WO2019072329A1 - Dispositif pour commander le processus de combustion dans une installation de combustion d'une centrale - Google Patents

Dispositif pour commander le processus de combustion dans une installation de combustion d'une centrale Download PDF

Info

Publication number
WO2019072329A1
WO2019072329A1 PCT/DE2018/000286 DE2018000286W WO2019072329A1 WO 2019072329 A1 WO2019072329 A1 WO 2019072329A1 DE 2018000286 W DE2018000286 W DE 2018000286W WO 2019072329 A1 WO2019072329 A1 WO 2019072329A1
Authority
WO
WIPO (PCT)
Prior art keywords
annular gap
combustion air
flow
sensor rods
sensor
Prior art date
Application number
PCT/DE2018/000286
Other languages
German (de)
English (en)
Inventor
Hans Georg Conrads
Alexander Halm
Original Assignee
Promecon Process Measurement Control Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promecon Process Measurement Control Gmbh filed Critical Promecon Process Measurement Control Gmbh
Priority to CN201880066187.1A priority Critical patent/CN111201401B/zh
Priority to ES18796827T priority patent/ES2898242T3/es
Priority to US16/649,047 priority patent/US20200292170A1/en
Priority to PL18796827T priority patent/PL3695167T3/pl
Priority to JP2020520629A priority patent/JP2020537109A/ja
Priority to EP18796827.6A priority patent/EP3695167B1/fr
Priority to KR1020207013321A priority patent/KR20200065049A/ko
Publication of WO2019072329A1 publication Critical patent/WO2019072329A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation

