WO2019072013A1 - 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物 - Google Patents

一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物 Download PDF

Info

Publication number
WO2019072013A1
WO2019072013A1 PCT/CN2018/100323 CN2018100323W WO2019072013A1 WO 2019072013 A1 WO2019072013 A1 WO 2019072013A1 CN 2018100323 W CN2018100323 W CN 2018100323W WO 2019072013 A1 WO2019072013 A1 WO 2019072013A1
Authority
WO
WIPO (PCT)
Prior art keywords
semi
acid
aromatic polyamide
polyamide resin
aromatic
Prior art date
Application number
PCT/CN2018/100323
Other languages
English (en)
French (fr)
Inventor
张传辉
曹民
黄险波
叶南飚
史振国
王道波
卢伟光
阎昆
常欢
黄野
Original Assignee
金发科技股份有限公司
珠海万通化工有限公司
天津金发新材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 金发科技股份有限公司, 珠海万通化工有限公司, 天津金发新材料有限公司 filed Critical 金发科技股份有限公司
Publication of WO2019072013A1 publication Critical patent/WO2019072013A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/265Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids from at least two different diamines or at least two different dicarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/02Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
    • C08G69/26Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
    • C08G69/28Preparatory processes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids

Definitions

  • the invention relates to the field of polymer polymerization and engineering plastics, and in particular to a semi-aromatic polyamide, a preparation method thereof and a polyamide molding composition composed thereof.
  • Polyamide (PA) commonly known as nylon, has been around for more than 80 years since it was industrialized in the 1930s. In the early days, it was mainly used as a raw material for spinning. It can be used as engineering plastics after the 1950s. With the rapid development of application fields such as automobile industry, electronics, transportation, machinery, aerospace industry and various daily-use industries, its production and demand Already located in the top five engineering plastics. Polyamide resin is widely used because of its good comprehensive properties, including mechanical properties, heat resistance, abrasion resistance, chemical resistance and self-lubricating properties, low friction coefficient, and certain flame retardancy. Filled with glass fiber and other fillers to enhance modification, improve performance and expand application range. In recent years, semi-aromatic polyamides have been developed with great emphasis on their heat resistance and mechanical properties.
  • the semi-aromatic polyamide is generally obtained by polymerizing a diamine having a benzene ring and an aliphatic dibasic acid or a monomer such as a dibasic acid having a benzene ring and an aliphatic diamine.
  • Semi-aromatic polyamides often use benzoic acid capping agents to control molecular weight. Since the amidation reaction is a reversible reaction, if the reaction process conditions are not effectively controlled, a part of the unreacted benzoic acid is always present in the polymerization product. Since the boiling point of benzoic acid is high, it is difficult to extract it by vacuuming or the like during the polymerization, resulting in the presence of a residual form in the final resin in the free form.
  • the semi-aromatic polyamide resin has a free benzoic acid content of less than 200 ppm based on the total weight of the semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin has a free benzoic acid content of less than 100 ppm based on the total weight of the semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin has a content of free benzoic acid of 50 ppm based on the total weight of the semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin has a content of free benzoic acid of 30 ppm based on the total weight of the semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin is composed of repeating units derived from:
  • the terephthalic acid comprises from 50 to 100 mol% of (a), one or more aliphatic diamines having from 10 to 20 carbon atoms, from 50 to 100 mol% of (b), one or more aminocarboxylates
  • the acid and/or lactam accounts for 0-25 mol% of the total amount of (a) + (b) + (c).
  • the semi-aromatic polyamide resin is composed of repeating units derived from:
  • terephthalic acid comprises from 30 to 100 mol% of (a), one or more aliphatic diamines having from 4 to 9 carbon atoms, from 50 to 100 mol% of (b), one or more aminocarboxylates
  • the acid and/or lactam accounts for 0-25 mol% of the total amount of (a) + (b) + (c).
  • the semi-aromatic polyamide resin is composed of repeating units derived from:
  • terephthalic acid comprises from 5 to 30 mol% of (a), one or more aliphatic diamines having from 4 to 9 carbon atoms, from 50 to 100 mol% of (b), one or more aminocarboxylates
  • the acid and/or lactam accounts for 0-25 mol% of the total amount of (a) + (b) + (c).
  • the semi-aromatic polyamide resin is obtained by polymerizing three or more kinds of monomers.
  • the additional aromatic or aliphatic diacid is selected from the group consisting of isophthalic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, 2-methyl One or more of octyl diacid, sebacic acid, sebacic acid, undecanedioic acid, dodecanedioic acid, tridecanedioic acid or tetradecanedioic acid.
  • the aliphatic diamine of 10 to 20 carbon atoms is selected from the group consisting of decanediamine, undecanediamine, dodecanediamine, tridecanediamine, tetradecanediamine, pentadecanediamine, One or more of hexadecane diamine, heptadecane diamine, stearyl diamine, nonadecanediamine, and eicosane diamine.
  • the aliphatic diamine of 4 to 9 carbon atoms is selected from the group consisting of butanediamine, pentanediamine, hexamethylenediamine, heptanediamine, octanediamine, decanediamine, and 2-methyloctanediamine. kind or several.
  • the aminocarboxylic acid or lactam is selected from the group consisting of 6-aminocaproic acid, caprolactam, 10-aminodecanoic acid, 11-aminoundecanoic acid, undecanolactam, 12-aminododecanoic acid or laurolactam. One or several.
  • the repeating unit (b) contains only 1,10-nonanediamine.
  • the repeating unit (b) contains only 1,6-hexanediamine.
  • the repeating unit (b) contains only 1,6-hexanediamine and 1,10-decanediamine.
  • the repeating unit (c) has a content of 0.
  • the semi-aromatic polyamide resin has a concentration of 10 mg/ml in 98% concentrated sulfuric acid at 25 ° C ⁇ 0.01 ° C, and a semi-aromatic polyamide resin has a relative viscosity of 1.7 - 2.8, preferably 1.85 - 2.45, more Preferably it is 2.0-2.3.
  • the semi-aromatic polyamide resin having a relatively low relative viscosity is inferior, but the semi-aromatic polyamide resin having a relatively high relative viscosity is inferior in processing fluidity.
  • the semi-aromatic polyamide resin having a high melting point semi-aromatic polyamide resin has a melting point of 280 to 340 ° C, preferably 290 to 330 ° C, more preferably 295 to 325 ° C.
  • the semi-aromatic polyamide resin having a low melting point semi-aromatic polyamide resin has a melting point of 240 to 279 ° C, preferably 245 to 270 ° C.
  • the semi-aromatic polyamide resin has only one melting point.
  • the semi-aromatic polyamide resin is amorphous, microcrystalline or amorphous.
  • the reaction raw material is introduced into the autoclave, and a high-purity argon gas is charged as a shielding gas under vacuum to start the reaction.
  • the reaction mixture was heated to 220 ° C - 230 ° C and stirred for 3-5 hours, then the valve was opened and the pressure was drained while maintaining the temperature and pressure. Drain until the displacement reaches 70% of the amount of deionized water. At this time, the temperature was raised to 250 ° C - 270 ° C, and the temperature was maintained for 2 hours.
  • the valve discharge is opened to obtain a prepolymer. The melting point of the prepolymer was tested and set to T °C.
  • the prepolymer was vacuum dried at 80 ° C for 24 hours.
  • Viscosity-increasing stage The prepolymer is subjected to solid phase thickening at a temperature lower than 40-70 ° C to obtain a semi-aromatic polyamide resin.
  • the catalyst used for the polymerization may be sodium hypophosphite.
  • the semi-aromatic polyamide resin is polymerized by adding 0.5-5 wt% of N,N-dimethylformamide, N,N-diethyl to the system in the polymerization stage based on the total weight of the charged monomers.
  • a polyamide molding composition comprising the semi-aromatic polyamide, consisting, by weight percent, consists of the following components:
  • the semi-aromatic polyamide resin, the reinforcing material, and the additive are uniformly mixed in a high-mixer, and then introduced into the twin-screw extruder through the main feed port.
  • the semi-aromatic polyamide composition is obtained by extrusion, cooling with water, granulation and drying.
  • the content of the component B is preferably from 10% by weight to 50% by weight, based on the total weight of the polyamide molding composition, more preferably from 15% by weight to 40% by weight.
  • the content of the reinforcing filler is too low, the mechanical properties of the polyamide molding composition are poor; the content of the reinforcing filler is too high, and the surface of the polyamide molding composition product is seriously suspended, which affects the appearance of the product.
  • the reinforcing filler has a fibrous shape and an average length of 0.01 mm to 20 mm, preferably 0.1 mm to 6 mm; and an aspect ratio of 5:1 to 2000:1, preferably 30:1 to 600:1.
  • the polyamide molding composition exhibits a high heat distortion temperature and an increased high temperature rigidity.
  • the reinforcing filler is an inorganic reinforcing filler or an organic reinforcing filler.
  • the inorganic reinforcing filler is selected from the group consisting of glass fiber, potassium titanate fiber, metal clad glass fiber, ceramic fiber, wollastonite fiber, metal carbide fiber, metal curable fiber, asbestos fiber, alumina fiber, silicon carbide fiber, One or more of gypsum fibers or boron fibers, preferably glass fibers.
  • glass fibers not only improves the moldability of the polyamide molding composition, but also improves mechanical properties such as tensile strength, flexural strength and flexural modulus, and improves heat resistance, for example, when the thermoplastic resin composition is molded. Heat distortion temperature.
  • the organic reinforcing filler is selected from the group consisting of aramid fibers and/or carbon fibers.
  • the reinforcing filler has a non-fibrous shape such as a powder, a granule, a plate, a needle, a woven fabric or a felt, and has an average particle diameter of from 0.001 ⁇ m to 100 ⁇ m, preferably from 0.01 ⁇ m to 50 ⁇ m.
  • the polyamide resin molding composition is inferior in melt processability; when the average particle diameter of the reinforcing filler is more than 100 ⁇ m, a poor appearance of the surface of the injection molded article is caused.
  • the average particle diameter of the above reinforcing filler is determined by an adsorption method, which may be selected from potassium titanate whiskers, zinc oxide whiskers, aluminum borate whiskers, wollastonite, zeolite, sericite, kaolin, mica, talc, clay, Pyrophyllite, bentonite, montmorillonite, asbestos, aluminosilicate, alumina, silica, magnesia, zirconia, titania, iron oxide, calcium carbonate, magnesium carbonate, dolomite, calcium sulfate, barium sulfate, hydroxide
  • adsorption method which may be selected from potassium titanate whiskers, zinc oxide whiskers, aluminum borate whiskers, wollastonite, zeolite, sericite, kaolin, mica, talc, clay, Pyrophyllite, bentonite, montmorillonite, asbestos, aluminosilicate, alumina, silica, magnesia, zirconia,
  • These reinforcing fillers may be hollow; in addition, for the swellable layered silicate such as bentonite, montmorillonite or synthetic mica, an organic montmorillonite obtained by cation exchange of interlayer ions with an organic ammonium salt may be used.
  • swellable layered silicate such as bentonite, montmorillonite or synthetic mica
  • an organic montmorillonite obtained by cation exchange of interlayer ions with an organic ammonium salt may be used.
  • the inorganic reinforcing filler may be functionally treated with a coupling agent.
  • the coupling agent is selected from the group consisting of an isocyanate compound, an organosilane compound, an organic titanate compound, an organoborane compound, and an epoxy compound; preferably an organosilane compound;
  • the organosilane compound is selected from the group consisting of an epoxy group-containing alkoxysilane compound, a mercapto group-containing alkoxysilane compound, a urea group-containing alkoxysilane compound, and an isocyanate group-containing alkoxysilane compound.
