WO2019065558A1 - キャピラリ電気泳動装置 - Google Patents

キャピラリ電気泳動装置 Download PDF

Info

Publication number
WO2019065558A1
WO2019065558A1 PCT/JP2018/035271 JP2018035271W WO2019065558A1 WO 2019065558 A1 WO2019065558 A1 WO 2019065558A1 JP 2018035271 W JP2018035271 W JP 2018035271W WO 2019065558 A1 WO2019065558 A1 WO 2019065558A1
Authority
WO
WIPO (PCT)
Prior art keywords
capillary
electrophoresis
medium
migration medium
migration
Prior art date
Application number
PCT/JP2018/035271
Other languages
English (en)
French (fr)
Inventor
麻美 寺門
満 藤岡
Original Assignee
株式会社日立ハイテクノロジーズ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテクノロジーズ filed Critical 株式会社日立ハイテクノロジーズ
Priority to CN201880062102.2A priority Critical patent/CN111133307B/zh
Priority to DE112018004282.0T priority patent/DE112018004282T5/de
Priority to US16/650,648 priority patent/US20200249199A1/en
Priority to JP2019545092A priority patent/JP6805361B2/ja
Priority to GB2004367.5A priority patent/GB2580818B/en
Publication of WO2019065558A1 publication Critical patent/WO2019065558A1/ja
Priority to US17/892,506 priority patent/US20220397549A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44743Introducing samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/44721Arrangements for investigating the separated zones, e.g. localising zones by optical means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44704Details; Accessories
    • G01N27/44717Arrangements for investigating the separated zones, e.g. localising zones
    • G01N27/4473Arrangements for investigating the separated zones, e.g. localising zones by electric means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44769Continuous electrophoresis, i.e. the sample being continuously introduced, e.g. free flow electrophoresis [FFE]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/44756Apparatus specially adapted therefor
    • G01N27/44782Apparatus specially adapted therefor of a plurality of samples
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/447Systems using electrophoresis
    • G01N27/453Cells therefor