Definitions

  • the invention relates to a device for controlling the combustion process in a power plant furnace with a plurality of parallel acting, arranged in a wall of a Feuerungsraumes and powered by a common windbox with combustion air burners, wherein the individual burner combustion air over one or more concentric surrounding the burner / n annular gap / e is supplied.
  • a plurality of burners are arranged to act in parallel in a wall of a combustion chamber and are supplied via a common windbox with combustion air.
  • the combustion air is supplied to the individual burner via one or more annular gaps / e surrounding the burner concentrically.
  • the supply of the combustion air to the annular gap comprises means for influencing the amount of combustion air flowing in through the annular gap and subsequently into the firing space.
  • variable in the position or in the annular gap / en variable in position air ducts such as vanes, arranged to initiate the combustion air spirally as a swirling flow around a flame forming in front of the burner in the firing chamber, wherein the flow direction of the combustion air flow through a change the position of the vanes can be changed.
  • both the means for influencing the amount of combustion air flowing through the annular gap and subsequently into the firing space and the louvers, for example guide vanes can be designed differently in each annular gap and can be controlled separately.
  • the combustion air for the main and the post combustion can be separated, ie different combustion zones of the flame in the flow direction and combustion air amount differently, are introduced into the firing space in front of a single burner.
  • the guide vanes for generating a swirl flow of the combustion air stream and the means for influencing the amount of combustion air can be integrated as actuators in a control device for controlling the combustion process, so that the combustion process can be controlled separately for each individual burner of a power plant combustion system.
  • a determination of the amount of combustion air flowing through an annular gap is thus not possible by means of dynamic pressure probes arranged in the annular gap.
  • the combustion air is loaded in a coal fired power plant to a considerable extent with ash particles, which leads to rapid contamination of the dynamic pressure probes.
  • the Solution is thus not applicable for optimized control of the combustion process in a power plant furnace.
  • sensor assemblies there is a sensor arrangement consisting of two individual sensor rods or sensor rod groups, arranged one behind the other in the direction of flow of the combustion air flow, spaced from one another and arranged at an intersecting angle to the cross section of the windbox.
  • the signals generated on the sensor rods as a result of electrical influence which is caused by electrically charged particles carried by the sensor rods and transported in the combustion air flow, are used to determine the velocity of the combustion air flow by means of a correlation method. Based on the speed of the combustion air flow and the associated geometry of the windbox, the amount of combustion air flowing through the windbox can be calculated.
  • the amount of combustion air supplied to an individual burner can only be determined with this device in the case of special arrangements of burners in conjunction with a specially designed windbox. In practice, such arrangements of burners and windbox designs are of little importance.
  • this solution has the disadvantage that the the related measurements due to error propagation may have a significant measurement error. Also, this solution is not suitable for an optimized control of the combustion process in a power plant furnace.
  • DE 102012 014260 A1 discloses a device and a method for controlling the fuel-air ratio during the combustion of ground coal in a coal-fired power plant, in which the combustion air quantity measurement and the carrying air quantity measurement according to the correlation method are evaluated by evaluating electrical signals generated by means of obtained in the air flow sensors are carried out.
  • two sensor rods are arranged one behind the other in the air-conducting channel, in the flow direction of the air, in which electrical signals are generated by electrical induction, which is caused by passing electrically charged particles in the air stream past the sensor rods, electrical signals are fed to a correlation measuring device.
  • correlation measurement method the time is determined that the electrically charged particles need to overcome the distance between the two sensor rods.
  • the flow rate of the air flow and based on the geometry of the air duct leading the amount of air is calculated.
  • an electrode and a counter electrode are arranged, which are connected to a high voltage source with a voltage between 12 kV and 20 kV.
  • the electrode connected to the high-voltage source is arranged in the air flow in such a way that at least part of the air flow is exposed to the effect of an ion current flowing from the electrode to the counterelectrode and is thus electrically influenced.
  • the object of the invention is to provide a device for controlling the combustion process in a power plant combustion system, which enables optimized control of the combustion process, ie, which enables optimized control of the combustion process of each individual burner arranged in a power plant combustion system.
  • the device for controlling the combustion process is designed in such a way that actuating signals are generated for each means for influencing the quantity of the combustion air amount flowing through the burner or burner surrounding the combustion chamber so as to increase the quantity of combustion air flowing through each annular gap influence.
  • a means for determining the amount of combustion air flowing through an annular gap comprises at least two, a corresponding pair forming, sensor rods of electrically conductive material in the annular gap transverse to the longitudinal axis of the annular gap or at an angle ⁇ to the longitudinal axis of the annular gap with 30 ° ⁇ ⁇ 90 ° and arranged in the direction of flow of the combustion air flow one behind the other and in parallel with a distance a spaced apart, wherein the arrangement of the corresponding sensor rods is such that at least a portion of the first in the flow direction of the combustion air flow sensor rod of the corresponding pair of combustion air flowing past the second in the flow direction of the combustion air stream Sensor rod of the corresponding pair
  • the sensor rods are curved in the longitudinal direction corresponding to the curvature of the annular gap and arranged electrically isolated from the annular gap forming walls. They are thus arranged in the annular gap such that their longitudinal direction is almost transverse or at an angle between 30 ° and 90 ° to the flow direction of the combustion air flow, wherein they are preferably arranged with an equal to the two annular gap forming walls over the length I of the sensor rods uniform distance in the annular gap.
  • the sensor rods have a length I of I> 20 mm, preferably I> 200 mm.
  • a means for determining the quantity of combustion air flowing through an annular gap also comprises a correlation measuring device to which the sensor rods are electrically connected, wherein the correlation measuring device evaluates the electrically charged particles transported in the combustion air stream by electrical influence on the sensor rods passing from the sensor rods caused electrical signals, the speed of the combustion air flow is determined transversely to the longitudinal direction of the sensor rods. In this case, in the event that the sensor rods are not transverse to
