WO2019072001A1 - 无人驾驶电光驱动恒流电路、集成电路与控制系统 - Google Patents

无人驾驶电光驱动恒流电路、集成电路与控制系统 Download PDF

Info

Publication number
WO2019072001A1
WO2019072001A1 PCT/CN2018/098444 CN2018098444W WO2019072001A1 WO 2019072001 A1 WO2019072001 A1 WO 2019072001A1 CN 2018098444 W CN2018098444 W CN 2018098444W WO 2019072001 A1 WO2019072001 A1 WO 2019072001A1
Authority
WO
WIPO (PCT)
Prior art keywords
transistor
electro
constant current
current circuit
optical
Prior art date
Application number
PCT/CN2018/098444
Other languages
English (en)
French (fr)
Inventor
周彦漫
Original Assignee
周彦漫
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周彦漫 filed Critical 周彦漫
Publication of WO2019072001A1 publication Critical patent/WO2019072001A1/zh

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05FSYSTEMS FOR REGULATING ELECTRIC OR MAGNETIC VARIABLES
    • G05F1/00Automatic systems in which deviations of an electric quantity from one or more predetermined values are detected at the output of the system and fed back to a device within the system to restore the detected quantity to its predetermined value or values, i.e. retroactive systems
    • G05F1/10Regulating voltage or current
    • G05F1/46Regulating voltage or current wherein the variable actually regulated by the final control device is dc
    • G05F1/56Regulating voltage or current wherein the variable actually regulated by the final control device is dc using semiconductor devices in series with the load as final control devices

