WO2019071998A1 - 无人驾驶电光驱动恒流电路、集成电路与控制系统 - Google Patents

无人驾驶电光驱动恒流电路、集成电路与控制系统 Download PDF

Info

Publication number
WO2019071998A1
WO2019071998A1 PCT/CN2018/097973 CN2018097973W WO2019071998A1 WO 2019071998 A1 WO2019071998 A1 WO 2019071998A1 CN 2018097973 W CN2018097973 W CN 2018097973W WO 2019071998 A1 WO2019071998 A1 WO 2019071998A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
electro
circuit
current circuit
constant current
Prior art date
Application number
PCT/CN2018/097973
Other languages
English (en)
French (fr)
Inventor
黄俊登
Original Assignee
黄俊登
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 黄俊登 filed Critical 黄俊登
Publication of WO2019071998A1 publication Critical patent/WO2019071998A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present invention relates to the field of semiconductor integrated circuit technology, and in particular, to an unmanned electro-optic driving constant current circuit, an integrated circuit and a control system.
  • the operating environment of unmanned intelligent IoT devices such as drones and unmanned vehicles is uncertain and complex, and it is necessary to continuously detect the surrounding environment to avoid collision with obstacles.
  • the traditional UAV adopts the acoustic intelligent identification technology solution. One method is to scan the radar itself in all directions, and the other method is to use phased array radar. These two schemes need to add complicated motor equipment to generate additional load.
  • the traditional unmanned vehicle adopts the visual intelligent recognition technology scheme and adopts the mature technology of image processing, but it is easy to receive the influence of light, dust, smoke and other factors, and cannot meet the driving needs of all weather.
  • the advantage of this application scheme over the switching power supply scheme is that the system structure is simple and the components are used less.
  • the disadvantage is that the number of system loads must be designed strictly according to the input voltage. The change of the input voltage will cause the change of the input power of the whole system, thereby affecting the system.
  • Light efficiency With the continuous development of laser technology, laser radar has been used more and more widely in various fields. For example, in the field of detection, laser radar is often used to detect dynamic objects. At this time, the measurement angle is increased and no blind zone is required, and it is also necessary to adapt to long distance or close distance measurement. When measuring at close range, the power of the laser radar is small, which can meet the safety requirements of the human eye, but the ranging capability is weak. When the distance is measured, the power of the laser radar is large, but the safety requirements of the human eye cannot be met, and the distance is close. Stray light will increase and cause it to be unusable at a distance.
  • the invention aims at the deficiencies of the prior art, and proposes an unmanned electro-optic driving constant current circuit, an integrated circuit and a control system, which solves the problem that the change of the input voltage causes the change of the input power of the whole system, thereby affecting the efficiency of the system. Effective problem.
  • the present invention adopts the following technical solutions:
  • the invention provides an unmanned electro-optic driving constant current circuit, comprising:
  • a constant current circuit that adjusts a loop current of the unmanned electro-optical driving constant current circuit such that the loop current remains constant
  • the startup circuit includes four transistors and one capacitor, wherein:
  • the gate and the drain of the first N transistor (N1) are connected in parallel to the gate of the second N transistor (N2), the drain of the first P transistor (P1), and the source is grounded;
  • the drain of the second N transistor (N2) is connected to the gate of the third N transistor (N3), and is connected to the DC power supply terminal through the first capacitor (C1), and the source is grounded;
  • a source of the first P transistor (P1) and a drain of the third N transistor (N3) are simultaneously connected to a DC power supply terminal, and a gate is grounded;
  • the constant current circuit includes an operational amplifier, an electro-optical diode, a transistor and a resistor, wherein:
  • the source of the fourth N transistor (N4) is connected to the negative input terminal of the operational amplifier through the first resistor (R1), the adjustment circuit port, and the drain through the reverse-connected electro-optical diode (D1) and the third N-transistor ( N3) source connection;
  • the positive input terminal of the operational amplifier is connected to a reference voltage Vref, and the output terminal is connected to a gate of the fourth N transistor (N4).