  • Longitudinal axis of the annular gap are arranged, a component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap calculated and based on the component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap and based on the geometric dimensions of the cross-sectional area of the annular gap flowing through the annular gap Combustion air quantity determined. If a burner surrounds a plurality of annular gaps, as described above, sensor rods are arranged in each annular gap and are electrically connected to a correlation measuring device so that the amount of combustion luna flowing through each annular gap surrounding a burner can be determined.
  • the component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap is understood to mean that component of the flow velocity of the combustion air flow with which the combustion air flow moves in the direction of the longitudinal axis of the annular gap, that is to say the decisive speed for the transport of a specific amount of combustion air in a specific time unit through the annular gap. Due to the high degree of turbulence in the flow of the combustion air stream in the ring gap, which has a width between 20 mm and 200 mm and a circumference between 100 cm and 1500 cm in a power station
  • the corresponding one Pair forming sensor rods to be arranged displaced parallel to each other, in such a way that at least a portion of the flowing in the direction of flow of the combustion air flow first sensor rod of the corresponding pair of combustion air flowing past the second sensor rod of the corresponding pair in the flow direction of the combustion air flow.
  • the sensor rods should be dimensioned sufficiently long, ie, over approximately 1/4 of the inner circumference of the annular gap, that the condition is met that at least a portion of the am in the flow direction of the Combustion air flow first sensor rod of the corresponding pair bypassing combustion air also flows past in the flow direction of the combustion air flow second sensor rod of the corresponding pair.
  • the Sonsorstäbe are as a round rod with a diameter D with
  • the sensor rods must on the one hand be made so stable that they do not vibrate in the combustion air flow, but on the other hand they must not be dimensioned so large that they unduly diminish the effective cross section of the annular gap for the passage of the combustion air flow.
  • each segment of an electrically segmented sensor rod may be electrically connected to a separate input of the correlation measuring device.
  • the sensor rods can be formed as electrically conductive material glued to one of the two walls forming the annular gap electrically insulated from the wall film strips.
  • two pairs of corresponding sensor rods are arranged in the annular gap and electrically connected to a correlation measuring device, wherein the two pairs of corresponding sensor rods are arranged in the longitudinal direction at a different angle ⁇ to the longitudinal axis of the annular gap ,
  • the particular advantage of the invention is that the speed of the combustion air flow is determined directly and directly in the annular gap / s surrounding a burner in a power plant furnace, and thus directly and directly the amount of combustion air supplied to a burner in a power plant furnace can be determined.
  • the combustion process is optimally controlled in a power plant to pre-selected criteria.
  • FIG. 1 shows a partial section of an annular gap around a burner with a corresponding pair of sensor rods arranged in the annular gap
  • FIG. 2a shows a longitudinal section through a burner with surrounding annular gap and a corresponding pair arranged in the annular gap
  • FIG. 4a shows a partial section of an annular gap around a burner with two corresponding pairs of sensor rods arranged in the annular gap, wherein the pairs of sensor rods which are to be used are arranged at a different angle ⁇ to the longitudinal axis of the annular gap and in FIG
  • Fig. 4b a development of the annular gap with the arranged on the outer wall of the burner corresponding sensor rods.
  • Fig. 1 shows means for determining the amount of combustion air flowing through an annular gap 3 with a burner 1 which is coaxially surrounded by a pipe 2, such that between the outer wall of the burner 1 and the
  • Pipe 2 an annular gap 3 is formed.
  • the burner 1, the pipe 2 and the annular gap 3 have a common coaxial longitudinal axis 4.
  • combustion air is passed.
  • the pipe 2 has a collection 5 with a reduction of the annular gap width b to increase the flow velocity v of the combustion air flow.
  • vanes 6 are arranged in the annular gap, which cause a swirl flow of the combustion air flow in which following the recovery in the direction of the coaxial longitudinal axis 4 subsequent annular gap section 3.1.
  • This annular gap section 3.1 has a constant annular gap width b.
  • the flow direction of the combustion air flow illustrates an arrow 7.
  • the direction of rotation of the swirl flow is through an arrow 8 is illustrated.
  • the decisive for the determination of the combustion air supplied to the burner 1 component of the combustion air flow in the annular gap section 3.1 is parallel to the coaxial longitudinal axis 4 and
  • Fig. 1 illustrated by arrow 9.
  • the sensor rods 10 and 1 1 are electrically insulated in each case by means of two support blocks 12 mounted on the outer wall of the burner 1.
  • Sensor rods 10 and 1 1 are arranged transversely to the longitudinal axis 4 and in their longitudinal direction of the curvature of the annular gap portion 3.1 adapted such that they to the two the annular gap section 3.1 bounding walls, i. the outer wall of the burner 1 and the inside of the pipe 2, each have an equal distance c or d over their length.
  • the distance c between the outer wall of the burner 1 and the sensor rods 10 and 1 1 and the distance d is the distance between the inner wall of the pipe 2 and the sensor rods 10 and 1 1st
  • the two sensor rods 10 and 11 are equidistantly spaced from the walls defining the annular gap section 3.1.
  • FIGS. 2a to 2c illustrate the above-described arrangement of the sensor rods 10 and 11 in the annular gap section 3.1.
  • the sensor rods 10 and 11 are electrically connected to a correlation measuring device 13.
  • Sensor rods 10 and 1 1 in the annular gap section 3.1 correspond to those of the means shown in Fig. 1 for determining the amount of combustion air flowing through an annular gap 3.
  • the component of the flow velocity v of the combustion air flow in the annular gap section 3.1 in the direction of the longitudinal axis 4 of the annular gap section 3.1 is calculated by multiplying the component of the flow velocity v determined with the correlation measuring device 13 by sin a, ie sin 45 °. With the thus calculated component of the flow velocity v of the combustion air flow in the annular gap section 3.1 in the direction of the longitudinal axis 4 of the annular gap section 3.1, the combustion air quantity supplied to the burner 1 is then determined with the cross-sectional area of the annular gap section 3.1.
  • Fig. 4a shows an arrangement with two pairs of corresponding sensor rods 10.1 and 1 1 .1 and 10.2 and 1 1 .2.
  • the two pairs of corresponding sensor rods 10.1 and 1 1 .1 and 10.2 and 1 1 .2. are electrically connected to a correlation measuring device 13.1 and 13.2, respectively.
  • Twist angle ⁇ of a swirl flow having combustion air flow can be determined when the helix angle ⁇ satisfies the condition (90 ° - ⁇ ⁇ )> ⁇ > (90 ° - ⁇ 2 ).
  • the component v determines the flow velocity v of the combustion air flow.
  • the determination of the helix angle ⁇ of a combustion air flow having a swirl flow will be described below by way of example with reference to FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Abstract

