WO2019071659A1 - 一种分体式低功耗小型自动对焦制动器 - Google Patents

一种分体式低功耗小型自动对焦制动器 Download PDF

Info

Publication number
WO2019071659A1
WO2019071659A1 PCT/CN2017/108661 CN2017108661W WO2019071659A1 WO 2019071659 A1 WO2019071659 A1 WO 2019071659A1 CN 2017108661 W CN2017108661 W CN 2017108661W WO 2019071659 A1 WO2019071659 A1 WO 2019071659A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit board
image sensor
low power
autofocus
spring
Prior art date
Application number
PCT/CN2017/108661
Other languages
English (en)
French (fr)
Inventor
麦练智
Original Assignee
高瞻创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 高瞻创新科技有限公司 filed Critical 高瞻创新科技有限公司
Publication of WO2019071659A1 publication Critical patent/WO2019071659A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/02Mountings, adjusting means, or light-tight connections, for optical elements for lenses
    • G02B7/04Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification
    • G02B7/09Mountings, adjusting means, or light-tight connections, for optical elements for lenses with mechanism for focusing or varying magnification adapted for automatic focusing or varying magnification
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/28Systems for automatic generation of focusing signals
    • G02B7/282Autofocusing of zoom lenses

Definitions

  • the invention belongs to the technical field of camera brakes, and in particular relates to a split type low power consumption small auto focus brake.
  • a portable photographing device having an autofocus function has become very popular, and basically becomes a standard function of a photographing device.
  • the auto focus function can effectively improve the resolution of the near subject in the image and improve the quality of the photo during close-up.
  • the auto focus function can blur the image of objects at other distances, and the subject can be more unique in the photo.
  • the traditional autofocus system achieves the optimal object distance by moving the entire lens or the position of some of the lenses in the lens.
  • traditional mainstream actuators have been able to accurately change the optimal object distance in a short period of time to achieve fast focus and improved focus accuracy.
  • Another type of autofocus system is a sensor-moving type that drives an image sensor through an actuator to change the distance between the lens and the image sensor to achieve autofocus.
  • sensor-operated actuators have an advantage in power consumption, mainly because the components that are required to move during autofocus are generally lighter.
  • mainstream interchangeable lens shooting devices such as digital SLR cameras
  • lens-shifting actuators placed in the lens.
  • each lens needs to be equipped with an actuator, which greatly improves the number of lenses.
  • the cost required, and the increased weight of the brake itself is not easy to carry, increasing the weight of the photographer's equipment and affecting the maneuverability of the shooting.
  • sensor-operated actuators typically employ a contact-type stop structure to achieve one-axis displacement freedom parallel to the optical axis.
  • the limit structure inevitably adds nonlinear friction during autofocus, which affects the accuracy of autofocus.
  • friction or impact in the actuator may cause the internal structure to break, and if the debris falls above the image sensor, it will affect the image quality.
  • An object of the present invention is to provide a split type low power consumption small auto focus brake to solve the nonlinear friction force generated by the limit structure of the sensor mobile actuator in the prior art, which affects the auto focus.
  • the problem of precision is to provide a split type low power consumption small auto focus brake to solve the nonlinear friction force generated by the limit structure of the sensor mobile actuator in the prior art, which affects the auto focus. The problem of precision.
  • Still another object of the present invention is to provide a split type low power small-sized autofocus brake to solve the problem of debris and contamination generated by friction or impact occurring in an actuator during a brake drop or autofocus process in the prior art. Problems with the sensor surface.
  • Another object of the present invention is to provide a split type low power consumption small auto focus brake to solve the problem that the heat dissipation effect of the sensor mobile actuator in the prior art is poor, and the image sensor will appear more. Image noise does not even work properly.
  • the present invention provides a split type low power small-sized autofocus brake including a housing, a spring, an image sensor carrier, at least one magnet, at least one independent coil, and an elastic circuit board, the spring being disposed at the top of the housing An inner surface that is elastically deformable in a direction perpendicular to the axis of the housing, and a lower surface of the spring is provided with the elastic circuit board transverse to a lower portion of the housing, one end of the image sensor carrier The spring is connected, the other end is connected to the elastic circuit board, and the spring, the image sensor carrier and the elastic circuit board form a spring vibration subsystem having a degree of freedom of axis displacement;
  • the at least one magnet is disposed on an inner wall of the casing, and the independent coil is disposed on the image sensor carrier and disposed corresponding to the magnet, and the independent coil is energized and subjected to ampere in a magnetic field of the magnet Force.
  • an image sensor is provided on the elastic circuit board.
  • a preferred embodiment of the present invention further includes a positioning seat that abuts against an inner top surface and an inner wall of the housing, the positioning seat fixing the at least one magnet to an inner wall of the housing;
  • the spring is a spring piece, one end of which is fastened to the connection between the inner top surface of the housing and the positioning seat, and the other end is connected to the image sensor carrier.
  • the flexible circuit board includes first to fifth rigid circuit boards, a first flexible circuit board, and a second flexible circuit board, and the first rigid circuit board carries the image sensor and a periphery of a rigid circuit board is connected to the first flexible circuit board, and four corners of the first flexible circuit board are respectively connected to the second to fifth five rigid circuit boards, and the second to fifth The five rigid circuit boards are also respectively connected to the second flexible circuit board, and the second flexible circuit board is provided with a socket.
  • the image sensor carrier is rigidly connected to the first rigid circuit board, and the second to fifth rigid circuit boards are also rigidly connected to the positioning base, respectively.
  • a cylindrical separator is also included, and the cylindrical separator and the casing
  • the vertical axis is coaxially disposed, the upper end of which is coupled to the upper surface of the housing or integrally formed with the upper surface of the housing, the cylindrical partition also having a gap with the image sensor carrier.
  • the tubular separator is made of a material having excellent magnetic permeability and thermal conductivity, and its surface color is a dark color having a strong ability to absorb heat radiation.
  • the height of the cylindrical partition is greater than one third of the height of the magnet.
  • the magnetic poles of the same name of the magnet are oppositely disposed. .
