EP3695167B1 - Power station furnace system - Google Patents
Power station furnace system Download PDFInfo
- Publication number
- EP3695167B1 EP3695167B1 EP18796827.6A EP18796827A EP3695167B1 EP 3695167 B1 EP3695167 B1 EP 3695167B1 EP 18796827 A EP18796827 A EP 18796827A EP 3695167 B1 EP3695167 B1 EP 3695167B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- annular gap
- combustion air
- sensor rods
- combustion
- flow
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002485 combustion reaction Methods 0.000 claims description 225
- 239000002245 particle Substances 0.000 claims description 11
- 239000000446 fuel Substances 0.000 claims description 10
- 239000004020 conductor Substances 0.000 claims description 4
- 239000011888 foil Substances 0.000 claims 1
- 241001156002 Anthonomus pomorum Species 0.000 description 7
- 239000000523 sample Substances 0.000 description 7
- 230000001276 controlling effect Effects 0.000 description 5
- 238000005259 measurement Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 238000007373 indentation Methods 0.000 description 3
- 238000011109 contamination Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000000691 measurement method Methods 0.000 description 2
- 230000000739 chaotic effect Effects 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N1/00—Regulating fuel supply
- F23N1/02—Regulating fuel supply conjointly with air supply
- F23N1/022—Regulating fuel supply conjointly with air supply using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N5/00—Systems for controlling combustion
- F23N5/18—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel
- F23N5/184—Systems for controlling combustion using detectors sensitive to rate of flow of air or fuel using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23C—METHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN A CARRIER GAS OR AIR
- F23C7/00—Combustion apparatus characterised by arrangements for air supply
- F23C7/002—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
- F23C7/004—Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion using vanes
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23D—BURNERS
- F23D1/00—Burners for combustion of pulverulent fuel
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N3/00—Regulating air supply or draught
- F23N3/002—Regulating air supply or draught using electronic means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23N—REGULATING OR CONTROLLING COMBUSTION
- F23N2223/00—Signal processing; Details thereof
- F23N2223/10—Correlation
Definitions
- the invention relates to a power plant combustion system with a large number of parallel-acting burners arranged in a wall of a combustion chamber and supplied with combustion air via a common windbox, the combustion air being supplied to each individual burner via one or more annular gap (s) concentrically surrounding the burner.
- a large number of burners are usually arranged, acting in parallel, in a wall of a combustion chamber and are supplied with combustion air via a common wind box.
- the combustion air is preferably supplied to the individual burner via one or more annular gaps concentrically surrounding the burner.
- the supply of the combustion air to the annular gap comprises means in order to influence the amount of combustion air flowing through the annular gap and subsequently into the combustion chamber.
- air guide devices such as guide vanes, are arranged in order to introduce the combustion air into the combustion chamber in a spiral as a swirling flow around a flame that forms in front of the burner, with the flow direction of the combustion air flow being changed the position of the guide vanes can be changed.
- both the means for influencing the amount of combustion air flowing through the annular gap and subsequently into the combustion chamber and the air guiding devices, for example guide vanes, can be designed differently and separately controllable in each annular gap.
- the combustion air for the main and post-combustion can be introduced separately into the combustion chamber in front of a single burner, ie in different combustion zones of the flame in the direction of flow and the amount of combustion air.
- the guide vanes for generating a swirling flow of the combustion air flow and the means for influencing the amount of combustion air can be integrated as actuators in a control device for controlling the combustion process, so that the combustion process can be controlled separately for each individual burner of a power plant combustion system.
- a control device for controlling the combustion process so that the combustion process can be controlled separately for each individual burner of a power plant combustion system.
- dynamic pressure probes of this type cannot be used for measuring the speed of the combustion air flow in the annular gap of combustion air feeds to a burner in a power plant combustion system, because the flow of the combustion air in the annular gap is extremely turbulent and possibly shows a swirl with strongly curved flow lines, so that a dynamic pressure probe can be used only a directed speed of the combustion air flow can be determined if the combustion air flow hits the probe perpendicularly.
- a turbulent flow and the combustion air flow not perpendicularly impinging on the dynamic pressure probe in particular if the direction of the combustion air flow changes, no directional velocity of the combustion air flow can be determined from the differential pressure determined by the dynamic pressure probe.
- a determination of the amount of combustion air flowing through an annular gap is therefore not possible by means of dynamic pressure probes arranged in the annular gap.
- the combustion air in a coal-fired power plant is heavily loaded with ash particles, which leads to rapid contamination of the pitot tubes. The solution is therefore not applicable for an optimized control of the combustion process in a power plant combustion system.
- a sensor device for determining the one or a group of burners of a burner arrangement with a common combustion air supply via a windbox is known according to the cross-correlation measurement method, in which within the windbox, each spanning the flow cross-section of the windbox, sensor arrangements are arranged so that the each around the a burner or a group of burners supplied combustion air quantity reduced combustion air flow flows through the sensor arrangements.
- a sensor arrangement consists of two individual sensor rods or sensor rod groups that span the cross section of the wind box, one behind the other in the direction of flow of the combustion air stream, spaced apart from one another and arranged crossing one another.
- Correlation methods are used to determine the speed of the combustion air flow from the signals generated on the sensor rods as a result of electrical influence caused by electrically charged particles flying past the sensor rods and transported in the combustion air flow. Based on the speed of the combustion air flow and the associated geometry of the wind box, the amount of combustion air flowing through the wind box can be calculated.
- the amount of combustion air supplied to an individual burner can, however, only be determined with this device in the case of special arrangements of burners in connection with a specially designed windbox. Such arrangements of burners and designs of a windbox are of little importance in practice.
- this solution has the disadvantage that the measurements that refer to one another can have a considerable measurement error due to error propagation.
- This solution is also for an optimized control of the combustion process in a power plant combustion system is not suitable.
- a device and a method for controlling the fuel-air ratio during the combustion of ground coal in a coal-fired power plant are known, in which the combustion air quantity measurement and the support air quantity measurement according to the correlation method by evaluating electrical signals that are obtained by means of sensors arranged in the air flow are carried out .
- two sensor rods are arranged one behind the other in the air flow direction in the air-conducting channel, in which electrical signals are generated by electrical induction, which is caused by electrically charged particles moving past the sensor rods in the air flow, which are fed to a correlation measuring device.
- the correlation measurement method is used to determine the time that the electrically charged particles need to overcome the distance between the two sensor rods.
- the flow speed of the air stream is calculated from the time and the distance between the sensor rods and the air volume is calculated based on the geometry of the air-carrying duct.
- an electrode and a counter-electrode are arranged, which are connected to a high-voltage source with a voltage between 12 kV and 20 kV.
- the electrode connected to the high voltage source is arranged in the air flow in such a way that at least part of the air flow is exposed to the effect of an ion flow flowing from the electrode to the counter electrode and is thus electrically influenced.
- the DE 10 2012 014 260 A1 described device and the described procedure not applicable.
- the US 2011/0197831 A1 discloses a power plant combustion system with a plurality of burners arranged in a wall of a combustion chamber. The quantities of fuel and combustion air supplied to the individual burners are measured and regulated individually.
- the object of the invention is to provide a device for controlling the combustion process in a power plant combustion system, which enables an optimized control of the combustion process, that is to say an optimized control of the combustion process of each individual burner arranged in a power plant combustion system.
- a power plant combustion system with several burners arranged in a wall of a combustion chamber, in which the combustion air is supplied via one or more annular gap (s) concentrically surrounding each burner and each burner has means for influencing the amount of the annular gap (s) in the Having combustion air flowing through the combustion chamber comprises a device for controlling the combustion process which comprises at least means for detecting the amount of fuel supplied to a burner and means for determining the amount of combustion air flowing through the annular gap (s).
- the device for controlling the combustion process is designed in such a way that control signals are generated for each means for influencing the amount of combustion air flowing through the annular gap (s) surrounding a burner in order to control the amount of combustion air flowing through each annular gap influence.
- a means for determining the amount of combustion air flowing through an annular gap comprises at least two sensor rods made of electrically conductive material, forming a corresponding pair, which are located in the annular gap transversely to the longitudinal axis of the annular gap or at an angle ⁇ to the longitudinal axis of the annular gap with 30 ° ⁇ ⁇ ⁇ 90 ° and in the flow direction of the combustion air flow are arranged one behind the other and parallel at a distance a from one another, the corresponding sensor rods being arranged in such a way that at least some of the combustion air flowing past the first sensor rod of the corresponding pair in the flow direction of the combustion air flow is also the second in the flow direction of the combustion air flow Sensor rod of the corresponding pair flows past.
- the sensor rods are curved in the longitudinal direction in accordance with the curvature of the annular gap and are arranged to be electrically insulated from the walls forming the annular gap. They are therefore arranged in the annular gap in such a way that their longitudinal direction is almost transversely or at an angle between 30 ° and 90 ° to the direction of flow of the combustion air flow, whereby they are preferably spaced evenly over the length of the sensor rods in the annular gap with a wall that forms the annular gap are arranged.
- the sensor rods have a length l of l> 20 mm, preferably I> 200 mm, on.
