WO2019074018A1 - 直流給電システム - Google Patents

直流給電システム Download PDF

Info

Publication number
WO2019074018A1
WO2019074018A1 PCT/JP2018/037801 JP2018037801W WO2019074018A1 WO 2019074018 A1 WO2019074018 A1 WO 2019074018A1 JP 2018037801 W JP2018037801 W JP 2018037801W WO 2019074018 A1 WO2019074018 A1 WO 2019074018A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
bus
storage battery
power
maximum
Prior art date
Application number
PCT/JP2018/037801
Other languages
English (en)
French (fr)
Inventor
羽田 正二
康寛 松永
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019074018A1 publication Critical patent/WO2019074018A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/28Arrangements for balancing of the load in a network by storage of energy
    • H02J3/32Arrangements for balancing of the load in a network by storage of energy using batteries with converting means
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
    • H02J7/34Parallel operation in networks using both storage and other dc sources, e.g. providing buffering
    • H02J7/35Parallel operation in networks using both storage and other dc sources, e.g. providing buffering with light sensitive cells
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/38Arrangements for parallely feeding a single network by two or more generators, converters or transformers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/76Power conversion electric or electronic aspects
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin

Definitions

  • the present invention relates to a DC power supply system for supplying DC power.
  • Patent Document 1 discloses a distributed power supply system in which a plurality of distributed power supply units are connected via a DC bus.
  • the distributed power supply system allows voltage fluctuation of the DC bus within a predetermined range, and autonomously cooperates and operates the distributed power supply units based on the voltage value of the DC bus.
  • the distributed power supply system includes a wind power generation unit, a solar power generation unit, an electric power storage unit, and a grid connection unit.
  • the grid connection unit mutually supplies power between the DC bus of the distributed power supply system and an external AC power system.
  • the power storage unit described in Patent Document 1 includes a secondary battery (storage battery).
  • the storage battery needs to prevent overcharging when charging. Therefore, in general, the storage battery has an overcharge protection circuit that stops charging when the applied voltage exceeds the overcharge protection voltage.
  • An object of the present invention is to provide a DC power supply system that can eliminate the need for an overcharge protection circuit in a storage battery.
  • the DC power supply system of the present invention With DC bus, A power storage device having a storage battery having a predetermined charge termination voltage which is a maximum voltage that can be charged is equal to or less than an overcharge protection voltage; One or more DC power sources outputting DC voltage to the DC bus only when the voltage of the DC bus is lower than the charge termination voltage of the storage battery; And the like.
  • the DC power supply system of the present invention is With DC bus, A power storage device having a storage battery having a predetermined charge termination voltage which is a maximum voltage that can be charged is equal to or less than an overcharge protection voltage; One or more DC power sources outputting a DC voltage to the DC bus; A power consumption device that consumes power of the DC bus when the voltage of the DC bus is equal to or higher than the charge termination voltage of the storage battery; And the like.
  • the DC power supply system of the present invention is The system linkage device converts an AC voltage supplied from an AC power system into a DC voltage and outputs the DC voltage to the DC bus when the voltage of the DC bus is lower than a predetermined output upper limit voltage,
  • the predetermined discharge termination voltage which is the minimum dischargeable voltage in the storage battery included in the power storage device, is equal to or higher than the output upper limit voltage of the grid connection device and equal to or higher than the overdischarge protection voltage of the storage battery.
  • the storage device connects the storage battery to the DC bus when the voltage of the DC bus is higher than the discharge termination voltage, or the voltage between the positive electrode terminal and the negative electrode terminal of the storage location is the discharge termination voltage
  • the storage battery is connected to the DC bus when it is above, and the storage battery is disconnected from the DC bus when the voltage of the DC bus is lower than the discharge termination voltage, or the positive electrode terminal and the negative electrode terminal of the storage location
  • a connection separating the storage battery from the DC bus when the voltage between them is lower than the discharge termination voltage It is characterized by
  • the DC power supply system of the present invention is It is characterized in that the maximum direct current that the direct current power source can output is smaller than a maximum charging current which is a maximum current capable of charging the storage battery.
  • the DC power supply system of the present invention is The apparatus has two or more DC power sources, and the maximum value of the sum of DC currents simultaneously output by the two or more DC power sources is smaller than the current value of the maximum charging current. I assume.
  • the overcharge protection circuit in the storage battery can be eliminated.
  • FIG. 2A shows an example in which the switch is provided on the high potential line side.
  • FIG. 2B shows an example in which the switch is provided on the low potential line side.
  • FIG. 2A shows an example in which the switch is provided on the high potential line side.
  • FIG. 2B shows an example in which the switch is provided on the low potential line side.
  • FIG. 2A shows an example in which the switch is provided on the high potential line side.
  • FIG. 2B shows an example in which the switch is provided on the low potential line side.
  • FIG. 2B shows an example in which the switch is provided on the low potential line side.
  • FIG. 2A shows an example in which the switch is provided on the high potential line side.
  • FIG. 2B shows an example in which the switch is provided on the low potential line side.
  • FIG. 2A shows an example in which the switch is provided on the high potential line side.
  • FIG. 2B shows an example in which the switch is provided on the low potential line side.
  • FIG. 2A shows an example in which the switch is
  • FIG. 1 shows an example of the configuration of a DC power supply system 1 according to a first embodiment of the present invention.
  • the DC power feeding system 1 includes a wind power generator 10, a solar power generator 20, a power storage device 30, a grid connection device 40, a plurality of loads 90, and a DC bus 100. Each of these devices 10, 20, 30, 40 and a load 90 are connected to a DC bus 100.
  • the grid connection device 40 is further connected to the power grid 200.
  • the wind power generator 10 and the solar power generator 20 are examples of the DC power source of the present invention.
  • the wind turbine generator 10 outputs a DC voltage equal to or lower than a predetermined upper limit voltage to the DC bus 100.
  • the solar power generation device 20 outputs a DC voltage equal to or lower than a predetermined upper limit voltage to the DC bus 100.
  • the grid connection device 40 converts the AC voltage supplied from the AC power system 200 into a DC voltage and outputs the DC voltage to the DC bus 100.
  • the grid connection device 40 is not included in the DC power source of the present invention.
  • power storage device 30 includes a storage battery 31, a charge current limiting circuit 32, a control unit 33, and a switch SW.
  • the maximum voltage output from the wind power generation device 10 and the solar power generation device 20 is determined in relation to the charge termination voltage of the storage device 30.