  • an alkoxysilane compound containing a terminal amino group an alkoxysilane compound containing a hydroxyl group, an alkoxysilane compound containing a carbon-carbon unsaturated group, and an alkoxysilane compound containing an acid anhydride group.
  • the epoxy group-containing alkoxysilane compound is selected from the group consisting of ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -glycidoxypropyltriethoxysilane, ⁇ -(3,4- One or more of epoxycyclohexyl)ethyltrimethoxysilane.
  • the mercapto group-containing alkoxysilane compound is selected from the group consisting of ⁇ -mercaptopropyltrimethoxysilane and/or ⁇ -mercaptopropyltriethoxysilane.
  • the ureido group-containing alkoxysilane compound is selected from the group consisting of ⁇ -ureidopropyltriethoxysilane, ⁇ -ureidopropyltrimethoxysilane, ⁇ -(2-ureidoethyl)-terminated aminopropyl group One or more of the trimethoxysilanes.
  • the isocyanate group-containing alkoxysilane compound is selected from the group consisting of ⁇ -isocyanatepropyltriethoxysilane, ⁇ -isocyanatepropyltrimethoxysilane, ⁇ -isocyanatepropylmethyldimethoxysilane, ⁇ -Isocyanatepropylmethyldiethoxysilane, ⁇ -Isocyanatepropylethyldimethoxysilane, ⁇ -Isocyanatepropylethyldiethoxysilane, ⁇ -Isocyanatepropyltrichloride One or several of silanes.
  • the terminal amino group-containing alkoxysilane compound is selected from the group consisting of ⁇ -(2-terminal aminoethyl)-terminated propylmethyldimethoxysilane and ⁇ -(2-terminal aminoethyl) terminal One or more of aminopropyltrimethoxysilane and ⁇ -terminal aminopropyltrimethoxysilane.
  • the hydroxyl group-containing alkoxysilane compound is selected from the group consisting of ⁇ -hydroxypropyltrimethoxysilane and/or ⁇ -hydroxypropyltriethoxysilane.
  • the alkoxysilane compound containing a carbon-carbon unsaturated group is selected from the group consisting of ⁇ -methacryloxypropyltrimethoxysilane, vinyltrimethoxysilane, and N- ⁇ -(N-vinylbenzyl One or more of terminal aminoethyl)- ⁇ -terminal aminopropyltrimethoxysilane hydrochloride.
  • the acid anhydride group-containing alkoxysilane compound is selected from the group consisting of 3-trimethoxysilylpropyl succinic anhydride.
  • the organosilane compound is preferably ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -(2-terminal aminoethyl)-terminated propylmethyldimethoxysilane, ⁇ -( 2-terminal aminoethyl)-terminated aminopropyltrimethoxysilane, ⁇ -terminal aminopropyltrimethoxysilane or 3-trimethoxysilylpropyl succinic anhydride.
  • the inorganic reinforcing filler may be surface-treated by a conventional method using the above organosilane-based compound, and then melt-kneaded with a polyamide resin to prepare the polyamide molding composition.
  • the coupling agent is used in an amount of 0.05% by weight to 10% by weight, preferably 0.1% by weight to 5% by weight based on the weight of the inorganic reinforcing filler.
  • the amount of the coupling agent is less than 0.05% by weight, the effect of improving the mechanical properties is not obtained; when the amount of the coupling agent is more than 10% by weight, the inorganic reinforcing filler is liable to agglomerate and is poorly dispersed in the polyamide resin. The risk eventually leads to a decline in mechanical properties.
  • the additive is selected from one or more of a flame retardant, an impact modifier, other polymers, and a processing aid;
  • the other polymer is preferably an aliphatic polyamide, a polyolefin homopolymer, ethylene- ⁇ - One or more of an olefin copolymer, an ethylene-acrylate copolymer;
  • the processing aid is selected from the group consisting of an antioxidant, a heat resistant stabilizer, a weathering agent, a mold release agent, a lubricant, a pigment, a dye, a plasticizer, One or several of antistatic agents.
  • the flame retardant is a flame retardant or a combination of a flame retardant and a flame retardant facilitating agent, and the content thereof is preferably 0-40% by weight based on the total weight of the polyamide molding composition; the flame retardant content is too low to cause flame retardancy The effect is deteriorated, and the flame retardant content is too high, resulting in a decrease in mechanical properties of the material.
  • the flame retardant is a halogen flame retardant or a halogen free flame retardant.
  • the halogen-based flame retardant is selected from the group consisting of brominated polystyrene, brominated polyphenylene ether, brominated bisphenol A type epoxy resin, brominated styrene-maleic anhydride copolymer, brominated epoxy resin, and brominated One or more of phenoxy resin, decabromodiphenyl ether, decabromobiphenyl, brominated polycarbonate, perbromotricyclopentadecane or brominated aromatic crosslinked polymer, preferably brominated Polystyrene
  • the halogen-free flame retardant is selected from one or more of a nitrogen-containing flame retardant, a phosphorus-containing flame retardant or a nitrogen and phosphorus-containing flame retardant; preferably a phosphorus-containing flame retardant.
  • the phosphorus-containing flame retardant is selected from the group consisting of aryl phosphate monophosphate, aryl phosphate bisphosphate, dimethyl alkylphosphonate, triphenyl phosphate, tricresyl phosphate, tris(xylylene) phosphate, and C.
  • aryl phosphate monophosphate aryl phosphate bisphosphate
  • dimethyl alkylphosphonate triphenyl phosphate
  • tricresyl phosphate tris(xylylene) phosphate
  • C C.
  • the phosphinate compound is represented by a compound represented by, for example, the following formula I and/or II.
  • R 1 and R 2 may be the same or different and each represents a linear or branched C1-C6-alkyl group, an aryl group or a phenyl group.
  • R 3 represents a linear or branched C1-C10-alkylene group, a C6-C10-arylene group, a C6-C10-alkylarylene group, or a C6-C10-arylalkylene group.
  • M represents a calcium atom, a magnesium atom, an aluminum atom and/or a zinc atom.
  • M is 2 or 3
  • n is 1 or 3
  • x is 1 or 2.
  • phosphinate compound examples include calcium dimethylphosphinate, magnesium dimethylphosphinate, aluminum dimethylphosphinate, zinc dimethylphosphinate, calcium ethylmethylphosphinate , magnesium ethyl methylphosphinate, aluminum ethyl methylphosphinate, zinc ethyl methylphosphinate, calcium diethylphosphinate, magnesium diethylphosphinate, diethylphosphinic acid
  • a phosphinate compound as a flame retardant can be easily obtained from the market.
  • Examples of commercially available phosphinate compounds include EXOLIT OP1230, OP1311, OP1312, OP930, OP935, and the like, manufactured by Clariant.
  • the polyamide molding composition of the present invention comprising the above semi-aromatic polyamide resin, the additive component may further comprise up to 45 wt% of one or more impact modifiers based on the total weight of the polyamide molding composition.
  • the agent is preferably from 5% by weight to 30% by weight.
  • the impact modifier may be natural rubber, polybutadiene, polyisoprene, polyisobutylene, butadiene and/or isoprene and styrene or with styrene derivatives and copolymerization with others a copolymer of a monomer, a hydrogenated copolymer, and/or a copolymer obtained by grafting or copolymerizing with an acid anhydride, (meth)acrylic acid or an ester thereof; the impact modifier may also have a crosslinked elastomer a graft rubber of a core composed of butadiene, isoprene or alkyl acrylate, and having a graft shell composed of polystyrene or may be a non-polar or polar olefin a polymer or copolymer, such as ethylene propylene rubber, ethylene-propylene-diene rubber, or ethylene-octene rubber, or ethylene-vinyl a
  • An impact modifier based on styrene monomer (styrene and styrene derivatives) and other vinyl aromatic monomers is a block copolymer composed of an alkenyl aromatic compound and a conjugated diene, and A hydrogenated block copolymer composed of an alkenyl aromatic compound and a conjugated diene, and a combination of these types of impact modifiers.
  • the block copolymer comprises at least one block a derived from an alkenyl aromatic compound and at least one block b derived from a conjugated diene.
  • hydrogenated block copolymers the proportion of aliphatically unsaturated carbon-carbon double bonds is reduced by hydrogenation.
  • Suitable block copolymers are di-, tri-, tetra- and multi-block copolymers having a linear structure.
  • branched and star structures can also be used in accordance with the present invention.
  • the branched block copolymer is obtained in a known manner, for example by grafting a "side branch" onto the polymer backbone by a polymer grafting reaction.
  • vinyl aromatic monomers examples include styrene, p-methylstyrene, alpha-methylstyrene, ethylstyrene, t-butylstyrene, vinyltoluene, 1,2-diphenylethylene, 1
  • 1-diphenylethylene vinyl xylene, vinyl toluene, vinyl naphthalene, divinylbenzene, bromostyrene, chlorostyrene.
  • styrene, p-methylstyrene, ⁇ -methylstyrene, and vinylnaphthalene are preferred.
  • styrene Preference is given to using styrene, ⁇ -methylstyrene, p-methylstyrene, ethylstyrene, tert-butylstyrene, vinyltoluene, 1,2-diphenylethylene and 1,1-diphenylethylene.
  • styrene ⁇ -methylstyrene, p-methylstyrene, ethylstyrene, tert-butylstyrene, vinyltoluene, 1,2-diphenylethylene and 1,1-diphenylethylene.
  • styrene ⁇ -methylstyrene
  • p-methylstyrene ethylstyrene
  • tert-butylstyrene vinyltoluene
  • 1,2-diphenylethylene 1,2-diphenylethylene
  • 1,1-diphenylethylene 1,1-diphenyl
  • diolefin monomers which may be used are 1,3-butadiene, 2-methyl-1,3-butadiene, 2,3-dimethyl-1,3-butadiene, 1,3 - pentadiene, 1,3-hexadiene, isoprene, chloroprene and piperylene.
  • 1,3-butadiene or isoprene more preferably 1,3-butadiene (hereinafter referred to as butadiene in the abbreviated form).
  • the alkenyl aromatic monomer used preferably comprises styrene
  • the diene monomer used preferably comprises butadiene, which means that a styrene-butadiene block copolymer is preferred.
  • the block copolymers are generally prepared by anionic polymerization in a manner known per se.
  • the proportion of the comonomer is preferably from 0 to 50% by weight, particularly preferably from 0 to 30% by weight, particularly preferably from 0 to 15% by weight, based on the total amount of the monomers used.
  • suitable comonomers are respectively acrylates, especially C1 to C12 alkyl acrylates, such as n-butyl acrylate or 2-ethylhexyl acrylate, and methacrylates, especially methacrylic acid C1 to C12.
  • Alkyl esters such as methyl methacrylate (MMA).
  • the hydrogenated block copolymer further comprises, if appropriate, a lower hydrocarbon moiety such as ethylene, propylene, 1-butene, dicyclopentadiene or a non-conjugated diene.
  • a lower hydrocarbon moiety such as ethylene, propylene, 1-butene, dicyclopentadiene or a non-conjugated diene.
  • the proportion of unreduced aliphatic unsaturated bonds derived from block b in the hydrogenated block copolymer is less than 50%, preferably less than 25%, especially less than 10%.
  • the aromatic moiety derived from block a is reduced to an extent of up to 25%.
  • the block copolymer preferably comprises from 20% by weight to 90% by weight of block a, in particular from 50% by weight to 85% by weight, of block a.
  • the diolefin can be introduced into the block b in a 1,2-orientation or a 1,4-position.
  • the block copolymer has a molar mass of from 5000 g/mol to 500,000 g/mol, preferably from 20,000 g/mol to 300,000 g/mol, particularly preferably from 40,000 g/mol to 200,000 g/mol.
  • Suitable hydrogenated block copolymers are commercially available products such as (Kraton polymers) G1650, G1651 and G1652, and (Asahi Chemicals) H1041, H1043, H1052, H1062, H1141 and H1272.
  • non-hydrogenated block copolymers are polystyrene-polybutadiene, polystyrene-poly(ethylene-propylene), polystyrene-polyisoprene, poly(?-methylstyrene)-poly Butadiene, polystyrene-polybutadiene-polystyrene (SBS), polystyrene-poly(ethylene-propylene)-polystyrene, polystyrene-polyisoprene-polystyrene, poly One or more of ( ⁇ -methylstyrene) polybutadiene-poly( ⁇ -methylstyrene).
  • Suitable non-hydrogenated block copolymers which are commercially available are available under the trade names (Phillips), (Shell), (Dexco) and (Kuraray).
  • the impact modifier based on an olefin polymer can also be modified by grafting with an unsaturated silane compound such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetyl a silane, methacryloxypropyltrimethoxysilane, or propylene trimethoxysilane.
  • an unsaturated silane compound such as vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetyl a silane, methacryloxypropyltrimethoxysilane, or propylene trimethoxysilane.
  • An elastomeric polyolefin is a random, alternating or block copolymer having a linear, branched or core-shell structure and contains functional groups which are reactive with the terminal groups of the polyamide, thereby being used in polyamides and impact modifiers. Provide sufficient compatibility between the two.
