EP3695167B1 - Installation de combustion d'une centrale - Google Patents

Installation de combustion d'une centrale Download PDF

Info

Publication number
EP3695167B1
EP3695167B1 EP18796827.6A EP18796827A EP3695167B1 EP 3695167 B1 EP3695167 B1 EP 3695167B1 EP 18796827 A EP18796827 A EP 18796827A EP 3695167 B1 EP3695167 B1 EP 3695167B1
Authority
EP
European Patent Office
Prior art keywords
annular gap
combustion air
sensor rods
combustion
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP18796827.6A
Other languages
German (de)
English (en)
Other versions
EP3695167A1 (fr
Inventor
Hans Georg Conrads
Alexander Halm
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Promecon Process Measurement Control GmbH
Original Assignee
Promecon Process Measurement Control GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Promecon Process Measurement Control GmbH filed Critical Promecon Process Measurement Control GmbH
Priority to PL18796827T priority Critical patent/PL3695167T3/pl
Publication of EP3695167A1 publication Critical patent/EP3695167A1/fr
Application granted granted Critical
Publication of EP3695167B1 publication Critical patent/EP3695167B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/18Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
    • F23N5/184Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • F23C7/004Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D1/00Burners for combustion of pulverulent fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N3/00Regulating air supply or draught
    • F23N3/002Regulating air supply or draught using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2223/00Signal processing; Details thereof
    • F23N2223/10Correlation