Definitions

  • the present invention relates to the field of semiconductor integrated circuit technology, and in particular, to an unmanned electro-optic driving constant current circuit, an integrated circuit and a control system.
  • the operating environment of unmanned intelligent IoT devices such as drones and unmanned vehicles is uncertain and complex, and it is necessary to continuously detect the surrounding environment to avoid collision with obstacles.
  • the traditional UAV adopts the acoustic intelligent identification technology solution. One method is to scan the radar itself in all directions, and the other method is to use phased array radar. These two schemes need to add complicated motor equipment to generate additional load.
  • the traditional unmanned vehicle adopts the visual intelligent recognition technology scheme and adopts the mature technology of image processing, but it is easy to receive the influence of light, dust, smoke and other factors, and cannot meet the driving needs of all weather.
  • the advantage of this application scheme over the switching power supply scheme is that the system structure is simple and the components are used less.
  • the disadvantage is that the number of system loads must be designed strictly according to the input voltage. The change of the input voltage will cause the change of the input power of the whole system, thereby affecting the system.
  • Light efficiency With the continuous development of laser technology, laser radar has been used more and more widely in various fields. For example, in the field of detection, laser radar is often used to detect dynamic objects. At this time, the measurement angle is increased and no blind zone is required, and it is also necessary to adapt to long distance or close distance measurement. When measuring at close range, the power of the laser radar is small, which can meet the safety requirements of the human eye, but the ranging capability is weak. When the distance is measured, the power of the laser radar is large, but the safety requirements of the human eye cannot be met, and the distance is close. Stray light will increase and cause it to be unusable at a distance.
  • the invention aims at the deficiencies of the prior art, and proposes an unmanned electro-optic driving constant current circuit, an integrated circuit and a control system, which solves the problem that the change of the input voltage causes the change of the input power of the whole system, thereby affecting the efficiency of the system. Effective problem.
  • the present invention adopts the following technical solutions:
  • the invention provides an unmanned electro-optic driving constant current circuit, comprising:
  • An operational amplifier four transistors, two electro-optical diodes and one resistor;
  • the source of the first transistor (T1) is connected to the negative input terminal of the operational amplifier, the adjustment circuit port, and the drain is connected to the DC power supply terminal;
  • the positive input terminal of the operational amplifier is connected to the reference voltage Vref, and the output terminal is connected to the gate of the first transistor (T1);
  • the gate of the second transistor (T2) is connected to the gate of the third transistor (T3), the drain is connected to the source of the first transistor (T1), and the source is grounded by the forward first photodiode (D1). ;
  • a drain of the third transistor (T3) is connected to a source of the first transistor (T1) through a first resistor (R1), and a source is grounded through a forward second photodiode (D2);
  • the drain of the fourth transistor (T4) is connected to the source of the first transistor (T1), and the gate and the source are respectively connected to the drain and the gate of the third transistor (T3).
  • the first electro-optic diode (D1) or the second electro-optical diode (D2) comprises a single electro-optical diode or an electro-optical diode string.
  • the first electro-optic diode (D1) and the second electro-optic diode (D2) have the same emission area.
  • the conduction level of the first electro-optical diode (D1) coincides with the conduction level of the second electro-optical diode (D2).
  • the second transistor (T2) and the third transistor (T3) have the same area.
  • the area of the second transistor (T2) or the third transistor (T3) is 1-8 times the area of the fourth transistor (T4).
  • the transistor uses one or more of a field effect transistor and a bipolar transistor.
  • the first transistor (T1), the second transistor (T2), the third transistor (T3), and the fourth transistor (T4) are NMOS transistors.
  • the present invention provides an unmanned electro-optical driving integrated circuit, comprising: an adjustment circuit, the unmanned electro-optic driving constant current circuit according to the first aspect, wherein the adjusting circuit comprises a grounded sampling resistor Rext, The sampling resistor adjusts the load of the mirror circuits D1 and D2 to a constant current per unit time.
  • the present invention provides an unmanned electro-optic drive control system, including a rectifier circuit, the unmanned electro-optic drive constant current circuit according to the first aspect, wherein the rectifier circuit performs full-wave rectification on an alternating current, and is connected The constant current circuit supplies power.
  • the invention has the beneficial effects that the unmanned electro-optic driving constant current circuit, the integrated circuit and the control system of the invention use the constant current circuit to provide an automatic gain control, constant current and constant voltage working environment for the connected load, which has a comparative
  • the high power supply rejection ratio solves the problem of light efficiency that affects the efficiency of the system by changing the input voltage and causing changes in the input power of the entire system.
  • FIG. 1 is a circuit diagram of an embodiment of a prior art unmanned electro-optic drive constant current circuit.
  • FIG. 2 is a schematic structural view of an embodiment of an unmanned electro-optical driving constant current circuit of the present invention.
  • the unmanned electro-optic driving constant current circuit, the integrated circuit and the control system provided by the embodiments of the present invention can be applied to various scenarios in the field of intelligent identification technology of the Internet of Things, including but not limited to 2G. GSM, 3G CDMA, 4G LTE/LTE-A, 5G eMBB mobile communication, trunking communication, satellite communication, laser communication, optical fiber communication, digital television, radio frequency identification, power carrier, unmanned vehicle, drone, internet of things, radar, etc., the present invention
  • the embodiment is not particularly limited thereto.
  • the invention provides an unmanned electro-optic driving constant current circuit, as shown in FIG. 2, comprising:
  • An operational amplifier four transistors, two electro-optical diodes and one resistor;
  • the source of the first transistor (T1) is connected to the negative input terminal of the operational amplifier, the adjustment circuit port, and the drain is connected to the DC power supply terminal;
  • the positive input terminal of the operational amplifier is connected to the reference voltage Vref, and the output terminal is connected to the gate of the first transistor (T1);
  • the gate of the second transistor (T2) is connected to the gate of the third transistor (T3), the drain is connected to the source of the first transistor (T1), and the source is grounded by the forward first photodiode (D1). ;
  • a drain of the third transistor (T3) is connected to a source of the first transistor (T1) through a first resistor (R1), and a source is grounded through a forward second photodiode (D2);
  • the drain of the fourth transistor (T4) is connected to the source of the first transistor (T1), and the gate and the source are respectively connected to the drain and the gate of the third transistor (T3).
  • the first electro-optic diode (D1) or the second electro-optical diode (D2) comprises a single electro-optical diode or an electro-optical diode string.
  • the area of the first electro-optic diode (D1) and the second electro-optic diode (D2) have the same emission area, and the conduction level of the first electro-optical diode (D1) is consistent with the conduction level of the second electro-optical diode (D2). .
  • the area of the second transistor (T2) and the third transistor (T3) are equal. Specifically, the area of the second transistor (T2) or the third transistor (T3) is 1-8 times the area of the fourth transistor (T4).
  • the first transistor (T1), the second transistor (T2), the third transistor (T3), and the fourth transistor (T4) are NMOS transistors.
  • the transistor in the above embodiment may be one or more of a field effect transistor and a bipolar transistor.
  • the transistor may be a structure in which the gate and the source of the depletion-type N-channel MOS transistor are connected.
  • the gate of the depletion-type P-channel MOS transistor may be connected to the source. structure.
  • An unmanned electro-optic driving integrated circuit comprising an adjustment circuit and the above-mentioned unmanned electro-optic driving constant current circuit, wherein the adjusting circuit comprises a grounded sampling resistor Rext, and the sampling resistor Rext adjusts the constant current circuit D1 and D2 in a unit The current during the time remains constant.
  • the invention also provides an unmanned electro-optical driving control system, comprising a rectifying circuit and the above-mentioned unmanned electro-optic driving constant current circuit, wherein the rectifying circuit performs full-wave rectification on the alternating current to supply power to the connected constant current circuit.
  • an automatic control circuit composed of an operational amplifier and a first transistor (T1) provides a constant current for a proportional circuit composed of a second transistor (T2), a third transistor (T3) and a fourth transistor (T4)
  • the constant voltage ensures that the first electro-optic diode (D1) and the second electro-optical diode (D2) operate normally under stable operating conditions.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Electrical Variables (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Amplifiers (AREA)