  • the charge termination voltage is the maximum voltage at which the storage battery 31 can be charged.
  • the charge termination voltage is set equal to or less than the overcharge protection voltage for preventing overcharging of the storage battery 31.
  • the discharge termination voltage is the minimum voltage that the storage battery 31 can discharge.
  • the discharge termination voltage is set to a predetermined voltage which is equal to or higher than the output upper limit voltage of the grid connection device 40 and which is equal to or higher than the overdischarge protection voltage for preventing overdischarge of the storage battery 31.
  • the overcharge protection voltage of storage battery 31 is (overcharge protection voltage for each cell) ⁇ number of cells, and the overdischarge protection voltage is (overdischarge protection voltage for each cell) ⁇ number of cells.
  • the charge current limiting circuit 32 limits the input current of the storage battery 31 so that the current input to the storage battery 31 does not exceed the maximum chargeable current.
  • the control unit 33 and the switch SW are examples of connection units included in the power storage device of the present invention.
  • the switch SW can be realized by, for example, a relay or a semiconductor switching element.
  • the control unit 33 closes the switch SW and connects the storage battery 31 to the DC bus 100 when the voltage of the DC bus 100 is equal to or higher than the discharge termination voltage.
  • the controller 33 closes the switch SW to connect the storage battery 31 to the DC bus 100 when the voltage between the positive electrode terminal and the negative electrode terminal of the storage battery 31 is equal to or higher than the discharge termination voltage.
  • control unit 33 opens switch SW to disconnect storage battery 31 from DC bus 100.
  • control unit 33 opens switch SW to disconnect storage battery 31 from DC bus 100.
  • the switch SW may be provided on the high potential line LH side as shown in FIG. 2A, or may be provided on the low potential line LL side as shown in FIG. 2B. . In addition, it may be provided on both the high potential line LH side and the low potential line LL side.
  • the DC power source outputs a DC voltage to DC bus 100 only when the voltage of DC bus 100 is lower than the charge termination voltage of storage battery 31.
  • the wind power generator 10 includes a wind power generator 11, a controller 12, and a switch SW, as shown in FIG. Only when the voltage of DC bus 100 is lower than the charge termination voltage of storage battery 31, control unit 12 closes switch SW to connect wind power generator 11 to DC bus 100 and output DC current to DC bus 100. .
  • control unit 12 closes switch SW to connect wind power generator 11 to DC bus 100 and output DC current to DC bus 100.
  • the structure in which the wind power generator 10 has the control part 12 and switch SW is only an illustration.
  • the wind power generation device 10 may have another structure as long as the wind power generation device 10 outputs a direct current to the direct current bus 100 only when the voltage of the direct current bus 100 is lower than the charge termination voltage of the storage battery 31.
  • the wind power generator 10 may be a wind power generator capable of outputting a voltage up to the charge termination voltage of the storage battery 31.
  • the solar power generation device 20 includes a solar cell 21, a control unit 22, and a switch SW. Only when the voltage of DC bus 100 is lower than the charge termination voltage of storage battery 31, control unit 22 closes switch SW to connect solar cell 21 to DC bus 100 and output a DC current to DC bus 100.
  • the structure in which the solar power generation device 20 has the control part 22 and switch SW is only an illustration.
  • the solar power generation device 20 may have another structure as long as it is a solar power generation device that outputs a direct current to the direct current bus 100 only when the voltage of the direct current bus 100 is lower than the charge termination voltage of the storage battery 31.
  • the solar power generation device 20 may be a solar power generation device capable of outputting a voltage up to the charge termination voltage of the storage battery 31.
  • the overcharge protection voltage for each cell is 2.25V
  • the overdischarge protection voltage for each cell is 1.9V
  • the overcharge protection voltage of storage battery 31 is 119.25V
  • Its overdischarge protection voltage is 100.7V. Therefore, the charge termination voltage of the storage battery 31 is set to 119.25 V or less, and the discharge termination voltage is set to 100.7 V or more.
  • the wind power generation device 10 and the solar power generation device 20 output a DC voltage to the DC bus 100 only when the voltage of the DC bus 100 is lower than 119.25V.
  • wind power generation device 10 and solar power generation device 20 output DC voltage to DC bus 100 only when the voltage of DC bus 100 is lower than the overcharge protection voltage of storage battery 31. Therefore, in the DC feeding system 1 according to the first embodiment, the overcharge protection circuit is not necessary for the storage device 30.
  • power system 200 If power system 200 outputs a DC voltage when the voltage of DC bus 100 drops to the discharge termination voltage (for example, 100.7 V), control unit 33 and switch SW are unnecessary in power storage device 30. It is. However, when an abnormal situation such as a power failure or a short circuit accident occurs, power system 200 may have its voltage lowered. In such a case, it is necessary to prevent overdischarge of the storage battery 31. Therefore, the power storage device 30 needs to include the control unit 33 and the switch SW.
  • the discharge termination voltage for example, 100.7 V
  • FIG. 5 shows an example of the configuration of a direct current feed system 2 according to a second embodiment of the present invention.
  • the DC power feeding system 2 includes a wind power generator 10A, a solar power generator 20A, a power storage device 30, a grid connection device 40, a power consumption device 50, a plurality of loads 90, and a DC bus 100.
  • the direct current feed system 2 according to the second embodiment differs from the direct current feed system 1 according to the first embodiment in a wind turbine 10A and a solar photovoltaic system 20A. Further, the direct current feed system 2 according to the second embodiment is different from the direct current feed system 1 according to the first embodiment in that a power consumption device 50 is provided. In the other points, the DC feeding system 2 and the DC feeding system 1 have the same configuration.
  • the wind turbine generator 10A is a normal general wind generator.
  • the upper limit of the output voltage of the wind turbine 10A is not particularly limited.
  • the wind turbine generator 10A is different from the wind turbine generator 10 according to the first embodiment in this respect.
  • the solar power generation device 20A is a normal general solar power generation device including a solar cell.
  • the upper limit of the output voltage of the solar power generation device 20A is not particularly limited.
  • the solar power generation device 20A differs from the solar power generation device 20 according to the first embodiment in this respect.
  • the wind turbine 10A and the solar generator 20A are other examples of the DC power source of the present invention.
  • the power consumption device 50 consumes the power of the DC bus 100 when the voltage of the DC bus 100 is equal to or higher than a predetermined charging termination voltage which is the maximum voltage at which the storage battery 31 can be charged.
  • the power consumption device 50 includes a resistive element 51, a control unit 52, and a switch SW.
  • the control unit 52 closes the switch SW to connect the resistance element 51 to the DC bus 100.
