WO2019071123A1 - POLYRHEERAPIES AND USES THEREOF - Google Patents

POLYRHEERAPIES AND USES THEREOF Download PDF

Info

Publication number
WO2019071123A1
WO2019071123A1 PCT/US2018/054606 US2018054606W WO2019071123A1 WO 2019071123 A1 WO2019071123 A1 WO 2019071123A1 US 2018054606 W US2018054606 W US 2018054606W WO 2019071123 A1 WO2019071123 A1 WO 2019071123A1
Authority
WO
WIPO (PCT)
Prior art keywords
agent
cancer
inhibitor
vegf
combination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
PCT/US2018/054606
Other languages
English (en)
French (fr)
Inventor
Keith W. MIKULE
Zebin Wang
Yinghui Zhou
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tesaro Inc
Original Assignee
Tesaro Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to US16/754,083 priority Critical patent/US11801240B2/en
Priority to CA3076859A priority patent/CA3076859A1/en
Priority to MX2020003799A priority patent/MX2020003799A/es
Priority to EA202090655A priority patent/EA202090655A1/ru
Priority to KR1020207012376A priority patent/KR20200067164A/ko
Priority to SG11202002499TA priority patent/SG11202002499TA/en
Priority to AU2018346688A priority patent/AU2018346688A1/en
Priority to JP2020519286A priority patent/JP2020536869A/ja
Priority to CN201880065336.2A priority patent/CN111182923A/zh
Application filed by Tesaro Inc filed Critical Tesaro Inc
Priority to EP18796190.9A priority patent/EP3691685A1/en
Priority to BR112020006845-4A priority patent/BR112020006845A2/pt
Publication of WO2019071123A1 publication Critical patent/WO2019071123A1/en
Priority to IL273510A priority patent/IL273510A/en
Priority to PH12020550400A priority patent/PH12020550400A1/en
Anticipated expiration legal-status Critical
Priority to CONC2020/0005223A priority patent/CO2020005223A2/es
Priority to AU2022201944A priority patent/AU2022201944A1/en
Ceased legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/445Non condensed piperidines, e.g. piperocaine
    • A61K31/4523Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems
    • A61K31/454Non condensed piperidines, e.g. piperocaine containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. pimozide, domperidone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/40Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil
    • A61K31/403Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having five-membered rings with one nitrogen as the only ring hetero atom, e.g. sulpiride, succinimide, tolmetin, buflomedil condensed with carbocyclic rings, e.g. carbazole
    • A61K31/404Indoles, e.g. pindolol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/47Quinolines; Isoquinolines
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/502Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with carbocyclic ring systems, e.g. cinnoline, phthalazine
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/50Pyridazines; Hydrogenated pyridazines
    • A61K31/5025Pyridazines; Hydrogenated pyridazines ortho- or peri-condensed with heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/506Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim not condensed and containing further heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/55Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having seven-membered rings, e.g. azelastine, pentylenetetrazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/22Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against growth factors ; against growth regulators
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/18Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans
    • C07K16/28Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants
    • C07K16/2863Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from animals or humans against receptors, cell surface antigens or cell surface determinants against receptors for growth factors, growth regulators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K2039/505Medicinal preparations containing antigens or antibodies comprising antibodies
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K2300/00Mixtures or combinations of active ingredients, wherein at least one active ingredient is fully defined in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • A61K45/06Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/20Pills, tablets, discs, rods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate

