던스 신호를 이용하여 바이오 물질을 분석하는 장치
WO2018143519A1 (en) Fluid analysis cartridge and fluid analysis cartridge assembly having the same
US6628394B2 (en) Optical gasket system
WO2020040509A1 (ko) 고소광계수 표지자와 유전체기판을 이용한 고감도 바이오센서칩, 측정시스템 및 측정방법
WO2021085865A1 (ko) 흡광 분석 장치
WO2022131486A1 (ko) 포도당 측정장치
WO2023095965A1 (ko) 진단 스트립

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928193

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928193

Country of ref document: EP

Kind code of ref document: A1