  • the outer periphery of the image sensor carrier is further provided with a limiting boss; the upper surface of the housing and the upper surface of the positioning seat are provided with positioning holes with overlapping holes.
  • the invention utilizes the ampere force generated by the energized independent coil on the image sensor in the magnetic field to drive the image sensor carrier to move on one axis, and can change the motion discovery of the image sensor carrier when changing the flow direction of the current, thereby realizing the camera's auto focus.
  • the contact point of the support structure of the invention does not have a frictional contact point, no nonlinear friction force occurs during the braking process, the focus is accurate, and the image is clear.
  • the image sensor carrier of the present invention is further provided with a limiting boss on the outer periphery.
  • the invention is further provided with a cylindrical partition, which is connected or integrally formed with the outer casing, and the cylindrical partition has the functions of absorbing heat radiation, heat conduction, dustproof and anti-electromagnetic radiation, and can effectively dissipate the brake work.
  • the heat generated prevents image noise caused by overheating of the brakes or even the malfunction of the machine.
  • the present invention is an actuator driven by electromagnetic force, which does not require a complicated mechanical transmission structure.
  • the upper surface of the casing and the upper surface of the positioning seat are provided with positioning holes with overlapping holes, which can achieve the effect of separate connection between the brake and the lens.
  • the split structure can improve the versatility of the invention and save user cost. Therefore, the invention has the characteristics of compact structure, convenient assembly, small size, light weight, low cost, low power consumption and good versatility, and is suitable for mass production and promotion.
  • FIG. 1 is a schematic structural view of an outer structure according to an embodiment of the present invention.
  • Figure 2 is an exploded view showing the structure of the embodiment of the present invention.
  • Figure 3 is a cross-sectional view showing the structure of the embodiment of the present invention.
  • FIG. 4 is a schematic structural view of an elastic circuit board according to an embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a dustproof and heat dissipation principle according to an embodiment of the present invention.
  • FIG. 6 is a schematic structural view of a camera lens assembled according to an embodiment of the present invention.
  • Figure 7 is a cross-sectional view showing the structure of a camera lens assembled in accordance with an embodiment of the present invention.
  • FIG. 8 is a schematic diagram of a focusing principle according to an embodiment of the present invention.
  • FIG. 9 is a schematic diagram of a focusing principle of a lens movable brake according to an embodiment of the present invention.
  • Embodiments of the present invention provide a split type low power consumption small auto focus brake, which includes a housing, a spring, an image sensor carrier 9, at least one magnet 8, at least one independent coil 5, and an elastic circuit, as shown in FIGS. 1 to 7.
  • the spring is disposed on the inner surface of the top of the casing and is elastically deformable in the direction of the vertical axis of the casing, and the elastic circuit board 3 is disposed under the spring and disposed at a lower portion of the casing.
  • One end of the image sensor carrier 9 is connected to the spring, and the other end is connected to the elastic circuit board 3.
  • the image sensor 4 is rigidly connected to the surface thereof, and the upper side of the image sensor 4 is a smooth optical path directly to the camera lens 21.
  • the flexible circuit board 3 is composed of a rigid circuit board and a flexible circuit board, and the flexible circuit board refers to an elastic circuit board having a high stiffness coefficient.
  • the spring, the image sensor carrier 9, and the flexible circuit board 3 form a spring oscillator system having a degree of freedom of displacement of the shaft, and the direction of the degree of freedom of displacement of the spring oscillator subsystem is parallel to the optical axis of the camera.
  • At least one magnet 8 is fixed on any inner wall of the casing, and the casing and the magnet 8 form a stationary structure, and the spring vibration subsystem vibrates according to the stationary structure.
  • the individual coils 5 are wound on the image sensor carrier 9 and arranged corresponding to the magnets 8, and the coils in the individual coils 5 can be connected in series or in parallel on the circuit. After the independent coil 5 is energized, an ampere force F parallel to the optical axis of the camera is generated in the magnetic field of the magnet 8, and the image sensor carrier 9 is moved along the vertical axis of the housing by the ampere force F, and is placed on the image sensor carrier 9. The image sensor 4 can be displaced accordingly.
  • the magnitude and direction of the amperage force F can be changed, thereby changing the distance between the camera lens 21 and the image sensor 4 and the optimum object distance.
  • the effect of autofocus When the independent coil 5 is de-energized, the Ampere force F disappears, and the spring oscillator system is restored to the initial state by the elastic force, that is, the focus of the camera returns to the initial position.
  • the actuator and the camera lens are separate, and different types of lenses may be disposed on the upper and outer sides of the actuator, and the optical axes of the lens and the optical axis of the image sensor 4 are arranged in parallel.
  • the housing is a rectangular housing and is divided into an upper housing 1 and a lower housing 2 in a split design.
  • the positioning seat 7 is further included, and the positioning seat 7 is closely attached. Relying on the inner top surface and the inner wall of the upper casing 1 serves to fix the spring and the magnet 8, so that the casing, the magnet 8, and the positioning seat 7 form a stationary structure.
  • the spring of the present invention may be a leaf spring, that is, a spring piece 6, one end of which is fastened at the joint of the inner top surface of the upper casing 1 and the positioning seat 7, above and below the fastened spring piece 6.
  • the fixing structure of the spring piece 6 is a cantilever beam structure, and the other end of the spring piece 6 is also fixedly connected with the image sensor carrier 9.
  • the flexible circuit board 3 includes a first rigid circuit board 12, a second rigid circuit board 14, a third rigid circuit board 15, and a fourth rigid circuit board 16. a fifth rigid circuit board 17, a first flexible circuit board 13, and a second flexible circuit board 18, the first rigid circuit board 12 is mounted with the image sensor 4 and the periphery of the first rigid circuit board 12 and the first flexible circuit board
  • the connection 13, the four corners of the first flexible circuit board 13 are respectively connected to the second rigid circuit board 14, the third rigid circuit board 15, the fourth rigid circuit board 16, the fifth rigid circuit board 17, the second rigid circuit board 14,
  • the third rigid circuit board 15, the fourth rigid circuit board 16, and the fifth rigid circuit board 17 are also respectively connected to the second flexible circuit board 14, and the second flexible circuit board 14 is provided with a socket 19.