  • resistance element 51 consumes the power of DC bus 100. Therefore, the voltage of the DC bus 100 does not exceed the charge termination voltage of the storage battery 31. Therefore, in the direct current feed system 2 according to the second embodiment as well as the direct current feed system 1 according to the first embodiment, it is not necessary to provide the overcharge protection circuit in the power storage device 30.
  • FIG. 7 shows an example of the configuration of a direct current feed system 3 according to a third embodiment of the present invention.
  • the DC power feeding system 3 includes a wind power generator 10B, a solar power generator 20B, a power storage device 30A, a grid connection device 40, a plurality of loads 90, and a DC bus 100.
  • the DC power supply system 3 according to the third embodiment includes the wind power generator 10B, the solar power generator 20B, and the power storage device 30A in the wind power generator 10 and the solar power generator 20 of the DC power supply system 1 according to the first embodiment. And the power storage device 30. Otherwise, the DC power supply system 3 and the DC power supply system 1 have the same configuration.
  • the wind turbine generator 10B outputs a DC current equal to or less than a predetermined maximum output current to the DC bus 100.
  • the solar power generation device 20 also outputs a DC current equal to or less than a predetermined maximum output current to the DC bus 100.
  • the maximum output current of the wind power generator 10B and the solar power generation device 20B may be the same or different.
  • the wind power generator 10B and the solar power generator 20B are still another example of the DC power source of the present invention.
  • the wind power generation device 10B and the solar power generation device 20B output the DC voltage to the DC bus 100 only when the voltage of the DC bus 100 is lower than the charge termination voltage of the storage battery 31 in the first embodiment. It is the same as the wind power generator 10 and the solar power generator 20 according to.
  • power storage device 30A includes a storage battery 31A, a control unit 33, and a switch SW.
  • a current up to a predetermined maximum charging current can be supplied at the time of charging.
  • the maximum output current of the wind turbine 10B is smaller than the maximum charging current.
  • the maximum output current of the solar power generation device 20B is smaller than the maximum charging current.
  • the maximum value of the sum of direct currents that can be simultaneously output by the wind power generation device 10B and the solar power generation device 20B is Less than the maximum charging current.
  • the current value of the maximum charging current of the storage battery 31A is larger than the maximum value of the sum of the direct current that can be output simultaneously by the wind power generation device 10B and the solar power generation device 20B. Therefore, no current exceeding the maximum charging current flows in the storage battery 31A at the time of charging.
  • the grid connection device 40 can flow a large current far exceeding the maximum charging current of the storage battery 31A from the power system 200 to the DC bus 100.
  • storage battery 31A is connected to DC bus 100 only when the voltage of DC bus 100 is higher than the discharge termination voltage.
  • storage battery 31A is connected to DC bus 100 only when the voltage between the positive electrode terminal and the negative electrode terminal of storage battery 31A is higher than the discharge termination voltage.
  • the grid connection device 40 outputs a DC voltage to the DC bus 100 when the voltage of the DC bus 100 is lower than the discharge termination voltage. Therefore, the storage battery 31A is not charged by the current flowing from the power system 200 through the grid connection device 40 to the DC bus 100. For this reason, in the direct current feed system 3 according to the third embodiment, it is not necessary to limit the charging current in the storage battery 31A. Therefore, in the DC power supply system 3 according to the third embodiment, the storage battery 30A does not have to be provided with a charging current limiting circuit, and the storage battery 31A is connected to the DC bus 100 only through switching elements such as relays or semiconductor switching elements. can do.
  • the DC power feeding system 3 includes the wind power generator 10B and the solar power generator 20B
  • the DC power feeding system 3 may include only one of the wind power generator 10B and the solar power generator 20B.
  • the maximum direct current which either one can output is smaller than the maximum charging current which is the maximum current capable of charging the storage battery 31A.
  • FIG. 9 shows an example of the configuration of a direct current feed system 4 according to a fourth embodiment of the present invention.
  • the DC power feeding system 4 has a wind power generator 10C, a solar power generator 20C, a power storage device 30A, a grid connection device 40, a power consumption device 50, a plurality of loads 90, and a DC bus 100.
  • the DC power supply system 4 according to the fourth embodiment differs from the wind power generator 10A and the solar power generation apparatus 20A of the DC power supply system 2 according to the second embodiment in a wind turbine 10C and a solar power generator 20C.
  • the DC power supply system 4 according to the fourth embodiment is the same as the DC power supply system 2 according to the second embodiment in that the power storage device 30A is the same as that of the DC power supply system 3 according to the third embodiment. It is different from Otherwise, the DC power supply system 4 and the DC power supply system 2 have the same configuration.
  • the wind turbine generator 10C is different from the wind turbine generator 10B according to the third embodiment in that the upper limit of the output voltage is not particularly limited. Except for this point, the wind turbine 10C is identical to the wind turbine 10B.
  • the solar power generation device 20C is also different from the solar power generation device 20B according to the third embodiment in that the upper limit of the output voltage is not particularly limited. Except for this point, the solar power generation device 20C is the same as the solar power generation device 20B.
  • the wind turbine 10C and the solar generator 20C are further examples of the DC power source according to the present invention. Further, although the DC power supply system 4 includes the wind power generation device 10C and the solar power generation device 20C, the DC power supply system 4 may include only one of the wind power generation device 10C and the solar power generation device 20C. In this case, the maximum direct current which either one can output is smaller than the maximum charging current which is the maximum current capable of charging the storage battery 31A.
  • the switch SW is provided on the high potential line LH side for the wind power generation device 10, the solar power generation device 20, the power consumption device 50, and the storage device 30A, respectively.
  • the switch SW may be provided on the low potential line LL side as in the power storage device 30 of FIG. And the low potential line LL side.
  • the DC power source is a wind power generator and a solar power generator
  • the DC power supply system of the present invention has only one of the wind power generator and the solar power generator. It may be done.
  • the DC power supply system of the present invention may include a DC power source other than the wind power generator and the solar power generator, may include only one DC power source, and includes three or more DC power sources. May be
  • the overcharge protection circuit in the storage battery can be eliminated. Further, according to the present invention, the limitation of the charging current in the storage battery can be made unnecessary. For example, in a wind power generator, the output current fluctuates greatly according to the wind speed.
  • the present invention is particularly effective when the DC power supply system includes such a DC current source.