- a means for determining the amount of combustion air flowing through an annular gap also includes a correlation measuring device to which the sensor rods are electrically connected, whereby by means of the correlation measuring device, by evaluating the electrical influence on the sensor rods caused by the electrically charged particles that are transported past the sensor rods and transported in the combustion air flow is effected, electrical signals generated the speed of the combustion air flow is determined transversely to the longitudinal direction of the sensor rods.
- a component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap is calculated and based on the component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap and based on the geometric Dimensions of the cross-sectional area of the annular gap determines the amount of combustion air flowing through the annular gap. If a burner is surrounded by several annular gaps, as described above, sensor rods are arranged in each annular gap and electrically connected to a correlation measuring device, so that the amount of combustion air flowing through each annular gap surrounding a burner can be determined.
- an optimal control of the combustion process is possible by adding an adequate amount of combustion air for optimal combustion to the amount of fuel supplied to the burner.
- the amount of combustion air flowing is determined and is influenced in accordance with the amount of combustion air that is adequate for combustion by means of the means for influencing the amount of combustion air flowing through the annular gap (s) into the combustion chamber.
- the component of the flow speed of the combustion air flow in the direction of the longitudinal axis of the annular gap is understood to mean that component of the flow speed of the combustion air flow with which the combustion air flow moves in the direction of the longitudinal axis of the annular gap, i.e. the decisive speed for the transport of a certain amount of combustion air in a specific time unit is through the annular gap.
- an air guiding device is arranged to generate a swirling flow of the combustion air stream, it is advantageous to arrange the corresponding sensor rods in the flow direction of the combustion air stream after the air guiding device in the annular gap.
- the sensor rods forming a corresponding pair in such a way that at least part of the combustion air flowing past the first sensor rod of the corresponding pair in the flow direction of the combustion air flow is also advantageous am in the direction of flow of the combustion air flow second sensor rod of the corresponding pair flows past.
- the sensor rods should be of sufficient length, i.e. cover approx Combustion air flowing past the sensor rod of the corresponding pair also flows past the second sensor rod of the corresponding pair in the direction of flow of the combustion air flow.
- the Sonsor bars are preferably designed as a round bar with a diameter D with 1 mm D 20 mm or as a square bar with an edge length e in the direction of the width b of the annular gap with 1 mm e 20 mm.
- Real-life conditions are assumed here, i.e. a width b of the annular gap for supplying the combustion air to a burner in a power plant combustion system between 20 mm ⁇ b ⁇ 200 mm and a circumference of the annular gap between 100 cm ⁇ circumference of the annular gap ⁇ 1500 cm .
- the sensor rods must be so stable that they do not vibrate in the combustion air flow, but on the other hand they must not be so large that they excessively narrow the effective cross section of the annular gap for the combustion air flow to pass through.
- each segment of an electrically segmented sensor rod can also be electrically connected to a separate input of the correlation measuring device.
- the sensor rods can be configured as film strips made of electrically conductive material that are glued onto one of the two walls forming the annular gap, electrically insulated from the wall.
- two pairs of corresponding sensor rods are arranged in the annular gap, each with a correlation measuring device electrically connected, the two pairs of corresponding sensor rods being arranged in the longitudinal direction at a different angle ⁇ to the longitudinal axis of the annular gap.
- the swirl angle ⁇ of a combustion air flow with a swirl flow can be calculated from both speeds by means of triangulation if the swirl angle ⁇ fulfills the condition (90 ° - ⁇ 1 )> ⁇ > (90 ° - ⁇ 2 ).
- other angles ⁇ 1 and ⁇ 2 of the longitudinal directions of the pairs of corresponding sensor rods are also possible if this is necessary to fulfill the condition (90 ° - ⁇ 1 )> ⁇ > (90 ° - ⁇ 2 ).
- the twist angle can thus be determined and specifically influenced via the position of the air guide vanes, whereby the combustion process can also be influenced, ie controlled.
- the particular advantage of the invention is that the speed of the combustion air flow is determined directly in the annular gap (s) surrounding a burner in a power plant combustion system and thus the amount of combustion air supplied to a burner in a power plant combustion system can be determined directly and immediately.
- the combustion air flow ie the amount of combustion air that flows through the annular gap, the combustion process in a power plant combustion system is optimally controlled according to preselected criteria.
- Fig. 1 shows means for determining the amount of combustion air flowing through an annular gap 3 with a burner 1, which is coaxially surrounded by a pipe 2, in such a way that an annular gap 3 is formed between the outer wall of the burner 1 and the pipe 2.
- the burner 1, the pipeline 2 and the annular gap 3 have a common coaxial longitudinal axis 4.
- Combustion air is guided in the annular gap 3.
- the pipeline 2 has an indentation 5 with a reduction in the annular gap width b to increase the flow velocity v of the combustion air flow.
- guide vanes 6 are arranged in the annular gap 3, which cause a swirling flow of the combustion air flow in the annular gap section 3.1 following the indentation in the direction of the coaxial longitudinal axis 4.
- This annular gap section 3.1 has a constant annular gap width b.
- the direction of flow of the combustion air flow is illustrated by an arrow 7.
- the direction of rotation of the swirl flow is illustrated by an arrow 8.
- the component of the combustion air flow that is decisive for determining the amount of combustion air supplied to burner 1 in the annular gap section 3.1 is the component of the combustion air flow directed parallel to the coaxial longitudinal axis 4 or orthogonally to the cross-sectional area of the annular gap section 3.1.
- she is in Fig. 1 illustrated by arrow 9.
- Two sensor rods 10 and 11 are arranged within the annular gap section 3.1.
- the sensor rods 10 and 11 are each electrically insulated and mounted on the outer wall of the burner 1 by means of two support frames 12.
- the sensor rods 10 and 11 are arranged transversely to the longitudinal axis 4 and adapted in their longitudinal direction to the curvature of the annular gap section 3.1 in such a way that they are connected to the two walls delimiting the annular gap section 3.1, ie the outer wall of the burner 1 and the inside of the pipeline 2 Length each have the same distance c and d.
- the distance c is the distance between the outer wall of the burner 1 and the sensor rods 10 and 11 and the distance d is the distance between the inner wall of the pipeline 2 and the sensor rods 10 and 11.
- the two sensor rods 10 and 11 are to the Annular gap section 3.1 bounding walls equally spaced.
- Electrical signals are generated on the sensor rods 10 and 11 by electrical influence, which is caused by the electrically charged particles flying past the sensor rods 10 and 11 and transported in the combustion air flow, and these signals are evaluated by the correlation measuring device 13 in such a way that a time delay of the correlating electrical signals is determined, which divided by the distance a between the sensor rods 10 and 11 is a measure of the component of the flow velocity v of the combustion air flow in the annular gap section 3.1 transversely to the longitudinal direction of the sensor rods 10 and 11 at the in Fig. 1
- the amount of combustion air supplied to the burner 1 is determined with the cross-sectional area of the annular gap section 3.1.
- means (not shown) for detecting the amount of fuel fed to a burner 1 are used to measure the amount of fuel fed to burner 1
- the amount of fuel is recorded and the combustion process is controlled by changing the amount of combustion air.
- the component of the flow velocity v of the combustion air flow in the annular gap section 3.1 in the direction of the longitudinal axis 4 of the annular gap section 3.1 is calculated by multiplying the component of the flow velocity v determined with the correlation measuring device 13 by sin ⁇ , i.e. sin 45 °.
- the amount of combustion air supplied to the burner 1 is then determined with the cross-sectional area of the annular gap section 3.1.
- Figure 4a shows an arrangement with two pairs of corresponding sensor rods 10.1 and 11.1 and 10.2 and 11.2.
- the two pairs of corresponding sensor rods 10.1 and 11.1 as well as 10.2 and 11.2. are each electrically connected to a correlation measuring device 13.1 or 13.2.
- Figure 4b shows a development of this section of the annular gap 3.1 with the two pairs of corresponding sensor rods 10.1 and 11.1 as well as 10.2 and 11.2 arranged on the outer wall of the burner 1.
- the swirl angle ⁇ of a swirling air flow with this arrangement can be determined if the twist angle ⁇ fulfills the condition (90 ° - ⁇ 1 )> ⁇ > (90 ° - ⁇ 2 ).
- the component v 1 of the flow velocity v of the combustion air flow is determined.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Regulation And Control Of Combustion (AREA)
- Control Of Combustion (AREA)
Description
Die Erfindung betrifft eine Kraftwerksfeuerungsanlage mit einer Vielzahl von parallel wirkenden, in einer Wand eines Feuerungsraumes angeordneten und über eine gemeinsame Windbox mit Verbrennungsluft versorgten Brennern, wobei jedem einzelnen Brenner die Verbrennungsluft über einen oder mehrere den Brenner konzentrisch umgebende/n Ringspalt/e zugeführt wird.The invention relates to a power plant combustion system with a large number of parallel-acting burners arranged in a wall of a combustion chamber and supplied with combustion air via a common windbox, the combustion air being supplied to each individual burner via one or more annular gap (s) concentrically surrounding the burner.