Definitions

  • Niraparib is an orally active and potent poly (ADP-ribose) polymerase, or PARP, inhibitor.
  • Niraparib and pharmaceutically acceptable salts thereof are disclosed in International Publication No. WO2007/1 13596 and European Patent No. EP2007733B 1 ; International Publication No. WO2008/084261 and U.S. Patent No. 8,071,623; and International Publication No. WO2009/087381 and U.S. Patent No. 8,436,185.
  • Methods of making niraparib and pharmaceutically acceptable salts thereof are disclosed in International Publication Nos.
  • Cancer is a serious public health problem, with about 595,690 people in the United States of America expected to die of cancer in 2016.
  • Modern strategies for the development of novel cancer therapies include agents targeting specific molecular defects that characterize certain cancer cells in order to increase treatment efficacy and reduce toxicities.
  • targeted therapies have long been effective, as agents targeting hormone receptors in tumors expressing them and as antibodies or tyrosine kinase inhibitors targeting overexpressed or amplified HER2 molecules.
  • TNBC triple-negative breast cancers
  • PARPs nuclear enzymes poly [ADP-ribose] polymerases
  • a method of treating a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly [ADP-ribose] polymerase (PARP); and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • a method of preventing a tumor cell growth in a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly [ADP-ribose] polymerase (PARP); and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • a method of preventing tumor metastasis in a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • PARP [ADP-ribose] polymerase
  • the first agent inhibits PARP1, or PARP2, or both.
  • the first agent is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; or any combination thereof.
  • the first agent is a small molecule.
  • the first agent is selected from the group consisting of: ABT- 767, AZD 2461, BGB-290, BGP 15, CEP 8983, CEP 9722, DR 2313, E7016, E7449, fluzoparib (SHR 3162), IMP 4297, INO1001, JPI 289, JPI 547, monoclonal antibody B3-LysPE40 conjugate, MP 124, niraparib (ZEJULA) (MK-4827), NU 1025, NU 1064, NU 1076, U1085, olaparib (AZD2281), ON02231, PD 128763, R 503, R554, rucaparib (RUBRACA) (AG- 014699, PF-01367338), SBP 101, SC 101914, Simmiparib, talazoparib (BMN-673), veliparib (ABT-888), WW 46, 2-(4-(Trifluoromethyl)phen
  • the first agent is selected from the group consisting of:
  • niraparib olaparib
  • rucaparib rucaparib
  • talazoparib talazoparib
  • veliparib veliparib
  • the first agent is niraparib or a pharmaceutically acceptable salt or derivative thereof.
  • the angiogenesis inhibitor reduces the production of a pro- angiogenic factor, inhibits an interaction between a pro-angiogenic factor and a pro-angiogenic receptor, inhibits a function of a pro-angiogenic factor, inhibits a function of a pro-angiogenic factor receptor, reduces of blood flow by disruption of blood vessels, inhibits vessel sprouting, or any combinations thereof.
  • the pro-angiogenic factor comprises FGF1-14, FGF 15/19, FGF 18-23, PDGF, VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF (placental growth factor), VEGF-E (Orf-VEGF), Trimeresurus flavoviridis svVEGF, VEGFR-1, VEGFR-2, VEGFR-3, angiogenin, angiopoietin-1, angiopoietin-2, Tie-1, Tie-2, MMP, DIM, SEMA3s, ephrins, leptin, chemokines, transforming growth factor- ⁇ (TGF- ⁇ ), or any combination thereof.
  • TGF- ⁇ transforming growth factor- ⁇
  • the angiogenesis inhibitor is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; or any combination thereof.
  • the angiogenesis inhibitor is selected from the group consisting of bevacizumab, itraconazole, carboxyamidotriazole, TNP-470, fumagillin, CM101, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, angiostatic steroids, heparin, cartilage- derived angiogenesis inhibitory factor, matrix metalloproteinase inhibitor, angiostatin, endostatin, 2-methoxyestradiol, tecogalan, tetrathiomolybdate, thrombospondin, thalidomide, prolactin, ⁇ 3 inhibitor, lenalidomide, linomide, ramucirumab, tasquinimod, ranibizumab, sorafenib, sunitinib, pazopanib, everolimus, tissue inhibitors of metalloproteases (TF Pl and TF P2), bFGF
  • the angiogenesis inhibitor inhibits a DLL4/Notch signaling pathway.
  • the angiogenesis inhibitor inhibiting the DLL4/Notch signaling pathway is a gamma-secretase inhibitor (GSI), a siRNA, or a monoclonal antibody against a Notch receptor or ligand.
  • the angiogenesis inhibitor inhibiting a DLL4/Notch signaling pathway is selected from the group consisting of RO4929097, MRK-003, MK-0752,
  • PF03084014, MEDI0639 curcumin, 3,3 '-diindolylmethane (DIM), resveratrol, 3,5-bis(2,4- difluorobenzylidene)-4-piperidone (DiFiD) and epigallocatechin-3-gallate (EGCG), honokiol, and any combination thereof.
  • DIM 3,3 '-diindolylmethane
  • resveratrol 3,5-bis(2,4- difluorobenzylidene)-4-piperidone
  • EGCG epigallocatechin-3-gallate
  • the angiogenesis inhibitor inhibits a vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) pathway.
  • VEGF vascular endothelial growth factor
  • VEGFR vascular endothelial growth factor receptor
  • the angiogenesis inhibitor is selected from the group consisting of Akt Inhibitor, calcineurin autoinhibitory peptide, ET-18-OCH3, Go 6983, NG-Nitro-L- arginine methyl ester, p21 -activated kinase Inhibitor, cPLA2a inhibitor, PI- 103, PP2, SB 203580, U0126, VEGFR tyrosine kinase inhibitor V, VEGFR2 kinase inhibitor VI, VEGFR2 kinase inhibitor III, ZM 336372, and any combination thereof.
  • the angiogenesis inhibitor inhibits a VEGF family protein and/or a VEGFR family protein.
  • the VEGF family protein comprises VEGF-A, VEGF-B, VEGF-C, VEGF-D, P1GF (placental growth factor), VEGF-E (Orf-VEGF), Trimeresurus flavoviridis svVEGF, or any combination thereof.
  • the VEGFR family protein comprises VEGFR- 1, VEGFR-2, VEGFR-3, or any combination thereof.
  • the angiogenesis inhibitor comprises a VEGF inhibitor, a VEGFR inhibitor, or a combination thereof.
  • the angiogenesis inhibitor induces homologous recombinant (HR) deficiency.
  • the angiogenesis inhibitor induces hypoxia.
  • the angiogenesis inhibitor induces homologous recombinant
  • the VEGF inhibitor is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; or any combination thereof.
  • the VEGF inhibitor is an antibody or a fragment thereof.
  • the VEGF inhibitor is bevacizumab, ranibizumab, OPT-302, ziv-aflibercept, or any combinations thereof.
  • the VEGF inhibitor is a small organic or inorganic molecule.
  • the small organic or inorganic molecule is Flt2-1 1, CBO-P1 1, Je-11, VI, or any combination thereof.
  • the VEGFR inhibitor is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; a tyrosine kinase inhibitor; or any combination thereof.
  • the VEGFR inhibitor is a tyrosine kinase inhibitor.
  • the tyrosine kinase inhibitor is pazopanib, sunitinib, sorafenib, axitinib, ponatinib, cabozantinib, regorafenib, vandetanib, lenvatinib, semaxanib, SU6668, vatalanib, tivozanib, cediranib, or any combination thereof.
  • the VEGFR inhibitor is an antibody or a fragment thereof.
  • the VEGFR inhibitor is ramucirumab.
  • a first agent is niraparib
  • a second agent is cabozantinib
  • a first agent is niraparib
  • a second agent is bevacizumab
  • administering comprises administering the first and second agent sequentially.
  • administering comprises administering the first and second agent simultaneously.
  • administering comprises administering the first agent before administering the second agent.
  • administering comprises administering the second agent before administering the first agent.
  • the subject is a mammalian subject.
  • the subject is a mouse.
  • the subject is a human.
  • the disease or condition is cancer.
  • the cancer is selected from the group consisting of carcinoma, squamous carcinoma, adenocarcinoma, sarcomata, endometrial cancer, breast cancer, ovarian cancer, cervical cancer, fallopian tube cancer, primary peritoneal cancer, colon cancer, colorectal cancer, squamous cell carcinoma of the anogenital region, melanoma, renal cell carcinoma, lung cancer, non-small cell lung cancer, squamous cell carcinoma of the lung, stomach cancer, bladder cancer, gall bladder cancer, liver cancer, thyroid cancer, laryngeal cancer, salivary gland cancer, esophageal cancer, head and neck cancer, glioblastoma, glioma, squamous cell carcinoma of the head and neck, prostate cancer, pancreatic cancer, mesothelioma, sarcoma, hematological cancer, leukemia, lymphoma, neuroma, and
  • the cancer is breast cancer.
  • the breast cancer is triple negative breast cancer.
  • the cancer is ovarian cancer.
  • the cancer is colorectal cancer.
  • a first agent is niraparib
  • a second agent is cabozantinib
  • a first agent is niraparib
  • a second agent is bevacizumab
  • administering the first agent, the second agent, or both comprises administering the first agent, the second agent, or both ocularly, oral, parenterally, topically, bronchially, buccally, intradermally, interdermally, transdermally, enterally, intra- arterially, intradermally, intragastrically, intramedullarily, intramuscular, intranasally, intraperitoneally, intrathecally, intravenously, intraventricularly, within a specific organ (e.g., intrahepaticly), mucosally, nasally, orally, rectally, subcutaneously, sublingually, topically, tracheally, vaginally, vitreally, or any combination thereof.
  • a specific organ e.g., intrahepaticly
  • administering comprises administering a composition formulated for oral administration comprising the first agent.
  • the composition is a capsule.
  • the composition is a tablet.
  • the composition (e.g., a capsule or tablet) further comprises one or more pharmaceutically acceptable excipients.
  • the one or more pharmaceutically acceptable excipients comprises lactose monohydrate, magnesium stearate, or a combination thereof.
  • a therapeutically effective amount of the first or second agent is administered.
  • the subject has previously been treated with one or more different cancer treatment modalities.
  • the subject has previously been treated with one or more of radiotherapy, chemotherapy, or immunotherapy.
  • the subject has been treated with one, two, three, four, or five lines of prior therapy.
  • the prior therapy is a cytotoxic therapy.
  • the method further comprises administering a third agent to the subject, or performing a therapy on the subject selected from the group consisting of surgery, radiotherapy, or a combination thereof.
  • the third agent comprises a radiotherapeutic agent, an anti- immunosuppressive agent or immunostimulatory agent, a chemotherapeutic agent, or a combination thereof.
  • the anti-immunosuppressive agent or immunostimulatory agent comprises an anti-PD-1 agent, an anti-PD-Ll agent, an anti-CTLA4 agent, an anti-TIM-3 agent, an anti-LAG-3 agent, a GITR (glucocorticoid-induced TNFR-related protein) stimulating agent, an anti-IDO agent, an anti-ICOS agent, an anti-OX40 agent, an anti-CSFIR agent, a chemokine signaling agent, a cytokine signal stimulating agent, or any combination thereof.
  • GITR glucocorticoid-induced TNFR-related protein
  • the anti-PD-1 agent is selected from the group consisting of pembrolizumab, nivolumab, PDR001, REGN2810 (SAR-439684), BGB-A317, BI 754091, IB 1308, INCSHR-1210, JNJ-63723283, JS-001, MEDI0680 (AMP-514), MGA-012, PF- 06801591, REGN-2810, TSR-042, atezolizumab, avelumab, CX-072, durvalumab, FAZ053, LY3300054, PD-L1 millamolecule, and any combinations thereof.
  • the anti-PD-Ll agent is selected from the group consisting of atezolizumab, durvalumab, avelumab, LY3300054, and any combinations thereof.
  • the GITR stimulating agent is selected from the group consisting of DTA-1, mGITRL, pGITRL, and any combinations thereof.
  • the anti-CTLA4 agent is selected from the group consisting of ipilimumab, tremelimumab, and a combination thereof
  • the third agent is an anti-immunosuppressive agent or immunostimulatory agent selected from the group consisting of a flavonoid (e.g., flavonoid glycoside), lidocaine, lamotrigine, sulfamethoxazole, phenytoin, carbamazepine,
  • a flavonoid e.g., flavonoid glycoside
  • lidocaine e.g., lidocaine
  • lamotrigine e.g., lamotrigine
  • sulfamethoxazole e.g., phenytoin
  • carbamazepine e.g., carbamazepine
  • the third agent is a chemotherapeutic agent selected from the group consisting of aminoglutethimide, amsacrine, anastrozole, asparaginase, beg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine,
  • chemotherapeutic agent selected from the group consisting of aminoglutethimide, amsacrine, anastrozole, asparaginase, beg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine,
  • a therapeutically-effective amount of a therapeutic agent is administered to a subject.
  • the therapeutic agent can be a first, a second, or a third agent.
  • the therapeutically-effective amount is from about 0.1 milligram per kilogram of body weight per day (mg/kg day) to about 1 mg/kg/day, from 1 mg/kg day to about 5 mg/kg/day, from 5 mg/kg/day to about 10 mg/kg/day, from 10 mg/kg/day to about 15 mg/kg/day, from 15 mg/kg/day to about 20 mg/kg/day, from 20 mg/kg/day to about 25 mg/kg day, from 25 mg/kg/day to about 30 mg/kg/day, from 30 mg kg/day to about 35 mg/kg/day, or from 35 mg/kg/day to about 40 mg/kg/day.
  • the therapeutically-effective amount is from 0 1 mg/kg/day to about 40 mg/kg/day. In some embodiments, the therapeutically-effective amount is from 10 mg/kg/day to about 50 mg/kg/day, or from 50 mg/kg/day to about 100 mg/kg/day.
  • a first agent is administered at a dose that is equivalent to about 300 mg of niraparib. In some embodiments, the first agent is administered at a reduced dose. In some embodiments, the reduced dose is equivalent to 200 mg of niraparib. In some embodiments, the reduced dose is equivalent to 100 mg - 150 mg, or 150 mg -200 mg of niraparib. In some embodiments, the first agent (e.g. niraparib) is administered at an increased dose if the subject's hemoglobin > 9 g/dL, platelets > 100,000/ ⁇ . and neutrophils > 1500/ ⁇ . for all labs performed during one or more treatment cycles. In some embodiments, the dose of the first agent (e.g. niraparib) is increased after two cycles of treatment.
  • a pharmaceutical composition comprising any of the first agents described herein and any of the second agents described herein. In some embodiments, the pharmaceutical composition further comprises any of the third agents described herein. [0077]
  • a kit comprising any of the first agents described herein and any of the second agents described herein. In some embodiments, the kit further comprises any of the third agents described herein.
  • FIG. 1 depicts an exemplary study of niraparib and bevacizumab combination treatment in both ovarian and triple negative breast cancer (TNBC) models.
  • FIG. 2 depicts an exemplary study of niraparib and cabozantinib combination treatment in both ovarian and TNBC models.
  • FIG. 3A depicts an exemplary study of tolerability and antitumor activity of niraparib and bevacizumab combination measured by mean tumor volume in ovarian cancer cell line- derived xenograft model A2780 (BRCA wt, homologous recombination deficiency negative (HRD-))
  • FIG. 3B depicts an exemplary study of tolerability and antitumor activity of niraparib and bevacizumab combination measured by body weight in ovarian cancer cell line-derived xenograft model A2780 (BRCA wt, HRD-)
  • FIG. 4A depicts an exemplary study of tolerability and anti-tumor activity of niraparib and cabozantinib combination measured by mean tumor volume in ovarian cancer cell line-derived xenograft model A2780 (BRCA wt, HRD-)
  • FIG. 4B depicts an exemplary study of tolerability and anti-tumor activity of niraparib and cabozantinib combination measured by body weight in ovarian cancer cell line- derived xenograft model A2780 (BRCA wt, HRD-).
  • FIG. 5 depicts an exemplary study of anti-tumor activity of niraparib and cabozantinib combination in ovarian patient-derived xenograft (PDX) model OVC134.
  • FIG. 6A depicts an exemplary study of anti-tumor activity of niraparib and bevacizumab combination in TNBC PDX model MAXF 574.
  • FIG. 6B depicts an exemplary study of anti-tumor activity of niraparib and cabozantinib combination in TNBC PDX model MAXF 574.
  • FIG. 7A depicts an exemplary study of anti-tumor activity of niraparib and bevacizumab combination in TNBC PDX model MAXF 857.
  • FIG. 7B depicts an exemplary study of anti-tumor activity of niraparib and cabozantinib combination in TNBC PDX model MAXF 857.
  • FIG. 8A depicts an exemplary study of anti-tumor activity of niraparib and bevacizumab combination in TNBC PDX model MAXF MX1.
  • FIG. 8B depicts an exemplary study of anti-tumor activity of niraparib and cabozantinib combination in TNBC PDX model MAXF MX1.
  • administration typically refers to the administration of a composition to a subject or system.
  • routes that may, in appropriate circumstances, be utilized for administration to a subject, for example a human subject.
  • administration may be ocular, oral, parenteral, topical, etc.
  • administration may be bronchial (e.g., by bronchial instillation), buccal, dermal (which may be or comprise, for example, one or more of topical to the dermis, intradermal, interdermal, transdermal, etc.), enteral, intra-arterial, intradermal, intragastric, intramedullary, intramuscular, intranasal, intraperitoneal, intrathecal, intravenous, intraventricular, within a specific organ (e.g., intrahepatic), mucosal, nasal, oral, rectal, subcutaneous, sublingual, topical, tracheal (e.g., by intratracheal instillation), vaginal, vitreal, etc.
  • bronchial e.g., by bronchial instillation
  • buccal which may be or comprise, for example, one or more of topical to the dermis, intradermal, interdermal, transdermal, etc.
  • enteral intra-arterial, intradermal, intragas
  • administration may involve dosing that is intermittent (e.g., a plurality of doses separated in time) and/or periodic (e.g., individual doses separated by a common period of time) dosing. In some embodiments, administration may involve continuous dosing (e.g., perfusion) for at least a selected period of time.
  • the terms "dosage form” or "unit dosage form” refer to a physically discrete unit of an active agent (e.g., a therapeutic or diagnostic agent) for administration to a subject.
  • an active agent e.g., a therapeutic or diagnostic agent
  • each such unit contains a predetermined quantity of active agent.
  • such quantity is a unit dosage amount (or a whole fraction thereof) appropriate for administration in accordance with a regimen that has been determined to correlate with a desired or beneficial outcome when administered to a relevant population (e.g., with a therapeutic regimen).
  • a therapeutic composition or agent administered to a particular subject is determined by one or more attending physicians and may involve administration of multiple dosage forms.
  • a given therapeutic agent is administered according to a regimen, which may involve one or more doses.
  • a regimen comprises a plurality of doses each of which is separated in time from other doses.
  • individual doses are separated from one another by a time period of the same length; in some embodiments, a regimen comprises a plurality of doses, wherein the doses are separated by time periods of different length.
  • a regimen comprises doses of the same amount. In some embodiments, a regimen comprises doses of different amounts.
  • a regimen comprises at least one dose, wherein the dose comprises one unit dose of the therapeutic agent.
  • a regimen comprises at least one dose, wherein the dose comprises two or more unit doses of the therapeutic agent.
  • the term "effective amount” refers to the amount of a therapeutic agent disclosed herein which treats, upon single or multiple dose administration, a subject with a disease or condition. An effective amount can be readily determined by the attending
  • an effective amount of the therapeutic agent disclosed herein is expected to vary from about 0.1 milligram per kilogram of body weight per day (mg/kg/day) to about 40 mg/kg/day. Specific amounts can be determined by the skilled person.
  • the term "patient”, “subject”, or “test subject” refers to any organism, including a human or non-human, to which provided therapeutic agent or agents described herein are administered in accordance with the present disclosure e.g., for experimental, diagnostic, prophylactic, and/or therapeutic purposes.
  • Typical subjects include animals (e.g., mammals such as mice, rats, rabbits, canines, felines, horses, cattle, pigs, deer, non-human primates, and humans; insects; worms; birds; reptiles; amphibians; etc.).
  • the subject is a human.
  • the subject is a mouse.
  • a subject may be suffering from, and/or susceptible to a disease, disorder, and/or condition (e.g., cancer).
  • a patient is a human that has been diagnosed with a cancer.
  • a patient is a human possessing one or more female reproductive organs.
  • “Diluents” is a diluting agent and is also referred to as a filler, dilutant or thinner. “Diluents” increase bulk of the composition to facilitate compression or create sufficient bulk for homogenous blend for capsule filling.
  • Such compounds include e.g., lactose, starch, mannitol, sorbitol, dextrose, microcrystalline cellulose such as Avicel ® ; dibasic calcium phosphate, dicalcium phosphate dihydrate; tricalcium phosphate, calcium phosphate; anhydrous lactose, spray-dried lactose; pregelatinized starch, compressible sugar, such as Di-Pac ® (Amstar); mannitol, hydroxypropylmethylcellulose, hydroxypropylmethylcellulose acetate stearate, sucrose-based diluents, confectioner's sugar; monobasic calcium sulfate monohydrate, calcium sulfate dihydrate; calcium lactate trihydrate, dextrates; hydrolyzed cereal solids, amylose;
  • powdered cellulose calcium carbonate; glycine, kaolin; mannitol, sodium chloride; inositol, bentonite, and the like. Combinations of one or more diluents can also be used.
  • excipient means a pharmacologically inactive component such as a diluent, lubricant, surfactant, carrier, or the like. Excipients that are useful in preparing a pharmaceutical composition are generally safe, non-toxic and are acceptable for human pharmaceutical use. Reference to an excipient includes both one and more than one such excipient. Co-processed excipients are also covered under the scope of present disclosure.
  • Filling agents can refer to "diluents” and include compounds such as lactose, lactose monohydrate, calcium carbonate, calcium phosphate, dibasic calcium phosphate, calcium sulfate, microcrystalline cellulose, cellulose powder, dextrose, dextrates, dextran, starches, pregelatinized starch, sucrose, xylitol, lactitol, mannitol, sorbitol, sodium chloride, polyethylene glycol, and the like.
  • Lubricants and “glidants” are compounds that prevent, reduce or inhibit adhesion or friction of materials.
  • exemplary lubricants include, e.g., stearic acid, magnesium stearate, calcium hydroxide, talc, sodium stearyl fumarate, a hydrocarbon such as mineral oil, or hydrogenated vegetable oil such as hydrogenated soybean oil (Sterotex ® ), higher fatty acids and their alkali-metal and alkaline earth metal salts, such as aluminum, calcium, magnesium, zinc, stearic acid, sodium stearates, glycerol, talc, waxes, Stearowet ® , boric acid, sodium benzoate, sodium acetate, sodium chloride, leucine, a polyethylene glycol (e.g., PEG-4000) or a methoxypolyethylene glycol such as CarbowaxTM, sodium oleate, sodium benzoate, glyceryl behenate, polyethylene glycol,
  • the term "pharmaceutically acceptable salt” refers to those salts which are, within the scope of sound medical judgment, suitable for use in contact with the tissues of humans and lower animals without undue toxicity, irritation, allergic response and the like, and are commensurate with a reasonable benefit/risk ratio.
  • Pharmaceutically acceptable salts are well known in the art. For example, S. M. Berge et al., describe pharmaceutically acceptable salts in detail in J. Pharmaceutical Sciences, 1977, 66, 1-19, incorporated herein by reference.
  • Pharmaceutically acceptable salts of the compounds of this invention include those derived from suitable inorganic and organic acids and bases.
  • suitable inorganic and organic acids and bases include those derived from suitable inorganic and organic acids and bases.
  • pharmaceutically acceptable, nontoxic acid addition salts are salts of an amino group formed with inorganic acids such as hydrochloric acid, hydrobromic acid, phosphoric acid, sulfuric acid and perchloric acid or with organic acids such as acetic acid, oxalic acid, maleic acid, tartaric acid, citric acid, succinic acid or malonic acid or by using other methods used in the art such as ion exchange.
  • Other pharmaceutically acceptable salts include adipate, alginate, ascorbate, aspartate,
  • benzenesulfonate benzoate, bisulfate, borate, butyrate, camphorate, camphorsulfonate, citrate, cyclopentanepropionate, digluconate, dodecylsulfate, ethanesulfonate, formate, fumarate, glucoheptonate, glycerophosphate, gluconate, hemisulfate, heptanoate, hexanoate, hydroiodide, 2-hydroxy-ethanesulfonate, lactobionate, lactate, laurate, lauryl sulfate, malate, maleate, malonate, methanesulfonate, 2-naphthalenesulfonate, nicotinate, nitrate, oleate, oxalate, palmitate, pamoate, pectinate, persulfate, 3-phenylpropionate, phosphate, pivalate, propionate
  • Salts derived from appropriate bases include alkali metal, alkaline earth metal, ammonium and N + (Ci-4 alkyl)4 salts.
  • Representative alkali or alkaline earth metal salts include sodium, lithium, potassium, calcium, magnesium, and the like.
  • Further pharmaceutically acceptable salts include, when appropriate, nontoxic ammonium, quaternary ammonium, and amine cations formed using counterions such as halide, hydroxide, carboxylate, sulfate, phosphate, nitrate, lower alkyl sulfonate and aryl sulfonate.
  • antibody refers to a polypeptide that includes canonical immunoglobulin sequence elements sufficient to confer specific binding to a particular target antigen.
  • intact antibodies as produced in nature are approximately 150 kD tetrameric agents comprised of two identical heavy chain polypeptides (about 50 kD each) and two identical light chain polypeptides (about 25 kD each) that associate with each other into what is commonly referred to as a "Y-shaped" structure.
  • Each heavy chain is comprised of at least four domains (each about 1 10 amino acids long) - an amino-terminal variable (VH) domain (located at the tips of the Y structure), followed by three constant domains: CHI, CH2, and the carboxy-terminal CH3 (located at the base of the Y's stem).
  • VH amino-terminal variable
  • CH2 amino-terminal variable
  • CH3 carboxy-terminal CH3
  • Each light chain is comprised of two domains - an amino-terminal variable (VL) domain, followed by a carboxy- terminal constant (CL) domain, separated from one another by another "switch".
  • VL amino-terminal variable
  • CL carboxy- terminal constant
  • Those skilled in the art are well familiar with antibody structure and sequence elements, recognize “variable” and “constant” regions in provided sequences, and understand that there may be some flexibility in definition of a "boundary" between such domains such that different presentations of the same antibody chain sequence may, for example, indicate such a boundary at a location that is shifted one or a few residues relative to a different presentation of the same antibody chain sequence.
  • Intact antibody tetramers are comprised of two heavy chain-light chain dimers in which the heavy and light chains are linked to one another by a single disulfide bond; two other disulfide bonds connect the heavy chain hinge regions to one another, so that the dimers are connected to one another and the tetramer is formed.
  • Naturally-produced antibodies are also glycosylated, typically on the CH2 domain.
  • Each domain in a natural antibody has a structure characterized by an "immunoglobulin fold" formed from two beta sheets (e.g., 3-, 4-, or 5-stranded sheets) packed against each other in a compressed antiparallel beta barrel.
  • Each variable domain contains three hypervariable loops known as "complement determining regions” (CDR1, CDR2, and CDR3) and four somewhat invariant "framework” regions (FR1, FR2, FR3, and FR4).
  • CDR1, CDR2, and CDR3 complement determining regions
  • FR1, FR2, FR3, and FR4 somewhat invariant "framework” regions
  • the Fc region of naturally-occurring antibodies binds to elements of the complement system, and also to receptors on effector cells, including for example effector cells that mediate cytotoxicity.
  • antibodies produced and/or utilized in accordance with the present invention include glycosylated Fc domains, including Fc domains with modified or engineered such glycosylation.
  • any polypeptide or complex of polypeptides that includes sufficient immunoglobulin domain sequences as found in natural antibodies can be referred to and/or used as an "antibody", whether such polypeptide is naturally produced (e.g., generated by an organism reacting to an antigen), or produced by recombinant engineering, chemical synthesis, or other artificial system or methodology.
  • an antibody is polyclonal; in some embodiments, an antibody is monoclonal. In some embodiments, an antibody has constant region sequences that are characteristic of mouse, rabbit, primate, or human antibodies. In some embodiments, antibody sequence elements are humanized, primatized, chimeric, etc., as is known in the art. Moreover, the term "antibody” as used herein, can refer in appropriate embodiments (unless otherwise stated or clear from context) to any of the art-known or developed constructs or formats for utilizing antibody structural and functional features in alternative presentation.
  • an antibody utilized in accordance with the present invention is in a format selected from, but not limited to, intact IgA, IgG, IgE or IgM antibodies; bi- or multi- specific antibodies (e.g., Zybodies ® , etc); antibody fragments such as Fab fragments, Fab' fragments, F(ab')2 fragments, Fd' fragments, Fd fragments, and isolated CDRs or sets thereof; single chain Fvs; polypeptide-Fc fusions; single domain antibodies (e.g., shark single domain antibodies such as IgNAR or fragments thereof); cameloid antibodies; masked antibodies (e.g., Probodies ® ); Small Modular
  • SMIPsTM Single chain or Tandem diabodies
  • TandAb ® Tandem diabodies
  • VHHs Anticalins ®
  • Nanobodies ® minibodies Nanobodies ® minibodies
  • BiTE ® s ankyrin repeat proteins or DARPINs ®
  • DARPINs ® ankyrin repeat proteins
  • an antibody may lack a covalent modification (e.g., attachment of a glycan) that it would have if produced naturally.
  • an antibody may contain a covalent modification (e.g., attachment of a glycan, a payload [e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc], or other pendant group [e.g., poly-ethylene glycol, etc.]).
  • a covalent modification e.g., attachment of a glycan, a payload [e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc], or other pendant group [e.g., poly-ethylene glycol, etc.]).
  • antibody agent refers to an agent that specifically binds to a particular antigen.
  • the term encompasses any polypeptide or polypeptide complex that includes immunoglobulin structural elements sufficient to confer specific binding.
  • Exemplary antibody agents include, but are not limited to monoclonal antibodies or polyclonal antibodies.
  • an antibody agent may include one or more constant region sequences that are characteristic of mouse, rabbit, primate, or human antibodies.
  • an antibody agent may include one or more sequence elements are humanized, primatized, chimeric, etc., as is known in the art.
  • an antibody agent is used to refer to one or more of the art-known or developed constructs or formats for utilizing antibody structural and functional features in alternative presentation.
  • an antibody agent utilized in accordance with the present disclosure is in a format selected from, but not limited to, intact IgA, IgG, IgE or IgM antibodies; bi- or multi- specific antibodies (e.g., Zybodies ® , etc); antibody fragments such as Fab fragments, Fab' fragments, F(ab')2 fragments, Fd' fragments, Fd fragments, and isolated CDRs or sets thereof; single chain Fvs; polypeptide-Fc fusions; single domain antibodies (e.g., shark single domain antibodies such as IgNAR or fragments thereof); cameloid antibodies; masked antibodies (e.g., Probodies ® ); Small Modular ImmunoPharmaceuticals ("SMIPsTM " ); single chain or Tandem diabodies (TandAb ® ); VHHs
  • SMIPsTM Single chain
  • an antibody may lack a covalent modification (e.g., attachment of a glycan) that it would have if produced naturally.