Definitions

  • the invention relates to a power plant combustion system with a large number of parallel-acting burners arranged in a wall of a combustion chamber and supplied with combustion air via a common windbox, the combustion air being supplied to each individual burner via one or more annular gap (s) concentrically surrounding the burner.
  • a large number of burners are usually arranged, acting in parallel, in a wall of a combustion chamber and are supplied with combustion air via a common wind box.
  • the combustion air is preferably supplied to the individual burner via one or more annular gaps concentrically surrounding the burner.
  • the supply of the combustion air to the annular gap comprises means in order to influence the amount of combustion air flowing through the annular gap and subsequently into the combustion chamber.
  • air guide devices such as guide vanes, are arranged in order to introduce the combustion air into the combustion chamber in a spiral as a swirling flow around a flame that forms in front of the burner, with the flow direction of the combustion air flow being changed the position of the guide vanes can be changed.
  • both the means for influencing the amount of combustion air flowing through the annular gap and subsequently into the combustion chamber and the air guiding devices, for example guide vanes, can be designed differently and separately controllable in each annular gap.
  • the combustion air for the main and post-combustion can be introduced separately into the combustion chamber in front of a single burner, ie in different combustion zones of the flame in the direction of flow and the amount of combustion air.
  • the guide vanes for generating a swirling flow of the combustion air flow and the means for influencing the amount of combustion air can be integrated as actuators in a control device for controlling the combustion process, so that the combustion process can be controlled separately for each individual burner of a power plant combustion system.
  • a control device for controlling the combustion process so that the combustion process can be controlled separately for each individual burner of a power plant combustion system.
  • dynamic pressure probes of this type cannot be used for measuring the speed of the combustion air flow in the annular gap of combustion air feeds to a burner in a power plant combustion system, because the flow of the combustion air in the annular gap is extremely turbulent and possibly shows a swirl with strongly curved flow lines, so that a dynamic pressure probe can be used only a directed speed of the combustion air flow can be determined if the combustion air flow hits the probe perpendicularly.
  • a turbulent flow and the combustion air flow not perpendicularly impinging on the dynamic pressure probe in particular if the direction of the combustion air flow changes, no directional velocity of the combustion air flow can be determined from the differential pressure determined by the dynamic pressure probe.
  • a determination of the amount of combustion air flowing through an annular gap is therefore not possible by means of dynamic pressure probes arranged in the annular gap.
  • the combustion air in a coal-fired power plant is heavily loaded with ash particles, which leads to rapid contamination of the pitot tubes. The solution is therefore not applicable for an optimized control of the combustion process in a power plant combustion system.
  • a sensor device for determining the one or a group of burners of a burner arrangement with a common combustion air supply via a windbox is known according to the cross-correlation measurement method, in which within the windbox, each spanning the flow cross-section of the windbox, sensor arrangements are arranged so that the each around the a burner or a group of burners supplied combustion air quantity reduced combustion air flow flows through the sensor arrangements.
  • a sensor arrangement consists of two individual sensor rods or sensor rod groups that span the cross section of the wind box, one behind the other in the direction of flow of the combustion air stream, spaced apart from one another and arranged crossing one another.
  • Correlation methods are used to determine the speed of the combustion air flow from the signals generated on the sensor rods as a result of electrical influence caused by electrically charged particles flying past the sensor rods and transported in the combustion air flow. Based on the speed of the combustion air flow and the associated geometry of the wind box, the amount of combustion air flowing through the wind box can be calculated.
  • the amount of combustion air supplied to an individual burner can, however, only be determined with this device in the case of special arrangements of burners in connection with a specially designed windbox. Such arrangements of burners and designs of a windbox are of little importance in practice.