In einer Kraftwerksfeuerungsanlage sind meist eine Vielzahl von Brennern parallel wirkend in einer Wand eines Feuerungsraumes angeordnet und werden über eine gemeinsame Windbox mit Verbrennungsluft versorgt. Bevorzugt wird die Verbrennungsluft dem einzelnen Brenner über einen oder mehrere den Brenner konzentrisch umgebende/n Ringspalt/e zugeführt. Dabei umfasst die Zuführung der Verbrennungsluft zum Ringspalt Mittel, um die durch den Ringspalt und nachfolgend in den Feuerungsraum einströmende Verbrennungsluftmenge zu beeinflussen. Des Weiteren sind in dem oder den Ringspalt/en gegebenenfalls in ihrer Stellung veränderbare Luftleiteinrichtungen, beispielsweise Leitschaufeln, angeordnet, um die Verbrennungsluft spiralförmig als Drallströmung um eine sich vor dem Brenner ausbildende Flamme kreisend in den Feuerungsraum einzuleiten, wobei die Strömungsrichtung des Verbrennungsluftstromes durch eine Veränderung der Stellung der Leitschaufeln veränderbar sein kann. Im Falle der Anordnung mehrerer konzentrischer Ringspalte können sowohl die Mittel zur Beeinflussung der durch den Ringspalt und nachfolgend in den Feuerungsraum einströmenden Verbrennungsluftmenge als auch die Luftleiteinrichtungen, beispielsweise Leitschaufeln, in jedem Ringspalt anders ausgebildet und separat steuerbar sein. Durch die Anordnung mehrerer konzentrischer Ringspalte um einen Brenner kann die Verbrennungsluft für die Haupt- und die Nachverbrennung getrennt, d.h. in unterschiedliche Verbrennungszonen der Flamme in Strömungsrichtung und Verbrennungsluftmenge unterschiedlich, in den Feuerungsraum vor einem einzelnen Brenner eingeleitet werden. Die Leitschaufeln zur Erzeugung einer Drallströmung des Verbrennungsluftstromes und die Mittel zur Beeinflussung der Verbrennungsluftmenge können als Stellglieder in eine Steuereinrichtung zur Steuerung des Verbrennungsprozesses eingebunden sein, so dass der Verbrennungsprozess für jeden einzelnen Brenner einer Kraftwerksfeuerungsanlage getrennt gesteuert werden kann. Für eine optimierte Steuerung des Verbrennungsprozesses in einer Kraftwerksfeuerungsanlage ist es erforderlich, jedem einzelnen Brenner eine für eine optimale Verbrennung der dem Brenner zugeführten Brennstoffmenge adäquate Verbrennungsluftmenge für die Haupt- und die Nachverbrennung zuzuführen, also das Brennstoff-Luft-Verhältnis bei der Verbrennung zu steuern, was bedeutet, dass bei einer bekannten dem Brenner zugeführten Brennstoffmenge die durch jeden den Brenner umgebenden Ringspalt strömende Verbrennungsluftmenge bestimmt und ggf. nachfolgend verändert werden muss.In a power plant combustion system, a large number of burners are usually arranged, acting in parallel, in a wall of a combustion chamber and are supplied with combustion air via a common wind box. The combustion air is preferably supplied to the individual burner via one or more annular gaps concentrically surrounding the burner. The supply of the combustion air to the annular gap comprises means in order to influence the amount of combustion air flowing through the annular gap and subsequently into the combustion chamber. Furthermore, in the annular gap (s), if necessary, air guide devices, such as guide vanes, are arranged in order to introduce the combustion air into the combustion chamber in a spiral as a swirling flow around a flame that forms in front of the burner, with the flow direction of the combustion air flow being changed the position of the guide vanes can be changed. In the case of the arrangement of several concentric annular gaps, both the means for influencing the amount of combustion air flowing through the annular gap and subsequently into the combustion chamber and the air guiding devices, for example guide vanes, can be designed differently and separately controllable in each annular gap. By arranging several concentric annular gaps around a burner, the combustion air for the main and post-combustion can be introduced separately into the combustion chamber in front of a single burner, ie in different combustion zones of the flame in the direction of flow and the amount of combustion air. The guide vanes for generating a swirling flow of the combustion air flow and the means for influencing the amount of combustion air can be integrated as actuators in a control device for controlling the combustion process, so that the combustion process can be controlled separately for each individual burner of a power plant combustion system. For an optimized control of the combustion process in a power plant combustion system, it is necessary to provide each individual burner with an adequate amount of combustion air for the main combustion and the afterburning for optimal combustion of the amount of fuel supplied to the burner to control the fuel-air ratio during combustion, which means that with a known amount of fuel supplied to the burner, the amount of combustion air flowing through each annular gap surrounding the burner must be determined and subsequently changed if necessary.
Zur Beeinflussung der einem Brenner oder einer Gruppe von Brennern zugeführten Verbrennungsluftmenge ist es bekannt, in der Windbox Luftleitbleche zur Beeinflussung des Verbrennungsluftstromes innerhalb der Windbox anzuordnen, um so die Aufteilung der der Windbox insgesamt zugeführten Verbrennungsluftmenge auf einzelne Brenner oder Gruppen von Brennern zu beeinflussen. Die der Windbox insgesamt zugeführte Verbrennungsluftmenge kann vergleichsweise einfach bestimmt werden. Diese Lösung ermöglicht jedoch keine optimierte Steuerung des Verbrennungsprozesses in einer Kraftwerksfeuerungsanlage.To influence the amount of combustion air supplied to a burner or a group of burners, it is known to arrange air baffles in the windbox to influence the flow of combustion air within the windbox in order to influence the distribution of the total amount of combustion air supplied to the windbox among individual burners or groups of burners. The total amount of combustion air supplied to the windbox can be determined comparatively easily. However, this solution does not enable optimized control of the combustion process in a power plant combustion system.
Für eine Bestimmung der einem Brenner zugeführten Verbrennungsluftmenge ist es bekannt, die Geschwindigkeit des Verbrennungsluftstromes zu messen und über die geometrischen Abmessungen der Querschnittsfläche des die Verbrennungsluft führenden Kanales die Verbrennungsluftmenge zu errechnen. Zur Messung der Geschwindigkeit des Verbrennungsluftstromes sind aus dem Stand der Technik in den Verbrennungsluftstrom einbringbare Staudrucksonden, auch Pitotrohr oder Prandtlsches Staurohr genannt, bekannt. Derartige Staudrucksonden sind jedoch nicht für eine Messung der Geschwindigkeit des Verbrennungsluftstromes im Ringspalt von Verbrennungsluftzuführungen zu einem Brenner in einer Kraftwerksfeuerungsanlage anwendbar, weil die Strömung der Verbrennungsluft im Ringspalt hochgradig turbulent ist und ggf. einen Drall mit stark gekrümmten Strömungslinien ausweist, so dass mittels einer Staudrucksonde nur eine gerichtete Geschwindigkeit des Verbrennungsluftstromes bestimmt werden kann, wenn der Verbrennungsluftstrom senkrecht auf die Sonde trifft. Bei turbulenter Strömung und nicht senkrechtem Auftreffen des Verbrennungsluftstromes auf die Staudrucksonde, insbesondere bei veränderlicher Richtung des Verbrennungsluftstromes, kann aus dem mittels der Staudrucksonde ermittelten Differenzdruck keine gerichtete Geschwindigkeit des Verbrennungsluftstromes bestimmt werden. Eine Bestimmung der durch einen Ringspalt strömenden Verbrennungsluftmenge ist somit mittels im Ringspalt angeordneter Staudrucksonden nicht möglich. Hinzu kommt, dass die Verbrennungsluft in einer Kohlekraftwerksfeuerungsanlage in erheblichem Maße mit Aschepartikeln beladen ist, was zu einer schnellen Verschmutzung der Staudrucksonden führt. Die Lösung ist somit für eine optimierte Steuerung des Verbrennungsprozesses in einer Kraftwerksfeuerungsanlage nicht anwendbar.To determine the amount of combustion air supplied to a burner, it is known to measure the speed of the flow of combustion air and to calculate the amount of combustion air using the geometric dimensions of the cross-sectional area of the duct carrying the combustion air. To measure the speed of the combustion air flow, dynamic pressure probes which can be introduced into the combustion air flow, also called Pitot tubes or Prandtl's Pitot tubes, are known from the prior art. However, dynamic pressure probes of this type cannot be used for measuring the speed of the combustion air flow in the annular gap of combustion air feeds to a burner in a power plant combustion system, because the flow of the combustion air in the annular gap is extremely turbulent and possibly shows a swirl with strongly curved flow lines, so that a dynamic pressure probe can be used only a directed speed of the combustion air flow can be determined if the combustion air flow hits the probe perpendicularly. In the case of a turbulent flow and the combustion air flow not perpendicularly impinging on the dynamic pressure probe, in particular if the direction of the combustion air flow changes, no directional velocity of the combustion air flow can be determined from the differential pressure determined by the dynamic pressure probe. A determination of the amount of combustion air flowing through an annular gap is therefore not possible by means of dynamic pressure probes arranged in the annular gap. In addition, the combustion air in a coal-fired power plant is heavily loaded with ash particles, which leads to rapid contamination of the pitot tubes. The solution is therefore not applicable for an optimized control of the combustion process in a power plant combustion system.