  • the spring piece 6, the image sensor carrier 9, and the elastic circuit board 3 can form the spring vibration subsystem because the periphery of the first rigid circuit board 12 is connected to the first flexible circuit board 13, and the first flexible circuit board 13 is made of an elastic material. And having a strong stiffness coefficient, the first rigid circuit board 12 has a certain degree of freedom in space, and can ensure at least one axial movement degree of freedom.
  • Four rigid circuit boards are connected to the four corners of the first flexible circuit board 13.
  • the four rigid circuit boards are located at the joint of the positioning base 7 and the housing, and the four rigid circuit boards are rigidly connected by the housing and the positioning base 7. That is, the fixing of the elastic circuit board 3 can be achieved.
  • the second flexible circuit board 18 is exposed outside the casing, and the 19-seat or various circuit interfaces can be connected to the present invention for obtaining power or transmitting and receiving information from the outside.
  • a cylindrical separator 11 is further provided, which is made of a material having excellent magnetic permeability and thermal conductivity (for example, steel).
  • the cylindrical partition 11 is disposed coaxially with the vertical axis of the casing, and the upper end thereof is coupled to the upper surface of the upper casing 1 to form a cylindrical body extending downward from the upper surface of the upper casing 1, the inside of the cylindrical body That is, the camera lens 21 to the image sensor 4 The light path.
  • the outside of the cylindrical body is adjacent to the image sensing carrier 9 and has a certain gap with the image sensor carrier 9 to prevent dust or brake lag caused by the spring vibration system rubbing against the cylindrical partition 11 when vibrating.
  • the cylindrical partition 11 can serve four functions, one is dustproof, and the cylindrical partition 11 can block dust intruding from the joint of the brake housing, and dust enters the image sensor surface from the outside of the image sensor carrier 9. It is necessary to pass through a narrow and slender passage between the cylindrical partition 11 and the image sensor carrier 9, which greatly increases the difficulty of dust entering the surface of the image sensor 4, and reduces the possibility of the surface of the image sensor 4 being contaminated by dust.
  • the second is to enhance the heat dissipation capability. Since the image sensor 4 and the independent coil 5 generate heat during operation, when the temperature of the image sensor 4 is too high, image noise may not even work, and thus the image sensor 4 and the independent coil 5 are close to each other.
  • the cylindrical partition 11 is disposed to absorb the heat radiation emitted by the image sensor 4 and the independent coil 5, and the cylindrical partition 11 is connected to the brake housing, so that the tubular partition 11 can guide heat to the casing, and the shell is used.
  • the body dissipates heat outward, improving the overall heat dissipation capability of the brake.
  • the third is to reduce the external high-frequency electromagnetic interference.
  • the material of the cylindrical separator 11 has magnetic permeability (for example, steel), which surrounds the image sensor 4 and can shield the image sensor 4, and reduces the external device to the image sensor. 4 electromagnetic interference.
  • the fourth is to increase the ampere force F of the independent coil 5, and the cylindrical separator 11 has a magnetic conductive effect, which can increase the magnetic field density flowing through the independent coil 5, and the magnetic field density is enhanced to improve the ampere force F of the independent coil 5. .
  • cylindrical partition 11 may also be integrally formed with the upper surface of the upper casing 1.
  • the integrally formed structure not only facilitates the manufacture and assembly of the product, but also provides better dustproof and heat conduction performance of the product.
  • the surface color of the cylindrical partition 11 is a dark color having a strong heat absorbing ability, such as dark black or dark gray or dark blue.
  • the dark color may be the color of the material of the tubular separator 11 or the color which appears after processing, and the coloring processing method may be electroplating or painting.
  • the height of the tubular partition 11 is greater than one third of the height of the magnet 8.
  • each magnet 8 being located on an inner side wall of the housing.
  • the magnetic poles of the same name of the magnet 8 are oppositely arranged, and when the current passes through the independent coil 5, the generated Amperage F direction is uniform.
  • the outer periphery of the image sensor carrier 9 is further provided with a limiting boss 10 to ensure that the image sensor carrier 9 and the cylindrical spacer 11 do not appear during the brake drop or autofocus process.
  • the violent impact in the lateral direction and the intense friction in the longitudinal direction avoid the possibility of breakage and chipping between the image sensor carrier 9 and the cylindrical partition 11, reduce the possibility of debris occurring near the position of the image sensor, and the debris contamination image sensor The possibility of location.
  • the upper surface of the housing and the upper surface of the positioning seat are provided with positioning holes 22 with overlapping holes, and the positioning holes 22 are used for mounting the lens carrier 20, thereby increasing the precision of the mechanical connection.
  • the positioning holes 22 also facilitate the mechanical connection of the present invention to other external components, making the invention versatile.
  • the current of the individual coil 5 is driven by an autofocus control chip, and the control chip is electrically connected to the individual coils and the flexible circuit board 3.
  • the control chip may be disposed on the flexible circuit board 3, or may be disposed outside the brake and connected to the flexible circuit board 3 through the socket 19.
  • the focusing principle of the present invention is as shown in FIG. 8. It is assumed that the distance between the lens and the image sensor is Dinf (as shown in the figure) when the telephoto is focused, and the lens is moved when the lens is moved to the near focus. The lens will raise the lens by ⁇ D1, and the distance between the lens and the image sensor will become Dinf+ ⁇ D1 to achieve a smaller optimal object distance.
  • the actuator pair in the present invention see figure
  • the actuator will reduce the image sensor by ⁇ D2, and the distance between the lens and the image sensor will become Dinf+ ⁇ D2, achieving a smaller optimal object distance.
  • the actuator of the present invention can achieve a focusing effect close to that of the lens shifting actuator.
  • the lens shift type actuator and the actuator of the present invention when the lens shift type actuator and the actuator of the present invention are simultaneously employed, the focus distance can be further reduced, and the maximum magnification of the photographing device can be increased.
  • the lens can increase ⁇ D1, lens and image sensor when using a lens-moving actuator The distance between them can also be increased by ⁇ D1; as shown in Fig. 11c, when the lens shifting type and the actuator of the present invention are simultaneously employed, the actuator of the present invention can move the image sensor ⁇ D2 downward, which can additionally increase the lens.
  • the distance ⁇ D2 from the image sensor achieves less recent focus distance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Studio Devices (AREA)