  • an antibody may contain a covalent modification (e.g., attachment of a glycan, a payload [e.g., a detectable moiety, a therapeutic moiety, a catalytic moiety, etc.], or other pendant group [e.g., poly-ethylene glycol, etc.]).
  • an antibody agent is or comprises a polypeptide whose amino acid sequence includes one or more structural elements recognized by those skilled in the art as a
  • an antibody agent in some embodiments, is or comprises a polypeptide whose amino acid sequence includes at least one CDR (e.g., at least one heavy chain CDR and/or at least one light chain CDR) that is substantially identical to one found in a reference antibody.
  • an included CDR is substantially identical to a reference CDR in that it is either identical in sequence or contains between 1-5 amino acid substitutions as compared with the reference CDR.
  • an included CDR is substantially identical to a reference CDR in that it shows at least 85%, 86%, 87%, 88%, 89%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or 100% sequence identity with the reference CDR. In some embodiments, an included CDR is substantially identical to a reference CDR in that it shows at least 96%, 96%, 97%, 98%, 99%, or 100% sequence identity with the reference CDR.
  • an included CDR is substantially identical to a reference CDR in that at least one amino acid within the included CDR is deleted, added, or substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical with that of the reference CDR. In some embodiments, an included CDR is substantially identical to a reference CDR in that 1-5 amino acids within the included CDR are deleted, added, or substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical to the reference CDR.
  • an included CDR is substantially identical to a reference CDR in that at least one amino acid within the included CDR is substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical with that of the reference CDR.
  • an included CDR is substantially identical to a reference CDR in that 1-5 amino acids within the included CDR are deleted, added, or substituted as compared with the reference CDR but the included CDR has an amino acid sequence that is otherwise identical to the reference CDR.
  • an antibody agent is or comprises a polypeptide whose amino acid sequence includes structural elements recognized by those skilled in the art as an immunoglobulin variable domain.
  • an antibody agent is a polypeptide protein having a binding domain which is homologous or largely homologous to an immunoglobulin variable domain.
  • the term "combination therapy” refers to a clinical intervention in which a subject is exposed to two or more therapeutic regimens (e.g., two or more therapeutic agents).
  • the two or more therapeutic regimens may be administered simultaneously.
  • the two or more therapeutic regimens may be administered sequentially (e.g., a first regimen administered prior to administration of any doses of a second regimen).
  • the two or more therapeutic regimens are administered in overlapping dosing regimens.
  • administration of combination therapy may involve administration of one or more therapeutic agents or modalities to a subject receiving the other agent(s) or modality.
  • combination therapy does not necessarily require that individual agents be administered together in a single composition (or even necessarily at the same time).
  • two or more therapeutic agents or modalities of a combination therapy are administered to a subject separately, e.g., in separate compositions, via separate administration routes (e.g., one agent orally and another agent intravenously), and/or at different time points.
  • two or more therapeutic agents may be administered together in a combination composition, or even in a combination compound (e.g., as part of a single chemical complex or covalent entity), via the same administration route, and/or at the same time.
  • angiogenesis means any growth of blood vessels or any neo- or re-vascularization of a tissue.
  • the growth may or may not be stimulated by cytokines, such as cytokine-mediated activation of blood vessel endothelial cells
  • metastasis and “metastases” refer to the movement of a tumor cell from its primary site by any means or by any route, including local invasion, lymphatic spread, vascular spread or transcoelomic spread.
  • the terms “enhance” or “enhancing” refers to an increase or prolongation of either the potency or duration of a desired effect of a composition described herein, or a diminution of any adverse symptomatology that is consequent upon the administration of the therapeutic agent or agents.
  • the term “enhance” or “enhancing” refers to an increase or prolongation of either the potency or duration of a desired effect of a composition described herein, or a diminution of any adverse symptomatology that is consequent upon the administration of the therapeutic agent or agents.
  • the term “enhance” or “enhancing” refers to an increase or prolongation of either the potency or duration of a desired effect of a composition described herein, or a diminution of any adverse symptomatology that is consequent upon the administration of the therapeutic agent or agents.
  • enhancing refers to the ability to increase or prolong, either in potency or duration, the effect of other therapeutic agents that are used in combination with niraparib disclosed herein.
  • An “enhancing-effective amount,” as used herein, refers to an amount of niraparib or other therapeutic agent which is adequate to enhance the effect of another therapeutic agent or niraparib in a desired system. When used in a patient, amounts effective for this use will depend on the severity and course of the disease, disorder or condition, previous therapy, the patient's health status and response to the drugs, and the judgment of the treating physician. Overview
  • the present disclosure provides a combination therapy for a disease such as cancer.
  • a disease such as cancer
  • the amalgamation of anti -cancer drugs can enhance efficacy compared to the monotherapy approach because it can target key pathways in a characteristically synergistic or an additive manner.
  • This approach can potentially reduce drug resistance, while simultaneously providing therapeutic anti -cancer benefits, such as reducing tumor growth and metastatic potential, arresting mitotically active cells, reducing cancer stem cell populations, and inducing apoptosis.
  • the present disclosure provides combination therapies of PARP inhibitors and angiogenesis inhibitors.
  • This combination benefit may be related to angiogenesis inhibitor- mediated conditional genetic instability.
  • angiogenesis inhibition can induce hypoxia, which could in turn downregulate homologous recombinant (HR) repair genes such as RAD51 and BRCAl .
  • HR homologous recombinant
  • acute hypoxia and reoxygenation can induce both single strand and double strand DNA break within tumor cells as a result of increased levels of reactive oxygen species (ROS). Therefore, when cells are under hypoxic stress exerted by angiogenesis inhibitors, increased DNA damage and deficiency of the HR repair pathway may lead to heightened sensitivity to PARP inhibitors.
  • ROS reactive oxygen species
  • a method of treating a subject with a disease or condition comprising administering to the subject a first agent and a second agent. Also provided herein is a method of preventing tumor cell growth in a subject with a disease or condition, comprising administering to the subj ect a first agent and a second agent Further, provided herein is a method of preventing tumor metastasis in a subject with a disease or condition, comprising administering to the subj ect a first agent and a second agent. In a fourth aspect, provided herein is a method of inducing an immune response in a subject with a disease or condition comprising administering to the subj ect a first agent and a second agent. In a fifth aspect, provided herein is a method of enhancing an immune response in a subject with a disease or condition comprising administering to the subj ect a first agent and a second agent.
  • the first agent provided herein inhibits poly [ADP-ribose] polymerase (PARP).
  • PARP poly [ADP-ribose] polymerase
  • the first agent is selected from the group consisting of: niraparib, olaparib, rucaparib, talazoparib, and veliparib, or salts or derivatives thereof.
  • the second agent provided herein comprises an angiogenesis inhibitor.
  • the angiogenesis inhibitor can reduce the production of a pro-angiogenic factor, inhibit an interaction between a pro-angiogenic factor and a pro-angiogenic receptor, inhibit a function of a pro-angiogenic factor, and/or inhibit a function of a pro-angiogenic factor receptor.
  • the angiogenesis inhibitor is selected from the group consisting of bevacizumab, itraconazole, carboxyamidotriazole, TNP-470, fumagillin, CM101, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, angiostatic steroids, heparin, cartilage-derived angiogenesis inhibitory factor, matrix metalloproteinase inhibitor, angiostatin, endostatin, 2-methoxyestradiol, tecogalan, tetrathiomolybdate, thrombospondin, thalidomide, prolactin, ⁇ 3 inhibitor, lenalidomide, linomide, ramucirumab, tasquinimod, ranibizumab, sorafenib, sunitinib, pazopanib, everolimus, tissue inhibitors of metalloproteases (TIMPl and TFMP2), bFGF soluble receptor, transforming
  • MEDI0639 curcumin, 3,3 '-diindolylmethane (DIM), resveratrol, 3,5-bis(2,4- difluorobenzylidene)-4-piperidone (DiFiD) and epigallocatechin-3-gallate (EGCG), honokiol, OMP-21M18, navicixizumab (OMP-305B83), Flt2-l l, CBO-P1 1, Ie-11, VI, and any combination thereof.
  • DIM 3,3 '-diindolylmethane
  • resveratrol 3,5-bis(2,4- difluorobenzylidene)-4-piperidone
  • EGCG epigallocatechin-3-gallate
  • OMP-21M18 OMP-21M18
  • OMP-305B83 navicixizumab
  • Flt2-l l CBO-P1 1, Ie-11, VI, and any combination thereof.
  • the methods further comprise administering a third agent.
  • a pharmaceutical composition comprising the first and second agent disclosed herein.
  • the pharmaceutical composition further comprises the third agent.
  • a kit comprising the first and the second agent disclosed herein. In some embodiments, the kit further comprises the third agent.
  • the disease or condition that can be treated with the methods disclosed herein is cancer.
  • Cancer is an abnormal growth of cells which tend to proliferate in an uncontrolled way and, in some cases, to metastasize (spread). Cancer is not one disease. It is a group of more than 100 different and distinctive diseases. Cancer can involve any tissue of the body and have many different forms in each body area. Most cancers are named for the type of cell or organ in which they start.
  • a tumor can be cancerous or benign.
  • a benign tumor means the tumor can grow but does not spread.
  • a cancerous tumor is malignant, meaning it can grow and spread to other parts of the body. If a cancer spreads (metastasizes), the new tumor bears the same name as the original (primary) tumor.
  • the frequency of a particular cancer may depend on gender. While skin cancer is the most common type of malignancy for both men and women, the second most common type in men is prostate cancer and in women, breast cancer. [00117] The methods of the disclosure can be used to treat any type of cancer known in the art.
  • Non-limiting examples of cancers to be treated by the methods of the present disclosure can include melanoma (e.g., metastatic malignant melanoma), renal cancer (e.g., clear cell carcinoma), prostate cancer (e.g., hormone refractory prostate adenocarcinoma), pancreatic adenocarcinoma, breast cancer, colon cancer, lung cancer (e.g., non-small cell lung cancer), esophageal cancer, squamous cell carcinoma of the head and neck, liver cancer, ovarian cancer, cervical cancer, thyroid cancer, glioblastoma, glioma, leukemia, lymphoma, and other neoplastic malignancies.
  • melanoma e.g., metastatic malignant melanoma
  • renal cancer e.g., clear cell carcinoma
  • prostate cancer e.g., hormone refractory prostate adenocarcinoma
  • pancreatic adenocarcinoma breast cancer
  • a cancer to be treated by the methods of the present disclosure is selected from the group consisting of carcinoma, squamous carcinoma, adenocarcinoma, sarcomata, endometrial cancer, breast cancer, ovarian cancer, cervical cancer, fallopian tube cancer, primary peritoneal cancer, colon cancer, colorectal cancer, squamous cell carcinoma of the anogenital region, melanoma, renal cell carcinoma, lung cancer, non-small cell lung cancer, squamous cell carcinoma of the lung, stomach cancer, bladder cancer, gall bladder cancer, liver cancer, thyroid cancer, laryngeal cancer, salivary gland cancer, esophageal cancer, head and neck cancer, glioblastoma, glioma, squamous cell carcinoma of the head and neck, prostate cancer, pancreatic cancer, mesothelioma
  • a cancer to be treated by the methods of the present disclosure include, for example, carcinoma, squamous carcinoma (for example, cervical canal, eyelid, tunica conjunctiva, vagina, lung, oral cavity, skin, urinary bladder, tongue, larynx, and gullet), and adenocarcinoma (for example, prostate, small intestine, endometrium, cervical canal, large intestine, lung, pancreas, gullet, rectum, uterus, stomach, mammary gland, and ovary).
  • carcinoma for example, cervical canal, eyelid, tunica conjunctiva, vagina, lung, oral cavity, skin, urinary bladder, tongue, larynx, and gullet
  • adenocarcinoma for example, prostate, small intestine, endometrium, cervical canal, large intestine, lung, pancreas, gullet, rectum, uterus, stomach, mammary gland, and ovary.
  • a cancer to be treated by the methods of the present disclosure further include sarcomata (for example, myogenic sarcoma), leukosis, neuroma, melanoma, and lymphoma.
  • a cancer to be treated by the methods of the present disclosure is breast cancer.
  • a cancer to be treated by the methods of the present disclosure is triple negative breast cancer (TNBC).
  • TNBC triple negative breast cancer
  • a cancer to be treated by the methods of the present disclosure is ovarian cancer.
  • a cancer to be treated by the methods of the present disclosure is colorectal cancer.
  • a patient or population of patients to be treated with combination therapy of the present disclosure have a solid tumor.
  • a solid tumor is a melanoma, renal cell carcinoma, lung cancer, bladder cancer, breast cancer, cervical cancer, colon cancer, gall bladder cancer, laryngeal cancer, liver cancer, thyroid cancer, stomach cancer, salivary gland cancer, prostate cancer, pancreatic cancer, or Merkel cell carcinoma.
  • a patient or population of patients to be treated with combination therapy of the present disclosure have a hematological cancer.
  • the patient has a hematological cancer such as Diffuse large B cell lymphoma ("DLBCL”), Hodgkin's lymphoma (“HL”), Non-Hodgkin's lymphoma (“NHL”), Follicular lymphoma (“FL”), acute myeloid leukemia (“AML”), or Multiple myeloma (“MM”).
  • DLBCL Diffuse large B cell lymphoma
  • HL Hodgkin's lymphoma
  • NHL Non-Hodgkin's lymphoma
  • FL Follicular lymphoma
  • AML acute myeloid leukemia
  • MM Multiple myeloma
  • neurofibroma neurofibromatosis; pediatric tumors; neuroblastoma; malignant melanoma;
  • leukemias such as but not limited to, acute leukemia, acute lymphocytic leukemia, acute myelocytic leukemias such as myeloblastic, promyelocyte, myelomonocytic, monocytic, erythroleukemia leukemias and myclodysplastic syndrome, chronic leukemias such as but not limited to, chronic myelocytic (granulocytic) leukemia, chronic lymphocytic leukemia, hairy cell leukemia; polycythemia vera; lymphomas such as but not limited to Hodgkin's disease, non-Hodgkin's disease; multiple myelomas such as but not limited to smoldering multiple myeloma, nonsecretory myeloma, osteosclerotic myeloma, plasma cell leukemia, solitary plasmacytoma and extramedullary plasmacytoma; Waldenstrom' s
  • macroglobulinemia monoclonal gammopathy of undetermined significance; benign monoclonal gammopathy; heavy chain disease; bone cancer and connective tissue sarcomas such as but not limited to bone sarcoma, myeloma bone disease, multiple myeloma, cholesteatoma-induced bone osteosarcoma, Paget's disease of bone, osteosarcoma, chondrosarcoma, Ewing' s sarcoma, malignant giant cell tumor, fibrosarcoma of bone, chordoma, periosteal sarcoma, soft-tissue sarcomas, angiosarcoma (hemangiosarcoma), fibrosarcoma, Kaposi's sarcoma, leiomyosarcoma, liposarcoma, lymphangio sarcoma, neurilemmoma, rhabdomyosarcoma, and synovial sarcoma; brain tumors such
  • uterine cancers such as but not limited to endometrial carcinoma and uterine sarcoma
  • ovarian cancers such as but not limited to, ovarian epithelial carcinoma, borderline tumor, germ cell tumor, and stromal tumor
  • cervical carcinoma esophageal cancers such as but not limited to, squamous cancer, adenocarcinoma, adenoid cyctic carcinoma, mucoepidermoid carcinoma, adenosquamous carcinoma, sarcoma, melanoma, plasmacytoma, verrucous carcinoma, and oat cell (small cell) carcinoma
  • stomach cancers such as but not limited to, adenocarcinoma, fungating (polypoid), ulcerating, superficial spreading, diffusely spreading, malignant lymphoma, liposarcoma, fibrosarcoma, and carcinosarcoma
  • colon cancers colorectal cancer, KRAS mutated colorectal cancer
  • adenocarcinoma cholangiocarcinomas such as but not limited to pappillary, nodular, and diffuse
  • lung cancers such as KRAS -mutated non-small cell lung cancer, non-small cell lung cancer, squamous cell carcinoma (epidermoid carcinoma), adenocarcinoma, large-cell carcinoma and small-cell lung cancer; lung carcinoma; testicular cancers such as but not limited to germinal tumor, seminoma, anaplastic, classic (typical), spermatocyte, nonseminoma, embryonal carcinoma, teratoma carcinoma, choriocarcinoma (yolk-sac tumor), prostate cancers such as but not limited to, androgen-independent prostate cancer, androgen-dependent prostate cancer, adenocarcinoma, leiomyosarcoma, and rhabdomyosarcoma; penal cancers; oral cancers such as but not limited to squamous cell carcinoma; basal cancers; salivary gland
  • cancers include myxosarcoma, osteogenic sarcoma, endotheliosarcoma, lymphangioendotheliosarcoma, mesothelioma, synovioma, hemangioblastoma, epithelial carcinoma, cystadenocarcinoma, bronchogenic carcinoma, sweat gland carcinoma, sebaceous gland carcinoma, papillary carcinoma and papillary adenocarcinomas.
  • a cancer is breast cancer, ovarian cancer, cervical cancer, epithelial ovarian cancer, fallopian tube cancer, primary peritoneal cancer, endometrial cancer, prostate cancer, testicular cancer, pancreatic cancer, esophageal cancer, head and neck cancer, gastric cancer, bladder cancer, lung cancer (e.g., adenocarcinoma, NSCLC and SCLC), bone cancer (e.g., osteosarcoma), colon cancer, rectal cancer, thyroid cancer, brain and central nervous system cancers, glioblastoma, neuroblastoma, neuroendocrine cancer, rhabdoid cancer, keratoacanthoma, epidermoid carcinoma, seminoma, melanoma, sarcoma (e.g., liposarcoma), bladder cancer, liver cancer (e.g., hepatocellular carcinoma), kidney cancer (e.g., renal cell carcinoma), myeloid disorders (e.g., AML, C
  • a cancer is a gynecologic cancer (e.g., breast cancer or a cancer of the female reproductive system such as ovarian cancer, fallopian tube cancer, cervical cancer, vaginal cancer, vulvar cancer, uterine cancer, or primary peritoneal cancer).
  • cancers of the female reproductive system include, but are not limited to, ovarian cancer, cancer of the fallopian tube(s), peritoneal cancer, and breast cancer.
  • a cancer is an ovarian cancer.
  • Ovarian cancer' is often used to describe epithelial cancers that begin in the ovary, in the fallopian tube, and from the lining of the abdominal cavity, call the peritoneum
  • a cancer is epithelial ovarian cancer.
  • a cancer is fallopian tube cancer.
  • a cancer is primary peritoneal cancer.
  • a cancer is a breast cancer
  • Breast cancer is the second most common cancer in the world with approximately 1.7 million new cases in 2012 and the fifth most common cause of death from cancer, with approximately 521,000 deaths. Of these cases, approximately 15% are triple-negative, which do not express the estrogen receptor, progesterone receptor (PR) or HER2.
  • triple negative breast cancer T BC is characterized as breast cancer cells that are estrogen receptor expression negative ( ⁇ 1% of cells), progesterone receptor expression negative ( ⁇ 1% of cells), and HER2-negative.
  • a breast cancer is associated with homologous recombination repair deficiency/homologous repair deficiency ("HRD").
  • PARPs ADP-ribosel polymerases
  • PARPs Poly [ADP-ribose] polymerases
  • PARPs are a family of enzymes that cleave NAD+, releasing nicotinamide, and successively add ADP-ribose units to form ADP-ribose polymers. Accordingly, activation of PARP enzymes can lead to depletion of cellular NAD+ levels (e.g., PARPs as NAD+ consumers) and mediates cellular signaling through ADP-ribosylation of downstream targets.
  • PARP-1 is a zinc-finger DNA-binding enzyme that is activated by binding to DNA double or single strand breaks.
  • Anti-alkylating agents could deplete the NAD+ content of tumor cells, and the discovery of PARPs explained this phenomenon.
  • Anti- alkylating agents induce DNA strand breaks, which activates PARP-1, which is a part of the DNA repair pathway.
  • Poly ADP-ribosylation of nuclear proteins by PARP-1 converts DNA damage into intracellular signals that can either activate DNA repair (e.g., by the base excision repair (BER) pathway); or trigger cell death in the presence of DNA damage that is too extensive and cannot be efficiently repaired.
  • BER base excision repair
  • PARP-2 contains a catalytic domain and is capable of catalyzing a poly(ADP- ribosyl)ation reaction. PARP-2 can display auto-modification properties similar to PARP-1. The protein is localized in the nucleus in vivo and may account for the residual poly [ADP-ribose] synthesis observed in PARP-1 -deficient cells, treated with alkylating agents or hydrogen peroxide. Some agents that inhibit PARP (e.g., agents primarily aimed at inhibiting PARP-1) may also inhibit PARP-2 (e.g., niraparib).
  • PARP inhibitors may be useful anti -cancer agents.
  • PARP inhibitors may be particularly effective in treating cancers resulting from germ line or sporadic deficiency in the homologous recombination DNA repair pathway, such as BRCA-1 and/or BRCA-2 deficient cancers.
  • PARP-1 and PARP-2 can bind at sites of lesions, become activated, and catalyze the addition of long polymers of ADP-ribose (PAR chains) on several proteins associated with chromatin, including histones, PARP itself, and various DNA repair proteins. This can result in chromatin relaxation and fast recruitment of DNA repair factors that access and repair DNA breaks.
  • PARP-1 and PARP-2 can bind at sites of lesions, become activated, and catalyze the addition of long polymers of ADP-ribose (PAR chains) on several proteins associated with chromatin, including histones, PARP itself, and various DNA repair proteins. This can result in chromatin relaxation and fast recruitment of DNA repair factors that access and repair DNA breaks.
  • PARP-1 and PARP-2 can bind at sites of lesions, become activated, and catalyze the addition of long polymers of ADP-ribose (PAR chains) on several proteins associated with chromatin, including histones, PARP itself, and various DNA repair proteins. This can
  • Normal cells can repair up to 10,000 DNA defects daily and single strand breaks can be the most common form of DNA damage.
  • Cells with defects in the BER pathway can enter S phase with unrepaired single strand breaks. Pre-existing single strand breaks can be converted to double strand breaks as the replication machinery passes through the break. Double strand breaks present during S phase may be repaired by the error-free HR pathway.
  • Cells with inactivation of genes required for HR such as BRCA-1 and/or BRCA-2, accumulate stalled replication forks during S phase and may use error-prone non-homologous end joining (NHEJ) to repair damaged DNA. Both the inability to complete S phase (because of stalled replication forks) and error- prone repair by NHEJ, can contribute to cell death.
  • NHEJ non-homologous end joining
  • Treatment with PARP inhibitors may selectively kill a subset of cancer cells with deficiencies in DNA repair pathways (e.g., inactivation of BRCA-1 and/or BRCA-2).
  • a tumor arising in a patient with a germline BRCA mutation can have a defective homologous recombination DNA repair pathway and would be increasingly dependent on BER, a pathway blocked by PARP inhibitors, for maintenance of genomic integrity.
  • This mechanism of inducing death by use of PARP inhibitors to block one DNA repair pathway in tumors with pre-existing deficiencies in a complementary DNA repair pathways is referred to as synthetic lethality.
  • PARP inhibitors not only have monotherapy activity in HR-deficient tumors, but are also effective in preclinical models in combination with other agents such as cisplatin, carboplatin, alkylating and methylating agents, radiation therapy, and topoisomerase I inhibitors.
  • PARP inhibition alone is sufficient for cell death in HR-deficient cancers (due to endogenous DNA damage)
  • PARP may be required for repair of DNA damage induced by standard cytotoxic chemotherapy.
  • PARP may be required to release trapped topoisomerase I/irinotecan complexes from DNA. Temozolomide- induced DNA damage can be repaired by the BER pathway, which may require PARP to recruit repair proteins.
  • Combination therapies that enhance or synergize the cancer therapy without significantly increasing toxicity can provide substantial benefit to cancer patients, including ovarian cancer patients.
  • PARP inhibitors can have activity against tumors with existing DNA repair defects, such as BRCA1 and BRCA2. Treatment with PARP inhibitors (e.g., PARP-1/2 inhibitors) may selectively kill a subset of cancer cell types by exploiting their deficiencies in DNA repair.
  • PARP inhibitors e.g., PARP-1/2 inhibitors
  • Treatment with PARP inhibitors may selectively kill a subset of cancer cell types by exploiting their deficiencies in DNA repair.
  • agents that inhibit PARP include agents that inhibit PARP-1 and/or PARP -2.
  • agent that inhibits PARP is selected from the group consisting of ABT-767, AZD 2461, BGB-290, BGP 15, CEP 9722, E7016, E7449, fluzoparib, INO1001, ⁇ 289, MP 124, niraparib, olaparib, ON02231, rucaparib, SC 101914, talazoparib, veliparib, WW 46, and salts or derivatives thereof.
  • a PARP inhibitor is niraparib, olaparib, rucaparib, talazoparib, veliparib, or any combination thereof.
  • agent that inhibits PARP is selected from the group consisting of ABT-767, AZD 2461, BGB-290, BGP 15, CEP 8983, CEP 9722, DR 2313, E7016, E7449, fluzoparib (SHR 3162), IMP 4297, INO1001, JPI 289, IPI 547, monoclonal antibody B3-LysPE40 conjugate, MP 124, niraparib (ZEJULA) (MK-4827), NU 1025, NU 1064, NU 1076, NU1085, olaparib (AZD2281), ON02231, PD 128763, R 503, R554, rucaparib (RUBRACA) (AG-014699, PF- 01367338), SBP 101, SC 101914, Sim
  • a PARP inhibitor can be prepared as a pharmaceutically acceptable salt.
  • an agent that inhibits PARP is niraparib or a salt or derivative thereof.
  • salt forms can exist as solvated or hydrated polymorphic forms.
  • compositions provided herein in various embodiments comprise a PAPR inhibitor and a second agent.
  • the second agent is an angiogenesis inhibitor.
  • the angiogenesis inhibitor inhibits VEGF/VEGFR pathway.
  • the angiogenesis inhibitor is a VEGF and/or VEGFR inhibitor.
  • methods provided herein comprise administering a PARP inhibitor and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • Niraparib is an orally active and potent poly [ADP-ribose] polymerase (PARP) inhibitor.
  • PARP [ADP-ribose] polymerase
  • Niraparib and pharmaceutically acceptable salts thereof are disclosed in International Publication No. WO2007/1 13596 and European Patent No. EP2007733B 1 ; International Publication No. WO2008/084261 and U.S. Patent No. 8,071,623; and International Publication No. WO2009/087381 and U.S. Patent No. 8,436,185.
  • Methods of making niraparib and pharmaceutically acceptable salts thereof are disclosed in International Publication Nos.
  • the present invention relates to use of niraparib in combination with one or more additional pharmaceutically active agents affecting activity within the tumor microenvironment.
  • Niraparib (3S)-3-[4- ⁇ 7-(aminocarbonyl)-2H-indazol-2- yl ⁇ phenyl]piperidine, is an orally available, potent, poly (adenosine diphosphate [ADP]-ribose) polymerase (PARP)-l and -2 inhibitor.
  • Niraparib has the following structure:
  • Niraparib tosylate monohydrate drug substance is a white to off-white, non- hygroscopic crystalline solid.
  • Niraparib solubility is pH independent below the pKa of 9.95, with an aqueous free base solubility of 0.7 mg/mL to 1.1 mg/mL across the physiological pH range. See WO 2008/084261 (published on July 17, 2008) and WO 2009/087381 (published July 16, 2009), the entirety of each of which is hereby incorporated by reference.
  • Niraparib can be prepared according to Scheme 1 of WO 2008/084261.
  • the term "niraparib” can mean any of the free base compound ((3 S)-3-[4- ⁇ 7-(aminocarbonyl)-2H-indazol-2- yl ⁇ phenyl]piperidine), a salt form, including pharmaceutically acceptable salts, of (3 S)-3-[4- ⁇ 7- (aminocarbonyl)-2H-indazol-2-yl ⁇ phenyl]piperidine (e.g., (3S)-3-[4- ⁇ 7-(aminocarbonyl)-2H- indazol-2-yl ⁇ phenyl]piperidine tosylate), or a solvated or hydrated form thereof (e.g., (3S)-3-[4- ⁇ 7-(aminocarbonyl)-2H-indazol-2-yl ⁇ phenyl]piperidine tosylate monohydrate).
  • such forms may be individually referred to as “niraparib free base”, “niraparib tosylate” and “niraparib tosylate monohydrate”, respectively.
  • the term “niraparib” includes all forms of the compound (3 S)-3-[4- ⁇ 7-(aminocarbonyl)-2H-indazol- 2-yl ⁇ phenyl]piperidine.
  • niraparib can be prepared as a pharmaceutically acceptable salt.
  • salt forms can exist as solvated or hydrated polymorphic forms.
  • niraparib is prepared in the form of a hydrate.
  • niraparib is prepared in the form of a tosylate salt.
  • niraparib is prepared in the form of a tosylate monohydrate.
  • DNA deoxyribonucleic acid
  • compositions containing niraparib or its pharmaceutically acceptable salts may further include one or more additional active ingredients which impact efficacy of niraparib.
  • the niraparib is a pharmaceutically acceptable salt of niraparib.
  • the pharmaceutically acceptable salt is niraparib tosylate monohydrate.
  • the formulation can comprise one or more components, including niraparib.
  • the components can be combined to create granules that are then compressed to form tablets.
  • the niraparib may be present in the formulation as a pharmaceutically acceptable salt.
  • the niraparib can be niraparib tosylate monohydrate.
  • niraparib formulations described herein can be administered and dosed in accordance with good medical practice, taking into account the clinical condition of the individual patient, the site and method of administration, scheduling of administration, and other factors known to medical practitioners.
  • the dosage forms described herein deliver niraparib formulations that maintain a therapeutically effective amount of niraparib in plasma the while reducing the side effects associated with an elevated Cma blood plasma level of niraparib.
  • the niraparib used in a composition disclosed herein is the form of a free base, pharmaceutically acceptable salt, prodrug, analog or complex.
  • the niraparib comprises the form of a pharmaceutically acceptable salt.
  • a pharmaceutically acceptable salt includes, but is not limited to, 4-methylbenzenesulfonate salts, sulfate salts, benzenesulfate salts, fumarate salts, succinate salts, and stereoisomers or tautomers thereof.
  • a pharmaceutically acceptable salt includes, but is not limited to, tosylate salts. In some embodiments, with respect to niraparib in a composition, a pharmaceutically acceptable salt includes, but is not limited to, tosylate monohydrate salts. Additional pharmaceutically acceptable excipients
  • the pharmaceutical composition disclosed herein further comprises one or more pharmaceutically acceptable excipients.
  • the one or more pharmaceutically acceptable excipient is present in an amount of about 0.1-99 % by weight.
  • Exemplary pharmaceutically acceptable excipients for the purposes of pharmaceutical compositions disclosed herein include, but are not limited to, binders, disintegrants,
  • binders include microcrystalline cellulose, hydroxypropyl methylcellulose, carboxyvinyl polymer, polyvinylpyrrolidone, polyvinylpolypyrrolidone, carboxymethylcellulose calcium, carboxymethylcellulose sodium, ceratonia, chitosan, cottonseed oil, dextrates, dextrin, ethylcellulose, gelatin, glucose, glyceryl behenate, galactomannan polysaccharide, hydroxyethyl cellulose, hydroxyethylmethyl cellulose, hydroxypropyl cellulose, hypromellose, inulin, lactose, magnesium aluminum silicate, maltodextrin, methylcellulose, poloxamer, polycarbophil, polydextrose, polyethylene glycol, polyethylene oxide, polymethacrylates, sodium alginate, sorbitol, starch, sucrose, sunflower oil, vegetable oil, tocofersolan, zein, or combinations thereof.