Im Firmenprospekt Measuring individual burner airflow, Application Builletin ICA-06 der Firma Air Monitor Corporation, Santa Rosa, CA 95406 ist die Anordnung von Staudrucksonden in Strömungsrichtung des Verbrennungsluftstromes vor den die Verbrennungsluft zu einem Brenner leitenden Ringspalten in einer Windbox beschrieben. Staudrucksonden sind jedoch, wie beschrieben, infolge Verschmutzung erheblich störanfällig. Auch bei einer Anordnung in einer Windbox vor dem Ringspalt sind daher regelmäßige, aufwendige Wartungszyklen und ein regelmäßiges Spülen der Staudrucksonden mit gereinigter Frischluft für eine sichere Funktion notwendig. Die beschriebene Anordnung wird daher zumeist lediglich zum Einmessen der Brenneranordnung verwendet, ohne dass dabei ein realer Verbrennungsprozess stattfindet. Für eine optimierte Steuerung des Verbrennungsprozesses in einer Kraftwerksfeuerungsanlage ist sie ebenfalls nicht anwendbar.In the company brochure Measuring individual burner airflow, Application Builletin ICA-06 from Air Monitor Corporation, Santa Rosa, CA 95406, the arrangement of pitot tubes in the direction of flow of the combustion air flow in front of the annular gaps in a wind box that conducts the combustion air to a burner is described. However, as described, pitot tubes are considerably prone to failure due to contamination. Even with an arrangement in a wind box in front of the annular gap, regular, complex maintenance cycles and regular flushing of the pitot tubes with purified fresh air are therefore necessary for reliable function. The arrangement described is therefore mostly only used to calibrate the burner arrangement without a real combustion process taking place. It is also not applicable for an optimized control of the combustion process in a power plant combustion system.
Aus der
Aus der
Die
the
Gängige Praxis ist es, den Verbrennungsprozess in einer Kraftwerksferungsanlage anhand statischer Kennlinien zu steuern, wobei nur die allen über eine Windbox mit Verbrennungsluft versorgten Brennern zugeführte Brennstoffmenge sowie die den Brennern über die Windbox zugeführte gesamte Verbrennungsluftmenge als Steuergrößen berücksichtigt werden. Eine optimierte Steuerung des Verbrennungsprozesses ist damit nicht möglich.It is common practice to control the combustion process in a power plant generation system using static characteristics, whereby only the amount of fuel supplied to all burners supplied with combustion air via a wind box and the total amount of combustion air supplied to the burners via the wind box are taken into account as control variables. Optimized control of the combustion process is therefore not possible.
Aufgabe der Erfindung ist die Bereitstellung einer Einrichtung zur Steuerung des Verbrennungsprozesses in einer Kraftwerksfeuerungsanlage, die eine optimierte Steuerung des Verbrennungsprozesses ermöglicht, d.h., die eine optimierte Steuerung des Verbrennungsprozesses jedes einzelnen in einer Kraftwerksfeuerungsanlage angeordneten Brenners ermöglicht.The object of the invention is to provide a device for controlling the combustion process in a power plant combustion system, which enables an optimized control of the combustion process, that is to say an optimized control of the combustion process of each individual burner arranged in a power plant combustion system.
Erfindungsgemäß wird diese Aufgabe durch eine Kraftwerksfeuerungsanlage mit den Merkmalen des ersten Patentanspruches gelöst. Die Ansprüche 2 bis 8 beschreiben vorteilhafte Ausgestaltungen der Erfindung.According to the invention, this object is achieved by a power plant combustion system with the features of the first patent claim.
Eine Kraftwerksfeuerungsanlage mit mehreren in einer Wand eines Feuerungsraumes angeordneten Brennern, bei denen die Zuführung der Verbrennungsluft über einen oder mehrere jeden Brenner konzentrisch umgebende/n Ringspalt/e erfolgt und jeder Brenner Mittel zur Beeinflussung der Menge der durch den oder die Ringspalt/e in den Feuerungsraum strömenden Verbrennungsluftmenge aufweist, umfasst eine Einrichtung zur Steuerung des Verbrennungsprozesses, die mindestens Mittel zur Erfassung der einem Brenner zugeführten Brennstoffmenge sowie Mittel zur Bestimmung der durch den oder die Ringspalt/e strömenden Verbrennungsluftmenge umfasst. Dabei ist die Einrichtung zur Steuerung des Verbrennungsprozesses derart ausgebildet, dass für jedes Mittel zur Beeinflussung der Menge der durch den oder die einen Brenner umgebende/n Ringspalt/e in den Feuerungsraum strömenden Verbrennungsluftmenge Stellsignale generiert werden, um so die durch jeden Ringspalt strömende Verbrennungsluftmenge zu beeinflussen. Ein Mittel zur Bestimmung der durch einen Ringspalt strömenden Verbrennungsluftmenge umfasst mindestens zwei, ein korrespondierendes Paar bildende, Sensorstäbe aus elektrisch leitfähigem Material, die im Ringspalt quer zur Längsachse des Ringspaltes oder in einem Winkel α zur Längsachse des Ringspaltes mit 30° ≤ α ≤ 90° und in Strömungsrichtung des Verbrennungsluftstromes hintereinander und parallel mit einem Abstand a beabstandet zueinander angeordnet sind, wobei die Anordnung der korrespondierenden Sensorstäbe so erfolgt, dass zumindest ein Teil der am in Strömungsrichtung des Verbrennungsluftstromes ersten Sensorstab des korrespondierenden Paares vorbeiströmenden Verbrennungsluft auch am in Strömungsrichtung des Verbrennungsluftstromes zweiten Sensorstab des korrespondierenden Paares vorbeiströmt. Dabei sind die Sensorstäbe in Längsrichtung entsprechend der Krümmung des Ringspaltes gekrümmt und gegenüber den den Ringspalt ausbildenden Wandungen elektrisch isoliert angeordnet. Sie sind also derart im Ringspalt angeordnet, dass ihre Längsrichtung nahezu quer oder in einem Winkel zwischen 30° und 90 ° zur Strömungsrichtung des Verbrennungsluftstromes liegt, wobei sie bevorzugt mit einem zu den beiden den Ringspalt ausbildenden Wandungen über die Längel der Sensorstäbe gleichmäßigen Abstand im Ringspalt angeordnet sind. Die Sensorstäbe weisen eine Länge l von l > 20 mm, bevorzugt I > 200 mm, auf. Ein Mittel zur Bestimmung der durch einen Ringspalt strömenden Verbrennungsluftmenge umfasst außerdem eine Korrelationsmesseinrichtung, mit der die Sensorstäbe elektrisch verbunden sind, wobei mittels der Korrelationsmesseinrichtung durch Auswertung der durch elektrische Influenz auf den Sensorstäben, die von an den Sensorstäben vorbeifliegenden, im Verbrennungsluftstrom transportierten elektrisch geladenen Partikeln bewirkt wird, erzeugten elektrischen Signale die Geschwindigkeit des Verbrennungsluftstromes quer zur Längsrichtung der Sensorstäbe bestimmt wird. Dabei wird für den Fall, dass die Sensorstäbe nicht quer zur Längsachse des Ringspaltes angeordnet sind, eine Komponente der Strömungsgeschwindigkeit des Verbrennungsluftstromes in Richtung der Längsachse des Ringspaltes errechnet und ausgehend von der Komponente der Strömungsgeschwindigkeit des Verbrennungsluftstromes in Richtung der Längsachse des Ringspaltes und anhand der geometrischen Abmessungen der Querschnittsfläche des Ringspaltes die durch den Ringspalt strömende Verbrennungsluftmenge ermittelt. Umgeben einen Brenner mehrere Ringspalte, sind, wie vorstehend beschrieben, in jedem Ringspalt Sensorstäbe angeordnet und elektrisch mit einer Korrelationsmesseinrichtung verbunden, so dass die durch jeden einen Brenner umgebenden Ringspalt strömende Verbrennungsluftmenge ermittelt werden kann. Somit ist für jeden in der Wand eines Feuerungsraumes einer Kraftwerksfeuerungsanlage angeordneten Brenner eine optimale Steuerung des Verbrennungsprozesses möglich, indem zu der dem Brenner zugeführten Brennstoffmenge eine für eine optimale Verbrennung adäquate Verbrennungsluftmenge zugeführt wird, indem die durch den oder die den Brenner umgebende/n Ringspalt/e strömende Verbrennungsluftmenge ermittelt und entsprechend der für die Verbrennung adäquaten Verbrennungsluftmenge mittels der Mittel zur Beeinflussung der Menge der durch den oder die Ringspalt/e in den Feuerungsraum strömenden Verbrennungsluftmenge beeinflusst wird.A power plant combustion system with several burners arranged in a wall of a combustion chamber, in which the combustion air is supplied via one or more annular gap (s) concentrically surrounding each burner and each burner has means for influencing the amount of the annular gap (s) in the Having combustion air flowing through the combustion chamber comprises a device for controlling the combustion process which comprises at least means for detecting the amount of fuel supplied to a burner and means for determining the amount of combustion air flowing through the annular gap (s). The device for controlling the combustion process is designed in such a way that control signals are generated for each means for influencing the amount of combustion air flowing through the annular gap (s) surrounding a burner in order to control the amount of combustion air flowing through each annular gap influence. A means for determining the amount of combustion air flowing through an annular gap comprises at least two sensor rods made of electrically conductive material, forming a corresponding pair, which are located in the annular gap transversely to the longitudinal axis of the annular gap or at an angle α to the longitudinal axis of the annular gap with 30 ° ≤ α ≤ 90 ° and in the flow direction of the combustion air flow are arranged one behind the other and parallel at a distance a from one another, the corresponding sensor rods being arranged in such a way that at least some of the combustion air flowing past the first sensor rod of the corresponding pair in the flow direction of the combustion air flow is also the second in the flow direction of the combustion air flow Sensor rod of the corresponding pair flows past. The sensor rods are curved in the longitudinal direction in accordance with the curvature of the annular gap and are arranged to be electrically insulated from the walls forming the annular gap. They are therefore arranged in the annular gap in such a way that their longitudinal direction is almost transversely or at an angle between 30 ° and 90 ° to the direction of flow of the combustion air flow, whereby they are preferably spaced evenly over the length of the sensor rods in the annular gap with a wall that forms the annular gap are arranged. The sensor rods have a length l of l> 20 mm, preferably I> 200 mm, on. A means for determining the amount of combustion air flowing through an annular gap also includes a correlation measuring device to which the sensor rods are electrically connected, whereby by means of the correlation measuring device, by evaluating the electrical influence on the sensor rods caused by the electrically charged particles that are transported past the sensor rods and transported in the combustion air flow is effected, electrical signals generated the speed of the combustion air flow is determined transversely to the longitudinal direction of the sensor rods. In the event that the sensor rods are not arranged transversely to the longitudinal axis of the annular gap, a component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap is calculated and based on the component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap and based on the geometric Dimensions of the cross-sectional area of the annular gap determines the amount of combustion air flowing through the annular gap. If a burner is surrounded by several annular gaps, as described above, sensor rods are arranged in each annular gap and electrically connected to a correlation measuring device, so that the amount of combustion air flowing through each annular gap surrounding a burner can be determined. Thus, for each burner arranged in the wall of a combustion chamber of a power plant combustion system, an optimal control of the combustion process is possible by adding an adequate amount of combustion air for optimal combustion to the amount of fuel supplied to the burner. The amount of combustion air flowing is determined and is influenced in accordance with the amount of combustion air that is adequate for combustion by means of the means for influencing the amount of combustion air flowing through the annular gap (s) into the combustion chamber.