L'invention concerne un dispositif pour commander le processus de combustion dans une installation de combustion d'une centrale pourvue de brûleurs (1) agencés dans une paroi d'un foyer. L'amenée de l'air de combustion s'effectue par une fente annulaire (3) entourant le brûleur (1) et le brûleur (1) comprend des moyens destinés à agir sur la quantité d'air de combustion circulant à travers la fente annulaire (3). Le dispositif comprend des moyens destinés à détecter la quantité de combustible amenée à un brûleur (1) et des moyens destinés à déterminer la quantité d'air de combustion circulant à travers la fente annulaire (3). Les moyens destinés à déterminer la quantité d'air de combustion circulant à travers la fente annulaire (3) comportent deux barres de détection (11, 12) formant une paire correspondante, qui sont agencées l'une derrière l'autre et parallèlement l'une à l'autre dans la fente annulaire (3.1) de préférence transversalement à l'axe longitudinal (4) de la fente annulaire et dans le sens d'écoulement (7) du moteur à combustion interne. L'agencement des barres de détection (11, 12) s'effectue de telle sorte qu'au moins une partie de l'air de combustion circulant le long de la première barre de détection (12) dans le sens d'écoulement (7) du flux d'air de combustion circule également le long de la deuxième barre de détection (11) dans le sens d'écoulement (7) du flux d'air de combustion. Les barres de détection (11, 12) sont reliées électriquement à un dispositif de mesure de corrélation (13) permettant de déterminer la vitesse du flux d'air de combustion en évaluant les signaux électriques produits par influence électrique, et de définir la quantité d'air de combustion circulant à travers la fente annulaire (3.1) sur la base de la surface de section transversale de la fente annulaire (3.1). Le processus de combustion est commandé de manière correspondante par modification de la quantité d'air de combustion.
PCT/DE2018/000286 2017-10-11 2018-10-05 Dispositif pour commander le processus de combustion dans une installation de combustion d'une centrale WO2019072329A1 (fr)