  • the electro-optical diode (D1) comprises a single electro-optical diode or an electro-optical diode string.
  • the area of the first N transistor (N1) and the second N transistor (N2) are equal.
  • the transistor adopts one or more of a field effect transistor and a bipolar transistor.
  • the first N transistor (N1), the second N transistor (N2), the third N transistor (N3), and the fourth N transistor (N4) are NMOS transistors, and the first P transistor (P1) is PMOS tube.
  • the present invention provides an unmanned optoelectronic driving integrated circuit, comprising: an adjustment circuit, the unmanned optoelectronic driving constant current circuit according to the first aspect, wherein the adjusting circuit comprises a grounded sampling resistor Rext, The sampling resistor adjusts the current of the electro-optical diode D1 in the constant current circuit to a constant current per unit time.
  • the present invention provides an unmanned optoelectronic drive control system, comprising: a rectifier circuit, the unmanned opto-electric drive constant current circuit according to the first aspect, wherein the rectifier circuit performs full-wave rectification on the alternating current, and is connected
  • the startup circuit supplies power.
  • the invention has the beneficial effects that the unmanned electro-optic driving constant current circuit, the integrated circuit and the control system of the invention provide a band gap reference voltage for the connected constant current circuit by using a soft start circuit, and have a high power supply rejection ratio, It solves the problem of light effect that changes the input power of the whole system and affects the efficiency of the system.
  • FIG. 1 is a circuit diagram of an embodiment of a prior art unmanned electro-optic drive constant current circuit.
  • FIG. 2 is a schematic structural view of an embodiment of an unmanned electro-optical driving constant current circuit of the present invention.
  • the unmanned electro-optic driving constant current circuit, the integrated circuit and the control system provided by the embodiments of the present invention can be applied to various scenarios in the field of intelligent identification technology of the Internet of Things, including but not limited to 2G. GSM, 3G CDMA, 4G LTE/LTE-A, 5G eMBB mobile communication, trunking communication, satellite communication, laser communication, optical fiber communication, digital television, radio frequency identification, power carrier, unmanned vehicle, drone, internet of things, radar, etc., the present invention
  • the embodiment is not particularly limited thereto.
  • the invention provides an unmanned electro-optic driving constant current circuit, as shown in FIG. 2, comprising:
  • a constant current circuit for adjusting a loop current of the unmanned electro-optical driving constant current circuit, so that the loop current is kept constant
  • the startup circuit includes four transistors and a capacitor, wherein the gate and the drain of the first N transistor (N1) are connected in parallel to the gate of the second N transistor (N2), and the first P transistor.
  • a drain of (P1) whose source is grounded;
  • a drain of the second N transistor (N2) is connected to a gate of a third N transistor (N3), and is connected to a DC power supply terminal through a first capacitor (C1), a source is grounded;
  • a source of the first P transistor (P1) and a drain of the third N transistor (N3) are simultaneously connected to a DC power supply terminal, and a gate is grounded;
  • the constant current circuit includes an operational amplifier, an electro-optical diode, a transistor and a resistor, wherein a source of the fourth N transistor (N4) passes through the first resistor (R1) and a negative input terminal of the operational amplifier, The circuit port connection is adjusted, and the drain is connected to the source of the third N transistor (N3) through a reverse-connected electro-optical diode (D1).
  • the positive input terminal of the operational amplifier is connected to the reference voltage Vref, and the output terminal is connected to the gate of the fourth N transistor (N4).
  • the electro-optical diode (D1) comprises a single electro-optical diode or an electro-optical diode string.
  • the first N transistor (N1), the second N transistor (N2), the third N transistor (N3), and the fourth N transistor (N4) are NMOS transistors
  • the first P transistor (P1) is a PMOS transistor.
  • the area of the first N transistor (N1) and the second N transistor (N2) are equal.
  • the transistor may be one or more of a field effect transistor and a bipolar transistor.