Abstract

一种分体式低功耗小型自动对焦致动器,属于相机致动器技术领域,包括壳体(1, 2)、弹簧(6)、图像传感器载体(9)、至少一块磁石(8)、至少一个独立线圈(5)以及弹性电路板(3),弹簧(6)、图像传感器载体(9)、弹性电路板(3)形成一个具有一轴位移自由度的弹簧振子系统,至少一块磁石(8)设于壳体(1, 2)内壁上,独立线圈(5)设于图像传感器载体(9)上并与磁石(8)对应设置,独立线圈(5)通电后在磁石(8)的磁场内受安培力作用。致动结构不会产生非线性摩擦力,且具有防尘、散热效果好的特点。

Description

一种分体式低功耗小型自动对焦制动器 技术领域
本发明属于相机制动器技术领域,具体涉及一种分体式低功耗小型自动对焦制动器。
背景技术
近年来具有自动对焦功能的可携带式拍摄装置十分普及,基本上成为拍摄装置的标准功能。拍摄过程中被摄物在不同距离时,自动对焦功能可以有效地提高较近被摄物在影像中的解像度,改善近摄时的相片质素。另一方面,自动对焦功能可以把在其他距离的物体影像模糊化,在相片中能更特出被摄物。
传统的自动对焦系统是通过移动整个镜头或镜头中某些镜片的位置,达致改变最佳物距的效果(Optimal Object Distance)。近年来,传统的主流致动器可以在短时间内精准地改变最佳物距,达致快速对焦的效果及提高对焦准确度。
另一种自动对焦系统是传感器移动式,通过致动器驱动图像传感器,改变镜头及图像传感器之间的距离,达致自动对焦的效果。相对于镜头移动式致动器,传感器移动式致动器在功耗上有优势,主要原因是自动对焦时所需移动的部件一般较轻。
由于镜头移动式致动器所需移动的镜头部件重量及尺寸通常较大,所以需要功率较高及尺寸较大的致动器驱动,这不仅提高了拍摄装置的重量及尺寸,还减低了拍摄装置的续航力。
一些配备较重广角镜头的小型拍摄装置,例如小型运动相机,由于无法承受镜头移动式致动器带来的额外重量及尺寸,所以无法加入致动器,影响 近摄时的影像解像度。
另一方面,主流可换镜头拍摄装置,例如数码单反相机,其镜头移动式致动器设置在镜头中,当相机配备多支镜头时,每支镜头均需要配置致动器,这大大提高了所需付出的费用,并且制动器本身增加的重量也不方便携带,增加拍摄者装备负重,影响拍摄的机动性。
虽然传感器移动式致动器理论上在功耗及尺寸上更有优势,但是该领域的致动器技术不够成熟,存有较多缺点。目前,传感器移动式致动器通常采用接触式的限位结构,获得和光轴平行的一轴位移自由度。限位结构无可避免地会在自动对焦过程中增加非线性的摩擦力,影响自动对焦的精准度。另外,在跌落或自动对焦过程中,致动器中出现的摩擦或撞击可能会导致内部结构破碎,如果碎片跌落在图像传感器上方,会影响图像质素。
此外,由于致动器中的图像传感器需要有一定的移动空间,所以在图像传感器下方的电路板无法紧贴外壳,这对散热是不利的。现有技术中,致动器的设计中没有增加另外有效的散热途径,图像传感器散热不良会导致较多图像噪声,甚至无法正常工作的情况。
发明内容
本发明的一个目的是提供一种分体式低功耗小型自动对焦制动器,以解决现有技术中传感器移动式致动器的限位结构在自动对焦过程中产生的非线性摩擦力,影响自动对焦精准度的问题。
本发明还有一个目的是提供一种分体式低功耗小型自动对焦制动器,以解决现有技术中在制动器跌落或自动对焦过程中,致动器中出现的摩擦或撞击会产生碎片及污染图像传感器表面的问题。
本发明再有一个目的是提供一种分体式低功耗小型自动对焦制动器,以解决现有技术中传感器移动式致动器的散热效果差,图像传感器会出现较多 图像噪声甚至不能正常工作的问题。
本发明提供一种分体式低功耗小型自动对焦制动器,包括壳体、弹簧、图像传感器载体、至少一块磁石、至少一个独立线圈以及弹性电路板,所述弹簧设于所述壳体的顶部的内表面,并能沿所述壳体的竖直轴线方向发生弹性变形,所述弹簧的下方设有横置于所述壳体的下部的所述弹性电路板,所述图像传感器载体的一端与所述弹簧连接,另一端与所述弹性电路板连接,所述弹簧、所述图像传感器载体、所述弹性电路板形成一个具有一轴位移自由度的弹簧振子系统;
所述至少一块磁石设于所述壳体的内壁上,所述独立线圈设于所述图像传感器载体上并与所述磁石对应设置,所述独立线圈通电后在所述磁石的磁场内受安培力作用。
作为本发明的优选方式,所述弹性电路板上设有图像传感器。
作为本发明的优选方式,还包括定位座,所述定位座紧靠于所述壳体的内顶面和内壁,所述定位座将所述至少一块磁石固定在所述壳体的内壁上;
所述弹簧为弹簧片,所述弹簧片的一端紧固在所述壳体的内顶面与所述定位座的连接处,另一端与所述图像传感器载体连接。
作为本发明的优选方式,所述弹性电路板包括第一至第五硬性电路板、第一软性电路板、第二软性电路板,所述第一硬性电路板搭载所述图像传感器且第一硬性电路板的周边与所述第一软性电路板连接,所述第一软性电路板的四角分别与所述第二至第五五硬性电路板连接,所述第二至第五第五硬性电路板还分别与所述第二软性电路板连接,所述第二软性电路板设有插座。