  • this solution has the disadvantage that the measurements that refer to one another can have a considerable measurement error due to error propagation.
  • This solution is also for an optimized control of the combustion process in a power plant combustion system is not suitable.
  • a device and a method for controlling the fuel-air ratio during the combustion of ground coal in a coal-fired power plant are known, in which the combustion air quantity measurement and the support air quantity measurement according to the correlation method by evaluating electrical signals that are obtained by means of sensors arranged in the air flow are carried out .
  • two sensor rods are arranged one behind the other in the air flow direction in the air-conducting channel, in which electrical signals are generated by electrical induction, which is caused by electrically charged particles moving past the sensor rods in the air flow, which are fed to a correlation measuring device.
  • the correlation measurement method is used to determine the time that the electrically charged particles need to overcome the distance between the two sensor rods.
  • the flow speed of the air stream is calculated from the time and the distance between the sensor rods and the air volume is calculated based on the geometry of the air-carrying duct.
  • an electrode and a counter-electrode are arranged, which are connected to a high-voltage source with a voltage between 12 kV and 20 kV.
  • the electrode connected to the high voltage source is arranged in the air flow in such a way that at least part of the air flow is exposed to the effect of an ion flow flowing from the electrode to the counter electrode and is thus electrically influenced.
  • the DE 10 2012 014 260 A1 described device and the described procedure not applicable.
  • the US 2011/0197831 A1 discloses a power plant combustion system with a plurality of burners arranged in a wall of a combustion chamber. The quantities of fuel and combustion air supplied to the individual burners are measured and regulated individually.
  • the object of the invention is to provide a device for controlling the combustion process in a power plant combustion system, which enables an optimized control of the combustion process, that is to say an optimized control of the combustion process of each individual burner arranged in a power plant combustion system.
  • a power plant combustion system with several burners arranged in a wall of a combustion chamber, in which the combustion air is supplied via one or more annular gap (s) concentrically surrounding each burner and each burner has means for influencing the amount of the annular gap (s) in the Having combustion air flowing through the combustion chamber comprises a device for controlling the combustion process which comprises at least means for detecting the amount of fuel supplied to a burner and means for determining the amount of combustion air flowing through the annular gap (s).
  • the device for controlling the combustion process is designed in such a way that control signals are generated for each means for influencing the amount of combustion air flowing through the annular gap (s) surrounding a burner in order to control the amount of combustion air flowing through each annular gap influence.
  • a means for determining the amount of combustion air flowing through an annular gap comprises at least two sensor rods made of electrically conductive material, forming a corresponding pair, which are located in the annular gap transversely to the longitudinal axis of the annular gap or at an angle ⁇ to the longitudinal axis of the annular gap with 30 ° ⁇ ⁇ ⁇ 90 ° and in the flow direction of the combustion air flow are arranged one behind the other and parallel at a distance a from one another, the corresponding sensor rods being arranged in such a way that at least some of the combustion air flowing past the first sensor rod of the corresponding pair in the flow direction of the combustion air flow is also the second in the flow direction of the combustion air flow Sensor rod of the corresponding pair flows past.
  • the sensor rods are curved in the longitudinal direction in accordance with the curvature of the annular gap and are arranged to be electrically insulated from the walls forming the annular gap. They are therefore arranged in the annular gap in such a way that their longitudinal direction is almost transversely or at an angle between 30 ° and 90 ° to the direction of flow of the combustion air flow, whereby they are preferably spaced evenly over the length of the sensor rods in the annular gap with a wall that forms the annular gap are arranged.
  • the sensor rods have a length l of l> 20 mm, preferably I> 200 mm, on.