  • the impact modifiers of the present invention include homopolymers or copolymers of olefins (e.g., ethylene, propylene, 1-butene), or olefins and copolymerizable monomers (e.g., vinyl acetate, (meth) acrylate, Copolymer with methylhexadiene).
  • olefins e.g., ethylene, propylene, 1-butene
  • copolymerizable monomers e.g., vinyl acetate, (meth) acrylate, Copolymer with methylhexadiene.
  • Examples of crystalline olefin polymers are low density, medium density and high density polyethylene, polypropylene, polybutadiene, poly-4-methylpentene, ethylene-propylene block copolymer, or ethylene-propylene random Copolymer, ethylene-methylhexadiene copolymer, propylene-methylhexadiene copolymer, ethylene-propylene-butene copolymer, ethylene-propylene-hexene copolymer, ethylene-propylene-methylhexadiene Copolymer, poly(ethylene-vinyl acetate) (EVA), poly(ethylene-ethyl acrylate) (EEA), ethylene-octene copolymer, ethylene-butene copolymer, ethylene-hexene copolymer, ethylene- One or more of a propylene-diene terpolymer.
  • EVA ethylene-vinyl acetate
  • EAA poly(ethylene-e
  • TAFMER MC201 Blend of g-MA (-0.6%) 67% EP copolymer (20 mol% propylene) + 33% EB copolymer (15 mol% 1-butene)): Mitsui Chemicals, Japan.
  • TAFMER MH5010 g-MA (-0.6%) ethylene-butene copolymer; Mitsui.
  • TAFMER MH7010 g-MA (-0.7%) ethylene-butene copolymer; Mitsui.
  • TAFMER MH7020 g-MA (-0.7%) EP copolymer; Mitsui.
  • EXXELOR VA1801 g-MA (-0.7%) EP copolymer; Exxon Mobile Chemicals, US.
  • EXXELOR VA1803 g-MA (0.5-0.9%) EP copolymer, amorphous, Exxon.
  • EXXELOR VA1810 g-MA (-0.5%) EP copolymer, Exxon.
  • EXXELOR MDEX 941l g-MA (0.7%) EPDM, Exxon.
  • FUSABOND MN493D g-MA (-0.5%) ethylene-octene copolymer, DuPont, US.
  • FUSABOND A EB560D (g-MA) ethylene-n-butyl acrylate copolymer, DuPont ELVALOY, DuPont.
  • the commercially available impact modifier for the additive component is preferably an ionic polymer in which the polymer-bonded carboxyl groups are all bonded or bonded to each other by metal ions.
  • impact modifiers for the additive component are particularly preferably copolymers of maleic anhydride graft functionalized butadiene with styrene, nonpolar or by grafting with maleic anhydride.
  • Polar olefin homopolymers and copolymers, and carboxylic acid functionalized copolymers such as poly(ethylene-co-(meth)acrylic acid) or poly(ethylene-co-1-olefin-co-(meth)acrylic acid) Wherein the acid group has been neutralized to some extent by metal ions.
  • the polyamide molding composition of the present invention comprising the above semi-aromatic polyamide resin, the additive component may further comprise other polymers selected from the group consisting of aliphatic polyamides, polyolefin homopolymers or ethylene - ⁇ -olefin copolymer, ethylene-acrylate copolymer.
  • the aliphatic polyamides include, but are not limited to, aliphatic diacids and aliphatic diamines derived from 4 to 20 carbon atoms, or lactams of 4 to 20 carbon atoms, or aliphatic groups of 4 to 20 carbon atoms.
  • aliphatic diacids and aliphatic diamines derived from 4 to 20 carbon atoms, or lactams of 4 to 20 carbon atoms, or aliphatic groups of 4 to 20 carbon atoms.
  • lactams One or more of a polymer of a diacid, an aliphatic diamine, and a lactam.
  • PA66 polyhexamethylene adipamide
  • PA6 polycaprolactam
  • PA610 polysebacyldiamine
  • PA1010 polysebacic acid diamine
  • PA66/6 adipic acid-hexane Amine-caprolactam copolymer
  • PA11 polyundecanolactam
  • PA12 polydodelactam
  • the ethylene- ⁇ -olefin copolymer is preferably an EP elastomer and/or an EPDM elastomer (ethylene-propylene rubber and ethylene-propylene-diene rubber, respectively).
  • the elastomer may include an elastomer based on an ethylene-C3-C12- ⁇ -olefin copolymer containing 20% by weight to 96% by weight, preferably 25% by weight to 85% by weight of ethylene, wherein C3-C12- ⁇ - is particularly preferred herein.
  • the olefin includes an olefin selected from the group consisting of propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and/or 1-dodecene, and particularly preferably other polymers including ethylene-propylene.
  • the further polymer may also comprise ethylene-based, C3-C12-alpha-olefins (containing from 3 carbon atoms to - ⁇ -olefins having 12 carbon atoms) and A terpolymer of a non-conjugated diene, preferably having a non-conjugated diene of from 25 wt% to 85 wt% of ethylene and a maximum content of 10 wt%, particularly preferably a C3-C12-alpha-olefin including Olefins from propylene, 1-butene, 1-pentene, 1-hexene, 1-octene, 1-decene and/or 1-dodecene, and/or non-conjugated dienes thereof; preferably two Ring [2.2.1] heptadiene, 1,4-hexadiene, dicyclopentadiene and/or 5-ethylidene norbornene.
  • the other polymer comprises a component having an anhydride group by thermal reaction of the backbone polymer with an unsaturated dianhydride, with an unsaturated dicarboxylic acid, or with a monoalkyl ester of an unsaturated dicarboxylic acid.
  • a free radical reaction introduced at a concentration sufficient to bind well to the polyamide, and it is preferred here to use an agent selected from the group consisting of:
  • maleic acid, maleic anhydride, monobutyl maleate, fumaric acid, aconitic acid and/or itaconic anhydride Preferably, 0.1% by weight to 4.0% by weight of the unsaturated acid anhydride is grafted onto the impact resistant component, or the unsaturated dianhydride or its precursor is applied by grafting together with other unsaturated monomers. It is generally preferred that the degree of grafting is from 0.1% to 1.0%, particularly preferably from 0.3% to 0.7%.
  • Another possible component of other polymers is a mixture of an ethylene-propylene copolymer and an ethylene-butene copolymer, where the degree of grafting of the maleic anhydride (MA grafting degree) is from 0.3% to 0.7%.
  • the additive component may comprise a component having a functional group such as a carboxylic acid group, an ester group, an epoxy group, an oxazoline group, a carbodiimide group, an isocyanate group.
  • a functional group such as a carboxylic acid group, an ester group, an epoxy group, an oxazoline group, a carbodiimide group, an isocyanate group.
  • the silanol group, and the carboxylate group, or the additive component may comprise a combination of two or more of the above functional groups.
  • the monomer having the functional group can be obtained by copolymerization or grafting onto an elastomer polyolefin.
  • processing aids such as an antioxidant and/or a heat-resistant stabilizer (hindered phenol type, hydroquinone type, etc.) may be added to the polyamide resin of the present invention at any time within the range not impairing the effects of the present invention.
  • Phosphite esters and their substituents copper halides, iodine compounds, etc., and weathering agents (resorcinol, salicylate, benzotriazole, benzophenone, hindered amine, etc.) , mold release agents and lubricants (aliphatic alcohols, aliphatic amides, aliphatic bisamides, diureas and polyethylene waxes, etc.), pigments (cadmium sulfide, phthalocyanine, carbon black, etc.), dyes (nigrosine, Aniline black, etc.), plasticizer (octyl p-hydroxybenzoate, N-butylbenzenesulfonamide, etc.), antistatic agent (alkyl sulfate type anionic antistatic agent, quaternary ammonium salt type cationic antistatic agent) , non-ionic antistatic agents such as polyoxyethylene sorbitan monostearate, betained amphoteric antistatic agents, etc.).
  • the polyamide resin or the polyamide resin composition of the present invention may be molded by any molding method such as injection molding, extrusion molding, blow molding, vacuum molding, melt spinning, or film molding.
  • These molded articles can be molded into a desired shape, and can be used in resin molded articles such as automobile parts and machine parts.
  • radiator parts for automobile engines especially radiator tank components such as the top and bottom of radiator tanks, coolant reserve tanks, water pipes, water pump casings, pump impellers, valves, etc.
  • Components used in contact with cooling water in the engine room of a car such as switches, subminiature slide switches, DIP switches, housings for switches, lamp holders, straps, connectors, connector housings, connector housings , IC sockets, bobbins, spool covers, relays, relay boxes, capacitor housings, internal parts of motors, small motor housings, gear cams, equalizing wheels, gaskets, insulators, fasteners, buckles, clamps, Bicycle wheels, casters, helmets, terminal blocks, housings for power tools, insulation for starters, spoilers, tanks, radiator tanks, chamber tanks, liquid storage tanks, fuse boxes, air purifiers Housing, air conditioning fan, terminal housing, wheel cover, suction and exhaust pipe, bearing support, cylinder head cover, intake manifold, water pipe impeller Clutch separation lever, speaker diaphragm, heat-resistant container, microwave oven parts, rice cooker parts, printer ribbon guides, etc. Electrical/electronic related parts, automotive/vehicle related parts, home appliances/office
  • the present invention adds a certain amount of a strong polar solvent such as N,N-dimethylformamide, N,N-diethylformamide, dimethyl sulfoxide, etc. in the polymerization stage of the semi-aromatic polyamide.
  • a strong polar solvent such as N,N-dimethylformamide, N,N-diethylformamide, dimethyl sulfoxide, etc.
  • the content of free benzoic acid in the resin can be significantly reduced, the gas gas in the melt processing process, the pollution of the workpiece and the like are obviously improved, and the polymerization reaction of the semi-aromatic polyamide resin is not affected.
  • the strong polar solvent of the invention is low in price and small in amount, and solves the problems of mold contamination and gas gas in the processing process at a very low cost, so that the injection efficiency and the surface performance of the workpiece are significantly improved.
  • FIG. 1 is a schematic view showing a fat extracting apparatus used in a method for testing a free benzoic acid content in a semi-aromatic polyamide resin of the present invention.
  • the raw materials used in the invention are all derived from commercially available products
  • the reaction raw material was added according to the formulation of Table 1, and a high-purity argon gas was vacuum-charged as a shielding gas to start the reaction.
  • the reaction mixture was warmed to 220 ° C - 230 ° C and stirred for 3-5 hours, then the valve was opened and the pressure was drained while maintaining the temperature and pressure. Drain until the displacement reaches 70% of the amount of deionized water. At this time, the temperature was raised to 250 ° C - 270 ° C, and the temperature was maintained for 2 hours.
  • the valve discharge is opened to obtain a prepolymer.
  • the melting point of the prepolymer was tested and set to T °C. After the prepolymer was vacuum dried at 80 ° C for 24 hours, the prepolymer was subjected to solid phase thickening at a temperature lower than 40-70 ° C to obtain a semi-aromatic polyamide resin.
  • the semi-aromatic polyamide resin, reinforcing material, additive, and the like prepared in Table 1 were uniformly mixed in a high-mixer according to the formulation of Table 2, and then introduced into a twin-screw extruder through a main feed port.
  • the semi-aromatic polyamide composition is obtained by extrusion, cooling with water, granulation and drying.
  • test method test the melting point of the sample using a Perkin Elmer Diamond DSC analyzer; heating rate 10 ° C / min;
  • the specific test method is: measuring the relative viscosity of semi-aromatic polyamide with a concentration of 10 mg/ml in 98% concentrated sulfuric acid at 25 ° C ⁇ 0.01 ° C. ⁇ r ;
  • the injection temperature was set to be 15 ° C higher than the melting point of the semi-aromatic polyamide resin, and then the semi-aromatic polyamide molding composition was injected into a 40 ° C swatch mold 50 ⁇ 30 ⁇ 2 mm, and held in the mold for 25 seconds. . Then demoulding, observe the surface contamination of the mold: ⁇ represents the pollution situation, the more serious the pollution ⁇ the more.
  • the content of free benzoic acid in the finished product can be effectively controlled by controlling the amount of N,N-dimethylformamide in the polymerization process.
  • the amount of N,N-dimethylformamide is in the range of 0.5 to 5.0% by weight, the larger the amount used, the less free benzoic acid in the finished product.
  • the molding composition using a semi-aromatic polyamide resin containing a lower amount of free benzoic acid has a slight mold contamination; and the molding composition mold using a resin having a higher benzoic acid content is contaminated with a mold. Serious, directly affecting injection efficiency and surface properties of the part.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