作为本发明的优选方式,所述图像传感器载体与所述第一硬性电路板刚性连接,所述第二至第五硬性电路板还分别与所述定位座刚性连接。
作为本发明的优选方式,还包括筒状隔板,所述筒状隔板与所述壳体的 竖直轴线同轴设置,其上端与所述壳体的上表面连接或与所述壳体的上表面一体成型,所述筒状隔板还与所述图像传感器载体之间具有间隙。
作为本发明的优选方式,所述筒状隔板采用具有优良导磁及导热性能的材料制成,其表面颜色为具有较强吸收热辐射能力的深色系颜色。
作为本发明的优选方式,所述筒状隔板的高度大于所述磁石高度的三分之一。
作为本发明的优选方式,当所述磁石的数目大于1时,所述磁石的同名磁极相对设置。。
作为本发明的优选方式,所述图像传感器载体的外周还设有限位凸台;所述壳体的上表面及所述定位座的上表面设有孔位重合的定位孔。
本发明利用图像传感器上的通电独立线圈在磁场中产生的安培力,驱动图像传感器载体在一个轴线上运动,当改变电流的流向时即能改变图像传感器载体的运动发现,从而实现相机的自动对焦功能,本发明支撑结构的接触点不会出现带有摩擦力的接触点,制动过程中不会出现非线性的摩擦力,对焦精准,确保图像清晰。
此外,本发明的图像传感器载体外周还设有限位凸台,制动器跌落或自动对焦过程中,图像传感器载体和筒状隔板之间不会出现横向的猛烈撞击和纵向的剧烈摩擦,避免图像传感器载体和筒状隔板之间出现破损、碎裂的可能,减低在接近图像传感器位置出现碎片的可能性,以及碎片污染图像传感器位置的可能性。
再者,本发明还设有筒状隔板,筒状隔板与外壳相连接或一体成型,筒状隔板具有吸收热辐射、导热、防尘、防电磁辐射的作用,能有效散发制动器工作产生的热量,避免制动器因过热而导致的图像噪声甚至机器不能正常工作的问题。
最后,本发明是利用电磁力驱动的致动器,不需要复杂的机械传动结构, 并且壳体的上表面及定位座的上表面设有孔位重合的定位孔,可实现制动器与镜头分体连接的效果,分体式结构可以提高本发明的通用性,节省用户成本。因此本发明具有结构紧凑、组装方便、体积小巧、重量轻、成本低、功耗低、通用性好的特点,适于大规模生产、推广。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例的外形结构示意图;
图2为本发明实施例的结构分解图;
图3为本发明实施例的结构剖视图;
图4为本发明实施例的弹性电路板的结构示意图;
图5为本发明实施例的防尘、散热原理示意图;
图6为本发明实施例装配相机镜头的结构示意图;
图7为本发明实施例装配相机镜头的结构剖视图;
图8为本发明实施例的对焦原理示意图;
图9为本发明实施例配合镜头移动式制动器的对焦原理示意图。
其中,1、上壳体,2、下壳体,3、弹性电路板,4、图像传感器,5、独立线圈,6、弹簧片,7、定位座,8、磁石,9、图像传感器载体,10、限位凸台,11、筒状隔板,12、第一硬性电路板,13、第一软性电路板,14、第二硬性电路板,15、第三硬性电路板,16、第四硬性电路板,17、第五硬性电路板,18、第二软性电路板,19、插座,20、镜头载体,21、相机镜头,22、定位孔。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
本发明实施例提供一种分体式低功耗小型自动对焦制动器,参照图1至图7所示,包括壳体、弹簧、图像传感器载体9、至少一块磁石8、至少一个独立线圈5以及弹性电路板3。弹簧设于壳体的顶部的内表面,并能沿壳体的竖直轴线方向发生弹性变形,弹簧的下方设有横置于壳体下部的弹性电路板3。图像传感器载体9的一端与弹簧连接,另一端与弹性电路板3连接,其表面刚性地连接有图像传感器4,图像传感器4的上方为直达相机镜头21的通畅光路。弹性电路板3由硬性电路板和软性电路板构成,软性电路板是指具有较高劲度系数的弹性电路板。弹簧、图像传感器载体9、弹性电路板3形成一个具有一轴位移自由度的弹簧振子系统,并且弹簧振子系统的位移自由度的方向与相机的光轴平行。
至少一块磁石8固定于壳体任意内壁上,壳体、磁石8形成一个不动结构,弹簧振子系统依托该不动结构振动。独立线圈5缠绕于图像传感器载体9上并与磁石8对应设置,独立线圈5中的线圈在电路上可以是串联或并联。独立线圈5通电后在磁石8的磁场内产生同相机光轴平行的安培力F,并受安培力F作用带动图像传感器载体9沿壳体的竖直轴线方向移动,置于图像传感器载体9上的图像传感器4便能随之发生位移,通过改变线圈的电流大小及方向,可以改变安培力F的大小和方向,从而改变相机镜头21和图像传感器4之间的距离以及最佳物距,达致自动对焦的效果。当独立线圈5断电时安培力F消失,弹簧振子系统受弹力作用恢复到初始状态,即相机的焦点回到初始位置。