Priority Applications (7)

Application Number Priority Date Filing Date Title
CN201880066187.1A CN111201401B (zh) 2017-10-11 2018-10-05 用于控制电站炉系统中燃烧过程的器件
ES18796827T ES2898242T3 (es) 2017-10-11 2018-10-05 Sistema de combustión de central eléctrica
US16/649,047 US20200292170A1 (en) 2017-10-11 2018-10-05 Device for controlling the combustion process in a power station furnace system
PL18796827T PL3695167T3 (pl) 2017-10-11 2018-10-05 Palenisko elektrowni
JP2020520629A JP2020537109A (ja) 2017-10-11 2018-10-05 発電所燃焼設備内における、燃焼プロセスの制御のための装置
EP18796827.6A EP3695167B1 (fr) 2017-10-11 2018-10-05 Installation de combustion d'une centrale
KR1020207013321A KR20200065049A (ko) 2017-10-11 2018-10-05 발전소 노 시스템 내 연소 과정 제어 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017009393.8A DE102017009393B3 (de) 2017-10-11 2017-10-11 Einrichtung zur Steuerung des Verbrennungsprozesses in einer Kraftwerksfeuerungsanlage
DE102017009393.8 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019072329A1 true WO2019072329A1 (fr) 2019-04-18

Family

ID=64109683

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/DE2018/000286 WO2019072329A1 (fr) 2017-10-11 2018-10-05 Dispositif pour commander le processus de combustion dans une installation de combustion d'une centrale

Country Status (9)

Country Link
US (1) US20200292170A1 (fr)
EP (1) EP3695167B1 (fr)
JP (1) JP2020537109A (fr)
KR (1) KR20200065049A (fr)
CN (1) CN111201401B (fr)
DE (1) DE102017009393B3 (fr)
ES (1) ES2898242T3 (fr)
PL (1) PL3695167T3 (fr)
WO (1) WO2019072329A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD948804S1 (en) * 2018-10-23 2022-04-12 Rembe Gmbh Safety + Control Explosion isolation device for pipes
CN115143490B (zh) * 2022-06-15 2023-08-01 南京航空航天大学 一种周向交错对冲射流与全环大尺度旋流耦合的燃烧室

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20021271U1 (de) 2000-12-15 2001-05-23 PROMECON Prozeß- und Meßtechnik Conrads GmbH, 39179 Barleben Sensoreinrichtung zur Bestimmung der einem oder einer Gruppe von Brennern zugeführten Verbrennungsluftmenge
US20110197831A1 (en) * 2007-04-13 2011-08-18 Babcock-Hitachi Kabushiki Kaisha Pulverized Coal Burning Boiler
DE102012014260A1 (de) 2011-07-13 2013-01-17 PROMECON Prozeß- und Meßtechnik Conrads GmbH Einrichtung und Verfahren zur Steuerung des Brennstoff-Luft-Verhältnisses bei der Verbrennung gemahlener Kohle in einer Kohlekraftwerksfeuerungsanlage
EP2657599A1 (fr) * 2012-04-23 2013-10-30 Babcock Borsig Steinmüller GmbH Brûleur pour combustibles en forme de poussière et/ou de particules avec tourbillon variable

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1228568C (zh) * 2001-03-23 2005-11-23 多孔燃烧器技术销售有限责任公司 用于设定空气比率的方法和装置
JP4476116B2 (ja) * 2004-12-27 2010-06-09 三菱重工業株式会社 ガスタービン
JP4969464B2 (ja) * 2008-01-08 2012-07-04 三菱重工業株式会社 バーナ構造
US20120037729A1 (en) 2010-08-16 2012-02-16 Lee Joseph C Insertion Type Fluid Volume Meter and Control System
CN103335312B (zh) * 2012-07-17 2016-07-27 张达积 红外线氢能燃烧器
DE102012016408B4 (de) 2012-08-21 2022-06-09 Krohne Ag Magnetisch-induktives Durchflussmessgerät mit einer Mehrzahl von Funktionseinheiten, konstruktive Realisierung