Abstract

蓄電池における過充電保護回路を不要とする。 蓄電装置30は、充電可能な最大の電圧である所定の充電終止電圧が過充電保護電圧以下である蓄電池を有する。風力発電装置10と太陽光発電装置20は、直流バス100の電圧が蓄電池の充電終止電圧よりも低いときにのみ、直流電圧を直流バス100に出力する。

Description

直流給電システム
 本発明は、直流電力を供給する直流給電システムに関する。
 特許文献1は、複数の分散電源ユニットが直流バスを介して接続された分散電源システムを開示する。この分散電源システムは、直流バスの電圧変動を所定範囲内で許容し、この直流バスの電圧値に基づいて各分散電源ユニットを自律的に協調運転する。この分散電源システムは、風力発電ユニットと、太陽光発電ユニットと、電力貯蔵ユニットと、系統連係ユニットとを含む。なお、系統連係ユニットは分散電源システムの直流バスと外部の交流の電力系統との間で電力を相互に供給し合う。
特開2003-339118号公報
 特許文献1に記載されている電力貯蔵ユニットは、二次電池(蓄電池)を含む。蓄電池は、充電する際に過充電を防止する必要がある。このため、一般に、蓄電池は、印加される電圧が過充電保護電圧を超えると充電を停止する過充電保護回路を有する。
 本発明の目的は、蓄電池における過充電保護回路を不要とすることができる直流給電システムを提供することである。
 上記目的を達成するために、本発明の直流給電システムは、
 直流バスと、
 充電可能な最大の電圧である所定の充電終止電圧が過充電保護電圧以下である蓄電池を有する蓄電装置と、
 前記直流バスの電圧が前記蓄電池の充電終止電圧よりも低いときにのみ、直流電圧を前記直流バスに出力する1つ以上の直流電力源と、
 を備えることを特徴とする。
 好ましくは、本発明の直流給電システムは、
 直流バスと、
 充電可能な最大の電圧である所定の充電終止電圧が過充電保護電圧以下である蓄電池を有する蓄電装置と、
 直流電圧を前記直流バスに出力する1つ以上の直流電力源と、
 前記直流バスの電圧が前記蓄電池の充電終止電圧以上であるときに、前記直流バスの電力を消費する電力消費装置と、
 を備えることを特徴とする。
 好ましくは、本発明の直流給電システムは、
 前記直流バスの電圧が所定の出力上限電圧より低いときに、交流の電力系統から供給される交流電圧を直流電圧に変換して前記直流バスに出力する系統連係装置を備え、
 前記蓄電装置に含まれる蓄電池における放電可能な最小の電圧である所定の放電終止電圧が、前記系統連係装置の出力上限電圧以上かつ前記蓄電池の過放電保護電圧以上であり、
 前記蓄電装置が、前記直流バスの電圧が前記放電終止電圧以上であるときに前記蓄電池を前記直流バスに接続するか、または前記蓄電地の正極端子と負極端子の間の電圧が前記放電終止電圧以上であるときに前記蓄電池を前記直流バスに接続し、前記直流バスの電圧が前記放電終止電圧よりも低いときに前記蓄電池を前記直流バスから切り離すか、または前記蓄電地の正極端子と負極端子の間の電圧が前記放電終止電圧よりも低いときに前記蓄電池を前記直流バスから切り離す接続部を有する、
 ことを特徴とする
 好ましくは、本発明の直流給電システムは、
 前記直流電力源が出力することができる最大の直流電流が、前記蓄電池を充電可能な最大の電流である最大充電電流よりも小さいことを特徴とする。
 好ましくは、本発明の直流給電システムは、
 前記直流電力源を2つ以上有しており、当該2つ以上の直流電力源が同時に出力することができる直流電流の総和の最大値が、前記最大充電電流の電流値よりも小さいことを特徴とする。
 本発明によれば、蓄電池における過充電保護回路を不要とすることができる。
本発明の第1の実施形態に係る直流給電システムの構成の一例を示す図である。 図1の直流給電システムに含まれる蓄電装置の構成の一例を示す図である。図2(A)は、スイッチが高電位ライン側に設けられている例を示す。図2(B)は、スイッチが低電位ライン側に設けられている例を示す。 図1の直流給電システムに含まれる風力発電装置の構成の一例を示す図である。 図1の直流給電システムに含まれる太陽光発電装置の構成の一例を示す図である。 本発明の第2の実施形態に係る直流給電システムの構成の一例を示す図である。 図5の直流給電システムに含まれる電力消費装置の構成の一例を示す図である。 本発明の第3の実施形態に係る直流給電システムの構成の一例を示す図である。 図7の直流給電システムに含まれる蓄電装置の構成の一例を示す図である。 本発明の第4の実施形態に係る直流給電システムの構成の一例を示す図である。
 以下、本発明の実施形態に係る直流給電システムについて図面を参照しながら詳細に説明する。なお、実施形態を説明する全図において、共通の構成要素には同一の符号を付し、繰り返しの説明を省略する。
 図1は、本発明の第1の実施形態に係る直流給電システム1の構成の一例を示す。