Abstract

本发明涉及半导体集成电路技术领域,尤其涉及一种无人驾驶电光驱动恒流电路、集成电路与控制系统,其中,该电光驱动恒流电路包括一个运算放大器、四个晶体管、二个电光二极管与一个电阻。优点:该电路利用恒流电路,为所连接的负载提供自动增益控制的、恒流恒压的工作环境,具有较高的电源抑制比,解决了在输入电压的变化会导致整个系统输入功率的变化,从而影响系统的效率的光效问题。

Description

无人驾驶电光驱动恒流电路、集成电路与控制系统 技术领域
本发明涉及半导体集成电路技术领域,尤其涉及一种无人驾驶电光驱动恒流电路、集成电路与控制系统。
背景技术
无人机、无人车等无人驾驶智能物联网设备的运作环境具有不确定性与复杂性, 需要不断对周围环境进行探测,避免与障碍物发生碰撞。传统的无人机采用声波智能识别技术方案,一种方法是雷达自身全方位实现扫描,另一种方法是采用相控阵雷达,这两种方案需要增加复杂的电机设备从而产生额外的负载。传统的无人车采用视觉智能识别技术方案,采用图像处理的成熟技术,但易收到光线、粉尘、烟雾等因素的影响,不能满足全天候驾驶需要。
现有技术中,常见的方案如图1所示,包括整流电路、恒流驱动电路以及负载,其恒流输出为Iout=Vref/Rcs。
技术问题
此应用方案相对于开关电源方案优点在于系统结构简单,使用元器件少,缺点在于系统负载的数量必须严格按照输入电压来设计,输入电压的变化会导致整个系统输入功率的变化,从而影响系统的光效效率。随着激光技术的不断发展,激光雷达在各个领域得到越来越广泛的使用。例如,在检测领域,激光雷达常用于检测动态物体,此时测量角度增大且要求无盲区,还需要适应远距离或者近距离测距。当近距离测距时,激光雷达功率小,可以满足人眼安全要求,但是测距能力较弱;当远距离测距时,激光雷达功率大,但是无法满足人眼安全要求,并且近距离的杂散光会增加导致距离下无法使用。
综上所述,需要设计一种自动增益控制的、恒流恒压的应用于无人机、无人车智能识别的无人驾驶电光驱动恒流电路、集成电路与控制系统。
技术解决方案
本发明针对现有技术的不足,提出一种无人驾驶电光驱动恒流电路、集成电路与控制系统,解决了在输入电压的变化会导致整个系统输入功率的变化,从而影响系统的效率的光效问题。
为实现上述目的,本发明采用如下的技术方案:
第一方面,本发明提出一种无人驾驶电光驱动恒流电路,包括:
一个运算放大器、四个晶体管、二个电光二极管与一个电阻;
第一晶体管(T1)的源极与运算放大器的负输入端、调整电路端口连接,漏极与直流电源端连接;
所述运算放大器的正输入端与参考电压Vref连接,输出端与所述第一晶体管(T1)的栅极连接;
第二晶体管(T2)的栅极与第三晶体管(T3)的栅极连接,漏极与所述第一晶体管(T1)的源极连接,源极通过正向第一电光二极管(D1)接地;
所述第三晶体管(T3)的漏极通过第一电阻(R1)与所述第一晶体管(T1)的源极连接,源极通过正向第二电光二极管(D2)接地;
第四晶体管(T4)的漏极与所述第一晶体管(T1)的源极连接,栅极、源极分别与所述第三晶体管(T3)的漏极、栅极连接。
所述第一电光二极管(D1)或第二电光二极管(D2)包括单个电光二极管或电光二极管串。
所述第一电光二极管(D1)与第二电光二极管(D2)的发射区面积相同。
所述第一电光二极管(D1)的导通电平与第二电光二极管(D2)的导通电平相一致。
所述第二晶体管(T2)与第三晶体管(T3)的面积相等。
所述第二晶体管(T2)或第三晶体管(T3)的面积是第四晶体管(T4)的面积1-8倍。
所述晶体管采用场效应管、双极晶体管中的一种或多种。
所述第一晶体管(T1)、第二晶体管(T2)、第三晶体管(T3)及第四晶体管(T4)为NMOS管。
第二方面,本发明提出一种无人驾驶电光驱动集成电路,包括调整电路、第一方面所述的无人驾驶电光驱动恒流电路,所述调整电路包括一接地的采样电阻Rext,所述采样电阻调节镜像电路D1、D2负载在单位时间内的电流保持恒定。