为了便于本发明的制造及装配,致动器和相机镜头是分体的,致动器的上方外部可以设置不同型号的镜头,镜头光轴和图像传感器4的光轴是平行设置。另外,壳体为矩形壳体并采用分体式设计,分为上壳体1和下壳体2。
在上述实施例的基础上又一实施例,还包括定位座7,定位座7紧紧贴 靠在上壳体1的内顶面和内壁,起到对弹簧和磁石8的固定作用,使壳体、磁石8、定位座7形成一个不动结构。本发明的弹簧可选用片状弹簧,即弹簧片6,弹簧片6的一端紧固在上壳体1的内顶面与定位座7的连接处,紧固好的弹簧片6的上方和下方具有一定的空间以供弹簧片6发生弹性变形,即弹簧片6的固定结构为悬臂梁式结构,弹簧片6的另一端还与图像传感器载体9固定连接。
在上述实施例的基础上又一实施例,参照图4所示,弹性电路板3包括第一硬性电路板12、第二硬性电路板14、第三硬性电路板15、第四硬性电路板16、第五硬性电路板17、第一软性电路板13、第二软性电路板18,第一硬性电路板12搭载图像传感器4且第一硬性电路板12的周边与第一软性电路板连接13,第一软性电路板13的四角分别与第二硬性电路板14、第三硬性电路板15、第四硬性电路板16、第五硬性电路板17连接,第二硬性电路板14、第三硬性电路板15、第四硬性电路板16、第五硬性电路板17还分别与第二软性电路板14连接,第二软性电路板14上设有插座19。
弹簧片6、图像传感器载体9、弹性电路板3之所以能形成弹簧振子系统是因为第一硬性电路板12的周边与第一软性电路板连接13,第一软性电路板13为弹性材质且具有较强的劲度系数,所以第一硬性电路板12在空间上具有一定的自由度,可以保证至少具有1个轴向移动自由度。第一软性电路板13的四角连接有4个硬性电路板,这4个硬性电路板位于定位座7和壳体的接合处,利用壳体和定位座7将这4个硬性电路板刚性连接,即能实现对弹性电路板3的固定。第二软性电路板18外露于壳体之外,其上可连接插19座或各种电路接口,以备本发明从外界获得电力或收发信息。
在上述实施例的基础上又一实施例,参照图5所示,还包括筒状隔板11,采用具有优良导磁及导热性能的材料制成(例如钢材)。筒状隔板11与壳体的竖直轴线同轴设置,其上端与上壳体1的上表面连接,形成一个从上壳体1上表面向下延伸的筒状体,筒状体的内部即为相机镜头21到图像传感器4 的光路。筒状体的外部紧邻图像传感载体9并与图像传感器载体9之间具有一定的间隙,防止弹簧振子系统在振动时与筒状隔板11摩擦而导致的灰尘或制动迟滞。筒状隔板11能起到四个作用,一是防尘,筒状隔板11能够隔档从制动器壳体接缝处侵入的灰尘,灰尘要从图像传感器载体9外部走进图像传感器表面,必须经过筒状隔板11和图像传感器载体9之间狭窄而修长的通道,该通道大大增加灰尘走进图像传感器4表面的难度,可减少图像传感器4表面被灰尘污染的可能性。二是增强散热能力,由于图像传感器4和独立线圈5在工作时会产生热量,当图像传感器4温度过高时可能出现图像噪声甚至无法工作的情况,因此在靠近图像传感器4和独立线圈5的位置设置筒状隔板11,可以吸收图像传感器4和独立线圈5发出的热辐射,加之筒状隔板11与制动器壳体相连,故筒状隔板11能将热量导至壳体,利用壳体向外散热,提高制动器整体的散热能力。三是降低外界高频电磁干扰,筒状隔板11的制作材料具有导磁能力(例如钢材),其环绕于图像传感器4周围能够起到对图像传感器4的屏蔽作用,降低外部设备对图像传感器4的电磁干扰。四是提高独立线圈5所受的安培力F,筒状隔板11具有导磁作用,能增加流经独立线圈5的磁场密度,增强磁场密度有助于提高独立线圈5所受到的安培力F。
进一步地,筒状隔板11也可以是与上壳体1的上表面一体成型的,一体成型结构不仅方便产品的制造和装配,也使得产品的防尘、导热的性能更佳。
在上述实施例的基础上又一实施例,筒状隔板11的表面颜色为具有较强吸收热辐射能力的深色系颜色,如深黑或深灰或深兰色。深色可以是筒状隔板11物料本身的颜色,也可以是经过加工后出现的颜色,着色的加工方法可以是电镀或喷漆。
在上述实施例的基础上又一实施例,筒状隔板11的高度大于磁石8高度的三分之一,筒状隔板11的高度尺寸越大,其防尘、导热、防干扰能力越强,但筒状隔板11的实际装配尺寸不得超过弹簧片6到图像传感器4的距离。
在上述实施例的基础上又一实施例,包括两对磁石8,每个磁石8分别位于壳体的内侧壁上。相对设置的磁石8的同名磁极相对,当电流通过独立线圈5时,产生的安培力F方向是一致的。通过改变电流的方向及大小,便能改变安培力F的方向及大小,达致图像传感器4沿光轴位移的效果,实现自动对焦功能。
在上述实施例的基础上又一实施例,图像传感器载体9的外周还设有限位凸台10,确保制动器跌落或自动对焦过程中,图像传感器载体9和筒状隔板11之间不会出现横向的猛烈撞击和纵向的剧烈摩擦,避免图像传感器载体9和筒状隔板11之间出现破损、碎裂的可能,减低在接近图像传感器位置出现碎片的可能性,以及所述碎片污染图像传感器位置的可能性。