  • a means for determining the amount of combustion air flowing through an annular gap also includes a correlation measuring device to which the sensor rods are electrically connected, whereby by means of the correlation measuring device, by evaluating the electrical influence on the sensor rods caused by the electrically charged particles that are transported past the sensor rods and transported in the combustion air flow is effected, electrical signals generated the speed of the combustion air flow is determined transversely to the longitudinal direction of the sensor rods.
  • a component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap is calculated and based on the component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap and based on the geometric Dimensions of the cross-sectional area of the annular gap determines the amount of combustion air flowing through the annular gap. If a burner is surrounded by several annular gaps, as described above, sensor rods are arranged in each annular gap and electrically connected to a correlation measuring device, so that the amount of combustion air flowing through each annular gap surrounding a burner can be determined.
  • an optimal control of the combustion process is possible by adding an adequate amount of combustion air for optimal combustion to the amount of fuel supplied to the burner.
  • the amount of combustion air flowing is determined and is influenced in accordance with the amount of combustion air that is adequate for combustion by means of the means for influencing the amount of combustion air flowing through the annular gap (s) into the combustion chamber.
  • the component of the flow speed of the combustion air flow in the direction of the longitudinal axis of the annular gap is understood to mean that component of the flow speed of the combustion air flow with which the combustion air flow moves in the direction of the longitudinal axis of the annular gap, i.e. the decisive speed for the transport of a certain amount of combustion air in a specific time unit is through the annular gap.
  • an air guiding device is arranged to generate a swirling flow of the combustion air stream, it is advantageous to arrange the corresponding sensor rods in the flow direction of the combustion air stream after the air guiding device in the annular gap.
  • the sensor rods forming a corresponding pair in such a way that at least part of the combustion air flowing past the first sensor rod of the corresponding pair in the flow direction of the combustion air flow is also advantageous am in the direction of flow of the combustion air flow second sensor rod of the corresponding pair flows past.
  • the sensor rods should be of sufficient length, i.e. cover approx Combustion air flowing past the sensor rod of the corresponding pair also flows past the second sensor rod of the corresponding pair in the direction of flow of the combustion air flow.
  • the Sonsor bars are preferably designed as a round bar with a diameter D with 1 mm D 20 mm or as a square bar with an edge length e in the direction of the width b of the annular gap with 1 mm e 20 mm.
  • Real-life conditions are assumed here, i.e. a width b of the annular gap for supplying the combustion air to a burner in a power plant combustion system between 20 mm ⁇ b ⁇ 200 mm and a circumference of the annular gap between 100 cm ⁇ circumference of the annular gap ⁇ 1500 cm .
  • the sensor rods must be so stable that they do not vibrate in the combustion air flow, but on the other hand they must not be so large that they excessively narrow the effective cross section of the annular gap for the combustion air flow to pass through.
  • each segment of an electrically segmented sensor rod can also be electrically connected to a separate input of the correlation measuring device.
  • the sensor rods can be configured as film strips made of electrically conductive material that are glued onto one of the two walls forming the annular gap, electrically insulated from the wall.
  • two pairs of corresponding sensor rods are arranged in the annular gap, each with a correlation measuring device electrically connected, the two pairs of corresponding sensor rods being arranged in the longitudinal direction at a different angle ⁇ to the longitudinal axis of the annular gap.
  • the swirl angle ⁇ of a combustion air flow with a swirl flow can be calculated from both speeds by means of triangulation if the swirl angle ⁇ fulfills the condition (90 ° - ⁇ 1 )> ⁇ > (90 ° - ⁇ 2 ).
  • other angles ⁇ 1 and ⁇ 2 of the longitudinal directions of the pairs of corresponding sensor rods are also possible if this is necessary to fulfill the condition (90 ° - ⁇ 1 )> ⁇ > (90 ° - ⁇ 2 ).
  • the twist angle can thus be determined and specifically influenced via the position of the air guide vanes, whereby the combustion process can also be influenced, ie controlled.
  • the particular advantage of the invention is that the speed of the combustion air flow is determined directly in the annular gap (s) surrounding a burner in a power plant combustion system and thus the amount of combustion air supplied to a burner in a power plant combustion system can be determined directly and immediately.