 直流給電システム1は、風力発電装置10と、太陽光発電装置20と、蓄電装置30と、系統連係装置40と、複数の負荷90と、直流バス100とを有する。
 これらの各装置10,20,30,40と負荷90は、直流バス100に接続される。系統連係装置40は、更に電力系統200に接続される。
 風力発電装置10と太陽光発電装置20は本発明の直流電力源の例である。風力発電装置10は、所定の上限電圧以下の直流電圧を直流バス100に出力する。太陽光発電装置20も、同様に所定の上限電圧以下の直流電圧を直流バス100に出力する。
 系統連係装置40は、直流バス100の電圧が所定の出力上限電圧より低いときに、交流の電力系統200から供給される交流電圧を直流電圧に変換して直流バス100に出力する。なお、系統連係装置40は、本発明の直流電力源に含まれない。
 図2に示すように、蓄電装置30は、蓄電池31と、充電電流制限回路32と、制御部33と、スイッチSWとを含む。
 風力発電装置10と太陽光発電装置20が出力する最大の電圧は、蓄電装置30の充電終止電圧との関係で定められる。
 充電終止電圧は、蓄電池31を充電可能な最大の電圧である。充電終止電圧は、蓄電池31の過充電を防止するための過充電保護電圧以下に定められる。また、放電終止電圧は、蓄電池31が放電可能な最小の電圧である。放電終止電圧は、系統連係装置40の出力上限電圧以上であり、かつ蓄電池31の過放電を防止するための過放電保護電圧以上である所定の電圧に定められる。なお、蓄電池31の過充電保護電圧は(セル毎の過充電保護電圧)×セル数であり、その過放電保護電圧は(セル毎の過放電保護電圧)×セル数である。
 充電電流制限回路32は、蓄電池31に入力される電流が充電可能な最大の電流を超えないように蓄電池31の入力電流を制限する。
 制御部33とスイッチSWとは、本発明の蓄電装置に含まれる接続部の例である。スイッチSWは、例えば、リレーまたは半導体スイッチング素子で実現することができる。制御部33は、直流バス100の電圧が放電終止電圧以上であるときにスイッチSWを閉じて蓄電池31を直流バス100に接続する。または、制御部33は、蓄電池31の正極端子と負極端子の間の電圧が放電終止電圧以上であるときにスイッチSWを閉じて蓄電池31を直流バス100に接続する。また、制御部33は、直流バス100の電圧が放電終止電圧よりも低いときにスイッチSWを開いて蓄電池31を直流バス100から切り離す。または、制御部33は、蓄電池31の正極端子と負極端子の間の電圧が放電終止電圧よりも低いときにスイッチSWを開いて蓄電池31を直流バス100から切り離す。
 なお、スイッチSWは、図2(A)に示すように高電位ラインLH側に設けられていてもよいし、図2(B)に示すように低電位ラインLL側に設けられていてもよい。また、高電位ラインLH側と低電位ラインLL側の両方に設けられていてもよい。
 直流電力源は、直流バス100の電圧が蓄電池31の充電終止電圧よりも低いときにのみ、直流電圧を直流バス100に出力する。
 風力発電装置10は、図3に示すように、風力発電機11と、制御部12と、スイッチSWとを含む。制御部12は、直流バス100の電圧が蓄電池31の充電終止電圧よりも低いときにのみ、スイッチSWを閉じて風力発電機11を直流バス100に接続し、直流電流を直流バス100に出力する。なお、風力発電装置10が制御部12とスイッチSWを有する構造は例示に過ぎない。風力発電装置10は、直流バス100の電圧が蓄電池31の充電終止電圧よりも低いときにのみ、直流電流を直流バス100に出力する風力発電装置であれば、他の構造であってもよい。例えば、風力発電装置10は、蓄電池31の充電終止電圧まで電圧を出力することができる風力発電装置であってもよい。
 太陽光発電装置20は、図4に示すように、太陽電池21と、制御部22と、スイッチSWとを含む。制御部22は、直流バス100の電圧が蓄電池31の充電終止電圧よりも低いときにのみ、スイッチSWを閉じて太陽電池21を直流バス100に接続し、直流電流を直流バス100に出力する。なお、太陽光発電装置20が制御部22とスイッチSWを有する構造は例示に過ぎない。太陽光発電装置20は、直流バス100の電圧が蓄電池31の充電終止電圧よりも低いときにのみ、直流電流を直流バス100に出力する太陽光発電装置であれば、他の構造であってもよい。例えば、太陽光発電装置20は、蓄電池31の充電終止電圧まで電圧を出力することができる太陽光発電装置であってもよい。
 例えば、蓄電池31のセル数が53個、セル毎の過充電保護電圧が2.25V、セル毎の過放電保護電圧が1.9Vのとき、蓄電池31の過充電保護電圧は119.25Vであり、その過放電保護電圧は100.7Vである。従って、蓄電池31の充電終止電圧は119.25V以下に定められ、その放電終止電圧は100.7V以上に定められる。