  • disintegrants examples include hydroxypropyl methylcellulose (HPMC), low substituted hydroxypropyl cellulose (L-HPC), croscarmellose sodium, sodium starch glycolate, lactose, magnesium aluminum silicate, methylcellulose, polacrilin potassium, sodium alginate, starch, or combinations thereof.
  • HPMC hydroxypropyl methylcellulose
  • L-HPC low substituted hydroxypropyl cellulose
  • croscarmellose sodium sodium starch glycolate
  • lactose lactose
  • magnesium aluminum silicate magnesium aluminum silicate
  • methylcellulose polacrilin potassium
  • sodium alginate starch, or combinations thereof.
  • Examples of a lubricant include stearic acid, sodium stearyl fumarate, glyceryl behenate, calcium stearate, glycerin monostearate, glyceryl palmitostearate, magnesium lauryl sulfate, mineral oil, palmitic acid, myristic acid, poloxamer, polyethylene glycol, sodium benzoate, sodium chloride, sodium lauryl sulfate, talc, zinc stearate, potassium benzoate, magnesium stearate or combinations thereof.
  • diluents include talc, ammonium alginate, calcium carbonate, calcium lactate, calcium phosphate, calcium silicate, calcium sulfate, cellulose, cellulose acetate, corn starch, dextrates, dextrin, dextrose, erythritol, ethylcellulose, fructose, fumaric acid, glyceryl palmitostearate, isomalt, kaolin, lactitol, lactose, magnesium carbonate, magnesium oxide, maltodextrin, maltose, mannitol, microcrystalline cellulose, polydextrose, polymethacrylates, simethicone, sodium alginate, sodium chloride, sorbitol, starch, sucrose, sulfobutylether ⁇ -cyclodextrin, tragacanth, trehalose, xylitol, or combinations thereof.
  • the pharmaceutically acceptable excipient is hydroxypropyl methylcellulose (HPMC). In some embodiments, the pharmaceutically acceptable excipient is low substituted hydroxypropyl cellulose (L-HPC). In some embodiments, the pharmaceutically acceptable excipient is lactose. In some embodiments, the phaimaceutically acceptable excipient is lactose monohydrate. In some embodiments, the pharmaceutically acceptable excipient is magnesium stearate. In some embodiments, the pharmaceutically acceptable excipient is lactose monohydrate and magnesium stearate.
  • Various useful fillers or diluents include, but are not limited to calcium carbonate (BarcroftTM, MagGranTM, MillicarbTM, Pharma- CarbTM, PrecarbTM, SturcalTM, Vivapres CaTM), calcium phosphate, dibasic anhydrous (Emcompress AnhydrousTM, FujicalinTM), calcium phosphate, dibasic dihydrate (CalstarTM, Di-CafosTM, EmcompressTM), calcium phosphate tribasic (Tri-CafosTM, TRI- TABTM), calcium sulphate (DestabTM, DrieriteTM, Snow WhiteTM, Cal-TabTM, CompactrolTM), cellulose powdered (ArbocelTM, ElcemaTM, SanacetTM), silicified
  • microcrys tailine cellulose, cellulose acetate, compressible sugar (Di- PacTM), confectioner's sugar, dextrates (CandexTM, EmdexTM), dextrin (AvedexTM, CaloreenTM, Primogran WTM), dextrose (CaridexTM, DextrofinTM, Tab fine D-IOOTM), fructose (FructofinTM, KrystarTM), kaolin (LionTM, Sim 90TM), lactitol (Finlac DCTM, Finlac MCXTM), lactose (AnhydroxTM, CapsuLacTM, Fast-FloTM, FlowLacTM, GranuLacTM, InhaLacTM, LactochemTM, LactohaieTM, LactopressTM, MicrofmeTM, MicrotoseTM, PharmatoseTM, Prisma LacTM, RespitoseTM, SacheLacTM, SorboLacTM, Super-TabTM, Tabletto
  • Various useful disintegrants include, but are not limited to, alginic acid (ProtacidTM, Satialgine H8TM), calcium phosphate, tribasic (TRI- TABTM), carboxymethylcellulose calcium (ECG 505TM), carboxymethylcellulose sodium (AkucellTM, FinnfixTM, Nymcel Tylose CBTM), colloidal silicon dioxide (AerosilTM, Cab-O-SilTM, Wacker HDKTM), croscarmellose sodium (Ac- Di-SolTM, Pharmacel XLTM, PrimelloseTM, SolutabTM, VivasolTM), crospovidone (Collison CLTM, Collison CL-MTM, Polyplasdone XLTM), docusate sodium, guar gum (MeyprodorTM, MeyprofmTM, MeyproguarTM), low substituted hydroxypropyl cellulose, magnesium aluminum silicate (MagnabiteTM, NeusilinTM, PharmsorbTM, VeegumTM
  • Various useful lubricants include, but are not limited to, calcium stearate (HyQualTM), glycerine monostearate (ImwitorTM 191 and 900, Kessco GMS5TM, 450 and 600, Myvaplex 600PTM, MyvatexTM, Rita GMSTM, Stepan GMSTM, TeginTM, TeginTM 503 and 515, Tegin 4100TM, Tegin MTM, Unimate GMSTM), glyceryl behenate (Compritol 888 ATOTM), glyceryl palmitostearate (Precirol ATO 5TM), hydrogenated castor oil (Castorwax MP 80TM, CroduretTM, Cutina HRTM, FancolTM, Simulsol 1293TM), hydrogenated vegetable oil 0 type I (SterotexTM, Dynasan P60TM, HydrocoteTM, Lipovol HS-KTM, Sterotex HMTM), magnesium lauryl sulphate, magnesium stea
  • Suitable lubricants include, but are not limited to, magnesium stearate, calcium stearate, zinc stearate, stearic acid, talc, glyceryl behenate, polyethylene glycol, polyethylene oxide polymers, sodium lauryl sulfate, magnesium lauryl sulfate, sodium oleate, sodium stearyl fumarate, DL-leucine, colloidal silica, and others as known in the art.
  • a lubricant is magnesium stearate.
  • Various useful glidants include, but are not limited to, tribasic calcium phosphate (TRI- TABTM), calcium silicate, cellulose, powdered (SanacelTM, Solka- FloeTM), colloidal silicon dioxide (AerosilTM, Cab-O-Sil M-5PTM, Wacker HDKTM), magnesium silicate, magnesium trisilicate, starch (MelojelTM, MeritenaTM, Paygel 55TM, Perfectamyl D6PHTM, Pure- BindTM, Pure-CoteTM, Pure-DentTM, Pure-GelTM, Pure-SetTM, Purity 21TM, Purity 826TM, Tablet WhiteTM) and talc (Luzenac PharmaTM, Magsil OsmanthusTM, Magsil StarTM, SuperioreTM), or mixtures thereof.
  • TRI- TABTM tribasic calcium phosphate
  • CacelTM powdered
  • Cab-O-Sil M-5PTM colloidal silicon dioxide
  • Wacker HDKTM colloidal silicon
  • compositions include, but are limited to both non-ionic and ionic surfactants suitable for use in pharmaceutical dosage forms.
  • Ionic surfactants may include one or more of anionic, cationic or zwitterionic surfactants.
  • Various useful surfactants include, but are not limited to, sodium lauryl sulfate, monooleate, monolaurate, monopalmitate, monostearate or another ester of olyoxyethylene sorbitane, sodium dioctylsulfosuccinate
  • Angiogenesis refers to the generation of new blood vessels into a tissue or organ. Under normal physiological conditions, humans or animals only undergo angiogenesis in very specific restricted situations. For example, angiogenesis is normally observed in wound healing, fetal and embryonal development and formation of the corpus luteum, endometrium and placenta. The control of angiogenesis is a highly regulated system of pro-angiogenic factors and anti-angiogenic factors.
  • angiogenesis can be altered in certain disease states and, in many cases, the pathological damage associated with the disease is related to uncontrolled angiogenesis. Both controlled and uncontrolled angiogenesis can proceed in a similar manner. Endothelial cells and pericytes, surrounded by a basement membrane, can form capillary blood vessels. Angiogenesis can begin with the erosion of the basement membrane by enzymes released by endothelial cells and leukocytes. The endothelial cells, which line the lumen of blood vessels, then protrude through the basement membrane Angiogenic stimulants, such as pro-angiogenic factors, induce the endothelial cells to migrate through the eroded basement membrane.
  • Angiogenic stimulants such as pro-angiogenic factors
  • the migrating cells form a "sprout" off the parent blood vessel, where the endothelial cells undergo mitosis and proliferate. This process can refer to "vessel sprouting".
  • the endothelial sprouts merge with each other to form capillary loops, creating the new blood vessel.
  • prevention of angiogenesis could avert the damage caused by the invasion of the new microvascular system.
  • the angiogenesis signaling pathway can primarily be regulated through tyrosine kinase receptors, therefore, the controlling mechanisms of angiogenesis can be the paracrine regulation of tyrosine kinase receptors, primarily on endothelial cells.
  • Pro-angiogenic factors can include fibroblast growth factors (FGF) and vascular endothelial growth factors (VEGF) which function as endothelial cell mitogens.
  • FGF fibroblast growth factors
  • VEGF vascular endothelial growth factors
  • FGF-FGF-R1, -R2 and -R3 the VEGF receptors
  • P1GF placental growth factors
  • angiopoietins ephrins
  • leptin and chemokines can play a role in angiogenesis.
  • the fibroblast growth factor (FGF) family with its prototype members FGF-1 (acidic FGF, or aFGF) and FGF-2 (basic FGF, or bFGF) consists of at least 22 known members, including FGF1-14, FGF15/19 (FGF15 is the mouse ortholog of human FGF19, and there is no human FGF15), FGF18-23. Most are single-chain peptides of 16-18 kDa and display high affinity to heparin and heparan sulfate. In general, FGFs can stimulate a variety of cellular functions by binding to cell surface FGF-receptors in the presence of heparin proteoglycans.
  • the FGF-receptor family is composed of seven members, and all the receptor proteins are single- chain receptor tyrosine kinases that become activated through autophosphorylation induced by a mechanism of FGF-mediated receptor dimerization. Receptor activation can give rise to a signal transduction cascade that leads to gene activation and diverse biological responses, including cell differentiation, proliferation, and matrix dissolution, thus initiating a process of mitogenic activity critical for the growth of endothelial cells, fibroblasts, and smooth muscle cells.
  • FGF-1 unique among all 22 members of the FGF family, can bind to all seven FGF-receptor subtypes, making it the broadest-acting member of the FGF family, and a potent mitogen for the diverse cell types needed to mount an angiogenic response in damaged (hypoxic) tissues, where upregulation of FGF-receptors occurs.
  • FGF-1 stimulates the proliferation and differentiation of all cell types necessary for building an arterial vessel, including endothelial cells and smooth muscle cells; this fact distinguishes FGF-1 from other pro-angiogenic growth factors, such as vascular endothelial growth factor (VEGF), which primarily drives the formation of new capillaries.
  • VEGF vascular endothelial growth factor
  • VEGF Vascular endothelial growth factor
  • VEGF vascular endothelial growth factor
  • VEGF receptor-2 VAGFR-2
  • eNOS vessel permeability
  • VEGF proliferation/survival
  • ICMs/VCAMs/MMPs migration/reduction into mature blood vessels.
  • VEGF can be upregulated with muscle contractions as a result of increased blood flow to affected areas.
  • the increased flow can also cause a large increase in the mRNA production of VEGF receptors 1 and 2.
  • the increase in receptor production indicates that muscle contractions could cause upregulation of the signaling cascade relating to angiogenesis.
  • NO can be a contributor to the angiogenic response because inhibition of NO can reduce the effects of pro-angiogenic growth factors.
  • VEGF vascular endothelial growth factor
  • VAGFR vascular endothelial growth factor
  • VEGF belongs to the platelet-derived growth factor (PDGF) supergene family characterized by 8 conserved cysteines and functions as a homodimer structure.
  • PDGF platelet-derived growth factor
  • VEGF family protein can include VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF (placental growth factor), VEGF-E (Orf-VEGF), Trimeresurus flavoviridis svVEGF.
  • VEGF-A can regulate angiogenesis and vascular permeability by activating 2 receptors, VEGFR-l (Flt-1) and VEGFR-2 (KDR/Flkl in mice).
  • VEGFR-l Flt-1
  • VEGFR-2 KDR/Flkl in mice
  • VEGF-C/VEGF-D and their receptor, VEGFR-3 (Flt-4) may mainly regulate lymphangiogenesis.
  • the VEGF family includes other variants, one of which is the virally encoded VEGF-E and another is specifically expressed in the venom of the habu snake
  • VEGFRs are distantly related to the PDGFR family; however, they are unique with respect to their structure and signaling system. Unlike members of the PDGFR family that can stimulate the PDK-Akt pathway toward cell proliferation, VEGFR-2, the signal transducer for angiogenesis, may utilize the PLCy-PKC-MAPK pathway for signaling.
  • the VEGF-VEGFR system can be targeted for anti-angiogenic therapy in cancer and can also be targeted for pro-angiogenic therapy in the treatment of neuronal degeneration and ischemic diseases.
  • Notch signaling can be involved in tumor pathologic angiogenesis.
  • Notchl in connection with VEGF-A can have a significant prognostic impact, indicating that Notch pathway can increase the possibility of metastasis and poor outcome through regulating tumor angiogenesis via crosstalk with VEGF-A in cancer such as lung cancer.
  • Blockade of the DLL4-Notch pathway may be associated with decreased angiogenesis and tumor growth.
  • VEGF vascular endothelial growth factor
  • Other pro-angiogenic factors include angiogenin, angiopoietins (Angl and Ang2), angiopoietin receptors Tie-1 and Tie-2, matrix metalloproteinase (MMP), delta-like ligand (DII4), Class 3 Semaphorins (SEMA3s), ephrins, leptin, transforming growth factor- ⁇ , and chemokines.
  • the methods provided herein comprise administering a PARP inhibitor and an angiogenesis inhibitor.
  • the pharmaceutical compositions or kits provided herein comprise a PARP inhibitor and an angiogenesis inhibitor.
  • the angiogenesis inhibitor inhibits a pro-angiogenic factor, wherein the pro- angiogenic factor comprises FGF1 -14, FGF15/19, FGF 18-23, PDGF, VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF (placental growth factor), VEGF-E (Orf-VEGF), Trimeresurus flavoviridis svVEGF, VEGFR-1, VEGFR-2, VEGFR-3, angiogenin, angiopoietin- 1,
  • angiopoietin-2 Tie-1, Tie-2, MMP, DII4, SEMA3s, ephrins, leptin, chemokines, transforming growth factor- ⁇ (TGF- ⁇ ) or any combination thereof.
  • Persistent, unregulated angiogenesis can occur in a multiplicity of disease states, tumor metastasis and abnormal growth by endothelial cells and can support the pathological damage seen in these conditions.
  • the diverse pathological states created due to unregulated angiogenesis have been grouped together as angiogenic dependent or angiogenic associated diseases. Therapies directed at control of the angiogenic processes could lead to the abrogation or mitigation of these diseases.
  • Tumor cells release various pro-angiogenic factors (e.g., angiogenin, vascular endothelial growth factor (VEGF), fibroblast growth factor (FGF), and transforming growth factor- ⁇ (TGF- ⁇ ). These can stimulate endothelial cell proliferation, migration and invasion resulting in new vascular structures sprouting from nearby blood vessels.
  • VEGF vascular endothelial growth factor
  • FGF fibroblast growth factor
  • TGF- ⁇ transforming growth factor- ⁇
  • VEGF can be secreted by tumor cells and act on endothelial cells to stimulate angiogenesis during tumor growth.
  • Angiogenesis inhibitors such as VEGF inhibitors (e.g., bevacizumab) can increase numbers of antigen-specific T cells in solid tumors and enhance the efficiency of immunotherapy.
  • bevacizumab can increase numbers of antigen-specific T cells in solid tumors and enhance the efficiency of immunotherapy.
  • combination treatment of bevacizumab with either atezolizumab (inhibiting PD-L1) or ipilimumab (inhibiting CTLA-4) increases the number of intratumoral CD8 + cells.
  • VEGF inhibitors which may activate antigen-specific T cells in tumor microenvironments include pazopanib, sunitinib, sorafenib, axitinib, ponatinib, regorafenib, cabozantinib, vandetanib, ramucirumab, lenvatinib and ziv- aflibercept.
  • Angiogenesis can be prominent in solid tumor formation and metastasis. Angiogenic factors have been found associated with several solid tumors such as rhabdomyosarcomas, retinoblastoma, Ewing's sarcoma, neuroblastoma, and osteosarcoma. A tumor cannot expand without a blood supply to provide nutrients and remove cellular wastes. Tumors in which angiogenesis may be important include solid tumors, and benign tumors such as acoustic neuroma, neurofibroma, trachoma and pyogenic granulomas. Prevention of angiogenesis could halt the growth of these tumors and the resultant damage to the animal due to the presence of the tumor.
  • Angiogenesis can be associated with blood-borne tumors such as leukemias, any of various acute or chronic neoplastic diseases of the bone marrow in which unrestrained proliferation of white blood cells occurs, usually accompanied by anemia, impaired blood clotting, and enlargement of the lymph nodes, liver, and spleen.
  • Angiogenesis can play a role in the abnormalities in the bone marrow that give rise to leukemia-like tumors.
  • Angiogenesis may be important in two stages of tumor metastasis.
  • the first stage can be in the vascularization of the tumor which allows tumor cells to enter the blood stream and to circulate throughout the body. After the tumor cells have left the primary site, and have settled into the secondary, metastasis site, angiogenesis occurs before the new tumor can grow and expand. Therefore, prevention of angiogenesis could lead to the prevention of metastasis of tumors and possibly contain the neoplastic growth at the primary site.
  • Angiogenesis can be a prognostic indicator for breast cancer.
  • the amount of neovascularization found in the primary tumor can be determined by counting the microvessel density in the area of the most intense neovascularization in invasive breast carcinoma. A high level of microvessel density can correlate with tumor recurrence. Control of angiogenesis by therapeutic means could possibly lead to cessation of the recurrence of the tumors.
  • Angiogenesis can also be involved in normal physiological processes such as reproduction and wound healing. Angiogenesis may be an important step in ovulation and also in implantation of the blastula after fertilization. Prevention of angiogenesis could be used to induce amenorrhea, to block ovulation or to prevent implantation by the blastula. In wound healing, excessive repair or fibroplasia can be a detrimental side effect of surgical procedures and may be caused or exacerbated by angiogenesis. Adhesions can be a frequent complication of surgery and lead to problems such as small bowel obstruction. [00168] Various compounds can be used to prevent angiogenesis. For example, angiogenesis inhibitors can include protamine, heparin and steroids. Steroids, such as tetrahydrocortisol, which lack gluco and mineral corticoid activity, can inhibit angiogenesis.
  • interferon can inhibit angiogenesis.
  • interferon a or human interferon ⁇ can inhibit tumor-induced angiogenesis in mouse dermis stimulated by human neoplastic cells.
  • Human recombinant interferon (alpha/ A) can also inhibit angiogenesis.
  • agents which can be used to inhibit angiogenesis include ascorbic acid ethers and related compounds. Sulfated polysaccharide DS 4152 can also show angiogenic inhibition.
  • a fungal product, fumagillin can be a potent angiostatic agent in vitro. The compound is toxic in vivo, but a synthetic derivative, AGM 12470, can be used in vivo to treat collagen II arthritis. Fumagillin and O-substituted fumagillin derivatives are disclosed in EPO Publication Nos.
  • Angiogenesis inhibitors may reduce the production of a pro-angiogenic factor, inhibit an interaction between a pro-angiogenic factor and a pro-angiogenic receptor, inhibit a function of a pro-angiogenic factor, inhibit a function of a pro-angiogenic factor receptor, reduce of blood flow by disruption of blood vessels, or inhibit vessel sprouting.
  • Angiogenesis inhibitors can target a VEGF/VEGFR pathway, or a DLL4/Notch signaling pathway.
  • the methods provided herein comprise administering a PARP inhibitor and an angiogenesis inhibitor
  • the angiogenesis inhibitor reduces the production of a pro-angiogenic factor, inhibits an interaction between a pro- angiogenic factor and a pro-angiogenic receptor, inhibits a function of a pro-angiogenic factor, inhibits a function of a pro-angiogenic factor receptor, reduces of blood flow by disruption of blood vessels, inhibits vessel sprouting, or any combinations thereof.
  • the angiogenesis inhibitor is selected from the group consisting of bevacizumab, itraconazole, carboxyamidotriazole, T P-470, fumagillin, CM101, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, angiostatic steroids, heparin, cartilage-derived angiogenesis inhibitory factor (e.g.
  • peptide troponin I and chondromodulin I matrix metalloproteinase inhibitor
  • angiostatin endostatin
  • 2-methoxyestradiol tecogalan
  • tetrathiomolybdate thrombospondin
  • thalidomide prolactin
  • ⁇ 3 inhibitor lenalidomide, linomide, ramucirumab, tasquinimod, ranibizumab, sorafenib, sunitinib, pazopanib, everolimus
  • tissue inhibitors of metalloproteases ⁇ 1 and TIMP2
  • bFGF soluble receptor transforming growth factor beta, interferon alpha, interferon beta, soluble KDR and FLT-1 receptors, placental proliferin-related protein, pazopanib, sunitinib, sorafenib, axitinib, ponatinib, cabozantinib, regoraf
  • the angiogenesis inhibitor induces homologous recombinant (HR) deficiency. In some embodiments, the angiogenesis inhibitor induces hypoxia. In some embodiments, the angiogenesis inhibitor induces homologous recombinant (HR) deficiency by hypoxia. In some embodiments, the angiogenesis inhibitor comprises a VEGF inhibitor, a EGFR inhibitor, or a combination thereof.
  • the PARP inhibitors of the present disclosure can be used in combination with an agent that inhibits a DLL4/Notch signaling pathway.
  • the agent inhibiting a DLL4/Notch signaling pathway is a gamma-secretase inhibitor (GSI), a siRNA, or a monoclonal antibody against a Notch receptor or ligand.
  • the agent inhibiting a DLL4 Notch signaling pathway is selected from the group consisting of RO4929097, MRK-003, MK-0752, PF03084014, MEDI0639, curcumin, 3,3 '- diindolylmethane (DEVI), resveratrol, 3,5-bis(2,4-difiuorobenzylidene)-4-piperidone (DiFiD) and epigallocatechin-3-gallate (EGCG), honokiol, OMP-21M18, navicixizumab (OMP-305B83), and any combination thereof.
  • the PARP inhibitors of the present disclosure can be used in combination with an agent that inhibits a VEGF/VEGFR pathway.
  • the agent inhibits a VEGF family protein or a VEGFR family protein.
  • the agent inhibits VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF (placental growth factor), VEGF-E (Orf-VEGF), Trimeresurus flavoviridis svVEGF, or any combination thereof.
  • the agent inhibits VEGFR- 1, VEGFR-2, VEGFR-3, or any combination thereof.
  • the PARP inhibitors of the present disclosure can be used in combination with a VEGF inhibitor or a VEGFR inhibitor such as anti-VEGF antibodies, VEGF variants, soluble VEGF receptor fragments, aptamers capable of blocking VEGF or VEGFR, neutralizing anti-VEGFR antibodies, inhibitors of VEGFR tyrosine kinases and any
  • the VEGF inhibitor or the VEGFR inhibitor is a small organic or inorganic molecule.
  • the VEGF inhibitor or the VEGFR inhibitor is an antibody or a fragment thereof In some embodiments, the VEGFR inhibitor is a tyrosine kinase inhibitor.
  • the VEGF inhibitor or VEGFR inhibitor is selected from the group consisting of bevacizumab, ranibizumab, OPT-302, ziv-aflibercept, pazopanib, sunitinib, sorafenib, axitinib, ponatinib, cabozantinib, regorafenib, vandetanib, lenvatinib, semaxanib, SU6668, vatalanib, tivozanib, cediranib, ramucirumab, Flt 2 -n, CBO-P11, Je-11, VI, and any combination thereof.
  • Therapeutic agents disclosed herein can be a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a protein fragment; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment; a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; or a toxin.
  • the therapeutic agent is a small organic or inorganic molecule.
  • the therapeutic agent is an antibody or a fragment thereof.
  • the methods or compositions provided herein comprise a first agent and a second agent.
  • the first agent is a PARP inhibitor.
  • the first agent inhibits PARP1, PARP2, or both.
  • the first agent is selected from the group consisting of ABT-767, AZD 2461, BGB-290, BGP 15, CEP 8983, CEP 9722, DR 2313, E7016, E7449, fluzoparib (SHR 3162), IMP 4297, ⁇ 1001, JPI 289, JPI 547, monoclonal antibody B3-LysPE40 conjugate, MP 124, niraparib (ZEJULA) (MK-4827), NU 1025, NU 1064, NU 1076, U1085, olaparib (AZD2281), ON02231, PD 128763, R 503, R554, rucaparib (RUBRACA) (AG-014699, PF-01367338
  • the first agent is niraparib, or salts or derivatives thereof.
  • the second agent is an angiogenesis inhibitor.
  • the second agent is an angiogenesis inhibitor, wherein the angiogenesis inhibitor is selected from the group consisting of bevacizumab, itraconazole, carboxyamidotriazole, TNP- 470, fumagillin, CMlOl, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, angiostatic steroids, heparin, cartilage-derived angiogenesis inhibitory factor, matrix metalloproteinase inhibitor, angiostatin, endostatin, 2-methoxyestradiol, tecogalan, tetrathiomolybdate, thrombospondin, thalidomide, prolactin, aVT)3 inhibitor, lenalidomide, linomide, ramucirumab, tasquinimod, ranibizum
  • the second agent is an angiogenesis inhibitor, wherein the angiogenesis inhibitor inhibits a VEGF/VEGFR pathway. In some embodiments, the second agent is a VEGF inhibitor. In some embodiments, the second agent is a VEGFR inhibitor. In some embodiments, the angiogenesis inhibitor inhibits a
  • the methods and compositions disclosed herein further comprise a third agent.
  • the third agent comprises an anti- immunosuppressive agent or immunostimulatory agent, a chemotherapeutic agent, or a combination thereof.
  • immunostimulatory agent comprises an anti-PD-1 agent, an anti-PD-Ll agent, an anti-CTLA4 agent, an anti-TIM-3 agent, an anti-LAG-3 agent, a GITR (glucocorticoid-induced TNFR-related protein) stimulating agent, an anti-IDO agent, an anti-ICOS agent, an anti-OX40 agent, an anti- CSF 1R agent, a chemokine signaling agent, a cytokine signal stimulating agent, or any combination thereof.
  • GITR corticoid-induced TNFR-related protein
  • the anti-PD-1 agent is selected from the group consisting of pembrolizumab, nivolumab, PDR001, REGN2810 (SAR-439684), BGB-A317, BI 754091, IB 1308, INCSHR-1210, J J-63723283, JS-001, MEDI0680 (AMP-514), MGA-012, PF- 06801591, REGN-2810, TSR-042,atezolizumab, avelumab, CX-072, durvalumab, FAZ053, LY3300054, PD-L1 millamolecule, and any combinations thereof.
  • the anti-PD-Ll agent is selected from the group consisting of atezolizumab, durvalumab, avelumab, LY3300054, and any combinations thereof.
  • the GITR stimulating agent is selected from the group consisting of DTA-1, mGITRL, pGITRL, and any combinations thereof.
  • the anti-CTLA4 agent is selected from the group consisting of ipilimumab, tremelimumab, and a combination thereof.
  • the third agent is an anti-immunosuppressive agent or immunostimulatory agent selected from the group consisting of a flavonoid (e.g., flavonoid glycoside), lidocaine, lamotrigine, sulfamethoxazole, phenytoin, carbamazepine, sulfamethoxazole, phenytoin, allopurinol, paracetamol, mepivacaine, p- phenylenedi amine, ciprofloxacin and moxifloxacin.
  • a flavonoid e.g., flavonoid glycoside
  • lidocaine lamotrigine
  • sulfamethoxazole phenytoin
  • carbamazepine sulfamethoxazole
  • phenytoin allopurinol
  • paracetamol mepivacaine
  • p- phenylenedi amine ciproflox
  • the third agent is a chemotherapeutic agent selected from the group consisting of aminoglutethimide, amsacrine, anastrozole, asparaginase, beg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, dienestrol, diethylstilbestrol, docetaxel, doxorubicin, epirubicin, estradiol, estramnustine, etoposide, exemestane, filgrastim, fludarabine, fludrocortisone, fiuorouracil, fluoxymesterone, flutamide, gemcitabine,
  • thioguanine thiotepa, titanocene dichloride, topotecan, trastuzumab, tretinoin, vinblastine, vincristine, vindesine, vinorelbine, and any combinations thereof.
  • compositions wherein the compositions comprise one or more therapeutic agents disclosed herein.
  • the composition can mean a pharmaceutical composition, and is intended to encompass a therapeutic agent (e.g. drug product) comprising niraparib or its pharmaceutically acceptable salts, esters, solvates, polymorphs, stereoisomers or mixtures thereof, and the other inert ingredient(s) (pharmaceutically acceptable excipients).
  • a therapeutic agent e.g. drug product
  • Such pharmaceutical compositions are synonymous with “formulation” and "dosage form”.
  • composition of the present disclosure include, but is not limited to, granules, tablets (single layered tablets, multilayered tablets, mini tablets, bioadhesive tablets, caplets, matrix tablets, tablet within a tablet, mucoadhesive tablets, modified release tablets, orally disintegrating tablets, pulsatile release tablets, timed release tablets, delayed release, controlled release, extended release and sustained release tablets), capsules (hard and soft or liquid filled soft gelatin capsules), pills, troches, sachets, powders, microcapsules, minitablets, tablets in capsules and microspheres, matrix composition and the like.
  • the pharmaceutical composition refers to capsules.
  • the pharmaceutical composition refers to hard gelatin capsules or HPMC based capsules.
  • the pharmaceutical composition refers to hard gelatin capsules.
  • one or more therapeutic agents can be combined to treat a disease or condition.
  • Combination therapy can provide many benefits including synergistic effect.
  • the benefits of synergistic effect can include reducing the dose of each therapeutic agent in the combination therapy, and/or reducing the side effect associated with higher doses.
  • the present disclosure provides a method of treating a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly [ADP- ribose] polymerase (PARP); and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • PARP poly [ADP- ribose] polymerase
  • the present disclosure provides a method of preventing a tumor cell growth in a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly [ADP-ribose] polymerase (PARP); and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • a first agent that inhibits poly [ADP-ribose] polymerase (PARP) PARP
  • PARP poly [ADP-ribose] polymerase
  • the present disclosure provides a method of preventing tumor metastasis in a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly [ADP-ribose] polymerase (PARP); and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • a first agent that inhibits poly [ADP-ribose] polymerase (PARP) PARP
  • PARP poly [ADP-ribose] polymerase
  • the present disclosure provides a method of inducing an immune response in a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly [ADP-ribose] polymerase (PARP); and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • PARP poly [ADP-ribose] polymerase
  • the present disclosure provides a method of enhancing an immune response in a subject with a disease or condition comprising administering to the subject a first agent that inhibits poly [ADP-ribose] polymerase (PARP); and a second agent, wherein the second agent comprises an angiogenesis inhibitor.
  • PARP poly [ADP-ribose] polymerase
  • Niraparib is an orally available and selective poly (ADP-ribose) polymerase (PARP)-l/-2 inhibitor approved for maintenance treatment of patients with recurrent epithelial ovarian, fallopian tube, or primary peritoneal cancer in complete or partial response to platinum-based chemotherapy. It is currently being developed in ovarian and other cancers as monotherapy or in combination with other anti-cancer therapies.
  • Bevacizumab (Avastin®) is a recombinant humanized monoclonal antibody that can block angiogenesis and inhibit vascular endothelial growth factor A (VEGF-A). It is approved as treatment for many cancer types including colorectal cancer, lung cancer, kidney cancer, and ovarian cancer.
  • Cabozantinib (COMETRIQ®) is a small molecule inhibitor of the tyrosine kinase VEGFR2. It also inhibits c- Met, AXL and RET. Cabozantinib is approved for the treatment of medullary thyroid cancer and kidney cancer.
  • the first agent is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; or any combination thereof.
  • the first agent is a small molecule.
  • the first agent is selected from the group consisting of: ABT-767, AZD 2461, BGB-290, BGP 15, CEP 8983, CEP 9722, DR 2313, E7016, E7449, fluzoparib (SHR 3162), IMP 4297, ⁇ 1001, JPI 289, JPI 547, monoclonal antibody B3-LysPE40 conjugate, MP 124, niraparib (ZEJULA) (MK-4827), NU 1025, NU 1064, NU 1076, NU1085, olaparib (AZD2281), ON02231, PD 128763, R 503, R554, rucaparib (RUBRACA) (AG-014699, PF-01367338), SBP 101, SC 101914, Simmiparib, talazoparib (BM -673), veliparib (ABT-888), WW 46, 2-(4- (Trifluoromethyl)phenyl)-7,8