  • the combustion air flow ie the amount of combustion air that flows through the annular gap, the combustion process in a power plant combustion system is optimally controlled according to preselected criteria.
  • Fig. 1 shows means for determining the amount of combustion air flowing through an annular gap 3 with a burner 1, which is coaxially surrounded by a pipe 2, in such a way that an annular gap 3 is formed between the outer wall of the burner 1 and the pipe 2.
  • the burner 1, the pipeline 2 and the annular gap 3 have a common coaxial longitudinal axis 4.
  • Combustion air is guided in the annular gap 3.
  • the pipeline 2 has an indentation 5 with a reduction in the annular gap width b to increase the flow velocity v of the combustion air flow.
  • guide vanes 6 are arranged in the annular gap 3, which cause a swirling flow of the combustion air flow in the annular gap section 3.1 following the indentation in the direction of the coaxial longitudinal axis 4.
  • This annular gap section 3.1 has a constant annular gap width b.
  • the direction of flow of the combustion air flow is illustrated by an arrow 7.
  • the direction of rotation of the swirl flow is illustrated by an arrow 8.
  • the component of the combustion air flow that is decisive for determining the amount of combustion air supplied to burner 1 in the annular gap section 3.1 is the component of the combustion air flow directed parallel to the coaxial longitudinal axis 4 or orthogonally to the cross-sectional area of the annular gap section 3.1.
  • she is in Fig. 1 illustrated by arrow 9.
  • Two sensor rods 10 and 11 are arranged within the annular gap section 3.1.
  • the sensor rods 10 and 11 are each electrically insulated and mounted on the outer wall of the burner 1 by means of two support frames 12.
  • the sensor rods 10 and 11 are arranged transversely to the longitudinal axis 4 and adapted in their longitudinal direction to the curvature of the annular gap section 3.1 in such a way that they are connected to the two walls delimiting the annular gap section 3.1, ie the outer wall of the burner 1 and the inside of the pipeline 2 Length each have the same distance c and d.
  • the distance c is the distance between the outer wall of the burner 1 and the sensor rods 10 and 11 and the distance d is the distance between the inner wall of the pipeline 2 and the sensor rods 10 and 11.
  • the two sensor rods 10 and 11 are to the Annular gap section 3.1 bounding walls equally spaced.
  • Electrical signals are generated on the sensor rods 10 and 11 by electrical influence, which is caused by the electrically charged particles flying past the sensor rods 10 and 11 and transported in the combustion air flow, and these signals are evaluated by the correlation measuring device 13 in such a way that a time delay of the correlating electrical signals is determined, which divided by the distance a between the sensor rods 10 and 11 is a measure of the component of the flow velocity v of the combustion air flow in the annular gap section 3.1 transversely to the longitudinal direction of the sensor rods 10 and 11 at the in Fig. 1
  • the amount of combustion air supplied to the burner 1 is determined with the cross-sectional area of the annular gap section 3.1.
  • means (not shown) for detecting the amount of fuel fed to a burner 1 are used to measure the amount of fuel fed to burner 1
  • the amount of fuel is recorded and the combustion process is controlled by changing the amount of combustion air.
  • the component of the flow velocity v of the combustion air flow in the annular gap section 3.1 in the direction of the longitudinal axis 4 of the annular gap section 3.1 is calculated by multiplying the component of the flow velocity v determined with the correlation measuring device 13 by sin ⁇ , i.e. sin 45 °.
  • the amount of combustion air supplied to the burner 1 is then determined with the cross-sectional area of the annular gap section 3.1.
  • Figure 4a shows an arrangement with two pairs of corresponding sensor rods 10.1 and 11.1 and 10.2 and 11.2.
  • the two pairs of corresponding sensor rods 10.1 and 11.1 as well as 10.2 and 11.2. are each electrically connected to a correlation measuring device 13.1 or 13.2.
  • Figure 4b shows a development of this section of the annular gap 3.1 with the two pairs of corresponding sensor rods 10.1 and 11.1 as well as 10.2 and 11.2 arranged on the outer wall of the burner 1.
  • the swirl angle ⁇ of a swirling air flow with this arrangement can be determined if the twist angle ⁇ fulfills the condition (90 ° - ⁇ 1 )> ⁇ > (90 ° - ⁇ 2 ).
  • the component v 1 of the flow velocity v of the combustion air flow is determined.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)
  • Control Of Combustion (AREA)