Unter der Komponente der Strömungsgeschwindigkeit des Verbrennungsluftstromes in Richtung der Längsachse des Ringspaltes wird diejenige Komponente der Strömungsgeschwindigkeit des Verbrennungsluftstromes verstanden, mit der sich der Verbrennungsluftstrom in Richtung der Längsachse des Ringspaltes bewegt, die also die maßgebliche Geschwindigkeit für den Transport einer bestimmten Verbrennungsluftmenge in einer bestimmten Zeiteinheit durch den Ringspalt ist. Auf Grund der hochgradigen Turbulenz der Strömung des Verbrennungsluftstromes im Ringspalt, der in einer Kraftwerksfeuerungsanlage eine Breite zwischen 20 mm und 200 mm und einen Umfang zwischen 100 cm und 1500 cm besitzt, sowie ggf. erzeugter Drallströmungen des Verbrennungsluftstromes im Ringspalt treten in Richtung und Betrag unterschiedlichste Komponenten der Strömungsgeschwindigkeit des Verbrennungsluftstromes im Ringspalt auf. Für die Bestimmung der einem Brenner zugeführten Verbrennungsluftmenge sind diese vorgenannten unterschiedlichsten Komponenten der Strömungsgeschwindigkeit des Verbrennungsluftstromes nicht relevant. Hierfür maßgebend ist lediglich die Komponente der Strömungsgeschwindigkeit des Verbrennungsluftstromes in Richtung der Längsachse des Ringspaltes, also wie beschrieben, jene Komponente der Strömungsgeschwindigkeit des Verbrennungsluftstromes, mit der die Verbrennungsluft in Längsrichtung durch den Ringspalt transportiert wird.The component of the flow speed of the combustion air flow in the direction of the longitudinal axis of the annular gap is understood to mean that component of the flow speed of the combustion air flow with which the combustion air flow moves in the direction of the longitudinal axis of the annular gap, i.e. the decisive speed for the transport of a certain amount of combustion air in a specific time unit is through the annular gap. Due to the high degree of turbulence in the flow of the combustion air flow in the annular gap, which in a power plant combustion system has a width between 20 mm and 200 mm and a circumference between 100 cm and 1500 cm, as well as any swirl currents of the combustion air flow in the annular gap, the direction and amount vary widely Components of the flow velocity of the combustion air flow in the annular gap. For the determination of the amount of combustion air supplied to a burner, these various components of the flow velocity of the combustion air flow mentioned above are not relevant. Only the component of the flow velocity of the combustion air flow in the direction of the longitudinal axis of the annular gap is decisive for this, i.e., as described, that component of the flow velocity of the combustion air flow with which the combustion air is transported in the longitudinal direction through the annular gap.
Überraschenderweise wurde gefunden, dass auf den, wie vorstehend beschrieben, in einem Ringspalt angeordneten, ein korrespondierendes Paar bildenden, Sensorstäben durch Influenz, die von an den Sensorstäben vorbeifliegenden, im Verbrennungsluftstrom transportierten elektrisch geladenen Partikeln bewirkt wird, elektrische Signale generiert werden, die mittels Korrelationsmesseinrichtung auswertbar sind, und zwar derart, dass ein Zeitversatz der korrelierenden elektrischen Signale ermittelt wird, der dividiert durch den Abstand a der korrespondierenden Sensorstäbe ein Maß für die Komponente der Strömungsgeschwindigkeit des Verbrennungsluftstromes im Ringspalt quer zur Längsrichtung der Sensorstäbe ist. Dies ist deshalb überraschend, weil bei realen Messanordnungen der Abstand a der korrespondierenden Sensorstäbe 2 - 5 mal größer als die Breite des Ringspaltes ist und weil sich die elektrisch geladenen Partikel zwar insgesamt in Strömungsrichtung des Verbrennungsluftstromes bewegen, diese Bewegung aufgrund der hochgradigen Turbulenz des Verbrennungsluftstromes aber überlagert ist von einer überwiegend in Betrag und Richtung chaotischen Bewegung der elektrisch geladenen Partikel, wobei häufige Kollisionen mit den auf Massepotenzial liegenden Wandungen des Ringspaltes auftreten, was eine elektrische Entladung dieser Partikel zur Folge hat.Surprisingly, it has been found that on the sensor rods, which are arranged in an annular gap and form a corresponding pair, as described above, electrical signals are generated by means of the correlation measuring device due to the influence of electrically charged particles flying past the sensor rods and transported in the combustion air flow can be evaluated in such a way that a time offset of the correlating electrical signals is determined, which divided by the distance a between the corresponding sensor rods is a measure of the component of the flow velocity of the combustion air flow in the annular gap transversely to the longitudinal direction of the sensor rods. This is surprising because in real measuring arrangements the distance a between the corresponding sensor rods is 2 - 5 times greater than the width of the annular gap and because the electrically charged particles move in the direction of flow of the combustion air flow, but this movement is due to the high degree of turbulence in the combustion air flow is superimposed by a predominantly chaotic movement of the electrically charged particles in terms of magnitude and direction, frequent collisions with the walls of the annular gap which are at ground potential, which results in an electrical discharge of these particles.
Im Falle der Anordnung einer Luftleiteinrichtung zur Erzeugung einer Drallströmung des Verbrennungsluftstromes ist es vorteilhaft, die korrespondierenden Sensorstäbe in Strömungsrichtung des Verbrennungsluftstromes nach der Luftleiteinrichtung im Ringspalt anzuordnen.If an air guiding device is arranged to generate a swirling flow of the combustion air stream, it is advantageous to arrange the corresponding sensor rods in the flow direction of the combustion air stream after the air guiding device in the annular gap.
Es ist im Falle der Anordnung einer Luftleiteinrichtung zur Erzeugung einer Drallströmung des Verbrennungsluftstromes weiterhin vorteilhaft, die ein korrespondierendes Paar bildenden Sensorstäbe parallel zueinander verschoben anzuordnen, und zwar derart, dass zumindest ein Teil der am in Strömungsrichtung des Verbrennungsluftstromes ersten Sensorstab des korrespondierendes Paares vorbeiströmenden Verbrennungsluft auch am in Strömungsrichtung des Verbrennungsluftstromes zweiten Sensorstab des korrespondierenden Paares vorbeiströmt. Dabei sollten die Sensorstäbe so ausreichend lang bemessen sein, d.h. ca. 1/4 des inneren Umfanges des Rinspaltes überstreichen, dass auch bei einer Veränderung des Drehwinkels der Drallströmung des Verbrennungsluftstromes die Bedingung erfüllt ist, dass zumindest ein Teil der am in Strömungsrichtung des Verbrennungsluftstromes ersten Sensorstab des korrespondierendes Paares vorbeiströmenden Verbrennungsluft auch am in Strömungsrichtung des Verbrennungsluftstromes zweiten Sensorstab des korrespondierenden Paares vorbeiströmt.In the case of the arrangement of an air guiding device for generating a swirling flow of the combustion air flow, it is also advantageous to displace the sensor rods forming a corresponding pair in such a way that at least part of the combustion air flowing past the first sensor rod of the corresponding pair in the flow direction of the combustion air flow is also advantageous am in the direction of flow of the combustion air flow second sensor rod of the corresponding pair flows past. The sensor rods should be of sufficient length, i.e. cover approx Combustion air flowing past the sensor rod of the corresponding pair also flows past the second sensor rod of the corresponding pair in the direction of flow of the combustion air flow.