本发明公开了一种半芳香族聚酰胺树脂和由其组成的聚酰胺模塑组合物。半芳香族聚酰胺树脂中游离苯甲酸的含量小于200ppm。该半芳香族聚酰胺树脂是由以下重复单元构成的:(a)对苯二甲酸或者其衍生物,和任选地一种或多种另外的芳族或者脂肪族二酸;(b)一种或多种具有10到20个碳原子的脂肪族二胺,和任选地一种或多种另外的二胺;(c)任选地一种或多种氨基羧酸和/或内酰胺;其中,对苯二甲酸占(a)的50-100mol%,一种或多种具有10到20个碳原子的脂肪族二胺占(b)的50-100mol%,一种或多种氨基羧酸和/或内酰胺占(a)+(b)+(c)的总量的0-25mol%。本发明的半芳香族聚酰胺树脂改善熔融加工过程的瓦斯气和制件污染等问题。

Description

一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物 技术领域
本发明涉及高分子聚合及工程塑料技术领域,尤其是涉及一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物。
背景技术
聚酰胺(polyamide,PA),俗称尼龙,自20世纪30年代实现工业化以来已经有八十多年的历史。初期主要作为纺丝的原料,20世纪50年代以后才能作为工程塑料使用,随着汽车工业、电子、交通运输、机械、航天工业和各种日用工业等应用领域的迅速发展,其生产和需求已经位于五大工程塑料的首位。聚酰胺树脂因其具有良好的综合性能,包括力学性能、耐热性、耐磨损性、耐化学药品性和自润滑性,且摩擦系数低,有一定的阻燃性等,其被广泛用于玻璃纤维和其他填料填充增强改性,提高性能和扩大应用范围等方面。近几年来半芳香族聚酰胺由于其耐热性能和力学性能更优异而被重点开发。
半芳香族聚酰胺一般是由带苯环的二元胺和脂肪族的二元酸或者是由带苯环的二元酸和脂肪族的二元胺等单体聚合得到。半芳香族聚酰胺常采用苯甲酸封端来剂控制分子量。由于酰胺化反应是可逆反应,若不能对反应工艺条件有效控制,聚合产物中总有部分未反应的苯甲酸存在。由于苯甲酸熔沸点较高,聚合过程中的抽真空等操作往往难以将其抽出,导致其在最终树脂中存在以游离态形式的残留。这种小分子残留往往会造成后续熔融加工过程中的瓦斯气、制件污染等问题,直接影响注塑效率和制件表面性能。中国专利CN104530421A公开了一种半芳香族聚酰胺的制备方法,使用苯甲酸作为分子量调节剂进行封端,但没有关注如何除去体系中剩余的游离苯甲酸。
发明内容
本发明的目的,在于克服现有技术的不足,提供一种具有低游离苯甲酸含量的半芳香族聚酰胺以及其制备方法。本发明的另一个目的是提供一种包含上述半芳香族聚酰胺的半芳香族聚酰胺组合物。
本发明是通过以下技术方案实现的:
所述的半芳香族聚酰胺树脂,基于半芳香族聚酰胺树脂的总重量,游离苯甲酸的含量小于200ppm。
作为本发明进一步优选的实施方案,所述的半芳香族聚酰胺树脂,基于半芳香族聚酰胺树脂的总重量,游离苯甲酸的含量小于100ppm。
作为本发明进一步优选的实施方案,所述的半芳香族聚酰胺树脂,基于半芳香族聚酰胺树脂的总重量,游离苯甲酸的含量小50ppm。
作为本发明进一步优选的实施方案,所述的半芳香族聚酰胺树脂,基于半芳香族聚酰胺树脂的总重量,游离苯甲酸的含量小30ppm。
所述的半芳香族聚酰胺树脂,其由衍生自以下的重复单元构成:
(a)对苯二甲酸或者其衍生物,和任选地一种或多种另外的芳族或者脂肪族二酸;
(b)一种或多种具有10到20个碳原子的脂肪族二胺,和任选地一种或多种具有4到9个碳原子的脂肪族二胺;
(c)任选地一种或多种氨基羧酸和/或内酰胺;
其中,对苯二甲酸占(a)的50-100mol%,一种或多种具有10到20个碳原子的脂肪族二胺占(b)的50-100mol%,一种或多种氨基羧酸和/或内酰胺占(a)+(b)+(c)的总量的0-25mol%。
所述的半芳香族聚酰胺树脂,其由衍生自以下的重复单元构成:
(a)对苯二甲酸或者其衍生物,和任选地一种或多种另外的芳族或者脂肪族二酸;
(b)一种或多种具有4到9个碳原子的脂肪族二胺,和任选地一种或多种具有10到20个碳原子的脂肪族二胺;
(c)任选地一种或多种氨基羧酸和/或内酰胺;
其中,对苯二甲酸占(a)的30-100mol%,一种或多种具有4到9个碳原子的脂肪族二胺占(b)的50-100mol%,一种或多种氨基羧酸和/或内酰胺占(a)+(b)+(c)的总量的0-25mol%。
所述的半芳香族聚酰胺树脂,其由衍生自以下的重复单元构成:
(a)对苯二甲酸或者其衍生物,和任选地一种或多种另外的芳族或者脂肪族二酸;
(b)一种或多种具有4到9个碳原子的脂肪族二胺,和任选地一种或多种具有10到20个碳原子的脂肪族二胺;
(c)任选地一种或多种氨基羧酸和/或内酰胺;
其中,对苯二甲酸占(a)的5-30mol%,一种或多种具有4到9个碳原子的脂肪族二胺占(b)的50-100mol%,一种或多种氨基羧酸和/或内酰胺占(a)+(b)+(c)的总量的0-25mol%。
所述的半芳香族聚酰胺树脂由3种或3种以上单体聚合而成。
所述的另外的芳族或者脂肪族二酸选自间苯二甲酸、乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、2-甲基辛二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、十三烷二酸或十四烷二酸中的一种或几种。
所述的10到20个碳原子的脂肪族二胺选自癸二胺、十一烷二胺、十二烷二胺、十三烷二胺、十四烷二胺、十五烷二胺、十六烷二胺、十七烷二胺、十八烷二胺、十九烷二胺、 二十烷二胺中的一种或几种。
所述的4到9个碳原子的脂肪族二胺选自丁二胺、戊二胺、己二胺、庚二胺、辛二胺、壬二胺、2-甲基辛二胺中的一种或几种。
所述的氨基羧酸或内酰胺选自6-氨基己酸、己内酰胺、10-氨基癸酸、11-氨基十一酸、十一内酰胺、12-氨基十二酸或十二内酰胺中的一种或几种。
作为本发明的优选的实施方案,所述重复单元(b)只含有1,10-癸二胺。
作为本发明的优选的实施方案,所述的重复单元(b)只含有1,6-己二胺。
作为本发明的优选的实施方案,所述的重复单元(b)只含有1,6-己二胺和1,10-癸二胺。
作为本发明的优选的实施方案,所述的重复单元(c)含量为0。
所述的半芳香族聚酰胺树脂,在25℃±0.01℃的98%的浓硫酸中测量浓度为10mg/ml,半芳香族聚酰胺树脂的相对粘度为1.7-2.8,优选1.85-2.45,更优选2.0-2.3。
相对粘度较低的半芳香族聚酰胺树脂性能较差,但是相对粘度太高的半芳香族聚酰胺树脂,加工流动性较差。
所述的半芳香族聚酰胺树脂,具有高熔点的半芳香族聚酰胺树脂的熔点为280-340℃,优选290-330℃,更优选295-325℃。
所述的半芳香族聚酰胺树脂,具有低熔点的半芳香族聚酰胺树脂的熔点为240-279℃,优选245-270℃。
优选的,所述的半芳香族聚酰胺树脂只有一个熔点。
所述的半芳香族聚酰胺树脂为非晶、微晶或无定型结构。
所述半芳香族聚酰胺树脂聚合方法:
聚合阶段:在压力釜中入反应原料,抽真空充入高纯氩气作为保护气,开始反应。将反应混合物升温至220℃-230℃搅拌3-5小时,然后打开阀门慢慢泄压排水,同时保持温度和压力不变。一直排水至排水量达到投入去离子水量的70%。此时开始升温至250℃-270℃,恒温2小时。反应完成后打开阀门出料,得到预聚物。测试预聚物的熔点,设为T℃。预聚物于80℃下真空干燥24小时。增黏阶段:预聚物在低于熔点40-70℃下进行固相增粘,得到半芳香族聚酰胺树脂。
聚合所用的催化剂可选用次亚磷酸钠。
所述的半芳香族聚酰胺树脂的聚合方法,以投料的单体总重量计,在聚合阶段向体系中加入0.5-5wt%的N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、二甲基亚砜中的一种或几种。
一种包含所述的半芳香族聚酰胺的聚酰胺模塑组合物,按重量百分比计,由以下组分 组成:
(A)半芳香族聚酰胺          30-95wt%;
(B)增强材料             0-70wt%;
(C)添加剂              0-50wt%;
其中,(A)+(B)+(C)=100%。
所述半芳香族聚酰胺组合物的制备方法:
将半芳香族聚酰胺树脂、增强材料、添加剂在高混机中混合均匀后,通过主喂料口加入双螺杆挤出机中。挤出,过水冷却,造粒并干燥后得到所述半芳香族聚酰胺组合物。