Claims (8)

  1. Installation de combustion d'une centrale, comprenant plusieurs brûleurs (1) disposés dans une paroi d'un foyer pour lesquels l'amenée de l'air de combustion est effectuée par un ou plusieurs espaces annulaires (3) entourant chaque brûleur (1) de manière concentrique, et chaque brûleur (1) présente des moyens pour agir sur la quantité de la quantité d'air de combustion circulant à travers l'espace/les espaces annulaire(s) (3) dans le foyer, comprenant un dispositif pour commander le processus de combustion, comprenant au moins des moyens pour détecter la quantité de combustible amenée à un brûleur (1) ainsi que des moyens pour déterminer la quantité d'air de combustion circulant à travers l'espace/les espaces annulaire(s) (3), le dispositif pour la commande du processus de combustion étant réalisé de telle sorte que pour chaque moyen destiné à agir sur la quantité de la quantité d'air de combustion circulant dans le foyer à travers l'espace/les espaces annulaire(s) (3) entourant un brûleur (1), des signaux de réglage sont générés afin d'agir ainsi sur la quantité d'air de combustion circulant à travers chaque espace annulaire (3),
    caractérisée en ce que
    les moyens de détermination de la quantité d'air de combustion circulant à travers un espace annulaire (3, 3.1) comprennent au moins deux barres de détection (10, 11) composées d'un matériau électriquement conducteur, formant une paire correspondante, qui sont dans l'espace annulaire (3, 3.1) transversalement à l'axe longitudinal (4) de l'espace annulaire (3, 3.1) ou selon un angle α par rapport à l'axe longitudinal (4) de l'espace annulaire (3, 3.1), où 30° ≤ α ≤ 90°, et l'une derrière l'autre dans le sens de circulation (7) du flux d'air de combustion et en parallèle, mutuellement espacées d'une distance a et qui sont disposées de manière électriquement isolée par rapport aux parois (1, 2) réalisant l'espace annulaire (3, 3.1), les barres de détection (10, 11) étant adaptées au niveau de leur forme à la courbure de l'espace annulaire (3, 3.1) et présentant une longueur 1 de 1 > 20 mm, de préférence 1 > 200 mm, et les barres de détection (10, 11) étant reliées électriquement à un dispositif de mesure de corrélation (13) au moyen duquel, par l'évaluation des signaux électriques générés sur les barres de détection (10, 11) par influence électrique provoquée par des particules chargées électriquement, transportées dans le flux d'air de combustion et passant devant les barres de détection (10, 11), la vitesse d'écoulement (v) du flux d'air de combustion est déterminée de manière orthogonale à la direction longitudinale des barres de détection (10, 11), dans laquelle, si les barres de détection (10, 11) ne sont pas disposées transversalement à l'axe longitudinal (4) de l'espace annulaire (3, 3.1), une composante (V2) de la vitesse d'écoulement (v) du flux d'air de combustion en direction de l'axe longitudinal (4) de l'espace annulaire (3, 3.1) est calculée, et, en partant de la composante (V2), la vitesse d'écoulement (v) du flux d'air de combustion en direction de l'axe longitudinal (4) de l'espace annulaire (3, 3.1) est calculée, et à l'aide des dimensions géométriques de la surface de section transversale de l'espace annulaire (3, 3.1), la quantité d'air de combustion circulant à travers l'espace annulaire (3, 3.1) est déterminée.
  2. Installation de combustion d'une centrale selon la revendication 1,
    caractérisée en ce que
    les barres de détection (10, 11) formant une paire correspondante sont disposées dans l'espace annulaire (3, 3.1) de manière espacée avec une distance constante c, d, respectivement identique sur la longueur de chaque barre de détection (10, 11) par rapport aux deux parois (1, 2) réalisant l'espace annulaire (3, 3.1).
  3. Installation de combustion d'une centrale selon la revendication 1 à 2,
    caractérisée en ce que
    dans le cas de l'agencement d'un dispositif de canalisation d'air (6) pour générer un écoulement tourbillonnaire du flux d'air de combustion, les barres de détection (10, 11) sont disposées dans l'espace annulaire (3, 3.1) après le dispositif de canalisation d'air (6) dans la direction d'écoulement (7) du flux d'air de combustion.
  4. Installation de combustion d'une centrale selon la revendication 3,
    caractérisée en ce que
    les barres de détection (10, 11) formant une paire correspondante sont disposées de manière décalée en parallèle l'une à l'autre de telle sorte qu'au moins une partie de l'air de combustion circulant devant la barre de détection (10) de la paire correspondante qui est la première dans la direction d'écoulement (7) du flux d'air de combustion circule aussi devant la barre de détection (11) de la paire correspondante qui est la deuxième dans la direction d'écoulement (7) du flux d'air de combustion.
  5. Installation de combustion d'une centrale selon la revendication 3 à 4,
    caractérisée en ce que
    dans l'espace annulaire (3, 3.1), deux paires de barres de détection (10.1, 11.1 et 10.2, 11.2) correspondantes sont disposées, les deux paires de barres de détection (10.1, 11.1 et 10.2, 11.2) correspondantes étant disposées selon un angle α différent par rapport à l'axe longitudinal (4) de l'espace annulaire (3, 3.1).
  6. Installation de combustion d'une centrale selon la revendication 1 à 5,
    caractérisée en ce que
    les barres de détection (10, 11) sont réalisées sous forme de barre ronde ayant un diamètre D, où 1 mm ≤ D ≤ 20 mm, ou sous forme de barre carrée ayant une longueur d'arête e en direction de la largeur b de l'espace annulaire, où 1 mm ≤ e ≤ 20 mm.
  7. Installation de combustion d'une centrale selon la revendication 1 à 5,
    caractérisée en ce que
    les barres de détection (10, 11) sont réalisées par des bandes de film en matériau électriquement conducteur, collées sur l'une des parois (1, 2) réalisant l'espace annulaire (3, 3.1), de manière isolée par rapport à la paroi (1, 2) à intérieur de l'espace annulaire (3, 3.1).
  8. Installation de combustion d'une centrale selon la revendication 1 à 7,
    caractérisée en ce que
    les barres de détection (10, 11) sont réalisées de manière segmentée dans la direction longitudinale, dans laquelle, soit les segments des barres de détection (10, 11) sont reliés électriquement ensemble dans un montage en série et les montages en série des barres de détection (10, 11) sont reliés électriquement à un dispositif de mesure de corrélation (13), soit les segments des barres de détection (10, 11) sont reliés électriquement à un dispositif de mesure de corrélation (13).
EP18796827.6A 2017-10-11 2018-10-05 Installation de combustion d'une centrale Active EP3695167B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL18796827T PL3695167T3 (pl) 2017-10-11 2018-10-05 Palenisko elektrowni