Bevorzugt sind die Sonsorstäbe als Rundstab mit einem Durchmesser D mit 1 mm ≤ D ≤ 20 mm oder als Vierkantstab mit einer Kantenlänge e in Richtung der Breite b des Ringspaltes mit 1 mm ≤ e ≤ 20 mm ausgebildet. Dabei wird von in der Praxis realen Bedingungen ausgegangen, d.h. von einer Breite b des Ringspaltes zur Zuführung der Verbrennungsluft zu einem Brenner in einer Kraftwerksfeuerungsanlage zwischen 20 mm ≤ b ≤ 200 mm und einem Umfang des Ringspaltes zwischen 100 cm ≤ Umfang des Ringspaltes ≤ 1500 cm. Die Sensorstäbe müssen dabei einerseits so stabil ausgebildet sein, dass sie im Verbrennungsluftstrom nicht schwingen, sie dürfen andererseits aber auch nicht so groß bemessen sein, dass sie den effektiven Querschnitt des Ringspaltes für den Durchtritt des Verbrennungsluftstromes übermäßig schmälern.The Sonsor bars are preferably designed as a round bar with a diameter D with 1 mm D 20 mm or as a square bar with an edge length e in the direction of the width b of the annular gap with 1 mm e 20 mm. Real-life conditions are assumed here, i.e. a width b of the annular gap for supplying the combustion air to a burner in a power plant combustion system between 20 mm ≤ b ≤ 200 mm and a circumference of the annular gap between 100 cm ≤ circumference of the annular gap ≤ 1500 cm . On the one hand, the sensor rods must be so stable that they do not vibrate in the combustion air flow, but on the other hand they must not be so large that they excessively narrow the effective cross section of the annular gap for the combustion air flow to pass through.
Es kann vorteilhaft sein, einen oder mehrere Sensorstäbe in Längsrichtung des Sensorstabes elektrisch und ggf. auch mechanisch segmentiert auszubilden, wobei die einen Sensorstab bildenden Segmente in Längsrichtung der Segmente fluchtend zueinander angeordnet sind. Die Segmente eines Sensorstabes können elektrisch in Reihe geschaltet und der elektrisch segmentierte Sensorstab quasi als elektrische Einheit mit einem Eingang der Korrelationsmesseinrichtung verbunden sein. Es kann aber auch jedes Segment eines elektrisch segmentierten Sensorstabes elektrisch mit einem separaten Eingang der Korrelationsmesseinrichtung verbunden sein.It can be advantageous to design one or more sensor rods in the longitudinal direction of the sensor rod electrically and possibly also mechanically segmented, the segments forming a sensor rod being arranged in alignment with one another in the longitudinal direction of the segments. The segments of a sensor rod can be connected electrically in series and the electrically segmented sensor rod can be connected, as it were, as an electrical unit to an input of the correlation measuring device. However, each segment of an electrically segmented sensor rod can also be electrically connected to a separate input of the correlation measuring device.
Bei einer weiteren Ausbildung können die Sensorstäbe als auf eine der beiden den Ringspalt ausbildenden Wandungen elektrisch isoliert gegenüber der Wandung aufgeklebte Folienstreifen aus elektrisch leitfähigem Material ausgebildet sein.In a further embodiment, the sensor rods can be configured as film strips made of electrically conductive material that are glued onto one of the two walls forming the annular gap, electrically insulated from the wall.
Bei einer anderen bevorzugten Ausbildung der Mittel zur Bestimmung der durch einen Ringspalt strömenden Verbrennungsluftmenge sind im Ringspalt zwei Paar korrespondierender Sensorstäbe angeordnet und jeweils mit einer Korrelationsmesseinrichtung elektrisch verbunden, wobei die beiden Paare korrespondierender Sensorstäbe in Längsrichtung in einem unterschiedlichen Winkel α zur Längsachse des Ringspaltes angeordnet sind. Bevorzugt ist dabei ein Paar korrespondierender Sensorstäbe quer, d.h. in einem Winkel α1 = 90° zur Längsachse des Ringspaltes, angeordnet und das zweite Paar korrespondierender Sensorstäbe in einem Winkel von α2 = 45° zur Längsachse des Ringspaltes, jedoch unter der Bedingung, dass zumindest ein Teil der am in Strömungsrichtung des Verbrennungsluftstromes ersten Sensorstab eines korrespondierendes Paares vorbeiströmenden Verbrennungsluft auch am in Strömungsrichtung des Verbrennungsluftstromes zweiten Sensorstab des korrespondierenden Paares vorbeiströmt. Dabei wird durch Auswertung der Signale, die mit dem ersten, d.h. in einem Winkel α1 = 90° zur Längsachse des Ringspaltes, angeordneten Sensorpaar generiert werden, die Geschwindigkeit des Verbrennungsluftstromes in Richtung der Längsachse des Ringspaltes bestimmt, während mit dem zweiten, d.h. in einem Winkel α2 = 45° zur Längsachse des Ringspaltes, angeordneten Sensorpaar eine Geschwindigkeitskomponente der in einem Winkel α2 = 45° zur Längsachse des Ringspaltes strömenden Komponente des Verbrennungsuftstromes bestimmt wird. Aus beiden Geschwindigkeiten kann mittels Triangulation der Drallwinkel γ eines eine Drallströmung aufweisenden Verbrennungsluftstromes errechnet werden, wenn der Drallwinkel γ die Bedingung (90° - α1 ) > γ > (90° - α2) erfüllt. Dabei sind die Winkel α1 = 90° des einen Paares korrespondierender Sensorstäbe und α2 = 45° des zweiten Paares korrespondierender Sensorstäbe nur beispielhaft bevorzugt benannt. Es sind selbstverständlich auch andere Winkel α1 und α2 der Längsrichtungen der Paare korrespondierender Sensorstäbe möglich, wenn dies zur Erfüllung der Bedingung (90° - α1) > γ > (90° - α2) erforderlich ist. Für den Fall, dass im Ringspalt in ihrer Stellung veränderbare Luftleitschaufeln angeordnet sind, kann so der Drallwinkel bestimmt und über die Stellung der Luftleitschaufeln gezielt beeinflusst werden, wodurch der Verbrennungsprozess zusätzlich beeinflusst, d.h. gesteuert werden kann.In another preferred embodiment of the means for determining the amount of combustion air flowing through an annular gap, two pairs of corresponding sensor rods are arranged in the annular gap, each with a correlation measuring device electrically connected, the two pairs of corresponding sensor rods being arranged in the longitudinal direction at a different angle α to the longitudinal axis of the annular gap. A pair of corresponding sensor rods is preferably arranged transversely, ie at an angle α 1 = 90 ° to the longitudinal axis of the annular gap, and the second pair of corresponding sensor rods at an angle of α 2 = 45 ° to the longitudinal axis of the annular gap, but on the condition that At least part of the combustion air flowing past the first sensor rod of a corresponding pair in the flow direction of the combustion air flow also flows past the second sensor rod of the corresponding pair in the flow direction of the combustion air flow. The speed of the combustion air flow in the direction of the longitudinal axis of the annular gap is determined by evaluating the signals that are generated with the first sensor pair, ie at an angle α 1 = 90 ° to the longitudinal axis of the annular gap, while the second, ie in an angle α 2 = 45 ° to the longitudinal axis of the annular gap, a pair of sensors arranged a speed component of the component of the combustion air flow flowing at an angle α 2 = 45 ° to the longitudinal axis of the annular gap is determined. The swirl angle γ of a combustion air flow with a swirl flow can be calculated from both speeds by means of triangulation if the swirl angle γ fulfills the condition (90 ° - α 1 )>γ> (90 ° - α 2 ). The angles α 1 = 90 ° of one pair of corresponding sensor rods and α 2 = 45 ° of the second pair of corresponding sensor rods are named as preferred only by way of example. Of course, other angles α 1 and α 2 of the longitudinal directions of the pairs of corresponding sensor rods are also possible if this is necessary to fulfill the condition (90 ° - α 1 )>γ> (90 ° - α 2 ). In the event that air guide vanes with adjustable position are arranged in the annular gap, the twist angle can thus be determined and specifically influenced via the position of the air guide vanes, whereby the combustion process can also be influenced, ie controlled.
Der besondere Vorteil der Erfindung besteht darin, dass die Geschwindigkeit des Verbrennungsluftstromes direkt und unmittelbar in dem/n einen Brenner in einer Kraftwerksfeuerungsanlage umgebende/n Ringspalt/e bestimmt wird und somit direkt und unmittelbar die einem Brenner in einer Kraftwerksfeuerungsanlage zugeführte Verbrennungsluftmenge bestimmt werden kann. Über die Beeinflussung des Verbrennungsluftstromes, d.h. der Menge an Verbrennungsluft, die durch den Ringspalt strömt, wird der Verbrennungsprozess in einer Kraftwerksfeuerungsanlage nach vorgewählten Kriterien optimal gesteuert.The particular advantage of the invention is that the speed of the combustion air flow is determined directly in the annular gap (s) surrounding a burner in a power plant combustion system and thus the amount of combustion air supplied to a burner in a power plant combustion system can be determined directly and immediately. By influencing the combustion air flow, ie the amount of combustion air that flows through the annular gap, the combustion process in a power plant combustion system is optimally controlled according to preselected criteria.