第三方面,本发明提出一种无人驾驶电光驱动控制系统,包括整流电路、第一方面所述的无人驾驶电光驱动恒流电路,所述整流电路对交流电进行全波整流,对连接的恒流电路进行供电。
有益效果
本发明的有益效果:本发明的无人驾驶电光驱动恒流电路、集成电路与控制系统,利用恒流电路,为所连接的负载提供自动增益控制的、恒流恒压的工作环境,具有较高的电源抑制比,解决了在输入电压的变化会导致整个系统输入功率的变化,从而影响系统的效率的光效问题。
附图说明
用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制。
图1是现有技术无人驾驶电光驱动恒流电路一实施例电路示意图。
图2是本发明的无人驾驶电光驱动恒流电路一实施例结构示意图。
本发明的最佳实施方式
下面结合附图与实施例对本发明技术方案作进一步的说明,这是本发明的较佳实施例。
本发明实施例提供的一种无人驾驶电光驱动恒流电路、集成电路与控制系统可以应用于物联网智能识别技术领域中的各个场景,包括但不局限于2G GSM、3G CDMA、4G LTE/LTE-A、5G eMBB的移动通信、集群通信、卫星通信、激光通信、光纤通信、数字电视、射频识别、电力载波、无人车、无人机、物联网、雷达等系统,本发明实施例对此不作特别限制。
本发明提出一种无人驾驶电光驱动恒流电路,如图2所示,包括:
一个运算放大器、四个晶体管、二个电光二极管与一个电阻;
第一晶体管(T1)的源极与运算放大器的负输入端、调整电路端口连接,漏极与直流电源端连接;
运算放大器的正输入端与参考电压Vref连接,输出端与第一晶体管(T1)的栅极连接;
第二晶体管(T2)的栅极与第三晶体管(T3)的栅极连接,漏极与所述第一晶体管(T1)的源极连接,源极通过正向第一电光二极管(D1)接地;
第三晶体管(T3)的漏极通过第一电阻(R1)与所述第一晶体管(T1)的源极连接,源极通过正向第二电光二极管(D2)接地;
第四晶体管(T4)的漏极与所述第一晶体管(T1)的源极连接,栅极、源极分别与第三晶体管(T3)的漏极、栅极连接。
本发明的实施方式
上述实施例中,第一电光二极管(D1)或第二电光二极管(D2)包括单个电光二极管或电光二极管串。其中,第一电光二极管(D1)与第二电光二极管(D2)的发射区面积相同,第一电光二极管(D1)的导通电平与第二电光二极管(D2)的导通电平相一致。
上述实施例中,第二晶体管(T2)与第三晶体管(T3)的面积相等。具体地,第二晶体管(T2)或第三晶体管(T3)的面积是第四晶体管(T4)的面积1-8倍。
上述实施例中,第一晶体管(T1)、第二晶体管(T2)、第三晶体管(T3)及第四晶体管(T4)为NMOS管。
需要说明的是,上述实施例中晶体管可以是采用场效应管、双极晶体管中的一种或多种。晶体管也可以是耗尽型N沟道MOS晶体管的栅极与源极连接的结构,虽未作图示,不过当然也可以是将耗尽型P沟道MOS晶体管的栅极与源极连接的结构。
由调整电路、上述的无人驾驶电光驱动恒流电路构成的无人驾驶电光驱动集成电路,其中,调整电路包括一接地的采样电阻Rext,该采样电阻Rext调节恒流电路D1、D2负载在单位时间内的电流保持恒定。
本发明还提出一种无人驾驶电光驱动控制系统,包括整流电路、上述的无人驾驶电光驱动恒流电路,整流电路对交流电进行全波整流,对连接的恒流电路进行供电。
工业实用性
本发明的工作原理:由运算放大器与第一晶体管(T1)构成的自动控制电路为由第二晶体管(T2)、第三晶体管(T3)及第四晶体管(T4)构成的比例电路提供恒流恒压,保证第一电光二极管(D1)与第二电光二极管(D2)在稳定的工作条件下正常工作。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