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017009393.8A DE102017009393B3 (de) 2017-10-11 2017-10-11 Einrichtung zur Steuerung des Verbrennungsprozesses in einer Kraftwerksfeuerungsanlage
PCT/DE2018/000286 WO2019072329A1 (fr) 2017-10-11 2018-10-05 Dispositif pour commander le processus de combustion dans une installation de combustion d'une centrale

Publications (2)

Publication Number Publication Date
EP3695167A1 EP3695167A1 (fr) 2020-08-19
EP3695167B1 true EP3695167B1 (fr) 2021-09-01

Family

ID=64109683

Family Applications (1)

Application Number Title Priority Date Filing Date
EP18796827.6A Active EP3695167B1 (fr) 2017-10-11 2018-10-05 Installation de combustion d'une centrale

Country Status (9)

Country Link
US (1) US20200292170A1 (fr)
EP (1) EP3695167B1 (fr)
JP (1) JP2020537109A (fr)
KR (1) KR20200065049A (fr)
CN (1) CN111201401B (fr)
DE (1) DE102017009393B3 (fr)
ES (1) ES2898242T3 (fr)
PL (1) PL3695167T3 (fr)
WO (1) WO2019072329A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD948804S1 (en) * 2018-10-23 2022-04-12 Rembe Gmbh Safety + Control Explosion isolation device for pipes
CN115143490B (zh) * 2022-06-15 2023-08-01 南京航空航天大学 一种周向交错对冲射流与全环大尺度旋流耦合的燃烧室

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE20021271U1 (de) 2000-12-15 2001-05-23 Promecon Prozess & Messtechnik Sensoreinrichtung zur Bestimmung der einem oder einer Gruppe von Brennern zugeführten Verbrennungsluftmenge
JP2004522129A (ja) * 2001-03-23 2004-07-22 ゲーファオペー ゲゼルシャフト ツーア フェアマルクタンク デア ポーレンブレンナーテヒニック エムベーハー 空気比の設定方法および装置
JP4476116B2 (ja) * 2004-12-27 2010-06-09 三菱重工業株式会社 ガスタービン
EP2143997B1 (fr) * 2007-04-13 2019-09-18 Mitsubishi Hitachi Power Systems, Ltd. Chaudière à charbon pulvérisé
JP4969464B2 (ja) * 2008-01-08 2012-07-04 三菱重工業株式会社 バーナ構造
US20120037729A1 (en) 2010-08-16 2012-02-16 Lee Joseph C Insertion Type Fluid Volume Meter and Control System
MX350225B (es) 2011-07-13 2017-08-30 Promecon Prozess Und Messtechnik Conrads Gmbh Dispositivo y método para el control de la relación de aire-combustible en la combustión de carbón molido en un sistema de combustión de una central eléctrica de carbón.
DE102012007884A1 (de) * 2012-04-23 2013-10-24 Babcock Borsig Steinmüller Gmbh Brenner für staub- und/oder partikelförmige Brennstoffe mit veränderlichem Drall
CN103335312B (zh) * 2012-07-17 2016-07-27 张达积 红外线氢能燃烧器
DE102012016408B4 (de) 2012-08-21 2022-06-09 Krohne Ag Magnetisch-induktives Durchflussmessgerät mit einer Mehrzahl von Funktionseinheiten, konstruktive Realisierung