  • the first agent is selected from the group consisting of: niraparib, olaparib, rucaparib, talazoparib, veliparib, and salts or derivatives thereof. In some embodiments, the first agent is niraparib or a pharmaceutically acceptable salt or derivative thereof.
  • the angiogenesis inhibitor reduces the production of a pro- angiogenic factor, inhibits an interaction between a pro-angiogenic factor and a pro-angiogenic receptor, inhibits a function of a pro-angiogenic factor, inhibits a function of a pro-angiogenic factor receptor, reduces of blood flow by disruption of blood vessels, inhibits vessel sprouting, or any combinations thereof.
  • the pro-angiogenic factor comprises FGFl-14, FGF 15/19, FGF18-23, PDGF, VEGF-A, VEGF-B, VEGF-C, VEGF-D, PIGF (placental growth factor), VEGF-E (Orf-VEGF), Trimeresurus flavoviridis svVEGF, VEGFR-1, VEGFR-2, VEGFR-3, angiogenin, angiopoietin-1, angiopoietin-2, Tie-1, Tie-2, MMP, DII4, SEMA3s, ephrins, leptin, chemokines, transforming growth factor- ⁇ (TGF- ⁇ ), or any combination thereof.
  • TGF- ⁇ transforming growth factor- ⁇
  • the angiogenesis inhibitor is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; or any combination thereof.
  • the angiogenesis inhibitor is selected from the group consisting of bevacizumab, itraconazole, carboxyamidotriazole, TNP-470, fumagillin, CMlOl, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, angiostatic steroids, heparin, cartilage- derived angiogenesis inhibitory factor (e.g. peptide troponin I and chondromodulin I), matrix metalloproteinase inhibitor, angiostatin, endostatin, 2-methoxyestradiol, tecogalan,
  • bevacizumab itraconazole, carboxyamidotriazole, TNP-470, fumagillin, CMlOl, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, angiostatic steroids, heparin, cartilage- derived angiogenesis inhibitory factor (e.g. peptide troponin I and chondromodulin
  • tetrathiomolybdate thrombospondin, thalidomide, prolactin, ⁇ 3 inhibitor, lenalidomide, linomide, ramucirumab, tasquinimod, ranibizumab, sorafenib, sunitinib, pazopanib, everolimus, tissue inhibitors of metalloproteases (TF Pl and ⁇ ⁇ 2), bFGF soluble receptor, transforming growth factor beta, interferon alpha, soluble KDR and FLT-1 receptors, placental proliferin- related protein, and any combination thereof.
  • TF Pl and ⁇ ⁇ 2 tissue inhibitors of metalloproteases
  • bFGF soluble receptor transforming growth factor beta
  • interferon alpha transforming growth factor beta
  • FLT-1 receptors placental proliferin- related protein
  • the angiogenesis inhibitor is selected from the group consisting of bevacizumab, itraconazole, carboxyamidotriazole, TNP- 470, fumagillin, CMlOl, IL-12, platelet factor-4, suramin, SU5416, thrombospondin, angiostatic steroids, heparin, cartilage-derived angiogenesis inhibitory factor, matrix metalloproteinase inhibitor, angiostatin, endostatin, 2-methoxyestradiol, tecogalan, tetrathiomolybdate, thrombospondin, thalidomide, prolactin, ⁇ 3 inhibitor, lenalidomide, linomide, ramucirumab, tasquinimod, ranibizumab, sorafenib, sunitinib, pazopanib, everolimus, tissue inhibitors of metalloproteases (TIMPl and TEVIP2), bFGF soluble
  • the angiogenesis inhibitor inhibits a vascular endothelial growth factor (VEGF)/vascular endothelial growth factor receptor (VEGFR) pathway.
  • VEGF vascular endothelial growth factor
  • VEGFR vascular endothelial growth factor receptor
  • the angiogenesis inhibitor inhibits a VEGF family protein and/or a VEGFR family protein.
  • the VEGF family protein comprises VEGF-A, VEGF-B, VEGF- C, VEGF-D, P1GF (placental growth factor), VEGF-E (Orf-VEGF), Trimeresurus flavoviridis svVEGF, or any combination thereof.
  • the VEGFR family protein comprises VEGFR-1, VEGFR-2, VEGFR-3, or any combination thereof.
  • the angiogenesis inhibitor comprises a VEGF inhibitor, a VEGFR inhibitor, or a combination thereof. In some embodiments, the angiogenesis inhibitor induces homologous recombinant (HR) deficiency. In some embodiments, the angiogenesis inhibitor induces hypoxia. In some embodiments, the angiogenesis inhibitor induces homologous recombinant (HR) deficiency by hypoxia.
  • the VEGF inhibitor is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; or any combination thereof.
  • the VEGF inhibitor is an antibody or a fragment thereof.
  • the VEGF inhibitor is bevacizumab, ranibizumab, OPT-302, ziv-aflibercept, or any combinations thereof.
  • the VEGF inhibitor is a small organic or inorganic molecule.
  • the small organic or inorganic molecule is Flt2.11, CBO-P1 1, Je-1 1, VI, or any combination thereof.
  • the VEGFR inhibitor is a small organic or inorganic molecule; a saccharine; an oligosaccharide; a polysaccharide; a carbohydrate; a peptide; a protein; a peptide analog; a peptide derivative; a lipid; an antibody; an antibody fragment, a peptidomimetic; a nucleic acid; a nucleic acid analog; a nucleic acid derivative; an extract made from biological materials; a naturally occurring or synthetic composition; a metal; a toxin; or any combination thereof.
  • the VEGFR inhibitor is a tyrosine kinase inhibitor.
  • the tyrosine kinase inhibitor is pazopanib, sunitinib, sorafenib, axitinib, ponatinib, cabozantinib, regorafenib, vandetanib, lenvatinib, semaxanib, SU6668, vatalanib, tivozanib, cediranib, or any combination thereof.
  • the VEGFR inhibitor is an antibody or a fragment thereof. In some embodiments, the VEGFR inhibitor is ramucirumab.
  • a first agent is niraparib
  • a second agent is bevacizumab.
  • a first agent is niraparib
  • a second agent is cabozantinib
  • inhibitors of the invention when used for treating cancer, can be used in combination with conventional cancer therapies, such as, e.g., surgery, radiotherapy, chemotherapy or combinations thereof, depending on type of the tumor, patient condition, other health issues, and a variety of factors.
  • conventional cancer therapies such as, e.g., surgery, radiotherapy, chemotherapy or combinations thereof, depending on type of the tumor, patient condition, other health issues, and a variety of factors.
  • a further therapeutic agent is an immune checkpoint inhibitor.
  • a checkpoint inhibitor is an agent capable of inhibiting any of the following: PD-1 (e.g., inhibition via anti-PD-1, anti-PD-Ll, or anti-PD-L2 therapies), CTLA-4, TTM-3, TIGIT, LAGs (e.g., LAG-3), CEACAM (e.g., CEACAM-1, -3 and/or -5), VISTA, BTLA, LAIR1, CD160, 2B4, CD80, CD86, B7-H3 (CD276), B7-H4 (VTCNl), HVEM (TNFRSF 14 or CD270), KIR, A2aR, MHC class I, MHC class II, GALS, adenosine, TGFR (e.g., TGFR beta), B7-H1, B7-H4 (VTCN1), OX-40, CD137, CD40, IDO, or CSF-1R.
  • PD-1 e.g., inhibition via
  • a checkpoint inhibitor is a small molecule, a nucleic acid, a polypeptide (e.g., an antibody), a carbohydrate, a lipid, a metal, or a toxin.
  • a checkpoint inhibitor is an antibody, an antibody conjugate, or an antigen-binding fragment thereof.
  • other therapeutic agents useful for combination therapy with the inhibitors of the present disclosure include an antigen specific immune response enhancer agent selected from the group consisting of an anti- PD-1 agent, an anti- PD-L1 agent, a GITR
  • glucose-induced TNFR-related protein stimulating agent an anti-CTLA4 agent, an anti- TIM-3 agent, an anti-LAG-3 agent, a chemokine signaling agent, an anti-VEGF agent, a cytokine signal stimulating agent, and combinations thereof.
  • an immune checkpoint inhibitor is a PD-1 inhibitor.
  • a PD-1 inhibitor is a small molecule, a nucleic acid, a polypeptide (e.g., an antibody, an antibody conjugate, or an antigen-binding fragment thereof), a carbohydrate, a lipid, a metal, or a toxin.
  • a PD-1 inhibitor is a PD-1 binding agent (e.g., an antibody, an antibody conjugate, or an antigen-binding fragment thereof).
  • a PD-1 binding agent is an antibody, an antibody conjugate, or an antigen-binding fragment thereof.
  • the anti- PD-1 agent is selected from the group consisting of pembrolizumab, nivolumab, PDR001, REGN2810 (SAR-439684), BGB-A317, BI 754091, IBI308, INCSHR- 1210, JNJ-63723283, JS-001, MEDI0680 (AMP-514), MGA-012, PF-06801591, REGN-2810, TSR-042, and combinations thereof.
  • a PD-1 inhibitor is an anti-PD-Ll or anti- PD-L2 agent.
  • the anti-PD-Ll agent is selected from the group consisting of atezolizumab, durvalumab, avelumab, LY3300054, and combinations thereof.
  • an anti-PD-1 agent is pembrolizumab. In embodiments, an anti-PD-1 agent is nivolumab In some embodiments, a PD-1 antibody agent is as disclosed in International Patent Application Publication Nos. WO2014/179664, WO 2018/085468, or WO 2018/129559. In further embodiments, a PD-1 antibody agent is administered according to a method disclosed in International Patent Application Publication Nos. WO2014/179664, WO 2018/085468, or WO 2018/129559. In embodiments, an anti-PD-1 agent is TSR-042.
  • an immune checkpoint inhibitor is a TIM-3 inhibitor.
  • a TIM-3 inhibitor is a small molecule, a nucleic acid, a polypeptide (e.g., an antibody, an antibody conjugate, or an antigen-binding fragment thereof), a carbohydrate, a lipid, a metal, or a toxin.
  • a TEVI-3 inhibitor is a TIM-3 binding agent (e.g., an antibody, an antibody conjugate, or an anti gen -binding fragment thereof).
  • a TIM-3 binding agent is an antibody, an antibody conjugate, or an antigen-binding fragment thereof.
  • a TIM-3 antibody agent is MBG453, LY3321367, Sym023, TSR-022, or a derivative thereof.
  • a TTM-3 antibody agent is as disclosed in International Patent Application Publication Nos. WO2016/161270, WO 2018/085469, or WO 2018/129553.
  • a TEVI-3 antibody agent is administered as disclosed in International Patent Application Publication Nos. WO2016/161270, WO 2018/085469, or WO 2018/129553.
  • a TEVI-3 antibody agent is TSR-022.
  • an immune checkpoint inhibitor is a LAG-3 inhibitor.
  • an anti-LAG-3 agent is an antibody, an antibody conjugate, or an antigen-binding fragment thereof
  • an anti-LAG-3 agent is a small molecule, a nucleic acid, a polypeptide (e.g., an antibody), a carbohydrate, a lipid, a metal, or a toxin.
  • an anti-LAG-3 agent is a small molecule.
  • an anti-LAG-3 agent is a LAG-3 binding agent.
  • an anti-LAG-3 agent is an antibody, an antibody conjugate, or an antigen-binding fragment thereof.
  • an anti-LAG-3 agent is IMP321, relatlimab (BMS-986016), BI 7541 1 1, GSK2831781 (EVfP-731), Novartis LAG525 (TMP701), REGN3767, MK-4280, MGD-013, GSK-2831781, FS-1 18, XmAb22841, INCAGN-2385, FS- 18, ENUM-006, AVA-017, AM-0003, Avacta PD-L1/LAG-3 bispecific affamer, iOnctura anti- LAG-3 antibody, Arcus anti-LAG-3 antibody, or Sym022, or TSR-033.
  • a LAG-3 antibody agent is as disclosed in International Patent Application Publication
  • WO2016/126858 or in in International Patent Application No. PCT/US 18/30027.
  • a LAG-3 antibody agent is administered as disclosed in International Patent Application Publication WO2016/126858 or in in International Patent Application No.
  • a LAG-3 antibody agent is TSR-033.
  • the GITR stimulating agent is selected from the group consisting of DTA-1, mGITRL, pGITRL, and combinations thereof.
  • the anti-CTLA4 agent is selected from the group consisting of ipilimumab, tremelimumab, and combinations thereof.
  • the chemokine signaling agent is selected from the group consisting of CXCL16, a CXCR6 chemokine receptor (CD186) agonist, and combinations thereof.
  • the cytokine signal stimulating agent is an interleukin or an interferon.
  • the interleukin is selected from the group consisting of IL-2, IL-1, IL-7, IL-15, IL-12, IL-18 and combinations thereof.
  • the interferon is IFN alpha.
  • the third agent is an antigen specific immune response enhancer agent selected from the group consisting of a flavonoid (e.g., flavonoid glycoside), lidocaine, lamotrigine, sulfamethoxazole, phenytoin, carbamazepine, sulfamethoxazole, phenytoin, allopurinol, paracetamol, mepivacaine, p-phenylenediamine, ciprofloxacin and moxifloxacin.
  • a flavonoid e.g., flavonoid glycoside
  • lidocaine e.g., lamotrigine
  • sulfamethoxazole e.g., phenytoin
  • carbamazepine sulfamethoxazole
  • phenytoin phenytoin
  • allopurinol paracetamol
  • mepivacaine p-phenylenediamine
  • the third agent is a chemotherapeutic agent.
  • chemotherapeutic agents which can be used in combination treatments of the present disclosure include, for example, aminoglutethimide, amsacrine, anastrozole, asparaginase, beg, bicalutamide, bleomycin, buserelin, busulfan, campothecin, capecitabine, carboplatin, carmustine, chlorambucil, cisplatin, cladribine, clodronate, colchicine, cyclophosphamide, cyproterone, cytarabine, dacarbazine, dactinomycin, daunorubicin, dienestrol, diethylstilbestrol, docetaxel, doxorubicin, epirubicin, estradiol, estramnustine, etoposide, exemestane, filgrastim, fludarabine, fludrocor
  • chemotherapeutic agents may be categorized by their mechanism of action into, for example, following groups: anti-metabolites/anti-cancer agents, such as pyrimidine analogs (5 -fluorouracil, floxuridine, capecitabine, gemcitabine and cytarabine) and purine analogs, folate antagonists and related inhibitors (mercaptopurine, thioguanine, pentostatin and 2- chlorodeoxyadenosine (cladribine)); antiproliferative/antimitotic agents including natural products such as vinca alkaloids (vinblastine, vincristine, and vinorelbine), microtubule disrupters such as taxane (paclitaxel, docetaxel), vincristin, vinblastin, nocodazole, epothilones and navelbine, epidipodophyllotoxins (etoposide, teniposide), DNA damaging agents
  • anti-metabolites/anti-cancer agents such as pyrimidine analogs (5
  • antibiotics such as dactinomycin, amsacrine, anthracyclines, bleomycin, busulfan, camptothecin, carboplatin, chlorambucil, cisplatin, cyclophosphamide, Cytoxan, dactinomycin, daunorubicin, doxorubicin, epirubicin, hex amethyhnelamineoxaliplatin, iphosphamide, melphalan, merchlorehtamine, mitomycin, mitoxantrone, nitrosourea, plicamycin, procarbazine, taxol, taxotere, teniposide, triethylenethiophosphoramide and etoposide (VP16)); antibiotics such as dactinomycin
  • actinomycin D daunorubicin, doxorubicin (adriamycin), idarubicin, anthracyclines, mitoxantrone, bleomycins, plicamycin (mithramycin) and mitomycin
  • enzymes L-asparaginase which systemically metabolizes L-asparagine and deprives cells which do not have the capacity to synthesize their own asparagine
  • antiplatelet agents antiproliferative/antimitotic alkylating agents such as nitrogen mustards (mechlorethamine, cyclophosphamide and analogs, melphalan, chlorambucil), ethylenimines and methylmel amines (hexamethylmel amine and thiotepa), alkyl sulfonates-busulfan, nitrosoureas (carmustine (BC U) and analogs, streptozocin), trazenes- dacarbazin
  • anticoagulants heparin, synthetic heparin salts and other inhibitors of thrombin
  • fibrinolytic agents such as tissue plasminogen activator, streptokinase and urokinase
  • aspirin dipyridamole
  • ticlopidine clopidogrel
  • abciximab antimigratory agents
  • antisecretory agents cowveldin
  • immunosuppressives cyclosporine, tacrolimus (FK-506), sirolimus (rapamycin), azathioprine, mycophenolate mofetil
  • anti-angiogenic compounds e.g., TNP-470, genistein, bevacizumab
  • growth factor inhibitors e.g., fibroblast growth factor (FGF) inhibitors
  • angiotensin receptor blocker e.g., fibroblast growth factor (FGF) inhibitors
  • angiotensin receptor blocker e.g., fibroblast growth factor (FGF) inhibitors
  • angiotensin receptor blocker e.g., fibroblast growth factor (FGF) inhibitors
  • angiotensin receptor blocker e.g., fibroblast growth factor (FGF) inhibitors
  • angiotensin receptor blocker e.g., fibroblast growth factor (FGF) inhibitors
  • angiotensin receptor blocker e.g., fibroblast growth factor (
  • chemotherapeutic agent refers to a chemical agent that inhibits the proliferation, growth, life-span and/or metastatic activity of cancer cells.
  • examples of chemotherapeutic agents include alkylating agents such as thiotepa and CYTOXAN ®
  • cyclosphosphamide alkyl sulfonates such as busulfan, improsulfan and piposulfan, aziridines such as benzodopa, carboquone, meturedopa, and uredopa; ethylenimines and methylamelamines (e.g., altretamine, triethylenemelamine, trietylenephosphoramide, triethiylenethiophosphoramide and trimethylolomelamine); acetogenins; delta-9-tetrahydrocannabinol (e.g., dronabinol, MARINOL ® ); beta-lapachone; lapachol; colchicines; betulinic acid; a camptothecin (including the synthetic analogue topotecan (HYCAMTIN ® ), CPT-1 1 (irinotecan, CAMPTOSAR ® ), acetyl camptothecin, scopolectin, and 9-amin
  • pancratistatin a sarcodictyin
  • spongi statin nitrogen mustards such as chlorambucil, chlornaphazine, cholophosphamide, estramustine, ifosfamide, mechlorethamine
  • diaziquone diaziquone; elformithine; elliptinium acetate; an epothilone; etoglucid; gallium nitrate;
  • hydroxyurea lentinan; lonidainine; maytansinoids such as maytansine and ansamitocins;
  • mitoguazone mitoxantrone; mopidanmol; nitraerine; pentostatin, phenamet; pirarubicin;
  • triaziquone 2,2',2"-trichlorotriethylamine; trichothecenes (e.g., T-2 toxin, verracurin A, roridin A and anguidine); urethan; vindesine (ELDISINE ® , FILDESIN ® ); dacarbazine; mannomustine; mitobronitol; mitolactol; pipobroman; gacytosine; arabinoside ("Ara-C"); cyclophosphamide; thiotepa; taxanes, e.g., TAXOL ® paclitaxel (Bristol-Myers Squibb Oncology, Princeton, N.J.), ABRAXANETM Cremophor-free, albumin-engineered nanoparticle formulation of paclitaxel (American Pharmaceutical Partners, Schaumberg, 111.), and TAXOTERE ® docetaxel (Rhone- Poulenc Rorer,
  • mercaptopurine methotrexate
  • platinum analogs such as cisplatin and carboplatin
  • vinblastine VELBAN ®
  • platinum etoposide
  • VP-16 ifosfamide
  • mitoxantrone vincristine
  • oxaliplatin leucovovin
  • vinorelbine NAVELBINE ®
  • novantrone edatrexate; daunomycin; aminopterin; xeloda; ibandronate; topoisomerase inhibitor RFS 2000; difluoromethylornithine (DMFO); retinoids such as retinoic acid; capecitabine; pharmaceutically acceptable salts, acids or derivatives of any of the above; as well as combinations of two or more of the above such as CHOP, an abbreviation for a combined therapy of cyclophosphamide, doxorubicin, vincristine, and prednisolone, and
  • antimetabolite chemotherapeutic agents that are structurally similar to a metabolite, but cannot be used by the body in a productive manner. Many antimetabolite chemotherapeutic agents interfere with the production of the nucleic acids, RNA and DNA. Examples of antimetabolite chemotherapeutic agents include gemcitabine
  • an antimetabolite chemotherapeutic agent is gemcitabine.
  • Gemcitabine HC1 is sold by Eli Lilly under the trademark GEMZAR ® .
  • platinum-based chemotherapeutic agents that comprises an organic compound which contains platinum as an integral part of the molecule.
  • a chemotherapeutic agent is a platinum agent
  • the platinum agent is selected from cisplatin, carboplatin, oxaliplatin, nedaplatin, triplatin tetranitrate, phenanthriplatin, picoplatin, or satraplatin.
  • composition or pharmaceutical composition or therapeutic agent disclosed here can be administered into a subject by various methods.
  • Those of ordinary skill in the art will be aware of a variety of routes that may, in appropriate circumstances, be utilized for administration to a subject, for example a human subject.
  • administration may be ocular, oral, parenteral, topical, etc.
  • administration may be bronchial (e.g., by bronchial instillation), buccal, dermal (which may be or comprise, for example, one or more of topical to the dermis, intradermal, interdermal, transdermal, etc.), enteral, intra-arterial, intradermal, intragastric, intramedullary, intramuscular, intranasal, intraperitoneal, intrathecal, intravenous, intraventricular, within a specific organ (e.g., intrahepatic), mucosal, nasal, oral, rectal, subcutaneous, sublingual, topical, tracheal (e.g., by intratracheal instillation), vaginal, vitreal, etc.
  • bronchial e.g., by bronchial instillation
  • buccal which may be or comprise, for example, one or more of topical to the dermis, intradermal, interdermal, transdermal, etc.
  • enteral intra-arterial, intradermal, intragas
  • administration may involve dosing that is intermittent (e.g., a plurality of doses separated in time) and/or periodic (e.g., individual doses separated by a common period of time) dosing. In some embodiments, administration may involve continuous dosing (e.g., perfusion) for at least a selected period of time.
  • the pharmaceutical composition can be formulated for administration via pH-dependent release delivery, microbially-triggered delivery, time-controlled delivery, osmotically-regulated delivery, pressure-controlled delivery, multi matrix systems delivery, bioadhesion delivery, or multiparticulate delivery.
  • compositions of the present disclosure include, but are not limited to, granules, tablets (single layered tablets, multilayered tablets, mini tablets, bioadhesive tablets, caplets, matrix tablets, tablet within a tablet, mucoadhesive tablets, modified release tablets, orally disintegrating tablets, pulsatile release tablets, timed release tablets, delayed release, controlled release, extended release and sustained release tablets), capsules (hard and soft or liquid filled soft gelatin capsules), pills, troches, sachets, powders, microcapsules, minitablets, tablets in capsules and microspheres, matrix composition and the like.
  • the pharmaceutical composition refers to capsules.
  • the pharmaceutical composition refers to hard gelatin capsules or HPMC based capsules.
  • the pharmaceutical composition refers to hard gelatin capsules
  • a given therapeutic agent is administered according to a regimen, which may involve one or more doses.
  • a regimen comprises a plurality of doses each of which is separated in time from other doses.
  • individual doses are separated from one another by a time period of the same length; in some embodiments, a regimen comprises a plurality of doses, wherein the doses are separated by time periods of different length.
  • a regimen comprises doses of the same amount. In some embodiments, a regimen comprises doses of different amounts.
  • a regimen comprises at least one dose, wherein the dose comprises one unit dose of the therapeutic agent.
  • a regimen comprises at least one dose, wherein the dose comprises two or more unit doses of the therapeutic agent.
  • the methods provided herein comprise administering a first agent and a second agent.
  • a first agent and a second agent can be administered in any order.
  • administering comprises administering the first and second agent sequentially.
  • administering comprises administering the first and second agent simultaneously.
  • administering comprises administering the first agent before administering the second agent.
  • administering comprises administering the second agent before administering the first agent.
  • the pharmaceutical composition is administered to a subject and the administering comprises administering a composition comprising a capsule, wherein the capsule comprises the first agent.
  • the capsule comprises a formulation comprising the first agent and one or more pharmaceutically acceptable excipients.
  • the one or more pharmaceutically acceptable excipients comprise lactose monohydrate, magnesium stearate, or a combination thereof.
  • a therapeutically effective amount of the first or second agent is administered.
  • the method further comprises administering a third agent to the subject.
  • the third agent comprises an antigen specific immune response enhancer agent, a chemotherapeutic agent, or a combination thereof.
  • the antigen specific immune response enhancer agent comprises an anti- PD-1 agent, an anti- PD-L1 agent, an anti- CTLA4 agent, an anti-TIM-3 agent, or an anti-LAG-3 agent.
  • provided methods comprise administering a therapy that inhibits PARP and a therapy that regulates activity in the tumor microenvironment (e.g., inhibition of angiogenesis) in combination to a patient, a subject, or a population of subjects according to a regimen that achieves a therapeutic effect.
  • a therapy that inhibits PARP and a therapy that regulates activity in the tumor microenvironment e.g., inhibition of angiogenesis
  • administration "in combination” includes administration of one or more doses of an agent that inhibits PARP (e.g., niraparib) before, during, or after administration of one or more doses of an agent that enhances activity in the tumor
  • an agent that inhibits PARP e.g., niraparib
  • an agent that inhibits PARP e.g., niraparib
  • an agent that regulates activity in the tumor microenvironment are administered in overlapping regimens.
  • an agent that inhibits PARP e.g., niraparib
  • a composition disclosed herein is administered once to an individual in need thereof with a mild acute condition. In some embodiments, a composition disclosed herein is administered more than once to an individual in need thereof with a moderate or severe acute condition. In the case wherein the patient's condition does not improve, upon the doctor's discretion the administration of a combination drug product described herein may be administered chronically, that is, for an extended period of time, including throughout the duration of the patient's life in order to ameliorate or otherwise control or limit the symptoms of the patient' s disease or condition.
  • a therapeutically-effective amount of a therapeutic agent is administered to a subject.
  • the therapeutic agent can be a first, a second, or a third agent.
  • the therapeutically-effective amount is from about 0.1 milligram per kilogram of body weight per day (mg/kg day) to about 1 mg/kg/day, from 1 mg/kg/day to about 5 mg/kg/day, from 5 mg/kg/day to about 10 mg/kg/day, from 10 mg/kg/day to about 15 mg/kg/day, from 15 mg/kg/day to about 20 mg/kg/day, from 20 mg/kg/day to about 25 mg/kg day, from 25 mg/kg/day to about 30 mg/kg/day, from 30 mg kg/day to about 35 mg/kg/day, or from 35 mg/kg/day to about 40 mg/kg/day.
  • the therapeutically-effective amount is from 0.1 mg/kg/day to about 40 mg/kg/day. In some embodiments, the therapeutically-effective amount is from 10 mg/kg/day to about 50 mg/kg/day, or from 50 mg/kg/day to about 100 mg/kg/day.
  • a first agent is administered at a dose that is equivalent to about 300 mg of niraparib. In some embodiments, the first agent is administered at a reduced dose. In some embodiments, the reduced dose is equivalent to 200 mg of niraparib. In some embodiments, the reduced dose is equivalent to 100 mg - 150 mg, or 150 mg -200 mg of niraparib. In some embodiments, the first agent (e.g. niraparib) is administered at an increased dose if the subject's hemoglobin > 9 g/dL, platelets > ⁇ , ⁇ / ⁇ . and neutrophils > 1500/ ⁇ . for all labs performed during one or more treatment cycles. In some embodiments, the dose of the first agent (e.g. niraparib) is increased after two cycles of treatment.
  • therapeutically- effective amounts of the therapeutic agents can be administered to a subject having a disease or condition.
  • a therapeutically-effective amount can vary widely depending on the severity of the disease, the age and relative health of the subject, the potency of the compounds used, and other factors.
  • Subjects can be, for example, mammals, humans, pregnant women, elderly adults, adults, adolescents, pre-adolescents, children, toddlers, infants, newborn, or neonates.
  • a subject can be a patient.
  • a subject can be a human.
  • a subject can be a child (i.e., a young human being below the age of puberty).
  • a subject can be an infant.
  • the subject can be a formula-fed infant.
  • a subject can be an individual enrolled in a clinical study.
  • a subject can be a laboratory animal, for example, a mammal, or a rodent.
  • the subject can be a mouse.
  • the subject can be an obese or overweight subject.
  • the subject has previously been treated with one or more different cancer treatment modalities.
  • the subject has previously been treated with one or more of radiotherapy, chemotherapy, or immunotherapy.
  • the subject has been treated with one, two, three, four, or five lines of prior therapy.
  • the prior therapy is a cytotoxic therapy.
  • a composition or pharmaceutical composition of the present disclosure can comprise any of the agents disclosed herein.
  • the composition or pharmaceutical composition comprises one or more therapeutic agents.
  • the composition or pharmaceutical composition can be administered in combination with another therapy, for example,
  • immunotherapy chemotherapy, radiotherapy, anti-inflammatory agents, anti-viral agents, antimicrobial agents, and anti-fungal agents.
  • a composition or a pharmaceutical composition of the present disclosure can be packaged as a kit.
  • a kit comprises a pharmaceutical composition disclosed herein.
  • a kit comprises a first, a second, and/or a third therapeutic agent disclosed herein.
  • a kit includes written instructions on the administration/use of the therapeutic composition.
  • the written material can be, for example, a label.
  • the written material can suggest conditions methods of administration.
  • the instructions provide the subject and the supervising physician with the best guidance for achieving the optimal treatment outcome from the administration of the therapy.
  • the written material can be a label.
  • the label can be approved by a regulatory agency, for example the U.S. Food and Drug Administration (FDA), the European Medicines Agency (EMA), or other regulatory agencies.
  • FDA U.S. Food and Drug Administration
  • EMA European Medicines Agency
  • Example 2 - Niraparib and bevacizumab combination therapy demonstrated enhanced anti-tumor activity in both ovarian and TNBC models
  • TGI Tumor growth inhibition
  • tumor bearing mice were randomized into 4 cohorts and treated with vehicle, niraparib, cabozantinib, and niraparib + cabozantinib for 2 weeks. Tumor size and body weight were measured twice weekly. Both monotherapies and the combination are well tolerated without significant body weight loss.
  • Example 5 Results of tolerabilitv and antitumor activity of niraparib and cabozantinib combination in ovarian cancer cell line-derived xenograft model A2780 (BRCA wt, HRD-)
  • tumor bearing mice were randomized into 4 cohorts and treated with vehicle, niraparib, cabozantinib, and niraparib + cabozantinib combination for 2 weeks. Tumor size and body weight were measured twice weekly. Both monotherapies and the combination are well tolerated with no significant body weight loss.
  • Example 6 Results of anti-tumor activity of niraparib and cabozantinib combination in ovarian PDX model OVC134
  • tumor bearing mice were randomized into 4 cohorts and treated with vehicle, niraparib, cabozantinib, and niraparib + cabozantinib combination for 7 weeks. Tumor size and body weight were measured twice weekly. This model is very sensitive to both niraparib and cabozantinib monotherapy, therefore no additional combination benefit could be observed for the combination.
  • Example 7 Results of anti-tumor activity of niraparib + bevacizumab combination and niraparib + cabozantinib combination in TNBC PDX model MAXF 574
  • tumor bearing mice were randomized into 6 cohorts and treated with vehicle, niraparib, bevacizumab, niraparib + bevacizumab combination, cabozantinib, and niraparib + cabozantinib combination for 5 weeks. Tumor size and body weight were measured twice weekly. Combination benefit was observed for both niraparib + bevacizumab and niraparib + cabozantinib combinations.
  • Example 8 Results of anti-tumor activity of niraparib + bevacizumab combination and niraparib + cabozantinib combination in TNBC PDX model MAXF 857
  • tumor bearing mice were randomized into 6 cohorts and treated with vehicle, niraparib, bevacizumab, niraparib + bevacizumab, cabozantinib, niraparib + cabozantinib for 5 weeks. Tumor size and body weight were measured twice weekly. Niraparib + bevacizumab combination and niraparib + cabozantinib combination are presented in 2 separated grafts for better viewing.
  • Example 9 Results of anti-tumor activity of niraparib + bevacizumab combination and niraparib + cabozantinib combination in TNBC PDX model MAXF MX1
  • TNBC model MAXF MX1 tumor bearing mice were randomized into 6 cohorts and treated with vehicle, niraparib, bevacizumab, niraparib + bevacizumab, cabozantinib, niraparib + cabozantinib for 5 weeks. Tumor size and body weight were measured twice weekly. This model is very sensitive to niraparib monotherapy, therefore no further combination benefit could be observed for either niraparib + bevacizumab or niraparib + cabozantinib.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Organic Chemistry (AREA)
  • Immunology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Mycology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
  • Medicinal Preparation (AREA)
PCT/US2018/054606 2017-10-06 2018-10-05 POLYRHEERAPIES AND USES THEREOF Ceased WO2019071123A1 (en)