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20021271U1 (de) 2000-12-15 2001-05-23 PROMECON Prozeß- und Meßtechnik Conrads GmbH, 39179 Barleben Sensoreinrichtung zur Bestimmung der einem oder einer Gruppe von Brennern zugeführten Verbrennungsluftmenge
US20110197831A1 (en) * 2007-04-13 2011-08-18 Babcock-Hitachi Kabushiki Kaisha Pulverized Coal Burning Boiler
DE102012014260A1 (de) 2011-07-13 2013-01-17 PROMECON Prozeß- und Meßtechnik Conrads GmbH Einrichtung und Verfahren zur Steuerung des Brennstoff-Luft-Verhältnisses bei der Verbrennung gemahlener Kohle in einer Kohlekraftwerksfeuerungsanlage
EP2657599A1 (fr) * 2012-04-23 2013-10-30 Babcock Borsig Steinmüller GmbH Brûleur pour combustibles en forme de poussière et/ou de particules avec tourbillon variable

Also Published As

Publication number Publication date
DE102017009393B3 (de) 2019-01-24
CN111201401B (zh) 2022-07-12
US20200292170A1 (en) 2020-09-17
EP3695167B1 (fr) 2021-09-01
ES2898242T3 (es) 2022-03-04
JP2020537109A (ja) 2020-12-17
KR20200065049A (ko) 2020-06-08
PL3695167T3 (pl) 2022-02-14
CN111201401A (zh) 2020-05-26
EP3695167A1 (fr) 2020-08-19

Similar Documents

Publication Publication Date Title
EP2742287B1 (fr) Installation de combustion d'une centrale au charbon broyé avec dispositif de régulation du rapport air-combustible lors de la combustion de charbon et procédé d'opération de l'installation
EP1828682B1 (fr) Procede et dispositif pour influencer des processus de combustion
EP1996901B1 (fr) Dispositif pour la mesure de la vitesse d'un courant de fluide
EP3695167B1 (fr) Installation de combustion d'une centrale
DE3336911A1 (de) Vorrichtung zum messen des volumenstroms eines gases in einem kanal
DE69625194T2 (de) Alphadetektor mit gasstroemung
DE10242301A1 (de) Vorrichtung und Verfahren zur Messung der Konzentration von in einem strömenden Gas vorhandenen Partikeln
DE2224578A1 (de) Verfahren und Meßsonde zur Messung der Durchflußmenge eines Gases
DE112018006083T5 (de) Sensorvorrichtung
EP3006903A1 (fr) Débitmètre destiné à mesurer un paramètre d'un flux formé par un fluide
DE2458025C2 (de) Analysevorrichtung für eine Oberflächenschicht
DE913367C (de) Anordnung zum Nachweis beschleunigter Bewegungen, zur Herstellung einer festen Ebene m Raum oder zur Richtungsanzeige
DE2827120C2 (de) Gerät zum Feststellen geringfügiger Mengen von Gasen oder Dämpfen in Luft oder anderen Gasgemischen
EP1660759B1 (fr) Procede pour determiner le mode operatoire d'une turbine a gaz
DE202009004253U1 (de) Vorrichtung zur Detektion von in einem Gasstrom enthaltenen Partikeln
DE2220598C2 (de) Verfahren zur Regelung der Befeuchtung eines Luftstromes
DE102017215689B4 (de) Partikelsensor für eine Brennkraftmaschine
DE1960131A1 (de) Regeleinrichtung mit mindestens zwei Wirbel-Muffelbrennern
DE102014119661B4 (de) Feuerungsanlage und deren Regelungsverfahren
DE1959917A1 (de) Verfahren zur kontinuierlichen Messung der Verstaubung von gasfoermigen Medien und Einrichtung zur Durchfuehrung des Verfahrens
EP4134635B1 (fr) Détermination du débit d'un fluide en écoulement
DE3213292C2 (de) Meßvorrichtung für Strömungsdruck
DE20021271U1 (de) Sensoreinrichtung zur Bestimmung der einem oder einer Gruppe von Brennern zugeführten Verbrennungsluftmenge
EP0115858A1 (fr) Brûleur à monter dans les installations de chauffage et de production de vapeur
CH413066A (de) Magnetohydrodynamischer Generator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18796827

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520629

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207013321

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018796827

Country of ref document: EP

Effective date: 20200511