  • the transistor may be a structure in which the gate and the source of the depletion-type N-channel MOS transistor are connected. Although not shown, it is of course possible to connect the gate and the source of the depletion-type P-channel MOS transistor. structure.
  • An unmanned electro-optic driving integrated circuit comprising an adjustment circuit and the above-mentioned unmanned electro-optic driving constant current circuit, wherein the adjusting circuit comprises a grounded sampling resistor Rext, the sampling resistor adjusting the load of the constant current circuit D1 in a unit time The current remains constant.
  • the invention also provides an unmanned electro-optical drive control system, comprising a rectifier circuit and the above-mentioned unmanned electro-optic drive constant current circuit, wherein the rectifier circuit performs full-wave rectification on the alternating current to supply power to the connected start-up circuit.
  • the invention provides an unmanned electro-optic driving constant current circuit, as shown in FIG. 2, comprising:
  • a constant current circuit for adjusting a loop current of the unmanned electro-optical driving constant current circuit, so that the loop current is kept constant
  • the startup circuit includes four transistors and a capacitor, wherein the gate and the drain of the first N transistor (N1) are connected in parallel to the gate of the second N transistor (N2), and the first P transistor.
  • a drain of (P1) whose source is grounded;
  • a drain of the second N transistor (N2) is connected to a gate of a third N transistor (N3), and is connected to a DC power supply terminal through a first capacitor (C1), a source is grounded;
  • a source of the first P transistor (P1) and a drain of the third N transistor (N3) are simultaneously connected to a DC power supply terminal, and a gate is grounded;
  • the constant current circuit includes an operational amplifier, an electro-optical diode, a transistor and a resistor, wherein a source of the fourth N transistor (N4) passes through the first resistor (R1) and a negative input terminal of the operational amplifier, The circuit port connection is adjusted, and the drain is connected to the source of the third N transistor (N3) through a reverse-connected electro-optical diode (D1).
  • the positive input terminal of the operational amplifier is connected to the reference voltage Vref, and the output terminal is connected to the gate of the fourth N transistor (N4).
  • the electro-optical diode (D1) comprises a single electro-optical diode or an electro-optical diode string.
  • the first N transistor (N1), the second N transistor (N2), the third N transistor (N3), and the fourth N transistor (N4) are NMOS transistors
  • the first P transistor (P1) is a PMOS transistor.
  • the area of the first N transistor (N1) and the second N transistor (N2) are equal.
  • the transistor may be one or more of a field effect transistor and a bipolar transistor.
  • the transistor may be a structure in which the gate and the source of the depletion-type N-channel MOS transistor are connected. Although not shown, it is of course possible to connect the gate and the source of the depletion-type P-channel MOS transistor. structure.
  • An unmanned electro-optic driving integrated circuit comprising an adjustment circuit and the above-mentioned unmanned electro-optic driving constant current circuit, wherein the adjusting circuit comprises a grounded sampling resistor Rext, the sampling resistor adjusting the load of the constant current circuit D1 in a unit time The current remains constant.
  • the invention also provides an unmanned electro-optical drive control system, comprising a rectifier circuit and the above-mentioned unmanned electro-optic drive constant current circuit, wherein the rectifier circuit performs full-wave rectification on the alternating current to supply power to the connected start-up circuit.
  • the soft start circuit composed of the first N transistor (N1), the second N transistor (N2), the first P transistor (P1) and the first capacitor (C1) is operated by the operational amplifier and the fourth N
  • An automatic control constant current circuit composed of a transistor (N4) provides a bandgap reference voltage with a power supply rejection ratio to ensure that the electro-optical diode (D1) operates normally under stable operating conditions.
  • the unmanned electro-optic driving constant current circuit, the integrated circuit and the control system of the invention provide a band gap reference voltage for the connected constant current circuit by using a soft start circuit, and have a high power supply rejection ratio, and solve the input voltage Changes can cause changes in the input power of the entire system, which affects the efficiency of the system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Amplifiers (AREA)