Priority Applications (15)

Application Number Priority Date Filing Date Title
CN201880065336.2A CN111182923A (zh) 2017-10-06 2018-10-05 组合疗法及其用途
MX2020003799A MX2020003799A (es) 2017-10-06 2018-10-05 Terapias de combinacion y usos de las mismas.
EP18796190.9A EP3691685A1 (en) 2017-10-06 2018-10-05 Combination therapies and uses thereof
KR1020207012376A KR20200067164A (ko) 2017-10-06 2018-10-05 조합 요법 및 그의 용도
SG11202002499TA SG11202002499TA (en) 2017-10-06 2018-10-05 Combination therapies and uses thereof
AU2018346688A AU2018346688A1 (en) 2017-10-06 2018-10-05 Combination therapies and uses thereof
JP2020519286A JP2020536869A (ja) 2017-10-06 2018-10-05 併用療法およびその使用
US16/754,083 US11801240B2 (en) 2017-10-06 2018-10-05 Combination therapies and uses thereof
EA202090655A EA202090655A1 (ru) 2017-10-06 2018-10-05 Комбинированные терапевтические средства и их применение
CA3076859A CA3076859A1 (en) 2017-10-06 2018-10-05 Combination therapies and uses thereof
BR112020006845-4A BR112020006845A2 (pt) 2017-10-06 2018-10-05 terapias combinadas e usos das mesmas
IL273510A IL273510A (en) 2017-10-06 2020-03-23 Combined treatments and their use
PH12020550400A PH12020550400A1 (en) 2017-10-06 2020-04-03 Combination therapies and uses thereof
CONC2020/0005223A CO2020005223A2 (es) 2017-10-06 2020-04-27 Terapias de combinación y usos de las mismas
AU2022201944A AU2022201944A1 (en) 2017-10-06 2022-03-21 Combination therapies and uses thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201762569239P 2017-10-06 2017-10-06
US62/569,239 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019071123A1 true WO2019071123A1 (en) 2019-04-11