Selbstverständlich ist es auch möglich auf diese Weise eine Regelung des Verbennungsprozesses in einer Kraftwerksfeuerungsanlage zu realisieren.Of course, it is also possible in this way to regulate the combustion process in a power plant combustion system.
Nachfolgend soll die Erfindung anhand dreier Ausführungsbeispiele näher erläutert werden. Die zugehörigen Zeichnungen zeigen in
- Fig. 1:
- einen Teilschnitt eines Ringspaltes um einen Brenner mit einem korrespondierenden Paar im Ringspalt angeordneter Sensorstäbe, in
- Fig. 2a:
- einen Längsschnitt durch einen Brenner mit umgebendem Ringspalt und einem im Ringspalt angeordneten korrespondierenden Paar Sensorstäben, in
- Fig. 2b und c:
- zwei Querschnitte durch einen Brenner mit umgebendem Ringspalt jeweils in der Ebene der angeordneten Sensorstäbe, in
- Fig. 3:
- einen Teilschnitt eines Ringspaltes um einen Brenner mit einem korrespondierenden Paar im Ringspalt in einem Winkel α = 45° zur Längsachse des Rinspaltes angeordneten Sensorstäben, in
- Fig. 4a:
- einen Teilschnitt eines Ringspaltes um einen Brenner mit zwei korrespondierenden Paaren im Ringspalt angeordneter Sensorstäbe, wobei die Paare korrespondierender Sensorstäbe jeweils in einem anderen Winkel α zur Längsachse des Rinspaltes angeordnet sind und in
- Fig. 4b:
- eine Abwicklung des Ringspaltes mit den auf der äußeren Wandung des Brenners angeordneten korrespondierenden Sensorstäben.
- Fig. 1:
- a partial section of an annular gap around a burner with a corresponding pair of sensor rods arranged in the annular gap, in
- Fig. 2a:
- a longitudinal section through a burner with a surrounding annular gap and a corresponding pair of sensor rods arranged in the annular gap, in
- Fig. 2b and c:
- two cross-sections through a burner with a surrounding annular gap, each in the plane of the sensor rods, in
- Fig. 3:
- a partial section of an annular gap around a burner with a corresponding pair of sensor rods arranged in the annular gap at an angle α = 45 ° to the longitudinal axis of the annular gap, in
- Fig. 4a:
- a partial section of an annular gap around a burner with two corresponding pairs of sensor rods arranged in the annular gap, the pairs of corresponding sensor rods each being arranged at a different angle α to the longitudinal axis of the annular gap and in
- Fig. 4b:
- a development of the annular gap with the corresponding sensor rods arranged on the outer wall of the burner.
Bei den in
Anhand von
Der Drallwinkel kann somit aus den beiden bestimmten Komponenten v1 und v2 der Strömumgsgeschwindigkeit v des Verbrennungsluftstromes nach der Gleichung
- 11
- - Brenner- Brenner
- 22
- - Rohrleitung- pipeline
- 33
- - Ringspalt- Annular gap
- 3.13.1
- - Ringspalt, Ringspaltabschnitt- Annular gap, annular gap section
- 44th
- - Längsachse- longitudinal axis
- 55
- - Einziehung- confiscation
- 66th
- - Leitschaufeln- guide vanes
- 77th
- - Pfeil, Strömungsrichtung des Verbrennungsluftstromes- Arrow, direction of flow of the combustion air flow
- 88th
- - Pfeil, Drehrichtung der Drallströmung- Arrow, direction of rotation of the swirl flow
- 99
-
- Pfeil, Komponente des Verbrennungsluftstromes parallel zur Längsachse 4- Arrow, component of the combustion air flow parallel to the
longitudinal axis 4 - 1010
- - Sensorstab- sensor rod
- 10.110.1
- - Sensorstab- sensor rod
- 10.210.2
- - Sensorstab- sensor rod
- 1111
- - Sensorstab- sensor rod
- 11.111.1
- - Sensorstab- sensor rod
- 11.211.2
- - Sensorstab- sensor rod
- 1212th
- - Stützbock- Trestle
- 1313th
- - Korrelationsmesseinrichtung- Correlation measuring device
- 13.113.1
- - Korrelationsmesseinrichtung- Correlation measuring device
- 13.213.2
- - Korrelationsmesseinrichtung- Correlation measuring device
Claims (8)
- Power station furnace system with multiple burners (1) which are arranged in a wall of a combustion chamber and in the case of which the combustion air is supplied via one or more annular gap(s) (3) concentrically surrounding each burner (1) and each burner (1) has means for influencing the quantity of combustion air flowing through the annular gap or gaps (3) into the combustion chamber, with a device for controlling the combustion process, at least comprising means for detecting the quantity of fuel supplied to a burner (1) and means for determining the quantity of combustion air flowing through the annular gap or gaps (3), wherein the device for controlling the combustion process is formed in such a way that actuating signals are generated for each means for influencing the quantity of combustion air flowing through the annular gap(s) (3) surrounding the burner (1) into the combustion chamber, in order in this way to influence the quantity of combustion air flowing through each annular gap (3),
characterized in that
means for determining the quantity of combustion air flowing through an annular gap (3, 3.1) at least comprise two sensor rods (10, 11) consisting of electrically conductive material, in the annular gap (3, 3.1) transverse to the longitudinal axis (4) of the annular gap (3, 3.1) or at an angle α with respect to the longitudinal axis (4) of the annular gap (3, 3.1) with 30° ≤ α ≤ 90° and one behind the other in the direction of flow (7) of the combustion air stream and spaced apart in parallel with a spacing a from one another, forming a corresponding pair, and arranged electrically insulated from the walls (1, 2) that form the annular gap (3, 3.1),
wherein the sensor rods (10, 11) are adapted in their shape to the curvature of the annular gap (3, 3.1) and have a length 1 of 1 > 20 mm, preferably 1 > 200 mm, and wherein the sensor rods (10, 11) are electrically connected to a. correlation measuring device (13), by means of which the flow velocity (v) of the combustion air stream orthogonal to the longitudinal direction of the sensor rods (10, 11) is determined by evaluating the electrical signals generated by the electrical influence on the sensor rods (10, 11) that is brought about by electrically charged particles transported in the combustion air stream and moving past the sensor rods (10, 11), wherein, in the event that the sensor rods (10, 11) are not arranged transversely to the longitudinal axis (4) of the annular gap (3, 3.1), a component (v2) of the flow velocity (v) of the combustion air stream in the direction of the longitudinal axis (4) of the annular gap (3, 3.1) is calculated and, on the basis of the component (v2), the flow velocity (v) of the combustion air stream in the direction of the longitudinal axis (4) of the annular gap (3, 3.1) is calculated, and the quantity of combustion air flowing through the annular gap (3, 3.1) is determined on the basis of the geometrical dimensions of the cross-sectional area of the annular gap (3, 3.1). - Power station furnace system according to Claim 1,
characterized in that
the sensor rods (10, 11) forming a corresponding pair are arranged in the annular gap (3, 3.1) with in each case the same spacing c, d, which is constant over the length of each sensor rod (10, 11), from the two walls (1, 2) forming the annular gap (3, 3.1). - Power station furnace system according to Claim 1 or 2,
characterized in that
in the case of the arrangement of an air guiding device (6) for generating a swirl flow of the combustion air stream, the sensor rods (10, 11) are arranged in the annular gap (3, 3.1) downstream of the air guiding device (6) in the direction of flow (7) of the combustion air stream. - Power station furnace system according to Claim 3,
characterized in that
the sensor rods (10, 11) forming a corresponding pair are arranged in parallel but displaced relative to one another, such that at least part of the combustion air flowing past the first sensor rod (10) of the corresponding pair in the direction of flow (7) of the combustion air stream also flows past the second sensor rod (11) of the corresponding pair in the direction of flow (7) of the combustion air stream. - Power station furnace system according to Claim 3 or 4,
characterized in that
two pairs of corresponding sensor rods (10.1, 11.1 and 10.2, 11.2) are arranged in the annular gap (3, 3.1), wherein the two pairs of corresponding sensor rods (10.1, 11.1 and 10.2, 11.2) are arranged at a different angle α with respect to the longitudinal axis (4) of the annular gap (3, 3.1). - Power station furnace system according to one of Claims 1 to 5,
characterized in that
the sensor rods (10, 11) are formed as a round rod having a diameter D with 1 mm ≤ D ≤ 20 mm, or as a square rod having an edge length e in the direction of the width b of the annular gap with 1 mm ≤ e ≤ 20 mm. - Power station furnace system according to Claims 1 to 5,
characterized in that
the sensor rods (10, 11) are formed by foil strips of an electrically conductive material which are adhesively attached to one of the two walls (1, 2) forming the annular gap (3, 3.1) and insulated with respect to the wall (1, 2) within the annular gap (3, 3.1). - Power station furnace system according to Claims 1 to 7,
characterized in that
the sensor rods (10, 11) are segmented in the longitudinal direction, wherein either the segments of the sensor rods (10, 11) are electrically connected to one another in series and the series connections of the sensor rods (10, 11) are electrically connected to a correlation measuring device (13) or the segments of the sensor rods (10, 11) are electrically connected to a correlation measuring device (13).