Abstract

一种无人驾驶电光驱动恒流电路、集成电路与控制系统,其中电光驱动恒流电路包括启动电路,接电源端,为所连接的恒流电路提供软启动电压;恒流电路,调节无人驾驶电光驱动恒流电路的回路电流,使得回路电流保持恒定。启动电路包括四个晶体管(N1,N2,N3,P1)、一个电容(C1);恒流电路包括一个运算放大器(OP)、一个电光二极管(D1)、一个晶体管(N4)与一个电阻(R1)。电光驱动恒流电路利用启动电路,为所连接的恒流电路提供带隙基准电压,具有较高的电源抑制比,解决了在输入电压的变化会导致整个系统输入功率的变化,从而影响系统效率的问题。

Description

无人驾驶电光驱动恒流电路、集成电路与控制系统 技术领域
本发明涉及半导体集成电路技术领域,尤其涉及一种无人驾驶电光驱动恒流电路、集成电路与控制系统。
背景技术
无人机、无人车等无人驾驶智能物联网设备的运作环境具有不确定性与复杂性, 需要不断对周围环境进行探测,避免与障碍物发生碰撞。传统的无人机采用声波智能识别技术方案,一种方法是雷达自身全方位实现扫描,另一种方法是采用相控阵雷达,这两种方案需要增加复杂的电机设备从而产生额外的负载。传统的无人车采用视觉智能识别技术方案,采用图像处理的成熟技术,但易收到光线、粉尘、烟雾等因素的影响,不能满足全天候驾驶需要。
    现有技术中,常见的方案如图1所示,包括整流电路、恒流驱动电路以及负载,其恒流输出为Iout=Vref/Rcs。
技术问题
此应用方案相对于开关电源方案优点在于系统结构简单,使用元器件少,缺点在于系统负载的数量必须严格按照输入电压来设计,输入电压的变化会导致整个系统输入功率的变化,从而影响系统的光效效率。随着激光技术的不断发展,激光雷达在各个领域得到越来越广泛的使用。例如,在检测领域,激光雷达常用于检测动态物体,此时测量角度增大且要求无盲区,还需要适应远距离或者近距离测距。当近距离测距时,激光雷达功率小,可以满足人眼安全要求,但是测距能力较弱;当远距离测距时,激光雷达功率大,但是无法满足人眼安全要求,并且近距离的杂散光会增加导致距离下无法使用。
    综上所述,需要设计一种自动增益控制的、恒流恒压的应用于无人机、无人车智能识别的无人驾驶电光驱动恒流电路、集成电路与控制系统。
技术解决方案
本发明针对现有技术的不足,提出一种无人驾驶电光驱动恒流电路、集成电路与控制系统,解决了在输入电压的变化会导致整个系统输入功率的变化,从而影响系统的效率的光效问题。
    为实现上述目的,本发明采用如下的技术方案:
第一方面,本发明提出一种无人驾驶电光驱动恒流电路,包括:
启动电路,接电源端,为所连接的恒流电路提供软启动电压;
恒流电路,调节所述无人驾驶电光驱动恒流电路的回路电流,使得所述回路电流保持恒定;
所述启动电路包括四个晶体管、一个电容,其中:
第一N 晶体管(N1)的栅极、漏极并接后连接至第二N 晶体管(N2)的栅极、第一P 晶体管(P1)的漏极,源极接地;
所述第二N 晶体管(N2)的漏极与第三N 晶体管(N3)的栅极连接,并通过第一电容(C1)连接至直流电源端,源极接地;
所述第一P 晶体管(P1)的源极与所述第三N 晶体管(N3)的漏极同时连接至直流电源端,栅极接地;
所述恒流电路包括一个运算放大器、一个电光二极管、一个晶体管与一个电阻,其中:
第四N 晶体管(N4)的源极通过第一电阻(R1)与运算放大器的负输入端、调整电路端口连接,漏极通过反向连接的电光二极管(D1)与所述第三N 晶体管(N3)的源极连接;
所述运算放大器的正输入端与参考电压Vref 连接,输出端与所述第四N 晶体管(N4)的栅极连接。
优选地,所述电光二极管(D1)包括单个电光二极管或电光二极管串。
优选地,所述第一N 晶体管(N1)与第二N 晶体管(N2)的面积相等。
优选地,所述晶体管采用场效应管、双极晶体管中的一种或多种。
优选地,所述第一N 晶体管(N1)、第二N 晶体管(N2)、第三N 晶体管(N3)及第四N 晶体管(N4)为NMOS 管,所述第一P 晶体管(P1)为PMOS 管。
第二方面,本发明提出一种无人驾驶光电驱动集成电路,包括调整电路、第一方面所述的无人驾驶光电驱动恒流电路,所述调整电路包括一接地的采样电阻Rext,所述采样电阻调节所述恒流电路中的电光二极管D1 负载在单位时间内的电流保持恒定。
第三方面,本发明提出一种无人驾驶光电驱动控制系统,包括整流电路、第一方面所述的无人驾驶光电驱动恒流电路,所述整流电路对交流电进行全波整流,对连接的所述启动电路进行供电。
有益效果
本发明的有益效果:本发明的无人驾驶电光驱动恒流电路、集成电路与控制系统,利用软启动电路,为所连接的恒流电路提供带隙基准电压,具有较高的电源抑制比,解决了在输入电压的变化会导致整个系统输入功率的变化,从而影响系统效率的光效问题。
附图说明
用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制。
图1 是现有技术无人驾驶电光驱动恒流电路一实施例电路示意图。
图2 是本发明的无人驾驶电光驱动恒流电路一实施例结构示意图。
本发明的最佳实施方式
下面结合附图与实施例对本发明技术方案作进一步的说明,这是本发明的较佳实施例。