基于聚酰胺模塑组合物总重量,所述组分B的含量优选为10wt%-50wt%,更优选为15wt%-40wt%。
增强填料含量过低,导致聚酰胺模塑组合物力学性能较差;增强填料含量过高,聚酰胺模塑组合物制品表面浮纤严重,影响产品外观。
所述增强填料的形状为纤维状,其平均长度为0.01mm-20mm,优选为0.1mm-6mm;其长径比为5:1-2000:1,优选为30:1-600:1,当纤维状的增强填料含量在上述范围内时,聚酰胺模塑组合物就会表现出高热变形温度和增高的高温刚性。
所述增强填料为无机增强填料或有机增强填料。
所述无机增强填料选自玻璃纤维、钛酸钾纤维、金属包层的玻璃纤维、陶瓷纤维、硅灰石纤维、金属碳化物纤维、金属固化纤维、石棉纤维、氧化铝纤维、碳化硅纤维、石膏纤维或硼纤维的一种或几种,优选为玻璃纤维。
使用玻璃纤维不仅可提高聚酰胺模塑组合物的可模塑性,而且可提高力学性能例如拉伸强度、弯曲强度和弯曲模量,及提高耐热性例如热塑性树脂组合物进行模塑时的热变形温度。
所述有机增强填料选自芳族聚酰胺纤维和/或碳纤维。
所述增强填料的形状为非纤维状,例如粉末状、颗粒状、板状、针状、织物或毡状,其平均粒径为0.001μm-100μm,优选为0.01μm-50μm。
当增强填料的平均粒径小于0.001μm将导致聚酰胺树脂模塑组合物熔融加工性较差;当增强填料的平均粒径大于100μm,将导致不良的注塑成型品表面外观。
上述增强填料的平均粒径通过吸附法来测定,其可选自钛酸钾晶须、氧化锌晶须、硼酸铝晶须、硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶腊石、膨润土、蒙脱土、石棉、硅铝酸盐、氧化铝、氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃珠、陶瓷珠、氮化硼、碳 化硅或二氧化硅的一种或几种。这些增强填料可以是中空的;此外,对于膨润土、蒙脱土、合成云母等溶胀性层状硅酸盐,可以使用采用有机铵盐将层间离子进行阳离子交换后的有机化蒙脱土。
为了使聚酰胺模塑组合物获得更为优良的机械性能,可采用偶联剂对无机增强填料进行功能性处理。
其中偶联剂选自异氰酸酯系化合物、有机硅烷系化合物、有机钛酸酯系化合物、有机硼烷系化合物、环氧化合物;优选为有机硅烷系化合物;
其中,所述有机硅烷系化合物选自含有环氧基的烷氧基硅烷化合物、含有巯基的烷氧基硅烷化合物、含有脲基的烷氧基硅烷化合物、含有异氰酸酯基的烷氧基硅烷化合物、含有端胺基的烷氧基硅烷化合物、含有羟基的烷氧基硅烷化合物、含有碳-碳不饱和基的烷氧基硅烷化合物、含有酸酐基的烷氧基硅烷化合物的一种或几种。
所述含有环氧基的烷氧基硅烷化合物选自γ-环氧丙氧基丙基三甲氧基硅烷、γ-环氧丙氧基丙基三乙氧基硅烷、β-(3,4-环氧环己基)乙基三甲氧基硅烷的一种或几种。
所述含有巯基的烷氧基硅烷化合物选自γ-巯基丙基三甲氧基硅烷和/或γ-巯基丙基三乙氧基硅烷。
所述含有脲基的烷氧基硅烷化合物选自γ-脲基丙基三乙氧基硅烷、γ-脲基丙基三甲氧基硅烷、γ-(2-脲基乙基)端胺基丙基三甲氧基硅烷的一种或几种。
所述含有异氰酸酯基的烷氧基硅烷化合物选自γ-异氰酸酯基丙基三乙氧基硅烷、γ-异氰酸酯基丙基三甲氧基硅烷、γ-异氰酸酯基丙基甲基二甲氧基硅烷、γ-异氰酸酯基丙基甲基二乙氧基硅烷、γ-异氰酸酯基丙基乙基二甲氧基硅烷、γ-异氰酸酯基丙基乙基二乙氧基硅烷、γ-异氰酸酯基丙基三氯硅烷的一种或几种。
所述含有端胺基的烷氧基硅烷化合物选自γ-(2-端胺基乙基)端胺基丙基甲基二甲氧基硅烷、γ-(2-端胺基乙基)端胺基丙基三甲氧基硅烷、γ-端胺基丙基三甲氧基硅烷的一种或几种。
所述含有羟基的烷氧基硅烷化合物选自γ-羟基丙基三甲氧基硅烷和/或γ-羟基丙基三乙氧基硅烷。
所述含有碳-碳不饱和基的烷氧基硅烷化合物选自γ-甲基丙烯酰氧基丙基三甲氧基硅烷、乙烯基三甲氧基硅烷、N-β-(N-乙烯基苄基端胺基乙基)-γ-端胺基丙基三甲氧基硅烷·盐酸盐的一种或几种。
所述含有酸酐基的烷氧基硅烷化合物选自3-三甲氧基甲硅烷基丙基琥珀酸酐。
所述有机硅烷系化合物优选为γ-甲基丙烯酰氧基丙基三甲氧基硅烷、γ-(2-端胺基乙 基)端胺基丙基甲基二甲氧基硅烷、γ-(2-端胺基乙基)端胺基丙基三甲氧基硅烷、γ-端胺基丙基三甲氧基硅烷或3-三甲氧基甲硅烷基丙基琥珀酸酐。
可以按照常规的方法采用上述有机硅烷系化合物对无机增强填料进行表面处理,然后再将其与聚酰胺树脂进行熔融混炼,以制备所述聚酰胺模塑组合物。
也可以直接在无机增强填料与聚酰胺树脂熔融混炼的同时,加入有机硅烷系化合物进行原位共混。
其中,所述偶联剂的用量为相对于无机增强填料重量的0.05wt%-10wt%,优选为0.1wt%-5wt%。
当偶联剂的用量小于0.05wt%时,其达不到明显的改良机械性能的效果;当偶联剂的用量大于10wt%时,无机增强填料容易发生凝聚,并且在聚酰胺树脂中分散不良的风险,最终导致机械性能发生下降。
所述添加剂选自阻燃剂、冲击改性剂、其他聚合物、加工助剂的一种或几种;所述其他聚合物优选为脂肪族聚酰胺、聚烯烃均聚物、乙烯-α-烯烃共聚物、乙烯-丙烯酸酯共聚物的一种或几种;所述加工助剂选自抗氧化剂、耐热稳定剂、耐候剂、脱模剂、润滑剂、颜料、染料、增塑剂、抗静电剂的一种或几种。
所述阻燃剂为阻燃剂或阻燃剂与阻燃协助剂的组合物,基于聚酰胺模塑组合物总重量,其含量优选为0-40wt%;阻燃剂含量过低导致阻燃效果变差,阻燃剂含量过高导致材料力学性能下降。
所述阻燃剂为卤系阻燃剂或无卤阻燃剂。
所述卤系阻燃剂选自溴化聚苯乙烯、溴化聚苯醚、溴化双酚A型环氧树脂、溴化苯乙烯-马来酸酐共聚物、溴化环氧树脂、溴化苯氧基树脂、十溴二苯醚、十溴代联苯、溴化聚碳酸酯、全溴三环十五烷或溴化芳香族交联聚合物的一种或几种,优选为溴化聚苯乙烯;
所述无卤阻燃剂选自含氮阻燃剂、含磷阻燃剂或含氮和磷的阻燃剂的一种或几种;优选为含磷阻燃剂。
所述含磷阻燃剂选自单磷酸芳基磷酸酯、双磷酸芳基磷酸酯、烷基膦酸二甲酯、磷酸三苯酯、磷酸三甲苯酯、磷酸三(二甲苯)酯、丙苯系磷酸酯、丁苯系磷酸酯或次膦酸盐的一种或几种;优选为次膦酸盐。
次膦酸盐化合物以例如下式I和/或II表示的化合物为代表。
Figure PCTCN2018100323-appb-000001
在式I及式II中,R 1及R 2可以相同,也可以不同,分别表示直链状或分支状的C1-C6-烷基、芳基或苯基。R 3表示直链状或分支状的C1-C10-亚烷基、C6-C10-亚芳基、C6-C10-烷基亚芳基、C6-C10-芳基亚烷基。M表示钙原子、镁原子、铝原子和/或锌原子。M是2或3,n是1或3,x是1或2。
次膦酸盐化合物的更具体例子包括二甲基次膦酸钙、二甲基次膦酸镁、二甲基次膦酸铝、二甲基次膦酸锌、乙基甲基次膦酸钙、乙基甲基次膦酸镁、乙基甲基次膦酸铝、乙基甲基次膦酸锌、二乙基次膦酸钙、二乙基次膦酸镁、二乙基次膦酸铝、二乙基次膦酸锌、甲基正丙基次膦酸钙、甲基正丙基次膦酸镁、甲基正丙基次膦酸铝、甲基正丙基次膦酸锌、甲烧二(甲基次膦酸)钙、甲烷二(甲基次膦酸)镁、甲烷二(甲基次膦酸)铝、甲烷二(甲基次膦酸)锌、苯-1,4-(二甲基次膦酸)钙、苯-1,4-(二甲基次膦酸)镁、苯-1,4-(二甲基次膦酸)铝、苯-1,4-(二甲基次膦酸)锌、甲基苯基次膦酸钙、甲基苯基次膦酸镁、甲基苯基次膦酸铝、甲基苯基次膦酸锌、二苯基次膦酸钙、二苯基次膦酸镁、二苯基次膦酸铝、二苯基次膦酸锌等,优选二甲基次膦酸钙、二甲基次膦酸铝、二甲基次膦酸锌、乙基甲基次膦酸钙、乙基甲基次膦酸铝、乙基甲基次膦酸锌、二乙基次膦酸钙、二乙基次膦酸铝、二乙基次膦酸锌,更优选二乙基次膦酸铝。
作为阻燃剂的次膦酸盐化合物可容易地从市场获得。可从市场获得的次膦酸盐化合物的例子包括科莱恩公司(Clariant)制造的EXOLIT OP1230、OP1311、OP1312、OP930、OP935等。
本发明的包含上述半芳香族聚酰胺树脂的聚酰胺模塑组合物,基于聚酰胺模塑组合物的总重量,所述添加剂组分还可以包含至多45wt%的一种或更多种冲击改性剂,优选为5wt%-30wt%。