Also Published As

Publication number Publication date
JP2020537109A (ja) 2020-12-17
CN111201401A (zh) 2020-05-26
US20200292170A1 (en) 2020-09-17
KR20200065049A (ko) 2020-06-08
DE102017009393B3 (de) 2019-01-24
WO2019072329A1 (fr) 2019-04-18
CN111201401B (zh) 2022-07-12
ES2898242T3 (es) 2022-03-04
PL3695167T3 (pl) 2022-02-14
EP3695167A1 (fr) 2020-08-19

Similar Documents

Publication Publication Date Title
EP1828682B1 (fr) Procede et dispositif pour influencer des processus de combustion
EP2742287B1 (fr) Installation de combustion d'une centrale au charbon broyé avec dispositif de régulation du rapport air-combustible lors de la combustion de charbon et procédé d'opération de l'installation
DE102012008250B4 (de) Ionenmobilitätsseparator für Massenspektrometer
EP0386665A2 (fr) Procédé et appareil pour mesurer des particules dans des systèmes polydispersés et pour mesurer la concentration de particules d'aérosols monodispersés
EP3695167B1 (fr) Installation de combustion d'une centrale
AT501993A1 (de) Vorrichtung für die messung der geschwindigkeit eines fluids
DE3336911C2 (fr)
DE2212746B2 (de) Stroemungsrichter
EP3006903B1 (fr) Débitmètre destiné à mesurer un paramètre d'un flux formé par un fluide
WO2016041723A1 (fr) Débitmètre à induction magnétique pourvu d'un système magnétique à quatre bobines
DE4390337C2 (de) Elektromagnetischer Strömungsmesser
DE2458025C2 (de) Analysevorrichtung für eine Oberflächenschicht
DE2224578A1 (de) Verfahren und Meßsonde zur Messung der Durchflußmenge eines Gases
EP3537112A1 (fr) Débitmètre d'écoulement fluide
EP2037253A1 (fr) Analyseur de mobilité différentielle
WO2016020277A1 (fr) Débitmètre à induction magnétique comprenant plusieurs paires d'électrodes de mesure et divers segments transversaux de tubes de mesure
DE2827120C2 (de) Gerät zum Feststellen geringfügiger Mengen von Gasen oder Dämpfen in Luft oder anderen Gasgemischen
EP3211384B1 (fr) Débitmètre inductif-magnétique et procédé associé
EP4127655A1 (fr) Procédé et dispositif de mesure pour déterminer la vitesse de particules d'un aérosol
DE1439900A1 (de) Verfahren und Einrichtung zum Zentrieren des Elektronenstrahles bei Elektronenstrahl-Bearbeitungsgeraeten
EP4134635B1 (fr) Détermination du débit d'un fluide en écoulement
DE10344462B4 (de) Partikel-Massen-Spektrometer zur Detektion von Nanopartikeln und Verfahren
DE3026813A1 (de) Vorrichtung zum messen der stroemungsgeschwindigkeit eines ionisierbaren gases
DE3107610A1 (de) Messvorrichtung fuer gase
DE102014119661B4 (de) Feuerungsanlage und deren Regelungsverfahren

Legal Events

Date Code Title Description
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: UNKNOWN

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20200508

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAV Request for validation of the european patent (deleted)
DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20210408

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 1426611

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210915

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502018006900

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211201

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20211022

Year of fee payment: 4

Ref country code: ES

Payment date: 20211117

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20211202

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2898242

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20220304

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220120

Year of fee payment: 4

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220101

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20220103

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20211015

Year of fee payment: 4

Ref country code: IT

Payment date: 20211102

Year of fee payment: 4

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502018006900

Country of ref document: DE

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211005

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

26N No opposition filed

Effective date: 20220602

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221005

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502018006900

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20221005

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20181005

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230503

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221005

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221005

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20231124

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20221005