进一步地,壳体的上表面及定位座的上表面设有孔位重合的定位孔22,定位孔22用于安装镜头载体20,增加机械连接的精度。定位孔22还方便本发明和其他外部部件进行机械连接,使本发明具备通用性。
在本发明中,独立线圈5的电流由自动对焦控制芯片驱动,控制芯片和独立线圈以及弹性电路板3作电连接。控制芯片可以设于弹性电路板3上,也可以设于制动器外部并通过插座19与软硬电路板3连接。
本发明的对焦原理参照图8所示,假设在对远焦时镜头和图像传感器之间的距离是Dinf(如图),当采用镜头移动式致动器对近焦时,镜头移动式致动器会把镜头升高ΔD1,镜头和图像传感器之间的距离变成Dinf+ΔD1,达致较小的最佳物距。当使用本发明中致动器对近焦时(如图),致动器会把图像传感器降低ΔD2,镜头和图像传感器之间的距离变成Dinf+ΔD2,达致较小的最佳物距,当ΔD1≈ΔD2时,本发明中的致动器能达致和镜头移动式致动器接近的对焦效果。
进一步地,参照图9所示,当同时采用镜头移动式致动器及本发明中致动器时,可以进一步减少对焦距离,增加拍摄装置的最大放大率。如图11b所示,当采用镜头移动式致动器时,镜头可以提高ΔD1,镜头和图像传感器 之间的距离亦能提高ΔD1;如图11c所示,当同时采用镜头移动式及本发明中的致动器,本发明中的致动器能向下移动图像传感器ΔD2,这样能额外增加镜头和图像传感器之间的距离ΔD2,达致更少的最近对焦距离。
利用本发明以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种分体式低功耗小型自动对焦制动器,其特征在于,包括壳体、弹簧、图像传感器载体、至少一块磁石、至少一个独立线圈以及弹性电路板,所述弹簧设于所述壳体的顶部的内表面,并能沿所述壳体的竖直轴线方向发生弹性变形,所述弹簧的下方设有横置于所述壳体的下部的所述弹性电路板,所述图像传感器载体的一端与所述弹簧连接,另一端与所述弹性电路板连接,所述弹簧、所述图像传感器载体、所述弹性电路板形成一个具有一轴位移自由度的弹簧振子系统;
    所述至少一块磁石设于所述壳体的内壁上,所述独立线圈设于所述图像传感器载体上并与所述磁石对应设置,所述独立线圈通电后在所述磁石的磁场内受安培力作用。
  2. 根据权利要求1所述的分体式低功耗小型自动对焦制动器,其特征在于,所述弹性电路板上设有图像传感器。
  3. 根据权利要求1所述的分体式低功耗小型自动对焦制动器,其特征在于,还包括定位座,所述定位座紧靠于所述壳体的内顶面和内壁,所述定位座将所述至少一块磁石固定在所述壳体的内壁上;
    所述弹簧为弹簧片,所述弹簧片的一端紧固在所述壳体的内顶面与所述定位座的连接处,另一端与所述图像传感器载体连接。
  4. 根据权利要求3所述的分体式低功耗小型自动对焦制动器,其特征在于,所述弹性电路板包括第一至第五硬性电路板、第一软性电路板、第二软性电路板,所述第一硬性电路板搭载所述图像传感器且第一硬性电路板的周边与所述第一软性电路板连接,所述第一软性电路板的四角分别与所述第二至第五硬性电路板连接,所述第二至第五硬性电路板还分别与所述第二软性电路板连接,所述第二软性电路板设有插座。
  5. 根据权利要求4所述的分体式低功耗小型自动对焦制动器,其特征在 于,所述图像传感器载体与所述第一硬性电路板刚性连接,所述第二至第五硬性电路板还分别与所述定位座刚性连接。
  6. 根据权利要求1所述的分体式低功耗小型自动对焦制动器,其特征在于,还包括筒状隔板,所述筒状隔板与所述壳体的竖直轴线同轴设置,其上端与所述壳体的上表面连接或与所述壳体的上表面一体成型,所述筒状隔板还与所述图像传感器载体之间具有间隙。
  7. 根据权利要求6所述的分体式低功耗小型自动对焦制动器,其特征在于,所述筒状隔板采用具有优良导磁及导热性能的材料制成,其表面颜色为具有较强吸收热辐射能力的深色系颜色。
  8. 根据权利要求6所述的分体式低功耗小型自动对焦制动器,其特征在于,所述筒状隔板的高度大于所述磁石高度的三分之一。
  9. 根据权利要求1所述的分体式低功耗小型自动对焦制动器,其特征在于,当所述磁石的数目大于1时,所述磁石的同名磁极相对设置。
  10. 根据权利要求1所述的分体式低功耗小型自动对焦制动器,其特征在于,所述图像传感器载体的外周还设有限位凸台;所述壳体的上表面及所述定位座的上表面设有孔位重合的定位孔。
PCT/CN2017/108661 2017-10-13 2017-10-31 一种分体式低功耗小型自动对焦制动器 WO2019071659A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710952575.7 2017-10-13
CN201710952575.7A CN107741624B (zh) 2017-10-13 2017-10-13 一种分体式低功耗小型自动对焦制动器