其中,所述冲击改性剂可以是天然橡胶、聚丁二烯、聚异戊二烯、聚异丁烯、丁二烯和/或异戊二烯与苯乙烯或与苯乙烯衍生物和与其他共聚单体的共聚物、氢化共聚物、和/或通过接枝或与酸酐、(甲基)丙烯酸或其酯共聚而制得的共聚物;所述冲击改性剂还可以是具有 交联弹性体芯的接枝橡胶,所述交联弹性体芯由丁二烯、异戊二烯或烷基丙烯酸酯构成,并且具有由聚苯乙烯构成的接枝壳或者可以是非极性或极性烯烃均聚物或共聚物,例如乙丙橡胶,乙烯-丙烯-二烯烃橡胶,或乙烯-辛烯橡胶,或乙烯-乙酸乙烯酯橡胶,或通过接枝或与酸酐、(甲基)丙烯酸或其酯共聚而得到的非极性或极性烯烃均聚物或共聚物;所述冲击改性剂还可以是羧酸官能化的共聚物,例如聚(乙烯-共-(甲基)丙烯酸)或聚(乙烯-1-烯烃-共-(甲基)丙烯酸),其中1-烯烃是链烯烃或者具有多于4个原子的不饱和(甲基)丙烯酸酯,包括酸基团被金属离子中和到一定程度的那些共聚物。
基于苯乙烯单体(苯乙烯和苯乙烯衍生物)和其他乙烯基芳族单体的冲击改性剂,是由链烯基芳族化合物和共轭二烯烃构成的嵌段共聚物,和由链烯基芳族化合物和共轭二烯烃构成的氢化嵌段共聚物,和这些类型冲击改性剂的组合。所述嵌段共聚物包含至少一种衍生自链烯基芳族化合物的嵌段a和至少一种衍生自共轭二烯烃的嵌段b。在氢化嵌段共聚物的情况下,脂肪族不饱和碳-碳双键的比例通过氢化而降低。合适的嵌段共聚物是具有直链结构的二、三、四和多嵌段共聚物。但是,根据本发明也可以使用支化和星形结构。以已知方式获得支化嵌段共聚物,例如通过聚合物接枝反应将“侧支链”接枝到聚合物主链上。
可以与苯乙烯一起使用或以与苯乙烯的混合物形式使用的其他链烯基芳族化合物是在芳环和/或在C=C双键上被C1~20烃基或被卤原子取代的乙烯基芳族单体。
乙烯基芳族单体的实例是苯乙烯、对甲基苯乙烯、α-甲基苯乙烯、乙基苯乙烯、叔丁基苯乙烯、乙烯基甲苯、1,2-二苯基乙烯、1,1-二苯基乙烯、乙烯基二甲苯、乙烯基甲苯、乙烯基萘、二乙烯基苯、溴代苯乙烯、氯代苯乙烯中的一种或者几种。优选苯乙烯、对甲基苯乙烯、α-甲基苯乙烯、和乙烯基萘中的一种或者几种。优选使用苯乙烯、α-甲基苯乙烯、对甲基苯乙烯、乙基苯乙烯、叔丁基苯乙烯、乙烯基甲苯、1,2-二苯基乙烯、1,1-二苯基乙烯中的一种或者几种。特别优选的是使用苯乙烯。但是,也可以使用链烯基萘。
可以使用的二烯烃单体的实例是1,3-丁二烯、2-甲基-1,3-丁二烯、2,3-二甲基-1,3-丁二烯、1,3-戊二烯、1,3-己二烯、异戊二烯、氯丁二烯和间戊二烯。优选1,3-丁二烯或异戊二烯,更优选1,3-丁二烯(下文中以缩写形式丁二烯表示)。
所使用的链烯基芳族单体优选包括苯乙烯,所使用的二烯烃单体优选包括丁二烯,这意味着优选苯乙烯-丁二烯嵌段共聚物。所述嵌段共聚物通常通过阴离子聚合以其本身已知的方式制备。
除了苯乙烯单体和二烯烃单体以外,还可以同时使用其他另外的单体。基于所使用单体的总量,共聚单体的比例优选为0-50wt%,特别优选为0-30wt%,特别优选为0-15wt%。合适的共聚单体的实例分别是丙烯酸酯,尤其是丙烯酸C1~C12烷基酯,例如丙烯酸正丁酯 或丙烯酸2-乙基己酯,和甲基丙烯酸酯,尤其是甲基丙烯酸C1~C12烷基酯,例如甲基丙烯酸甲酯(MMA)。其他可能的共聚单体是(甲基)丙烯腈、(甲基)丙烯酸缩水甘油酯、乙烯基甲基醚、二元醇的二烯丙基和二乙烯基醚、二乙烯基苯和乙酸乙烯酯。
除了共轭二烯烃之外,如果合适的话,氢化嵌段共聚物还包含低级烃部分,例如乙烯、丙烯、1-丁烯、二环戊二烯或非共轭二烯烃。源于嵌段b的未还原的脂肪族不饱和键在氢化嵌段共聚物中的比例小于50%,优选小于25%,尤其是小于10%。衍生自嵌段a的芳族部分还原到至多25%的程度。通过苯乙烯-丁二烯共聚物的氢化和苯乙烯-丁二烯-苯乙烯共聚物的氢化,得到氢化嵌段共聚物,即苯乙烯-(乙烯-丁烯)双嵌段共聚物和苯乙烯-(乙烯-丁烯)-苯乙烯三嵌段共聚物。
嵌段共聚物优选包含20wt%-90wt%的嵌段a、尤其是50wt%-85wt%的嵌段a。二烯烃可以以1,2-取向或1,4-取向引入到嵌段b中。
嵌段共聚物的摩尔质量为5000g/mol-500000g/mol,优选20000g/mol-300000g/mol,特别优选40000g/mol-200000g/mol。
合适的氢化嵌段共聚物是可以从市场上购得的产品,例如(Kraton聚合物)G1650、G1651和G1652,以及(Asahi Chemicals)H1041、H1043、H1052、H1062、H1141和H1272。
非氢化嵌段共聚物的实例是聚苯乙烯-聚丁二烯、聚苯乙烯-聚(乙烯-丙烯)、聚苯乙烯-聚异戊二烯、聚(α-甲基苯乙烯)-聚丁二烯、聚苯乙烯-聚丁二烯-聚苯乙烯(SBS)、聚苯乙烯-聚(乙烯-丙烯)-聚苯乙烯、聚苯乙烯-聚异戊二烯-聚苯乙烯、聚(α-甲基苯乙烯)聚丁二烯-聚(α-甲基苯乙烯)中的一种或者几种。
可以从市场上购得的合适的非氢化嵌段共聚物有商标为(Phillips)、(Shell)、(Dexco)和(Kuraray)的多种产品。
基于烯烃聚合物的冲击改性剂还可以通过用不饱和硅烷化合物接枝来改性,所述不饱和硅烷化合物例如为乙烯基三甲氧基硅烷、乙烯基三乙氧基硅烷、乙烯基三乙酰基硅烷、甲基丙烯酰氧基丙基三甲氧基硅烷、或丙烯基三甲氧基硅烷。
弹性体聚烯烃是具有直链、支链或核壳结构的无规、交替或嵌段共聚物,并含有可以与聚酰胺的端基反应的官能团,由此在聚酰胺和冲击改性剂之间提供足够的可相容性。
因此,本发明的冲击改性剂包括烯烃(例如乙烯、丙烯、1-丁烯)的均聚物或共聚物,或者烯烃和可共聚单体(例如乙酸乙烯酯、(甲基)丙烯酸酯、和甲基己二烯)的共聚物。
结晶性烯烃聚合物的实例是低密度、中密度和高密度聚乙烯、聚丙烯、聚丁二烯、聚-4-甲基戊烯、乙烯-丙烯嵌段共聚物、或乙烯-丙烯无规共聚物、乙烯-甲基己二烯共聚物、丙烯-甲基己二烯共聚物、乙烯-丙烯-丁烯共聚物、乙烯-丙烯-己烯共聚物、乙烯-丙烯-甲基己二 烯共聚物、聚(乙烯-乙酸乙烯酯)(EVA)、聚(乙烯-丙烯酸乙酯)(EEA)、乙烯-辛烯共聚物、乙烯-丁烯共聚物、乙烯-己烯共聚物、乙烯-丙烯-二烯烃三元共聚物中的一种或几种。
可以用于所述添加剂组分的可市购的冲击改性剂实例有:
TAFMER MC201:g-MA(-0.6%)67%EP共聚物(20mol%丙烯)+33%EB共聚物(15mol%1-丁烯))的共混物:Mitsui Chemicals,日本。
TAFMER MH5010:g-MA(-0.6%)乙烯-丁烯共聚物;Mitsui。
TAFMER MH7010:g-MA(-0.7%)乙烯-丁烯共聚物;Mitsui。
TAFMER MH7020:g-MA(-0.7%)EP共聚物;Mitsui。
EXXELOR VA1801:g-MA(-0.7%)EP共聚物;Exxon Mobile Chemicals,US。
EXXELOR VA1803:g-MA(0.5-0.9%)EP共聚物,无定形,Exxon。
EXXELOR VA1810:g-MA(-0.5%)EP共聚物,Exxon。
EXXELOR MDEX 941l:g-MA(0.7%)EPDM,Exxon。
FUSABOND MN493D:g-MA(-0.5%)乙烯-辛烯共聚物,DuPont,US。
FUSABOND A EB560D:(g-MA)乙烯-丙烯酸正丁酯共聚物,DuPont ELVALOY,DuPont。
用于所述添加剂组分的可市购的冲击改性剂优选为离子聚合物,其中聚合物键合的羧基通过金属离子全部相互键合或键合到一定程度。
用于所述添加剂组分的可市购的冲击改性剂特别优选马来酸酐接枝官能化的丁二烯与苯乙烯的共聚物、通过与马来酸酐接枝制得的非极性或极性烯烃均聚物和共聚物、以及羧酸官能化的共聚物,例如聚(乙烯-共(甲基)丙烯酸)或聚(乙烯-共-1-烯烃-共-(甲基)丙烯酸),其中所述酸基团已在一定程度上被金属离子中和。
本发明的包含上述半芳香族聚酰胺树脂的聚酰胺模塑组合物,所述添加剂组分还可以包含其他聚合物,所述其他聚合物选自脂肪族聚酰胺、聚烯烃均聚物或乙烯-α-烯烃共聚物、乙烯-丙烯酸酯共聚物。
所述脂肪族聚酰胺包括但不仅限于源自4-20个碳原子的脂肪族二酸和脂肪族二胺,或者4-20个碳原子的内酰胺,或者4-20个碳原子的脂肪族二酸、脂肪族二胺和内酰胺的聚合物中的一种或多种。包括但不仅限于,聚己二酰己二胺(PA66)、聚己内酰胺(PA6)、聚癸二酰己二胺(PA610)、聚癸二酰癸二胺(PA1010)、己二酸-己二胺-己内酰胺共聚物(PA66/6)、聚十一内酰胺(PA11)、聚十二内酰胺(PA12),及其两种或多种的混合物。