Family

ID=64051695

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2018/054606 Ceased WO2019071123A1 (en) 2017-10-06 2018-10-05 POLYRHEERAPIES AND USES THEREOF

Country Status (17)

Country Link
US (1) US11801240B2 (enExample)
EP (1) EP3691685A1 (enExample)
JP (1) JP2020536869A (enExample)
KR (1) KR20200067164A (enExample)
CN (1) CN111182923A (enExample)
AU (2) AU2018346688A1 (enExample)
BR (1) BR112020006845A2 (enExample)
CA (1) CA3076859A1 (enExample)
CL (2) CL2020000907A1 (enExample)
CO (1) CO2020005223A2 (enExample)
EA (1) EA202090655A1 (enExample)
IL (1) IL273510A (enExample)
MA (1) MA50618A (enExample)
MX (1) MX2020003799A (enExample)
PH (1) PH12020550400A1 (enExample)
SG (1) SG11202002499TA (enExample)
WO (1) WO2019071123A1 (enExample)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200017462A1 (en) 2017-03-27 2020-01-16 Tesaro, Inc. Niraparib compositions
WO2020225753A2 (en) 2019-05-06 2020-11-12 Tesaro, Inc. Methods for characterizing and treating a cancer type using cancer images
EP3621592A4 (en) * 2017-05-09 2021-03-17 Tesaro, Inc. COMBINATION THERAPIES FOR TREATMENT OF CANCER
WO2021178525A1 (en) * 2020-03-03 2021-09-10 The University Of Chicago Compositions and methods for treating or preventing cancer using deubiquitinase inhibitors
US11161834B2 (en) 2017-04-24 2021-11-02 Tesaro, Inc. Methods of manufacturing of niraparib
CN115177594A (zh) * 2022-07-04 2022-10-14 武汉大学中南医院 一种阿昔替尼药物制剂及其制备方法
US11622961B2 (en) 2017-05-18 2023-04-11 Tesaro, Inc. Combination therapies for treating cancer
US11661453B2 (en) 2017-09-30 2023-05-30 Tesaro, Inc. Combination therapies for treating cancer with niraparib and PD-1 inhibitors
US11730725B2 (en) 2017-09-26 2023-08-22 Tesaro, Inc. Niraparib formulations
US11801240B2 (en) 2017-10-06 2023-10-31 Tesaro, Inc. Combination therapies and uses thereof