本发明实施例提供的一种无人驾驶电光驱动恒流电路、集成电路与控制系统可以应用于物联网智能识别技术领域中的各个场景,包括但不局限于2G GSM、3G CDMA、4G LTE/LTE-A、5G eMBB的移动通信、集群通信、卫星通信、激光通信、光纤通信、数字电视、射频识别、电力载波、无人车、无人机、物联网、雷达等系统,本发明实施例对此不作特别限制。
本发明提出一种无人驾驶电光驱动恒流电路,如图2 所示,包括:
启动电路,接电源端,为所连接的恒流电路提供软启动电压;
恒流电路,调节无人驾驶电光驱动恒流电路的回路电流,使得回路电流保持恒定;
本实施例中,启动电路包括四个晶体管、一个电容,其中,第一N 晶体管(N1)的栅极、漏极并接后连接至第二N 晶体管(N2)的栅极、第一P 晶体管(P1)的漏极,源极接地;所述第二N 晶体管(N2)的漏极与第三N 晶体管(N3)的栅极连接,并通过第一电容(C1)连接至直流电源端,源极接地;所述第一P 晶体管(P1)的源极与所述第三N 晶体管(N3)的漏极同时连接至直流电源端,栅极接地;
    本实施例中,恒流电路包括一个运算放大器、一个电光二极管、一个晶体管与一个电阻,其中,第四N 晶体管(N4)的源极通过第一电阻(R1)与运算放大器的负输入端、调整电路端口连接,漏极通过反向连接的电光二极管(D1)与所述第三N 晶体管(N3)的源极连接。
    本发明实施例中,所述运算放大器的正输入端与参考电压Vref 连接,输出端与所述第四N 晶体管(N4)的栅极连接。其中,电光二极管(D1)包括单个电光二极管或电光二极管串。
    本实施例中,第一N 晶体管(N1)、第二N 晶体管(N2)、第三N 晶体管(N3)及第四N 晶体管(N4)为NMOS 管,第一P 晶体管(P1)为PMOS 管,第一N 晶体管(N1)与第二N晶体管(N2)的面积相等。
    需要说明的是,晶体管可以是采用场效应管、双极晶体管中的一种或多种。晶体管也可以是耗尽型N 沟道MOS 晶体管的栅极与源极连接的结构,虽未作图示,不过当然也可以是将耗尽型P 沟道MOS 晶体管的栅极与源极连接的结构。
由调整电路、上述的无人驾驶电光驱动恒流电路构成的无人驾驶电光驱动集成电路,其中,调整电路包括一接地的采样电阻Rext,该采样电阻调节恒流电路D1 负载在单位时间内的电流保持恒定。
本发明还提出一种无人驾驶电光驱动控制系统,包括整流电路、上述的无人驾驶电光驱动恒流电路,整流电路对交流电进行全波整流,对连接的启动电路进行供电。
本发明的实施方式
下面结合附图与实施例对本发明技术方案作进一步的说明。
本发明提出一种无人驾驶电光驱动恒流电路,如图2 所示,包括:
启动电路,接电源端,为所连接的恒流电路提供软启动电压;
恒流电路,调节无人驾驶电光驱动恒流电路的回路电流,使得回路电流保持恒定;
本实施例中,启动电路包括四个晶体管、一个电容,其中,第一N 晶体管(N1)的栅极、漏极并接后连接至第二N 晶体管(N2)的栅极、第一P 晶体管(P1)的漏极,源极接地;所述第二N 晶体管(N2)的漏极与第三N 晶体管(N3)的栅极连接,并通过第一电容(C1)连接至直流电源端,源极接地;所述第一P 晶体管(P1)的源极与所述第三N 晶体管(N3)的漏极同时连接至直流电源端,栅极接地;
本实施例中,恒流电路包括一个运算放大器、一个电光二极管、一个晶体管与一个电阻,其中,第四N 晶体管(N4)的源极通过第一电阻(R1)与运算放大器的负输入端、调整电路端口连接,漏极通过反向连接的电光二极管(D1)与所述第三N 晶体管(N3)的源极连接。
    本发明实施例中,所述运算放大器的正输入端与参考电压Vref 连接,输出端与所述第四N 晶体管(N4)的栅极连接。其中,电光二极管(D1)包括单个电光二极管或电光二极管串。
    本实施例中,第一N 晶体管(N1)、第二N 晶体管(N2)、第三N 晶体管(N3)及第四N 晶体管(N4)为NMOS 管,第一P 晶体管(P1)为PMOS 管,第一N 晶体管(N1)与第二N晶体管(N2)的面积相等。
    需要说明的是,晶体管可以是采用场效应管、双极晶体管中的一种或多种。晶体管也可以是耗尽型N 沟道MOS 晶体管的栅极与源极连接的结构,虽未作图示,不过当然也可以是将耗尽型P 沟道MOS 晶体管的栅极与源极连接的结构。
    由调整电路、上述的无人驾驶电光驱动恒流电路构成的无人驾驶电光驱动集成电路,其中,调整电路包括一接地的采样电阻Rext,该采样电阻调节恒流电路D1 负载在单位时间内的电流保持恒定。
本发明还提出一种无人驾驶电光驱动控制系统,包括整流电路、上述的无人驾驶电光驱动恒流电路,整流电路对交流电进行全波整流,对连接的启动电路进行供电。
工业实用性
本发明的工作原理:由第一N晶体管(N1)、第二N晶体管(N2)、第一P晶体管(P1)及第一电容(C1)构成的软启动电路为由运算放大器与第四N晶体管(N4)构成的自动控制恒流电路,提供具有电源抑制比的带隙基准电压,保证电光二极管(D1)在稳定的工作条件下正常工作。
本发明的无人驾驶电光驱动恒流电路、集成电路与控制系统,利用软启动电路,为所连接的恒流电路提供带隙基准电压,具有较高的电源抑制比,解决了在输入电压的变化会导致整个系统输入功率的变化,从而影响系统效率的光效问题。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (4)