 このとき、風力発電装置10と太陽光発電装置20は、直流バス100の電圧が119.25Vよりも低いときにのみ、直流電圧を直流バス100に出力する。このように、風力発電装置10と太陽光発電装置20は、直流バス100の電圧が蓄電池31の過充電保護電圧よりも低いときにのみ、直流電圧を直流バス100に出力する。従って、第1の実施形態に係る直流給電システム1では、蓄電装置30に過充電保護回路が不要となる。
 なお、仮に、直流バス100の電圧が放電終止電圧(例えば、100.7V)まで低下したときに、電力系統200が直流電圧を出力するならば、蓄電装置30において制御部33とスイッチSWは不要である。しかし、電力系統200は、停電や短絡事故等の異常事態が発生した場合に、その電圧が低下するおそれがある。このような場合に蓄電池31の過放電を防ぐ必要がある。このため、蓄電装置30は制御部33とスイッチSWを備えることが必要である。
 図5は、本発明の第2の実施形態に係る直流給電システム2の構成の一例を示す。
 直流給電システム2は、風力発電装置10Aと、太陽光発電装置20Aと、蓄電装置30と、系統連係装置40と、電力消費装置50と、複数の負荷90と、直流バス100とを有する。
 第2の実施形態に係る直流給電システム2は、風力発電装置10Aと太陽光発電装置20Aが第1の実施形態に係る直流給電システム1と異なる。また、第2の実施形態に係る直流給電システム2は、電力消費装置50を有する点が第1の実施形態に係る直流給電システム1と異なる。その他の点では、直流給電システム2と直流給電システム1は同一の構成である。
 風力発電装置10Aは、通常の一般的な風力発電機である。風力発電装置10Aには出力電圧の上限に特に制限はない。風力発電装置10Aは、この点が第1の実施形態に係る風力発電装置10と異なる。
 太陽光発電装置20Aは、太陽電池を含む通常の一般的な太陽光発電装置である。太陽光発電装置20Aには出力電圧の上限に特に制限はない。太陽光発電装置20Aは、この点が第1の実施形態に係る太陽光発電装置20と異なる。
 なお、風力発電装置10Aと太陽光発電装置20Aは、本発明の直流電力源の別の例である。
 電力消費装置50は、直流バス100の電圧が蓄電池31を充電可能な最大の電圧である所定の充電終止電圧以上であるときに、直流バス100の電力を消費する。
 図6に示すように、電力消費装置50は、抵抗素子51と、制御部52と、スイッチSWとを含む。直流バス100の直流電圧が充電終止電圧以上であるとき、制御部52はスイッチSWを閉じて抵抗素子51を直流バス100に接続する。このとき、抵抗素子51は直流バス100の電力を消費する。このため、直流バス100の電圧は蓄電池31の充電終止電圧を超えることがない。従って、第2の実施形態に係る直流給電システム2でも、第1の実施形態に係る直流給電システム1と同様に、蓄電装置30に過充電保護回路を設ける必要がない。
 図7は、本発明の第3の実施形態に係る直流給電システム3の構成の一例を示す。
 直流給電システム3は、風力発電装置10Bと、太陽光発電装置20Bと、蓄電装置30Aと、系統連係装置40と、複数の負荷90と、直流バス100とを有する。
 第3の実施形態に係る直流給電システム3は、風力発電装置10Bと太陽光発電装置20Bと蓄電装置30Aが第1の実施形態に係る直流給電システム1の風力発電装置10と太陽光発電装置20と蓄電装置30と異なる。その他の点では、直流給電システム3と直流給電システム1は同一の構成である。
 風力発電装置10Bは、所定の最大出力電流以下の直流電流を直流バス100に出力する。同様に、太陽光発電装置20も、所定の最大出力電流以下の直流電流を直流バス100に出力する。なお、風力発電装置10Bと太陽光発電装置20Bの最大出力電流は同一である場合もあるし、異なる場合もある。風力発電装置10Bと太陽光発電装置20Bは本発明の直流電力源の更に別の例である。
 また、風力発電装置10Bおよび太陽光発電装置20Bが、直流バス100の電圧が蓄電池31の充電終止電圧よりも低いときにのみ、直流電圧を直流バス100に出力する点は、第1の実施形態に係る風力発電装置10および太陽光発電装置20と同一である。
 図8に示すように、蓄電装置30Aは、蓄電池31Aと、制御部33と、スイッチSWとを含む。
 蓄電池31Aには、充電時に所定の最大充電電流までの電流を流すことができる。風力発電装置10Bの最大出力電流はその最大充電電流よりも小さい。同様に、太陽光発電装置20Bの最大出力電流もその最大充電電流よりも小さい。更に、風力発電装置10Bと太陽光発電装置20Bが同時に出力することができる直流電流の和の最大値(1つ以上の直流電力源が同時に出力することができる直流電流の総和の最大値)は最大充電電流の電流値よりも小さい。
 蓄電池31Aの最大充電電流の電流値は、風力発電装置10Bと太陽光発電装置20Bが同時に出力することができる直流電流の和の最大値よりも大きい。このため、充電の際に最大充電電流を超える電流が蓄電池31Aに流れることはない。