Publications (1)

Publication Number Publication Date
WO2019071659A1 true WO2019071659A1 (zh) 2019-04-18

Family

ID=61237552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108661 WO2019071659A1 (zh) 2017-10-13 2017-10-31 一种分体式低功耗小型自动对焦制动器

Country Status (2)

Country Link
CN (1) CN107741624B (zh)
WO (1) WO2019071659A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835170A (zh) * 2019-11-25 2021-05-25 河源友华微机电科技有限公司 微型相机的三轴电磁驱动装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110500479B (zh) * 2018-05-18 2022-01-11 高瞻创新科技有限公司 一种能带动相机模组的防抖微型云台
CN114793259A (zh) * 2021-01-25 2022-07-26 昆山丘钛微电子科技股份有限公司 一种板载式电磁驱动器及摄像头模组

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276967A (ja) * 1986-05-23 1987-12-01 Matsushita Electric Ind Co Ltd 撮像素子振動装置
JP2000194025A (ja) * 1998-12-28 2000-07-14 Canon Inc ピント調整機構およびそれを用いた撮像装置
CN1862358A (zh) * 2005-05-11 2006-11-15 北京华旗数码技术实验室有限责任公司 一种自动调焦装置
CN101246246A (zh) * 2007-02-13 2008-08-20 阿尔卑斯电气株式会社 透镜驱动装置
CN101533145A (zh) * 2008-03-12 2009-09-16 贾怀昌 图像传感器浮动式影像追踪自动对焦系统
CN102004298A (zh) * 2010-08-20 2011-04-06 香港应用科技研究院有限公司 小型成像装置
CN102749697A (zh) * 2011-04-21 2012-10-24 奥林巴斯映像株式会社 驱动装置和使用该驱动装置的摄影设备
CN104204889A (zh) * 2012-03-23 2014-12-10 索尼公司 照相机模块和照相机装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101398526A (zh) * 2007-09-25 2009-04-01 中山联合光电科技有限公司 电磁力驱动对焦的高像素微型光学自动对焦系统
KR101920314B1 (ko) * 2011-10-31 2019-02-08 엘지이노텍 주식회사 카메라 모듈
CN207571371U (zh) * 2017-10-13 2018-07-03 高瞻创新科技有限公司 一种分体式低功耗小型自动对焦制动器

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62276967A (ja) * 1986-05-23 1987-12-01 Matsushita Electric Ind Co Ltd 撮像素子振動装置
JP2000194025A (ja) * 1998-12-28 2000-07-14 Canon Inc ピント調整機構およびそれを用いた撮像装置
CN1862358A (zh) * 2005-05-11 2006-11-15 北京华旗数码技术实验室有限责任公司 一种自动调焦装置
CN101246246A (zh) * 2007-02-13 2008-08-20 阿尔卑斯电气株式会社 透镜驱动装置
CN101533145A (zh) * 2008-03-12 2009-09-16 贾怀昌 图像传感器浮动式影像追踪自动对焦系统
CN102004298A (zh) * 2010-08-20 2011-04-06 香港应用科技研究院有限公司 小型成像装置
CN102749697A (zh) * 2011-04-21 2012-10-24 奥林巴斯映像株式会社 驱动装置和使用该驱动装置的摄影设备
CN104204889A (zh) * 2012-03-23 2014-12-10 索尼公司 照相机模块和照相机装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112835170A (zh) * 2019-11-25 2021-05-25 河源友华微机电科技有限公司 微型相机的三轴电磁驱动装置
CN112835170B (zh) * 2019-11-25 2023-11-14 河源友华微机电科技有限公司 微型相机的三轴电磁驱动装置

Also Published As

Publication number Publication date
CN107741624B (zh) 2020-06-23
CN107741624A (zh) 2018-02-27

Similar Documents

Publication Publication Date Title
JP4509942B2 (ja) 組み立て性の向上されたレンズ移送装置
CN107329348A (zh) 一种带防抖功能的透镜驱动装置
JP2006195452A (ja) 振動特性と耐衝撃性が向上された焦点調節装置。
US20060280492A1 (en) Auto-focusing device for lens
US20070046109A1 (en) Miniature linear motor driving device and auto-focus lens device using the same
TWI477877B (zh) 相機模組
WO2019071659A1 (zh) 一种分体式低功耗小型自动对焦制动器
KR20150007665A (ko) 카메라 모듈
JP5500967B2 (ja) レンズ鏡筒、及びそれを用いた撮像装置
US20240142749A1 (en) Optical element driving mechanism
CN219496782U (zh) 自动对焦马达及摄像模组
CN113114902B (zh) 拍摄装置及电子设备
CN207571371U (zh) 一种分体式低功耗小型自动对焦制动器
US11804320B2 (en) Camera device and portable electronic device
US20230314829A1 (en) Camera device and portable electronice device
CN113873130B (zh) 摄像模组和电子设备
CN207081926U (zh) 一种带防抖功能的透镜驱动装置
US11906810B2 (en) Optical element driving mechanism
KR101200080B1 (ko) 카메라 렌즈 조립체
CN220208013U (zh) 光学元件驱动机构
CN220020000U (zh) 光学元件驱动机构
CN114449147B (zh) 摄像模组和电子设备
US11838633B2 (en) Camera device having a flexible substrate for image stabilization mechanism with a coil on its surface
CN220509197U (zh) 潜望式镜头驱动机构
WO2022088650A1 (zh) 图像传感器防抖组件、摄像装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 13/10/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17928329

Country of ref document: EP

Kind code of ref document: A1