  1. 一种无人驾驶电光驱动恒流电路,其特征在于,包括:
    启动电路,接电源端,为所连接的恒流电路提供软启动电压;
    恒流电路,调节所述无人驾驶电光驱动恒流电路的回路电流,使得所述回路电流保持恒定;
    所述启动电路包括四个晶体管、一个电容,其中:
    第一N晶体管(N1)的栅极、漏极并接后连接至第二N晶体管(N2)的栅极、第一P晶体管(P1)的漏极,源极接地;
    所述第二N晶体管(N2)的漏极与第三N晶体管(N3)的栅极连接,并通过第一电容(C1)连接至直流电源端,源极接地;
    所述第一P晶体管(P1)的源极与所述第三N晶体管(N3)的漏极同时连接至直流电源端,栅极接地;
    所述恒流电路包括一个运算放大器、一个电光二极管、一个晶体管与一个电阻,其中:
    第四N晶体管(N4)的源极通过第一电阻(R1)与运算放大器的负输入端、调整电路端口连接,漏极通过反向连接的电光二极管(D1)与所述第三N晶体管(N3)的源极连接;
    所述运算放大器的正输入端与参考电压Vref连接,输出端与所述第四N晶体管(N4)的栅极连接,所述晶体管采用场效应管、双极晶体管中的一种或多种,所述第一N晶体管(N1)、第二N晶体管(N2)、第三N晶体管(N3)及第四N晶体管(N4)为NMOS管,所述第一P晶体管(P1)为PMOS管,所述第一N晶体管(N1)与第二N晶体管(N2)的面积相等。
  2. 根据权利要求1所述的无人驾驶电光驱动恒流电路,其特征在于,所述电光二极管(D1)包括单个电光二极管或电光二极管串。
  3. 一种无人驾驶光电驱动集成电路,其特征在于,包括调整电路、权利要求1-2任一项所述的无人驾驶光电驱动恒流电路,所述调整电路包括一接地的采样电阻Rext,所述采样电阻调节所述恒流电路中的电光二极管D1负载在单位时间内的电流保持恒定。
  4. 一种无人驾驶光电驱动控制系统,其特征在于,包括整流电路、权利要求1-2任一项所述的无人驾驶光电驱动恒流电路,所述整流电路对交流电进行全波整流,对连接的所述启动电路进行供电。
PCT/CN2018/097973 2017-10-09 2018-08-01 无人驾驶电光驱动恒流电路、集成电路与控制系统 WO2019071998A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710929919.2A CN107544603B (zh) 2017-10-09 2017-10-09 无人驾驶电光驱动恒流电路、集成电路与控制系统
CN201710929919.2 2017-10-09