 系統連係装置40は、電力系統200から直流バス100に、蓄電池31Aの最大充電電流をはるかに超える大きな電流を流すことができる。しかし、蓄電池31Aは、直流バス100の電圧が放電終止電圧よりも高いときにのみ、直流バス100に接続される。または、蓄電池31Aは、蓄電池31Aの正極端子と負極端子の間の電圧が放電終止電圧よりも高いときにのみ、直流バス100に接続される。そして、系統連係装置40は直流バス100の電圧が放電終止電圧より低いときに直流バス100に直流電圧を出力する。このため、電力系統200から系統連係装置40を通って直流バス100に流れる電流により、蓄電池31Aが充電されることはない。
 このため、第3の実施形態に係る直流給電システム3では、蓄電池31Aにおいて充電電流を制限する必要がない。従って、第3の実施形態に係る直流給電システム3では、蓄電装置30Aに充電電流制限回路を設ける必要がなく、リレーまたは半導体スイッチング素子等のスイッチ素子のみを介して蓄電池31Aを直流バス100に接続することができる。
 なお、直流給電システム3は風力発電装置10Bと太陽光発電装置20Bを有するが、直流給電システム3は風力発電装置10Bと太陽光発電装置20Bのいずれか一方のみを有していてもよい。この場合、そのいずれか一方が出力することができる最大の直流電流は、蓄電池31Aを充電可能な最大の電流である最大充電電流よりも小さい。
 図9は、本発明の第4の実施形態に係る直流給電システム4の構成の一例を示す。
 直流給電システム4は、風力発電装置10Cと、太陽光発電装置20Cと、蓄電装置30Aと、系統連係装置40と、電力消費装置50と、複数の負荷90と、直流バス100とを有する。
 第4の実施形態に係る直流給電システム4は、風力発電装置10Cと太陽光発電装置20Cが第2の実施形態に係る直流給電システム2の風力発電装置10Aと太陽光発電装置20Aと異なる。また、第4の実施形態に係る直流給電システム4は、蓄電装置30Aが第3の実施形態に係る直流給電システム3のものと同一である点が、第2の実施形態に係る直流給電システム2と異なる。その他の点では、直流給電システム4と直流給電システム2は同一の構成である。
 風力発電装置10Cは、出力電圧の上限に特に制限はない点が第3の実施形態に係る風力発電装置10Bと異なる。この点を除き、風力発電装置10Cは、風力発電装置10Bと同一である。
 太陽光発電装置20Cも、出力電圧の上限に特に制限はない点が第3の実施形態に係る太陽光発電装置20Bと異なる。この点を除き、太陽光発電装置20Cは、太陽光発電装置20Bと同一である。
 なお、風力発電装置10Cと太陽光発電装置20Cは本発明の直流電力源の更に別の例である。
 また、直流給電システム4は風力発電装置10Cと太陽光発電装置20Cを有するが、直流給電システム4は風力発電装置10Cと太陽光発電装置20Cのいずれか一方のみを有していてもよい。この場合、そのいずれか一方が出力することができる最大の直流電流は、蓄電池31Aを充電可能な最大の電流である最大充電電流よりも小さい。
 図3と図4と図6と図8では、それぞれ風力発電装置10と太陽光発電装置20と電力消費装置50と蓄電装置30Aとについて、スイッチSWが高電位ラインLH側に設けられていている例を示したが、これらの各装置10、20、50、30Aでも図2の蓄電装置30と同様に、スイッチSWは低電位ラインLL側に設けられていてもよいし、高電位ラインLH側と低電位ラインLL側の両方に設けられていてもよい。
 また、上述した実施形態では、直流電力源が風力発電装置と太陽光発電装置である例を示したが、本発明の直流給電システムは風力発電装置と太陽光発電装置のいずれか一方のみを有していてもよい。また、本発明の直流給電システムは風力発電装置と太陽光発電装置以外の直流電力源を備えてもよいし、直流電力源を1つのみ備えてもよいし、直流電力源を3つ以上備えてもよい。
 以上説明したように、本発明によれば、蓄電池における過充電保護回路を不要とすることができる。
 また、本発明によれば、蓄電池における充電電流の制限を不要とすることができる。例えば、風力発電機は風速に応じて出力電流が大きく変動する。直流給電システムがこのような直流電流源を含む場合に本発明は特に有効である。
 以上、本発明の実施形態について説明したが、設計または製造上の都合やその他の要因によって必要となる様々な修正や組み合わせは、請求項に記載されている発明や発明の実施形態に記載されている具体例に対応する発明の範囲に含まれる。
1,2,3,4…直流給電システム、10,10A、10B,10C…風力発電装置、11…風力発電機、12…風力発電装置の制御部、20,20A、20B,20C…太陽光発電装置、21…太陽電池、22…太陽光発電装置の制御部、30,30A…蓄電装置、31,31A…蓄電池、32…充電電流制限回路、33…蓄電装置の制御部、40…系統連係装置、50…電力消費装置、51…抵抗素子、52…電力消費装置の制御部、90…負荷、100…直流バス、200…交流の電力系統、SW…スイッチ、LH…高電位ライン、LL…低電位ライン