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3721906A4 (en) * 2017-12-06 2021-08-04 Jiangsu Hengrui Medicine Co., Ltd. USE OF PARP INHIBITOR TO TREAT CHEMOTHERAPY RESISTANT OVAR CANCER OR BREAST CANCER
CN112007042B (zh) * 2020-09-10 2023-02-21 中国医学科学院医学生物学研究所 阿糖胞苷与原癌蛋白c-FOS抑制剂在制备治疗白血病的产品中的应用
CN112316149A (zh) * 2020-11-11 2021-02-05 王海涛 一种治疗tp53突变的晚期难治性实体瘤的药物及应用
US20240226059A1 (en) * 2020-12-15 2024-07-11 Kant Science Inc. Composition for inhibiting angiogenesis and enhancing therapeutic effect of anticancer drugs in cancer patient
CN114748479B (zh) * 2021-01-08 2023-10-20 轩竹生物科技股份有限公司 一种预防和/或治疗癌症的药物组合物
KR20230133317A (ko) * 2021-01-18 2023-09-19 액티브 바이오테크 에이비 골수이형성 증후군의 치료에 이용하기 위한 타스퀴니모드또는 이의 약제학적으로 허용가능한 염
CN115177621B (zh) * 2021-04-02 2023-09-01 上海市第一人民医院 Av-951在制备用于抑制或治疗甲状腺相关眼病的药物中的应用
CN113101288A (zh) * 2021-05-08 2021-07-13 中国人民解放军空军军医大学 一种协同增效治疗脊索瘤的组合药物及其用途
EP4452234A1 (en) * 2021-12-23 2024-10-30 Boston Scientific Medical Device Limited Chemoembolic compositions and methods of treatment using them
CN116077643B (zh) * 2021-12-31 2025-02-11 成都金瑞基业生物科技有限公司 治疗和/或预防肺癌的联合用药物及应用
CN114712515A (zh) * 2022-03-30 2022-07-08 上海交通大学医学院附属瑞金医院 一种dll4抑制剂联合parp抑制剂在制备治疗卵巢癌药物中的应用
CN115154589B (zh) * 2022-08-26 2024-04-09 山东大学 白藜芦醇联合成纤维细胞生长因子1在缓解蒽环类药物诱导的心脏及肝脏毒性中的应用

Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325199A2 (en) 1988-01-19 1989-07-26 Takeda Chemical Industries, Ltd. Fumagillin as angiostatic agent
EP0357061A1 (en) 1988-09-01 1990-03-07 Takeda Chemical Industries, Ltd. Angiogenesis inhibitory agent
WO2007113596A1 (en) 2006-04-03 2007-10-11 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Amide substituted indazole and benzotriazole derivatives as poly(adp-ribose)polymerase (parp) inhibitors
WO2008084261A1 (en) 2007-01-10 2008-07-17 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Amide substituted indazoles as poly(adp-ribose)polymerase (parp) inhibitors
US20090123419A1 (en) * 2007-11-12 2009-05-14 Bipar Sciences Treatment of uterine cancer and ovarian cancer with a parp inhibitor alone or in combination with anti-tumor agents
WO2009064738A2 (en) * 2007-11-12 2009-05-22 Bipar Sciences, Inc. Treatment of breast cancer with a parp inhibitor alone or in combination with anti-tumor agents
WO2009087381A1 (en) 2008-01-08 2009-07-16 Merck Sharp & Dohme Ltd Pharmaceutically acceptable salts of 2-{4-[(3s)-piperidin-3- yl]phenyl} -2h-indazole-7-carboxamide
WO2014088983A1 (en) 2012-12-07 2014-06-12 Merck Sharp & Dohme Corp. Regioselective n-2 arylation of indazoles
WO2014088984A1 (en) 2012-12-07 2014-06-12 Merck Sharp & Dohme Corp. Biocatalytic transamination process
WO2014179664A2 (en) 2013-05-02 2014-11-06 Anaptysbio, Inc. Antibodies directed against programmed death-1 (pd-1)
WO2016126858A2 (en) 2015-02-03 2016-08-11 Anaptysbio, Inc. Antibodies directed against lymphocyte activation gene 3 (lag-3)
WO2016161270A1 (en) 2015-04-01 2016-10-06 Anaptysbio, Inc. Antibodies directed against t cell immunoglobulin and mucin protein 3 (tim-3)
WO2017142871A1 (en) * 2016-02-15 2017-08-24 Astrazeneca Ab Methods comprising fixed intermittent dosing of cediranib
WO2018085468A1 (en) 2016-11-01 2018-05-11 Anaptysbio, Inc. Antibodies directed against programmed death- 1 (pd-1)
WO2018085469A2 (en) 2016-11-01 2018-05-11 Anaptysbio, Inc. Antibodies directed against t cell immunoglobulin and mucin protein 3 (tim-3)
WO2018129559A1 (en) 2017-01-09 2018-07-12 Tesaro, Inc. Methods of treating cancer with anti-pd-1 antibodies
WO2018129553A1 (en) 2017-01-09 2018-07-12 Tesaro, Inc. Methods of treating cancer with anti-tim-3 antibodies

Family Cites Families (42)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7595048B2 (en) 2002-07-03 2009-09-29 Ono Pharmaceutical Co., Ltd. Method for treatment of cancer by inhibiting the immunosuppressive signal induced by PD-1
US9707302B2 (en) 2013-07-23 2017-07-18 Immunomedics, Inc. Combining anti-HLA-DR or anti-Trop-2 antibodies with microtubule inhibitors, PARP inhibitors, bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer
NZ600758A (en) 2007-06-18 2013-09-27 Merck Sharp & Dohme Antibodies to human programmed death receptor pd-1
JP5468015B2 (ja) 2008-01-08 2014-04-09 アクセリア ファーマシューティカルズ 抗菌ペプチド系に対する作動薬
US8217149B2 (en) 2008-12-09 2012-07-10 Genentech, Inc. Anti-PD-L1 antibodies, compositions and articles of manufacture
MX2011008221A (es) 2009-02-04 2011-08-17 Bipar Sciences Inc Tratamiento de cancer de pulmon con un compuesto de nitrobenzamida en combinacion con un inhibidor de un factor de crecimieno.
LT3279215T (lt) 2009-11-24 2020-04-10 Medimmune Limited Tiksliniai surišantys agentai prieš b7-h1
WO2011153383A1 (en) 2010-06-04 2011-12-08 Bipar Science, Inc. Methods of treating platinum-resistant recurrent ovarian cancer with 4-iodo-3-nitrobenzamide in combination with an anti-metabolite and a platinum compound
DK3327148T3 (da) 2010-06-18 2021-04-12 Myriad Genetics Inc Fremgangsmåder til forudsigelse af status for brca1- og brca2-gener i en cancercelle
US9512485B2 (en) 2010-08-24 2016-12-06 Dana-Farber Cancer Institute. Inc. Methods for predicting anti-cancer response
CA2742342A1 (en) 2011-02-12 2012-08-12 Baylor Research Institute Msh3 expression status determines the responsiveness of cancer cells to the chemotherapeutic treatment with parp inhibitors and platinum drugs
LT2785375T (lt) 2011-11-28 2020-11-10 Merck Patent Gmbh Anti-pd-l1 antikūnai ir jų panaudojimas
CA3190075A1 (en) 2012-06-07 2013-12-12 Institut Curie Methods for detecting inactivation of the homologous recombination pathway (brca1/2) in human tumors
US9850542B2 (en) 2013-03-04 2017-12-26 Board Of Regents, The University Of Texas System Gene signature to predict homologous recombination (HR) deficient cancer
US20150071910A1 (en) 2013-03-15 2015-03-12 Genentech, Inc. Biomarkers and methods of treating pd-1 and pd-l1 related conditions
EP4023765A1 (en) 2013-12-09 2022-07-06 Institut Curie Methods for detecting inactivation of the homologous recombination pathway (brca1/2) in human tumors
US20180163271A1 (en) 2014-01-16 2018-06-14 Clovis Oncology, Inc. Use of PARP Inhibitors to Treat Breast or Ovarian Cancer Patients Showing a Loss of Heterozygosity
WO2015116868A2 (en) 2014-01-29 2015-08-06 Caris Mpi, Inc. Molecular profiling of immune modulators
WO2015184145A1 (en) 2014-05-28 2015-12-03 Eisai R&D Management Co., Ltd. Use of eribulin and poly (adp ribose) polymerase (parp) inhibitors as combination therapy for the treatment of cancer
US20150344968A1 (en) 2014-05-30 2015-12-03 Institute For Cancer Research D/B/A The Research Institute Of Fox Chase Cancer Center Methods for determining parp inhibitor and platinum resistance in cancer therapy
EP3230472A4 (en) 2014-12-08 2018-06-13 Myriad Genetics, Inc. Methods and materials for predicting response to niraparib
KR20170138555A (ko) 2015-04-28 2017-12-15 브리스톨-마이어스 스큅 컴퍼니 항-pd-1 항체 및 항-ctla-4 항체를 사용한 pd-l1-음성 흑색종의 치료
JP2018518483A (ja) 2015-06-08 2018-07-12 ジェネンテック, インコーポレイテッド 抗ox40抗体及びpd−1軸結合アンタゴニストを使用して癌を治療する方法
WO2016210108A1 (en) 2015-06-25 2016-12-29 Immunomedics, Inc. Combining anti-hla-dr or anti-trop-2 antibodies with microtubule inhibitors, parp inhibitors, bruton kinase inhibitors or phosphoinositide 3-kinase inhibitors significantly improves therapeutic outcome in cancer
ES2848118T3 (es) 2015-08-20 2021-08-05 Ipsen Biopharm Ltd Terapia de combinación que usa irinotecán liposomal y un inhibidor de PARP para el tratamiento del cáncer
RU2018119128A (ru) 2015-10-26 2019-11-28 МЕДИВЭЙШН ТЕКНОЛОДЖИЗ ЭлЭлСи Лечение мелкоклеточного рака легких ингибитором parp
MX394062B (es) 2016-06-29 2025-03-19 Tesaro Inc Métodos para el tratamiento del cáncer ovárico.
CN110087730B (zh) 2016-09-27 2023-03-28 百济神州(苏州)生物科技有限公司 使用包含parp抑制剂的组合产品治疗癌症
EP3606523A1 (en) 2017-03-27 2020-02-12 Tesaro, Inc. Niraparib formulations
KR20200014736A (ko) 2017-03-27 2020-02-11 테사로, 인코포레이티드 니라파립 조성물
SG11201909807TA (en) 2017-04-24 2019-11-28 Tesaro Inc Methods of manufacturing of niraparib
KR102769634B1 (ko) 2017-04-27 2025-02-19 테사로, 인코포레이티드 림프구 활성화 유전자-3 (lag-3)에 대한 항체 작용제 및 그의 용도
KR20200018436A (ko) 2017-05-09 2020-02-19 테사로, 인코포레이티드 암 치료를 위한 조합 요법
CA3063715A1 (en) 2017-05-18 2018-11-22 Tesaro, Inc. Combination therapies for treating cancer
WO2019005762A1 (en) 2017-06-26 2019-01-03 Abbvie Inc. TREATMENT OF NON-SMALL CELL LUNG CANCER
KR20250016494A (ko) 2017-09-26 2025-02-03 테사로, 인코포레이티드 니라파립 제제
MX2020003770A (es) 2017-09-30 2020-07-29 Tesaro Inc Terapias de combinacion para tratar cancer.
CA3076859A1 (en) 2017-10-06 2019-04-11 Tesaro, Inc. Combination therapies and uses thereof
TW201929902A (zh) 2017-12-27 2019-08-01 美商提薩羅有限公司 治療癌症之方法
RU2020129236A (ru) 2018-02-05 2022-03-09 Тесаро, Инк. Педиатрические препараты нирапариба и способы лечения в педиатрии
EA201992594A1 (ru) 2018-03-26 2020-03-20 Тесаро, Инк. Комбинированные терапии для лечения рака
US11970530B2 (en) 2020-08-13 2024-04-30 Astrazeneca Ab Methods of treating homologous recombination deficient cancer

Patent Citations (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0325199A2 (en) 1988-01-19 1989-07-26 Takeda Chemical Industries, Ltd. Fumagillin as angiostatic agent
EP0357061A1 (en) 1988-09-01 1990-03-07 Takeda Chemical Industries, Ltd. Angiogenesis inhibitory agent
WO2007113596A1 (en) 2006-04-03 2007-10-11 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Amide substituted indazole and benzotriazole derivatives as poly(adp-ribose)polymerase (parp) inhibitors
EP2007733B1 (en) 2006-04-03 2016-05-25 MSD Italia S.r.l. Amide substituted indazole and benzotriazole derivatives as poly(adp-ribose)polymerase (parp) inhibitors
WO2008084261A1 (en) 2007-01-10 2008-07-17 Istituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Amide substituted indazoles as poly(adp-ribose)polymerase (parp) inhibitors
US8071623B2 (en) 2007-01-10 2011-12-06 Instituto Di Ricerche Di Biologia Molecolare P. Angeletti Spa Amide substituted indazoles as poly(ADP-ribose)polymerase(PARP) inhibitors
US20090123419A1 (en) * 2007-11-12 2009-05-14 Bipar Sciences Treatment of uterine cancer and ovarian cancer with a parp inhibitor alone or in combination with anti-tumor agents
WO2009064738A2 (en) * 2007-11-12 2009-05-22 Bipar Sciences, Inc. Treatment of breast cancer with a parp inhibitor alone or in combination with anti-tumor agents
WO2009087381A1 (en) 2008-01-08 2009-07-16 Merck Sharp & Dohme Ltd Pharmaceutically acceptable salts of 2-{4-[(3s)-piperidin-3- yl]phenyl} -2h-indazole-7-carboxamide
US8436185B2 (en) 2008-01-08 2013-05-07 Merck Sharp & Dohme Corp. Pharmaceutically acceptable salts of 2-{4-[(3S)-piperidin-3-yl]phenyl}-2H-indazole-7-carboxamide
WO2014088984A1 (en) 2012-12-07 2014-06-12 Merck Sharp & Dohme Corp. Biocatalytic transamination process
WO2014088983A1 (en) 2012-12-07 2014-06-12 Merck Sharp & Dohme Corp. Regioselective n-2 arylation of indazoles
WO2014179664A2 (en) 2013-05-02 2014-11-06 Anaptysbio, Inc. Antibodies directed against programmed death-1 (pd-1)
WO2016126858A2 (en) 2015-02-03 2016-08-11 Anaptysbio, Inc. Antibodies directed against lymphocyte activation gene 3 (lag-3)
WO2016161270A1 (en) 2015-04-01 2016-10-06 Anaptysbio, Inc. Antibodies directed against t cell immunoglobulin and mucin protein 3 (tim-3)
WO2017142871A1 (en) * 2016-02-15 2017-08-24 Astrazeneca Ab Methods comprising fixed intermittent dosing of cediranib
WO2018085468A1 (en) 2016-11-01 2018-05-11 Anaptysbio, Inc. Antibodies directed against programmed death- 1 (pd-1)
WO2018085469A2 (en) 2016-11-01 2018-05-11 Anaptysbio, Inc. Antibodies directed against t cell immunoglobulin and mucin protein 3 (tim-3)
WO2018129559A1 (en) 2017-01-09 2018-07-12 Tesaro, Inc. Methods of treating cancer with anti-pd-1 antibodies
WO2018129553A1 (en) 2017-01-09 2018-07-12 Tesaro, Inc. Methods of treating cancer with anti-tim-3 antibodies

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
S. M. BERGE ET AL.: "pharmaceutically acceptable salts", J. PHARMACEUTICAL SCIENCES, vol. 66, 1977, pages 1 - 19

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200017462A1 (en) 2017-03-27 2020-01-16 Tesaro, Inc. Niraparib compositions
US11091459B2 (en) 2017-03-27 2021-08-17 Tesaro, Inc. Niraparib compositions
US11673877B2 (en) 2017-03-27 2023-06-13 Tesaro, Inc. Niraparib compositions
US11161834B2 (en) 2017-04-24 2021-11-02 Tesaro, Inc. Methods of manufacturing of niraparib
US11629137B2 (en) 2017-04-24 2023-04-18 Tesaro, Inc. Methods of manufacturing of niraparib
US12156872B2 (en) 2017-05-09 2024-12-03 Tesaro, Inc. Combination therapies for treating cancer
EP3621592A4 (en) * 2017-05-09 2021-03-17 Tesaro, Inc. COMBINATION THERAPIES FOR TREATMENT OF CANCER
US11622961B2 (en) 2017-05-18 2023-04-11 Tesaro, Inc. Combination therapies for treating cancer
US11730725B2 (en) 2017-09-26 2023-08-22 Tesaro, Inc. Niraparib formulations
US11661453B2 (en) 2017-09-30 2023-05-30 Tesaro, Inc. Combination therapies for treating cancer with niraparib and PD-1 inhibitors
US11801240B2 (en) 2017-10-06 2023-10-31 Tesaro, Inc. Combination therapies and uses thereof
WO2020225753A2 (en) 2019-05-06 2020-11-12 Tesaro, Inc. Methods for characterizing and treating a cancer type using cancer images
WO2021178525A1 (en) * 2020-03-03 2021-09-10 The University Of Chicago Compositions and methods for treating or preventing cancer using deubiquitinase inhibitors
CN115177594A (zh) * 2022-07-04 2022-10-14 武汉大学中南医院 一种阿昔替尼药物制剂及其制备方法
CN115177594B (zh) * 2022-07-04 2023-08-15 武汉大学中南医院 一种阿昔替尼药物制剂及其制备方法

Also Published As

Publication number Publication date
MA50618A (fr) 2020-08-12
CL2020002958A1 (es) 2021-03-05
JP2020536869A (ja) 2020-12-17
EP3691685A1 (en) 2020-08-12
BR112020006845A2 (pt) 2020-10-06
IL273510A (en) 2020-05-31
EA202090655A1 (ru) 2020-12-07
CA3076859A1 (en) 2019-04-11
PH12020550400A1 (en) 2021-03-08
AU2018346688A1 (en) 2020-04-23
AU2022201944A1 (en) 2022-04-14
MX2020003799A (es) 2020-11-06
CN111182923A (zh) 2020-05-19
US20200306236A1 (en) 2020-10-01
CL2020000907A1 (es) 2020-08-14
US11801240B2 (en) 2023-10-31
SG11202002499TA (en) 2020-04-29
KR20200067164A (ko) 2020-06-11
CO2020005223A2 (es) 2020-05-15

Similar Documents

Publication Publication Date Title
US11801240B2 (en) Combination therapies and uses thereof
AU2021215113A1 (en) Combination Therapies for Treating Cancer
CN113453684B (zh) 用于治疗癌症的csf1r抑制剂
US20240082231A1 (en) Niraparib formulations
TWI558401B (zh) 利用胞嘧啶核苷類似物之口服配方治療癌症的方法
JP5645667B2 (ja) 増殖性疾患を治療するための、N−(5−tert−ブチル−イソキサゾール−3−イル)−N’−{4−[7−(2−モルホリン−4−イル−エトキシ)イミダゾ[2,l−b][l,3]ベンゾチアゾール−2−イル]フェニル}尿素の投与方法
US11185523B2 (en) Use of bipolar trans carotenoids with chemotherapy and radiotherapy for treatment of cancer
CA2860941C (en) Combination therapy for the treatment of ovarian cancer
US10413558B2 (en) Multi-ingredient pharmaceutical composition for use in cancer therapy
CN107735077A (zh) 利鲁唑的舌下给药
KR101760657B1 (ko) 약제학적 병용물
BR112020018184A2 (pt) usos de compostos
JP2022160654A (ja) 細胞生存性及び/又は細胞増殖を低減するための薬物の組み合わせ
EP4663187A1 (en) 2-hydroxy-octadecene-9-cis-oate for use in the treatment of oncological pathologies and neuropathic pain
KR20240157072A (ko) Pi3k 억제제 및 pd-1 억제제의 병용 요법
EA044464B1 (ru) Таблетка для ингибирования полиаденозин дифосфат рибоза полимеразы (parp)
HK1152640B (en) Pharmaceutical combination

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18796190

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3076859

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020519286

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018346688

Country of ref document: AU

Date of ref document: 20181005

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: NC2020/0005223

Country of ref document: CO

ENP Entry into the national phase

Ref document number: 20207012376

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018796190

Country of ref document: EP

Effective date: 20200506

WWP Wipo information: published in national office

Ref document number: NC2020/0005223

Country of ref document: CO

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020006845

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020006845

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200403