所述乙烯-α-烯烃共聚物优选EP弹性体和/或EPDM弹性体(分别是乙烯-丙烯橡胶和乙烯-丙烯-二烯烃橡胶)。例如,弹性体可以包括基于含有20wt%-96wt%、优选25wt%-85wt% 乙烯的乙烯-C3-C12-α-烯烃共聚物的弹性体,其中此处特别优选的是C3-C12-α-烯烃包括选自丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯、1-癸烯和/或1-十二烯的烯烃,特别优选其他聚合物包括乙烯-丙烯橡胶、LLDPE、VLDPE的一种或几种。
作为替代的或附加的(例如在混合物中),所述其他聚合物还可以包含基于乙烯、C3-C12-α-烯烃(含有3个碳原子至含有12个碳原子的-α-烯烃)和非共轭二烯烃的三元共聚物,此处优选的是其含有25wt%-85wt%乙烯和最大含量为10wt%的非共轭二烯烃,此处特别优选C3-C12-α-烯烃包括选自丙烯、1-丁烯、1-戊烯、1-己烯、1-辛烯、1-癸烯和/或1-十二烯的烯烃,和/或其中非共轭二烯烃;优选二环[2.2.1]庚二烯、1,4-己二烯、双环戊二烯和/或5-亚乙基降冰片烯。
所述其他聚合物的其他可能形式分别是乙烯-丁烯共聚物和包含这些体系的混合物(共混物)。
优选地,所述其他聚合物包含具有酸酐基团的成分,这些通过主链聚合物与不饱和二酸酐、与不饱和二羧酸、或与不饱和二羧酸的单烷基酯的热反应或自由基反应,以足以与聚酰胺良好结合的浓度引入,并且此处优选的是使用选自以下的试剂:
马来酸、马来酸酐、马来酸单丁酯、富马酸、乌头酸和/或衣康酸酐。优选0.1wt%-4.0wt%的不饱和酸酐接枝到抗冲击组分上,或者不饱和二酸酐或其前体通过与其他不饱和单体一起接枝来施加。通常优选接枝度为0.1%-1.0%,特别优选为0.3%-0.7%。其他聚合物的另一可能成分是由乙烯-丙烯共聚物和乙烯-丁烯共聚物构成的混合物,此处马来酸酐接枝度(MA接枝度)为0.3%-0.7%。
用于该其他聚合物的上述可能体系还可以以混合物的形式使用。
此外,所述添加剂组分可以包含具有官能团的组分,所述官能团例如为羧酸基团、酯基团、环氧基团、噁唑啉基团、碳二亚胺基团、异氰酸酯基团、硅烷醇基团、和羧酸酯基团,或者所述添加剂组分可以包含上述官能团中的两种或更多种的组合。具有所述官能团的单体可以通过共聚或接枝到弹性体聚烯烃上来获得。
此外,在不破坏本发明效果的范围内,可以在任意时刻在本发明的聚酰胺树脂中添加各种加工助剂,例如抗氧化剂和/或耐热稳定剂(受阻酚系、氢醌系、亚磷酸酯系以及它们的取代体、卤化铜、碘化合物等)、耐候剂(间苯二酚系、水杨酸酯系、苯并三唑系、二苯甲酮系、受阻胺系等)、脱模剂和润滑剂(脂肪族醇、脂肪族酰胺、脂肪族双酰胺、二脲和聚乙烯蜡等)、颜料(硫化镉、酞菁、炭黑等)、染料(尼格洛辛、苯胺黑等)、增塑剂(对羟基苯甲酸辛酯、N-丁基苯磺酰胺等)、抗静电剂(烷基硫酸盐型阴离子系抗静电剂、季铵盐型阳离子系抗静电剂、聚氧乙烯失水山梨糖醇单硬脂酸酯等非离子系抗静电剂、甜菜碱系两性抗静电 剂等)。
为了获得本发明的成型品,可以将本发明的聚酰胺树脂或聚酰胺树脂组合物通过注射成型、挤出成型、吹塑成型、真空成型、熔融纺丝、膜成型等任意成型方法来成型。可以将这些成型品成型成所需形状,并可以在汽车部件、机械部件等的树脂成型品等中使用。作为具体的用途,在下列用途中是有用的:汽车发动机冷却水系部件、特别是散热器水箱的顶部和底部等散热器水箱部件、冷却液储备箱、水管、水泵壳、水泵叶轮、阀等水泵部件等在汽车发动机房内与冷却水接触下使用的部件,以开关类、超小型滑动开关、DIP开关、开关的外壳、灯座、捆扎带、连接器、连接器的外壳、连接器的壳、IC插座类、绕线轴、线轴罩、继电器、继电器箱、电容器壳体、马达的内部部件、小型马达壳体、齿轮凸轮、均衡轮、垫片、绝缘体、紧固件、扣、线夹、自行车车轮、小脚轮、安全帽、端子台、电动工具的外壳、起动器的绝缘部分、阻流板、罐、散热器水箱、腔罐(Chamber tank)、贮液罐、保险丝盒、空气净化器壳体、空调风扇、端子的外壳、轮罩、吸排气管、轴承承托、气缸头盖、进气歧管、水管叶轮(waterpipe impeller)、离合器分离杆、扬声器振动板、耐热容器、微波炉部件、电饭煲部件、打印机色带导向器等为代表的电气/电子相关部件,汽车/车辆相关部件、家电/办公电器部件、计算机相关部件、传真机/复印机相关部件、机械相关部件、其他各种用途。
本发明具有如下有益效果:
1.本发明在半芳香族聚酰胺的聚合阶段加入一定量的强极性溶剂,如N,N-二甲基甲酰胺、N,N-二乙基甲酰胺、二甲基亚砜等,可以显著降低树脂中游离苯甲酸的含量,明显改善熔融加工过程中的瓦斯气、制件污染等问题,同时不影响半芳香族聚酰胺树脂的聚合反应。2.本发明的强极性溶剂价格低廉而且用量很少,以非常低的成本解决了加工过程中模具污染和瓦斯气等问题,使注塑效率和制件表面性能得到明显提高。
附图说明
图1为本发明半芳香族聚酰胺树脂中游离苯甲酸含量测试方法所用脂肪抽提装置示意图。
具体实施方式
下面通过具体实施方式来进一步说明本发明,以下实施例为本发明较佳的实施方式,但本发明的实施方式并不受下述实施例的限制。
本发明所采用的原料均来源于市购产品;
实施例1-17,对比例1-7:
半芳香族聚酰胺的制备:
在压力釜中按表1配方加入反应原料,抽真空充入高纯氩气作为保护气,开始反应。将反应 混合物升温至220℃-230℃搅拌3-5小时,然后打开阀门慢慢泄压排水,同时保持温度和压力不变。一直排水至排水量达到投入去离子水量的70%。此时开始升温至250℃-270℃,恒温2小时。反应完成后打开阀门出料,得到预聚物。测试预聚物的熔点,设为T℃。预聚物于80℃下真空干燥24小时后,预聚物在低于熔点40-70℃下进行固相增粘,得到半芳香族聚酰胺树脂。
半芳香族聚酰胺组合物的制备:
按表2的配方将表1制备得的半芳香族聚酰胺树脂、增强材料、添加剂等在高混机中混合均匀后,通过主喂料口加入双螺杆挤出机中。挤出,过水冷却,造粒并干燥后得到所述半芳香族聚酰胺组合物。
各性能测试方法:
半芳香族聚酰胺树脂及其预聚物的熔点的测试方法:
参照ASTM D3418-2003,Standard Test Method for Transition Temperatures of Polymers By Differential Scanning Calorimetry;具体测试方法是:采用Perkin Elmer Diamond DSC分析仪测试样品的熔点;升温速率10℃/min;
半芳香族聚酰胺树脂相对粘度的测试方法:
半芳香族聚酰胺相对粘度测定方法,参照GB12006.1-89;具体测试方法为:在25℃±0.01℃的98%的浓硫酸中测量浓度为10mg/ml的半芳香族聚酰胺的相对粘度η r
半芳香族聚酰胺树脂中游离苯甲酸含量测试方法:
提取游离苯甲酸:称取半芳香族聚酰胺树脂10.0g,使用如下图所示的装置进行游离苯甲酸抽提。将树脂置于脂肪抽提器(见图1),向其中加入250.0ml乙醇,加热至乙醇回流,回流冷凝液滴落频率5滴/秒。抽提24h,然后后将抽提液浓缩至5.0ml;检测游离苯甲酸含量按照下述文献测试方法测试游离苯甲酸含量:牛波,邹清华.气相色谱法测定酱油中山梨酸和苯甲酸的含量[J].中国医药指南,2011,9(12):218-219。
模具污染情况测试方法:
设定注塑温度高于半芳香族聚酰胺树脂的熔点15℃,然后在40℃的色板模具50×30×2mm中注入半芳香族聚酰胺模塑组合物,并且在该模具中保持25秒。然后脱模,观察模具表面污染情况:○代表污染情况,污染越严重○越多。
表1:半芳香族聚酰胺树脂的制备及各性能测试结果
Figure PCTCN2018100323-appb-000002
Figure PCTCN2018100323-appb-000003
续表1
Figure PCTCN2018100323-appb-000004
表2:半芳香族聚酰胺组合物的制备和模具污染测试情况(重量百分比)
Figure PCTCN2018100323-appb-000005
Figure PCTCN2018100323-appb-000006
从表1可以看出,通过控制聚合过程中N,N-二甲基甲酰胺的用量可以有效的控制成品中游离苯甲酸的含量。当N,N-二甲基甲酰胺的用量在0.5~5.0wt%范围内,其使用量越大,成品中游离的苯甲酸就越少。
从表2可以看出,使用含游离苯甲酸较低的半芳香族聚酰胺树脂做的模塑组合物,模具污染较为轻微;而使用苯甲酸含量较高的树脂做的模塑组合物模具污染严重,直接影响注塑效率和制件表面性能。