Claims (5)

  1.  直流バスと、
     充電可能な最大の電圧である所定の充電終止電圧が過充電保護電圧以下である蓄電池を有する蓄電装置と、
     前記直流バスの電圧が前記蓄電池の充電終止電圧よりも低いときにのみ、直流電圧を前記直流バスに出力する1つ以上の直流電力源と、
     を備えることを特徴とする直流給電システム。
  2.  直流バスと、
     充電可能な最大の電圧である所定の充電終止電圧が過充電保護電圧以下である蓄電池を有する蓄電装置と、
     直流電圧を前記直流バスに出力する1つ以上の直流電力源と、
     前記直流バスの電圧が前記蓄電池の充電終止電圧以上であるときに、前記直流バスの電力を消費する電力消費装置と、
     を備えることを特徴とする直流給電システム。
  3.  前記直流バスの電圧が所定の出力上限電圧より低いときに、交流の電力系統から供給される交流電圧を直流電圧に変換して前記直流バスに出力する系統連係装置を備え、
     前記蓄電装置に含まれる蓄電池における放電可能な最小の電圧である所定の放電終止電圧が、前記系統連係装置の出力上限電圧以上かつ前記蓄電池の過放電保護電圧以上であり、
     前記蓄電装置が、前記直流バスの電圧が前記放電終止電圧以上であるときに前記蓄電池を前記直流バスに接続するか、または前記蓄電地の正極端子と負極端子の間の電圧が前記放電終止電圧以上であるときに前記蓄電池を前記直流バスに接続し、前記直流バスの電圧が前記放電終止電圧よりも低いときに前記蓄電池を前記直流バスから切り離すか、または前記蓄電地の正極端子と負極端子の間の電圧が前記放電終止電圧よりも低いときに前記蓄電池を前記直流バスから切り離す接続部を有する、
     ことを特徴とする請求項1または2に記載の直流給電システム。
  4.  前記直流電力源が出力することができる最大の直流電流が、前記蓄電池を充電可能な最大の電流である最大充電電流よりも小さいことを特徴とする請求項1ないし3のいずれか1項に記載の直流給電システム。
  5.  前記直流電力源を2つ以上有しており、当該2つ以上の直流電力源が同時に出力することができる直流電流の総和の最大値が、前記最大充電電流の電流値よりも小さいことを特徴とする請求項4に記載の直流給電システム。
PCT/JP2018/037801 2017-10-11 2018-10-10 直流給電システム WO2019074018A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017197674A JP6932607B2 (ja) 2017-10-11 2017-10-11 直流給電システム
JP2017-197674 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019074018A1 true WO2019074018A1 (ja) 2019-04-18

Family

ID=66101425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037801 WO2019074018A1 (ja) 2017-10-11 2018-10-10 直流給電システム

Country Status (2)

Country Link
JP (1) JP6932607B2 (ja)
WO (1) WO2019074018A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7272897B2 (ja) * 2019-08-07 2023-05-12 Ntn株式会社 充放電制御装置およびそれを備えたバッテリ並びに直流給電システム
JPWO2021039678A1 (ja) * 2019-08-23 2021-03-04

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (ja) * 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
WO2008026425A1 (en) * 2006-08-28 2008-03-06 Sharp Kabushiki Kaisha Power conditioner
US20120299386A1 (en) * 2011-05-26 2012-11-29 Pika Energy LLC Dc microgrid for interconnecting distributed electricity generation, loads, and storage
WO2013118336A1 (ja) * 2012-02-08 2013-08-15 三菱電機株式会社 電力変換装置
WO2013121618A1 (ja) * 2012-02-13 2013-08-22 三菱電機株式会社 電力変換装置
US20140207305A1 (en) * 2013-01-24 2014-07-24 Chung-Hsin Electric & Machinery Mfg. Corporation Electrical energy supply system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003339118A (ja) * 2002-05-22 2003-11-28 My Way Giken Kk 分散電源システム
WO2008026425A1 (en) * 2006-08-28 2008-03-06 Sharp Kabushiki Kaisha Power conditioner
US20120299386A1 (en) * 2011-05-26 2012-11-29 Pika Energy LLC Dc microgrid for interconnecting distributed electricity generation, loads, and storage
WO2013118336A1 (ja) * 2012-02-08 2013-08-15 三菱電機株式会社 電力変換装置
WO2013121618A1 (ja) * 2012-02-13 2013-08-22 三菱電機株式会社 電力変換装置
US20140207305A1 (en) * 2013-01-24 2014-07-24 Chung-Hsin Electric & Machinery Mfg. Corporation Electrical energy supply system

Also Published As

Publication number Publication date
JP6932607B2 (ja) 2021-09-08
JP2019071749A (ja) 2019-05-09

Similar Documents

Publication Publication Date Title
JP5076024B2 (ja) 再生可能エネルギーの利用を最大限にする貯蔵システム
US20130187466A1 (en) Power management system
CN108233421B (zh) 光伏发电系统和光伏输电方法
WO2011096430A1 (ja) 電源装置
US20120169124A1 (en) Output circuit for power supply system
US20130169064A1 (en) Energy storage system and controlling method of the same
US9711967B1 (en) Off grid backup inverter automatic transfer switch
JP6178328B2 (ja) 電気化学セルを含むdc電圧源
US20130293198A1 (en) Battery assembly control system
TW201103220A (en) Apparatus and method for managing plural secondary batteries
JP2011120449A (ja) 発電システム、制御装置および切替回路
KR20150085383A (ko) 배터리 시스템 및 배터리 시스템을 포함하는 에너지 저장 시스템
CN205724930U (zh) 一种混合逆变器系统
JP7126243B2 (ja) 電力供給システム
US20170063254A1 (en) Inverter system
WO2019074018A1 (ja) 直流給電システム
CN219801959U (zh) 一种储能汇流柜及使用该储能汇流柜的储能系统
JP2009148110A (ja) 充放電器とこれを用いた電源装置
CN110641316A (zh) 动力电池充电控制电路及充电控制方法、电动汽车
JP2018117438A (ja) リチウムイオンキャパシタを備えた電源モジュール
CN207039235U (zh) 一种充电系统
WO2017043109A1 (ja) 蓄電池装置及び蓄電池システム
JP2009219336A (ja) 直流電源システムおよびその充電方法
JP7165507B2 (ja) 直流給電システム
JP2014055902A (ja) 原子力発電プラント用直流電源設備

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865749

Country of ref document: EP

Kind code of ref document: A1