  1. 一种无人驾驶电光驱动恒流电路,其特征在于,包括:一个运算放大器、四个晶体管、二个电光二极管与一个电阻;
    第一晶体管(T1)的源极与运算放大器的负输入端、调整电路端口连接,漏极与直流电源端连接;
    所述运算放大器的正输入端与参考电压Vref连接,输出端与所述第一晶体管(T1)的栅极连接;
    第二晶体管(T2)的栅极与第三晶体管(T3)的栅极连接,漏极与所述第一晶体管(T1)的源极连接,源极通过正向第一电光二极管(D1)接地;所述第二晶体管(T2)与第三晶体管(T3)的面积相等;
    所述第三晶体管(T3)的漏极通过第一电阻(R1)与所述第一晶体管(T1)的源极连接,源极通过正向第二电光二极管(D2)接地;
    第四晶体管(T4)的漏极与所述第一晶体管(T1)的源极连接,栅极、源极分别与所述第三晶体管(T3)的漏极、栅极连接。
  2. 根据权利要求1所述的无人驾驶电光驱动恒流电路,其特征在于,所述第一电光二极管(D1)或第二电光二极管(D2)包括单个电光二极管或电光二极管串。
  3. 根据权利要求2所述的无人驾驶电光驱动恒流电路,其特征在于,所述第一电光二极管(D1)与第二电光二极管(D2)的发射区面积相同。
  4. 根据权利要求2所述的无人驾驶电光驱动恒流电路,其特征在于,所述第一电光二极管(D1)的导通电平与第二电光二极管(D2)的导通电平相一致。
  5. 根据权利要求1所述的无人驾驶电光驱动恒流电路,其特征在于,所述第二晶体管(T2)或第三晶体管(T3)的面积是第四晶体管(T4)的面积1-8倍。
  6. 根据权利要求1-5任一所述的无人驾驶电光驱动恒流电路,其特征在于,所述晶体管采用场效应管、双极晶体管中的一种或多种。
  7. 根据权利要求6所述的无人驾驶电光驱动恒流电路,其特征在于,所述第一晶体管(T1)、第二晶体管(T2)、第三晶体管(T3)及第四晶体管(T4)为NMOS管。
  8. 一种无人驾驶电光驱动集成电路,其特征在于,包括调整电路、权利要求1-7任一项所述的无人驾驶电光驱动恒流电路,所述调整电路包括一接地的采样电阻,所述采样电阻调节镜像电路D1、D2负载在单位时间内的电流保持恒定。
  9. 一种无人驾驶电光驱动控制系统,其特征在于,包括整流电路、权利要求1-7任一项所述的无人驾驶电光驱动恒流电路,所述整流电路对交流电进行全波整流,对连接的恒流电路进行供电。
PCT/CN2018/098444 2017-10-09 2018-08-03 无人驾驶电光驱动恒流电路、集成电路与控制系统 WO2019072001A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710929160.8 2017-10-09
CN201710929160.8A CN107643783B (zh) 2017-10-09 2017-10-09 无人驾驶电光驱动恒流电路、集成电路与控制系统

Publications (1)

Publication Number Publication Date
WO2019072001A1 true WO2019072001A1 (zh) 2019-04-18

Family

ID=61122734

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/098444 WO2019072001A1 (zh) 2017-10-09 2018-08-03 无人驾驶电光驱动恒流电路、集成电路与控制系统

Country Status (2)