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PL18796827T PL3695167T3 (en) | 2017-10-11 | 2018-10-05 | Power station furnace system |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102017009393.8A DE102017009393B3 (en) | 2017-10-11 | 2017-10-11 | Device for controlling the combustion process in a power plant furnace |
PCT/DE2018/000286 WO2019072329A1 (en) | 2017-10-11 | 2018-10-05 | Device for controlling the combustion process in a power station furnace system |
Publications (2)
Publication Number | Publication Date |
---|---|
EP3695167A1 EP3695167A1 (en) | 2020-08-19 |
EP3695167B1 true EP3695167B1 (en) | 2021-09-01 |
Family
ID=64109683
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP18796827.6A Active EP3695167B1 (en) | 2017-10-11 | 2018-10-05 | Power station furnace system |
Country Status (9)
Country | Link |
---|---|
US (1) | US20200292170A1 (en) |
EP (1) | EP3695167B1 (en) |
JP (1) | JP2020537109A (en) |
KR (1) | KR20200065049A (en) |
CN (1) | CN111201401B (en) |
DE (1) | DE102017009393B3 (en) |
ES (1) | ES2898242T3 (en) |
PL (1) | PL3695167T3 (en) |
WO (1) | WO2019072329A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
USD948804S1 (en) * | 2018-10-23 | 2022-04-12 | Rembe Gmbh Safety + Control | Explosion isolation device for pipes |
CN115143490B (en) * | 2022-06-15 | 2023-08-01 | 南京航空航天大学 | Combustion chamber with circumferential staggered opposite flushing jet flow and full-ring large-scale rotational flow coupling |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20021271U1 (en) | 2000-12-15 | 2001-05-23 | PROMECON Prozeß- und Meßtechnik Conrads GmbH, 39179 Barleben | Sensor device for determining the amount of combustion air supplied to one or a group of burners |
ATE476628T1 (en) * | 2001-03-23 | 2010-08-15 | Gvp Ges Zur Vermarktung Der Po | METHOD AND DEVICE FOR ADJUSTING THE AIR RADIO |
JP4476116B2 (en) * | 2004-12-27 | 2010-06-09 | 三菱重工業株式会社 | gas turbine |
CA2683873C (en) * | 2007-04-13 | 2013-01-15 | Babcock-Hitachi Kabushiki Kaisha | Pulverized coal burning boiler |
JP4969464B2 (en) * | 2008-01-08 | 2012-07-04 | 三菱重工業株式会社 | Burner structure |
US20120037729A1 (en) | 2010-08-16 | 2012-02-16 | Lee Joseph C | Insertion Type Fluid Volume Meter and Control System |
DK2742287T3 (en) | 2011-07-13 | 2016-01-11 | Promecon Prozess & Messtechnik | CHARGING CHARACTERISTICS INSTALLATION WITH FUEL / AIR CONDITIONING CONDITIONS IN THE COMBUSTION OF MILLED CARBON AND PROCEDURE FOR OPERATION OF A CHARGER CHARACTERISTICS |
DE102012007884A1 (en) * | 2012-04-23 | 2013-10-24 | Babcock Borsig Steinmüller Gmbh | Burner for dust and / or particulate fuels with variable swirl |
CN103335312B (en) * | 2012-07-17 | 2016-07-27 | 张达积 | Infrared ray hydrogen energy burner |
DE102012016408B4 (en) | 2012-08-21 | 2022-06-09 | Krohne Ag | Magnetic-inductive flow meter with a number of functional units, constructive realization |
-
2017
- 2017-10-11 DE DE102017009393.8A patent/DE102017009393B3/en not_active Expired - Fee Related
-
2018
- 2018-10-05 EP EP18796827.6A patent/EP3695167B1/en active Active
- 2018-10-05 US US16/649,047 patent/US20200292170A1/en not_active Abandoned
- 2018-10-05 JP JP2020520629A patent/JP2020537109A/en active Pending
- 2018-10-05 KR KR1020207013321A patent/KR20200065049A/en not_active Application Discontinuation
- 2018-10-05 CN CN201880066187.1A patent/CN111201401B/en not_active Expired - Fee Related
- 2018-10-05 WO PCT/DE2018/000286 patent/WO2019072329A1/en unknown
- 2018-10-05 ES ES18796827T patent/ES2898242T3/en active Active
- 2018-10-05 PL PL18796827T patent/PL3695167T3/en unknown
Also Published As
Publication number | Publication date |
---|---|
ES2898242T3 (en) | 2022-03-04 |
DE102017009393B3 (en) | 2019-01-24 |
CN111201401A (en) | 2020-05-26 |
JP2020537109A (en) | 2020-12-17 |
EP3695167A1 (en) | 2020-08-19 |
KR20200065049A (en) | 2020-06-08 |
CN111201401B (en) | 2022-07-12 |
US20200292170A1 (en) | 2020-09-17 |
WO2019072329A1 (en) | 2019-04-18 |
PL3695167T3 (en) | 2022-02-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1828682B1 (en) | Method and device for influencing combustion processes | |
EP2742287B1 (en) | Firing system of a coal-fired power station with device for controlling the fuel-air ratio in the combustion of ground coal and method of operating the firing system | |
DE102012008250B4 (en) | Ion mobility separator for mass spectrometers | |
EP3695167B1 (en) | Power station furnace system | |
AT501993A1 (en) | DEVICE FOR MEASURING THE SPEED OF A FLUID | |
DE69127957T2 (en) | Ion scattering spectrometer | |
DE3336911A1 (en) | DEVICE FOR MEASURING THE VOLUME FLOW OF A GAS IN A CHANNEL | |
DE2212746B2 (en) | FLOW RECTIFIER | |
EP3006903B1 (en) | Flow measuring device for measuring a parameter of a fluid flow | |
WO2016041723A1 (en) | Magnetoinductive flowmeter having a four-coil magnetic system | |
DE4390337C2 (en) | Electromagnetic flow meter | |
DE2458025C2 (en) | Analysis device for a surface layer | |
DE2224578A1 (en) | Method and probe for measuring the flow rate of a gas | |
EP2037253B1 (en) | Differential mobility analyser | |
EP3537112A1 (en) | Fluid flow meter | |
EP2844957B1 (en) | Magnetic-inductive flowmeter | |
EP3177897A1 (en) | Magnetoinductive flowmeter having a plurality of measuring electrode pairs and different measuring tube cross sections | |
DE2827120C2 (en) | Device for detecting small amounts of gases or vapors in air or other gas mixtures | |
EP3211384B1 (en) | Magnetic-inductive flow meter and associated method | |
EP4127655A1 (en) | Method and aerosol measuring device for determining the particle speed of an aerosol | |
DE2632553A1 (en) | DEVICE FOR MEASURING THE VELOCITY OF FLOW BY USING SOUND | |
EP4134635B1 (en) | Determination of the flow rate of a flowing fluid | |
DE10344462B4 (en) | Particle mass spectrometer for the detection of nanoparticles and processes | |
DE20021271U1 (en) | Sensor device for determining the amount of combustion air supplied to one or a group of burners | |
DE1959917A1 (en) | Process for the continuous measurement of the dustiness of gaseous media and equipment for the implementation of the process |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: UNKNOWN |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE INTERNATIONAL PUBLICATION HAS BEEN MADE |
|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE |
|
17P | Request for examination filed |
Effective date: 20200508 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
AX | Request for extension of the european patent |
Extension state: BA ME |
|
DAV | Request for validation of the european patent (deleted) | ||
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: GRANT OF PATENT IS INTENDED |
|
INTG | Intention to grant announced |
Effective date: 20210408 |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE PATENT HAS BEEN GRANTED |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Free format text: NOT ENGLISH |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 1426611 Country of ref document: AT Kind code of ref document: T Effective date: 20210915 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 502018006900 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D Free format text: LANGUAGE OF EP DOCUMENT: GERMAN |
|
REG | Reference to a national code |
Ref country code: LT Ref legal event code: MG9D |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MP Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: RS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: LT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 Ref country code: NO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211201 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CZ Payment date: 20211022 Year of fee payment: 4 Ref country code: ES Payment date: 20211117 Year of fee payment: 4 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LV Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20211202 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2898242 Country of ref document: ES Kind code of ref document: T3 Effective date: 20220304 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20220120 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220101 Ref country code: SM Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20220103 Ref country code: NL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: AL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PL Payment date: 20211015 Year of fee payment: 4 Ref country code: IT Payment date: 20211102 Year of fee payment: 4 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502018006900 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: BE Ref legal event code: MM Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211005 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
26N | No opposition filed |
Effective date: 20220602 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211031 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20211005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221005 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502018006900 Country of ref document: DE |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20221005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO Effective date: 20181005 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20230503 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221005 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221005 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20231124 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221006 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20221005 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20210901 |