Publications (1)

Publication Number Publication Date
WO2019071998A1 true WO2019071998A1 (zh) 2019-04-18

Family

ID=60965028

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/097973 WO2019071998A1 (zh) 2017-10-09 2018-08-01 无人驾驶电光驱动恒流电路、集成电路与控制系统

Country Status (2)

Country Link
CN (1) CN107544603B (zh)
WO (1) WO2019071998A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107544603B (zh) * 2017-10-09 2018-11-20 江苏先云信息技术有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100045342A (ko) * 2008-10-23 2010-05-03 심현섭 전원안정화 기능을 갖는 교류전원 엘이디 조명장치
CN103176496A (zh) * 2011-12-21 2013-06-26 精工电子有限公司 电压调节器
CN103218001A (zh) * 2013-04-15 2013-07-24 无锡普雅半导体有限公司 一种软启动的电压调整电路
CN103281832A (zh) * 2013-06-06 2013-09-04 东莞博用电子科技有限公司 一种用于交流led驱动的电流软启动电路
CN204090252U (zh) * 2014-10-10 2015-01-07 无锡华润矽科微电子有限公司 智能功率控制电路
CN107544603A (zh) * 2017-10-09 2018-01-05 东莞市翔实信息科技有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20100045342A (ko) * 2008-10-23 2010-05-03 심현섭 전원안정화 기능을 갖는 교류전원 엘이디 조명장치
CN103176496A (zh) * 2011-12-21 2013-06-26 精工电子有限公司 电压调节器
CN103218001A (zh) * 2013-04-15 2013-07-24 无锡普雅半导体有限公司 一种软启动的电压调整电路
CN103281832A (zh) * 2013-06-06 2013-09-04 东莞博用电子科技有限公司 一种用于交流led驱动的电流软启动电路
CN204090252U (zh) * 2014-10-10 2015-01-07 无锡华润矽科微电子有限公司 智能功率控制电路
CN107544603A (zh) * 2017-10-09 2018-01-05 东莞市翔实信息科技有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统

Also Published As

Publication number Publication date
CN107544603B (zh) 2018-11-20
CN107544603A (zh) 2018-01-05

Similar Documents

Publication Publication Date Title
US9232575B2 (en) LCD backlight driving circuit and liquid crystal device
WO2018018991A1 (zh) 用于温度检测的装置和用于补偿显示面板的温度的装置
EP3103196B1 (en) Buffer circuits and methods
TWI831857B (zh) 用於調節交換式電源供應器之偏電壓的設備
US9562808B2 (en) Light receiving circuit and light coupling device
WO2019071940A1 (zh) 无人驾驶电光驱动恒流电路、集成电路与控制系统
WO2019071998A1 (zh) 无人驾驶电光驱动恒流电路、集成电路与控制系统
CN104753481B (zh) 差动运算放大器以及带隙参考电压产生电路
US20160268982A1 (en) Light receiving circuit and optical coupling device
WO2019072000A1 (zh) 无人驾驶光电软驱动恒流电路、集成电路与控制系统
US9813162B2 (en) Optical transmission circuit, optical transmission device, and optical transmission system
WO2019071999A1 (zh) 无人驾驶光电软驱动恒流电路、集成电路与控制系统
WO2019072001A1 (zh) 无人驾驶电光驱动恒流电路、集成电路与控制系统
WO2022127470A1 (zh) 供电电路、芯片和显示屏
Soh et al. Heterogeneous integration of GaN and BCD technologies
Sindhubala et al. Ecofriendly data transmission in visible light communication
CN101562933B (zh) 一种背光模块的驱动电路
CN107770909A (zh) 线性恒流电光驱动电路、集成电路与控制系统
CN207305023U (zh) 线性恒流电光驱动电路、集成电路与控制系统
US9445467B2 (en) Backlight driving circuit, electronic device and backlight driving method
CN114050797A (zh) 基于多路径频率补偿的全差分高带宽跨阻放大器
CN105955385A (zh) 基于标准cmos工艺的耐高压线性稳压器
CN107687893B (zh) 一种阵列传感器
CA2922301C (en) High voltage wide bandwidth amplifier
CN214012480U (zh) 供电电路、芯片和显示屏

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865556

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865556

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18865556

Country of ref document: EP

Kind code of ref document: A1