Country Link
CN (1) CN107643783B (zh)
WO (1) WO2019072001A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107643783B (zh) * 2017-10-09 2018-11-23 江苏来德福汽车部件有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122971B2 (en) * 2003-11-05 2006-10-17 Richtek Technology Corp. Driver circuit for driving a plurality of DC lamp strings
KR20100045342A (ko) * 2008-10-23 2010-05-03 심현섭 전원안정화 기능을 갖는 교류전원 엘이디 조명장치
CN202679742U (zh) * 2012-06-29 2013-01-16 昆山天重星光电科技有限公司 一种led线性恒流电源
CN204090252U (zh) * 2014-10-10 2015-01-07 无锡华润矽科微电子有限公司 智能功率控制电路
CN107643783A (zh) * 2017-10-09 2018-01-30 东莞市翔实信息科技有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005116616A (ja) * 2003-10-03 2005-04-28 Toshiba Corp Led駆動回路及びled駆動システム
CN100584135C (zh) * 2008-11-03 2010-01-20 深圳市联德合微电子有限公司 多路led驱动电路
CN201426197Y (zh) * 2009-06-04 2010-03-17 吉林大学 驱动多路发光二极管的镜像比例恒流源电路
CN102858053B (zh) * 2011-04-28 2015-08-12 凹凸电子(武汉)有限公司 光源驱动电路、方法及印刷电路板
CN103428969B (zh) * 2013-08-15 2015-08-19 辉芒微电子(深圳)有限公司 一种线性恒流led驱动电路及led灯具
KR101555775B1 (ko) * 2014-02-13 2015-09-30 메를로랩 주식회사 교류 led 구동회로

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7122971B2 (en) * 2003-11-05 2006-10-17 Richtek Technology Corp. Driver circuit for driving a plurality of DC lamp strings
KR20100045342A (ko) * 2008-10-23 2010-05-03 심현섭 전원안정화 기능을 갖는 교류전원 엘이디 조명장치
CN202679742U (zh) * 2012-06-29 2013-01-16 昆山天重星光电科技有限公司 一种led线性恒流电源
CN204090252U (zh) * 2014-10-10 2015-01-07 无锡华润矽科微电子有限公司 智能功率控制电路
CN107643783A (zh) * 2017-10-09 2018-01-30 东莞市翔实信息科技有限公司 无人驾驶电光驱动恒流电路、集成电路与控制系统

Also Published As

Publication number Publication date
CN107643783B (zh) 2018-11-23
CN107643783A (zh) 2018-01-30

Similar Documents

Publication Publication Date Title
US20030048653A1 (en) Semiconductor integrated circuit device and contactless electronic device
US9562808B2 (en) Light receiving circuit and light coupling device
US20180293946A1 (en) Shadow mask assemblies and reusing methods of shadow mask assemblies thereof
WO2019071940A1 (zh) 无人驾驶电光驱动恒流电路、集成电路与控制系统
US9763290B2 (en) Semiconductor light source drive device and projection video display apparatus
US20210375204A1 (en) Pixel circuit, driving method therefor, and display apparatus
WO2019072001A1 (zh) 无人驾驶电光驱动恒流电路、集成电路与控制系统
US20160268982A1 (en) Light receiving circuit and optical coupling device
US9813162B2 (en) Optical transmission circuit, optical transmission device, and optical transmission system
WO2019071999A1 (zh) 无人驾驶光电软驱动恒流电路、集成电路与控制系统
WO2019072000A1 (zh) 无人驾驶光电软驱动恒流电路、集成电路与控制系统
WO2019071998A1 (zh) 无人驾驶电光驱动恒流电路、集成电路与控制系统
US20150042403A1 (en) High-Voltage Voltage-Switched Class-S Amplifier
US10090640B2 (en) Pulse-width modulation light source drive and method
US10651940B1 (en) CMOS single-tube infrared transceiver
US20200283162A1 (en) Motor control system and unmanned aerial vehicle
US20170194875A1 (en) Non-polar rectifying circuit
US20160261263A1 (en) Analog switch circuit
TWI500250B (zh) Rectifier device
CN107687893B (zh) 一种阵列传感器
CN106055004B (zh) 一种可调恒流源电路
US9159848B2 (en) Light receiving circuit
CN107682963A (zh) 线性恒流电光驱动电路、集成电路与控制系统
CN107548218A (zh) 线性恒流电光驱动电路、集成电路与控制系统
EP4287780A1 (en) Drive circuit and smoke detection device comprising the drive circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18865892

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18865892

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 30/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18865892

Country of ref document: EP

Kind code of ref document: A1