Claims (21)

  1. 一种半芳香族聚酰胺树脂,其特征在于,基于半芳香族聚酰胺树脂的总重量,游离苯甲酸的含量小于200ppm。
  2. 根据权利要求1所述的半芳香族聚酰胺树脂,其特征在于,游离苯甲酸的含量小于100ppm,优选为小于50ppm,更优选为小于30ppm。
  3. 根据权利要求1所述的半芳香族聚酰胺树脂,其特征在于,其由衍生自以下的重复单元构成:
    (a)对苯二甲酸或者其衍生物,和任选地一种或多种另外的芳族或者脂肪族二酸;
    (b)一种或多种具有10到20个碳原子的脂肪族二胺,和任选地一种或多种具有4到9个碳原子的脂肪族二胺;
    (c)任选地一种或多种氨基羧酸和/或内酰胺;
    其中,对苯二甲酸占(a)的50-100mol%,一种或多种具有10到20个碳原子的脂肪族二胺占(b)的50-100mol%,一种或多种氨基羧酸和/或内酰胺占(a)+(b)+(c)的总量的0-25mol%。
  4. 根据权利要求1所述的半芳香族聚酰胺树脂,其特征在于,其由衍生自以下的重复单元构成:
    (a)对苯二甲酸或者其衍生物,和任选地一种或多种另外的芳族或者脂肪族二酸;
    (b)一种或多种具有4到9个碳原子的脂肪族二胺,和任选地一种或多种具有10到20个碳原子的脂肪族二胺;
    (c)任选地一种或多种氨基羧酸和/或内酰胺;
    其中,对苯二甲酸占(a)的30-100mol%,一种或多种具有4到9个碳原子的脂肪族二胺占(b)的50-100mol%,一种或多种氨基羧酸和/或内酰胺占(a)+(b)+(c)的总量的0-25mol%。
  5. 根据权利要求1所述的半芳香族聚酰胺树脂,其特征在于,其由衍生自以下的重复单元构成:
    (a)对苯二甲酸或者其衍生物,和任选地一种或多种另外的芳族或者脂肪族二酸;
    (b)一种或多种具有4到9个碳原子的脂肪族二胺,和任选地一种或多种具有10到20个碳原子的脂肪族二胺;
    (c)任选地一种或多种氨基羧酸和/或内酰胺;
    其中,对苯二甲酸占(a)的5-30mol%,一种或多种具有4到9个碳原子的脂肪族二胺占(b)的50-100mol%,一种或多种氨基羧酸和/或内酰胺占(a)+(b)+(c)的总量的0-25mol%。
  6. 根据权利要求1-5任一项所述的半芳香族聚酰胺树脂,其特征在于,所述的半芳香族聚酰胺树脂由3种或3种以上单体聚合而成。
  7. 根据权利要求1-5任一项所述的半芳香族聚酰胺树脂,其特征在于,所述的另外的芳族或者脂肪族二酸选自间苯二甲酸、乙二酸、丙二酸、丁二酸、戊二酸、己二酸、庚二酸、辛二酸、2-甲基辛二酸、壬二酸、癸二酸、十一烷二酸、十二烷二酸、十三烷二酸或十四烷二酸中的一种或几种;所述的10到20个碳原子的脂肪族二胺选自癸二胺、十一烷二胺、十二烷二胺、十三烷二胺、十四烷二胺、十五烷二胺、十六烷二胺、十七烷二胺、十八烷二胺、十九烷二胺、二十烷二胺中的一种或几种;所述的4到9个碳原子的脂肪族二胺选自丁二胺、戊二胺、己二胺、庚二胺、辛二胺、壬二胺、2-甲基辛二胺中的一种或几种;所述的氨基羧酸或内酰胺选自6-氨基己酸、己内酰胺、10-氨基癸酸、11-氨基十一酸、十一内酰胺、12-氨基十二酸或十二内酰胺中的一种或几种。
  8. 根据权利要求3所述的半芳香族聚酰胺树脂,其特征在于,所述重复单元(b)只含有1,10-癸二胺。
  9. 根据权利要求4或5所述的半芳香族聚酰胺树脂,其特征在于,所述重复单元(b)只含有1,6-己二胺。
  10. 根据权利要求3-5任一项所述的半芳香族聚酰胺树脂,其特征在于,所述重复单元(b)只含有1,6-己二胺和1,10-癸二胺。
  11. 根据权利要求3-5任一项所述的半芳香族聚酰胺树脂,其特征在于,所述重复单元(c)含量为0。
  12. 根据权利要求1-5任一项所述的半芳香族聚酰胺树脂,其特征在于,在25℃±0.01℃的98%的浓硫酸中测量浓度为10mg/ml,半芳香族聚酰胺树脂的相对粘度为1.7-2.8,优选1.85-2.45,更优选2.0-2.3。
  13. 根据权利要求1-5任一项所述的半芳香族聚酰胺树脂,其特征在于,所述半芳香族聚酰胺树脂熔点为280-340℃,优选290-330℃,更优选295-325℃。
  14. 根据权利要求1-5任一项所述的半芳香族聚酰胺树脂,其特征在于,所述半芳香族聚酰胺树脂熔点为240-279℃,优选245-270℃。
  15. 根据权利要求1、2、3、4、5或13或14中任一项所述的半芳香族聚酰胺树脂,其特征在于,所述的半芳香族聚酰胺树脂只有一个熔点。
  16. 根据权利要求1-5任一项所述的半芳香族聚酰胺树脂,其特征在于,所述半芳香族聚酰胺树脂为非晶、微晶或无定型结构。
  17. 权利要求1-16任一项所述的半芳香族聚酰胺树脂的聚合方法,其特征在于,以投料的单体总重量计,在聚合阶段向体系中加入0.5-5wt%的N,N-二甲基甲酰胺、N,N-二乙基甲酰 胺、二甲基亚砜中的一种或几种。
  18. 一种包含权利要求1-17任一项所述的半芳香族聚酰胺的聚酰胺模塑组合物,其特征在于,按重量百分比计,由以下组分组成:
    (A)半芳香族聚酰胺     30-95wt%;
    (B)增强材料       0-70wt%;
    (C)添加剂        0-50wt%;
    其中,(A)+(B)+(C)=100%。
  19. 根据权利要求18所述的聚酰胺模塑组合物,其特征在于,所述增强填料的形状为纤维状,其平均长度为0.01mm-20mm,优选为0.1mm-6mm;其长径比为5:1-2000:1,优选为30:1-600:1;基于聚酰胺模塑组合物的总重量,所述增强填料的含量为10-50份,优选为15份-40份;所述增强填料为无机增强填料或有机增强填料,所述无机增强填料选自玻璃纤维、钛酸钾纤维、金属包层的玻璃纤维、陶瓷纤维、硅灰石纤维、金属碳化物纤维、金属固化纤维、石棉纤维、氧化铝纤维、碳化硅纤维、石膏纤维或硼纤维的一种或几种,优选为玻璃纤维;所述有机增强填料选自芳族聚酰胺纤维和/或碳纤维。
  20. 根据权利要求18所述的聚酰胺模塑组合物,其特征在于,所述增强填料的形状为非纤维状,其平均粒径为0.001μm-100μm,优选为0.01μm-50μm,选自钛酸钾晶须、氧化锌晶须、硼酸铝晶须、硅灰石、沸石、绢云母、高岭土、云母、滑石、粘土、叶腊石、膨润土、蒙脱土、锂蒙脱土、合成云母、石棉、硅铝酸盐、氧化铝、氧化硅、氧化镁、氧化锆、氧化钛、氧化铁、碳酸钙、碳酸镁、白云石、硫酸钙、硫酸钡、氢氧化镁、氢氧化钙、氢氧化铝、玻璃珠、陶瓷珠、氮化硼、碳化硅或二氧化硅的一种或几种。
  21. 根据权利要求18所述的聚酰胺模塑组合物,其特征在于,所述添加剂选自阻燃剂、冲击改性剂、其他聚合物、加工助剂的一种或几种;所述阻燃剂为卤素系阻燃剂或无卤素阻燃剂,优选无卤素阻燃剂;所述其他聚合物优选为脂肪族聚酰胺、聚烯烃均聚物、乙烯-α-烯烃共聚物、乙烯-丙烯酸酯共聚物的一种或几种。
PCT/CN2018/100323 2017-10-13 2018-08-14 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物 WO2019072013A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710952545.6A CN107903390A (zh) 2017-10-13 2017-10-13 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物
CN201710952545.6 2017-10-13

Publications (1)

Publication Number Publication Date
WO2019072013A1 true WO2019072013A1 (zh) 2019-04-18

Family

ID=61841390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100323 WO2019072013A1 (zh) 2017-10-13 2018-08-14 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物

Country Status (2)

Country Link
CN (1) CN107903390A (zh)
WO (1) WO2019072013A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107903390A (zh) * 2017-10-13 2018-04-13 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456949A (zh) * 2007-12-14 2009-06-17 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法
WO2015034128A1 (ko) * 2013-09-03 2015-03-12 제일모직 주식회사 열가소성 수지 조성물을 이용한 자동차용 성형품
CN106916294A (zh) * 2015-12-25 2017-07-04 大连理工常熟研究院有限公司 一种半芳香族透明聚酰胺的制备方法及半芳香族透明聚酰胺
CN106987119A (zh) * 2007-05-03 2017-07-28 Ems专利股份公司 半芳族聚酰胺模塑组合物及其用途
CN107057344A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107057343A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107057345A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107057342A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107903390A (zh) * 2017-10-13 2018-04-13 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09279018A (ja) * 1996-04-12 1997-10-28 Mitsui Petrochem Ind Ltd 半芳香族ポリアミド組成物

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987119A (zh) * 2007-05-03 2017-07-28 Ems专利股份公司 半芳族聚酰胺模塑组合物及其用途
CN101456949A (zh) * 2007-12-14 2009-06-17 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法
WO2015034128A1 (ko) * 2013-09-03 2015-03-12 제일모직 주식회사 열가소성 수지 조성물을 이용한 자동차용 성형품
CN106916294A (zh) * 2015-12-25 2017-07-04 大连理工常熟研究院有限公司 一种半芳香族透明聚酰胺的制备方法及半芳香族透明聚酰胺
CN107057344A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107057343A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107057345A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107057342A (zh) * 2017-01-20 2017-08-18 金发科技股份有限公司 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN107903390A (zh) * 2017-10-13 2018-04-13 金发科技股份有限公司 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物

Also Published As

Publication number Publication date
CN107903390A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
JP6639529B2 (ja) ポリアミド成形組成物及びその製造方法
CN106117549B (zh) 一种半芳香族共聚酰胺树脂和由其组成的聚酰胺模塑组合物
CN104262952B (zh) 一种低酸碱度聚酰胺模塑组合物
JP6492199B2 (ja) 半芳香族コポリアミド樹脂及びそれで製造されるポリアミド成形組成物
CN107903392B (zh) 一种半芳香族聚酰胺树脂及其模塑组合物
WO2020238440A1 (zh) 一种半芳香族聚酰胺及其合成方法和由其组成的聚酰胺模塑组合物
WO2019072012A1 (zh) 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物
WO2018133293A1 (zh) 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
WO2018049808A1 (zh) 一种半芳香族共聚酰胺树脂和由其组成的聚酰胺模塑组合物
CN104804430B (zh) 一种聚酰胺模塑组合物
CN104592509B (zh) 一种低酸碱度聚酰胺模塑组合物
WO2018133296A1 (zh) 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
WO2018133294A1 (zh) 一种半芳香族聚酰胺树脂及其制备方法和由其组成的聚酰胺模塑组合物
CN104804429B (zh) 一种聚酰胺树脂和由其组成的聚酰胺组合物
CN104693438B (zh) 一种聚酰胺树脂和由其组成的聚酰胺模塑组合物
EP3339351B1 (en) Semiaromatic copolyamide resin and polyamide molding composition consisting of the same
CN104744688A (zh) 一种聚酰胺树脂和由其组成的聚酰胺模塑组合物
WO2019072013A1 (zh) 一种半芳香族聚酰胺及其制备方法和由其组成的聚酰胺模塑组合物
CN104804426B (zh) 一种聚酰胺模塑组合物
CN104744934B (zh) 一种聚酰胺模塑组合物
CN104804427B (zh) 一种低酸碱度聚酰胺模塑组合物
CN104804431B (zh) 一种聚酰胺模塑组合物
CN104804428A (zh) 一种聚酰胺模塑组合物
CN104804432B (zh) 一种聚酰胺模塑组合物
CN104804413A (zh) 一种聚酰胺模塑组合物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866816

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18866816

Country of ref document: EP

Kind code of ref document: A1