Definitions

  • the present invention relates to a capillary electrophoresis apparatus for separating and analyzing nucleic acids, proteins and the like.
  • an electrophoresis apparatus using a capillary has been used for various separation analysis measurement including analysis of nucleic acid and protein.
  • An electrophoresis apparatus using capillaries can be migrated by a capillary for each sample as compared to a flat panel electrophoresis apparatus, and therefore, there is no contamination between samples, a higher voltage can be applied to the sample, and electrophoresis is performed at high speed. be able to.
  • the migration medium is filled with a syringe pump.
  • a relay flow path block provided with a syringe pump function, and a capillary is connected, the migration medium is sucked by the syringe pump, and the capillary is filled by discharging.
  • a buffer solution for performing electrophoresis is also connected to the relay flow passage block, and switching of the flow passage is performed by opening and closing a valve in the relay flow passage block.
  • the migration medium is injected from the migration medium-filled container filled with the migration medium into the capillary head provided at the tip of the capillary without using a syringe pump. Compared to the case of using a syringe pump, it is possible to reduce running costs and improve user operability.
  • a migration medium is selected and used for separation analysis measurement. Therefore, in the case of performing different separation analysis measurement using the same capillary in an electrophoresis apparatus using capillaries, it may be necessary to replace the electrophoresis medium. In this case, the inside of the capillary is washed with the electrophoresis medium washing solution before filling the electrophoresis with different electrophoresis media. Then, after washing in the capillary, replacement with the migration medium is necessary, and generally, several times the capillary volume of the migration medium is required. This is because the separation analysis performance is degraded when electrophoresis is performed in a state where the migration medium washing solution remains in the capillary and the migration medium washing solution and the migration medium are mixed.
  • the migration medium may be exchanged.
  • washing is performed with the electrophoresis medium washing solution before filling different capillaries with the electrophoresis medium, so that the electrophoresis medium washing solution, washing step, exchange of the electrophoresis medium washing solution with the electrophoresis medium, etc. It will be necessary.
  • An object of the present invention is to provide a capillary electrophoresis apparatus which realizes the reduction of the labor, cost, time, and the like of the above-described work along with the exchange of such electrophoresis medium.
  • an electrophoresis apparatus for feeding a sample into a capillary by electrophoresis and optically detecting the sample
  • a capillary head provided at the tip of the capillary, and electrophoresis
  • An electrophoresis medium container filled with electrophoresis medium used and a mechanism for packing the electrophoresis medium from the electrophoresis medium container into the capillary from the electrophoresis medium container, without using the electrophoresis medium washing solution different electrophoresis mediums are stored in capillaries filled with the electrophoresis medium
  • a capillary electrophoresis apparatus for filling is provided in an electrophoresis apparatus for filling.
  • the present invention makes it possible to reduce the migration medium washing solution and eliminate the step of replacing the migration medium washing solution with the migration medium, such as the washing step and the migration medium exchange, thereby enabling cost reduction and shortening of the working time.
  • FIG. 1 is a schematic view showing a configuration of a capillary electrophoresis apparatus.
  • Analysis workflow. Migration medium exchange workflow.
  • Migration medium exchange GUI migration medium information before exchange).
  • Migration medium exchange GUI exchange migration medium read).
  • Migration medium exchange GUI exchange migration medium information).
  • Migration medium exchange GUI exchange migration medium container attached).
  • Migration medium exchange GUI packing of exchange migration medium).
  • FIG. 1 shows the configuration of the capillary electrophoresis apparatus of the first embodiment.
  • This apparatus can be roughly divided into two units, an irradiation detection / constant temperature bath unit 40 at the upper part of the apparatus and an autosampler unit 20 at the lower part of the apparatus.
  • the Y-axis driver 23 is mounted on the sampler base 21 so that the Y-axis can be driven.
  • a Z-axis drive 24 is mounted on the Y-axis drive 23, and the Z-axis can be driven.
  • the sample tray 25 is mounted on the Z-axis driver 24, and the user sets the migration medium container 28, the anode buffer container 29, the cathode buffer container 33, and the sample container 26 on the sample tray 25. .
  • the sample container 26 is set on the X-axis driver 22 mounted on the sample tray 25, and only the sample container 26 can drive on the sample tray 25 in the X-axis.
  • a liquid feeding mechanism 27 is also mounted on the Z-axis driver 24. The liquid feeding mechanism 27 is disposed below the migration medium container 28.
  • the irradiation detection / constant temperature bath unit 40 includes the constant temperature bath unit 41 and the constant temperature bath door 43 which are the above-described constant temperature bath, and the inside can be maintained at a constant temperature.
  • the irradiation detection unit 42 which is the above-described irradiation detection unit, is mounted behind the thermostatic bath unit 41, and detection during electrophoresis can be performed.
  • the capillary cartridge 01 which will be described in detail later, is set in the thermostatic bath unit 41, and electrophoresis is performed in the thermostatic bath unit 41 while keeping the capillary at a constant temperature, and detection is performed by the irradiation detection unit.
  • an electrode (anode) 44 is also mounted on the thermostatic bath unit 41 for dropping to GND when a high voltage is applied for electrophoresis.
  • the capillary cartridge 01 is fixed to the thermostatic bath unit 41.
  • the migration medium container 28, the anode buffer container 29, the cathode buffer container 33, and the sample container 26 can be driven to the YZ axis by the auto sampler unit 20, and only the sample container 26 is further driven to the X axis. I can do it.
  • the electrophoresis medium container 28, the anode buffer container 29, the cathode buffer container 33, and the sample container 26 are automatically connected to an arbitrary position by the movement of the autosampler unit 20 to the capillary of the fixed capillary cartridge 01. Can do.
  • FIG. 2 shows a top view of the capillary electrophoresis apparatus shown in FIG.
  • the anode buffer container 29 set on the sample tray 25 includes an anode electrophoresis buffer tank 30, an anode cleaning tank 31, and an anode sample introduction buffer tank 32.
  • the cathode buffer container 33 includes a waste liquid tank 34, a cathode buffer buffer tank 35, and a cathode cleaning tank 36.
  • the migration medium container 28, the anode-side buffer container 29, the cathode-side buffer container 33, and the sample container 26 are disposed in the positional relationship as illustrated.
  • the positional relationship between the anode side and the cathode side of the connection of the capillary cartridge in the thermostatic bath unit 41 with the capillary 02 is “migration medium container 28—waste tank 34”, “anode buffer buffer for electrophoresis” It becomes 30-cathode side electrophoresis buffer tank 35 "," anode side washing tank 31-cathode side washing tank 36 ",” anode side sample introduction buffer tank 32-sample container 26 ".
  • FIG. 3 shows a cross-sectional view taken along the line AA in FIG.
  • the migration medium container 28 is set in the sample tray 25. Further, the liquid transfer mechanism 27 is disposed such that the plunger contained in the liquid transfer mechanism 27 is located below the migration medium container 28.
  • the right side of the capillary 02 in FIG. 3 is the cathode side, and the left side is the anode side.
  • the autosampler unit 20 moves to the position of “Anode side electrophoresis buffer 30-cathode side electrophoresis buffer 35”, and a high voltage is applied to the capillary 02 on the cathode side. Electrophoresis is performed by flowing the electrode (anode) 44 to GND through the anode buffer container 29.
  • the position of the sample tray 25 may be fixed to make the irradiation detection / constant temperature bath unit 40 movable.
  • the user sets the capillary cartridge 01 in the thermostatic bath unit 41. Further, the migration medium container 28, the anode buffer container 29, the cathode buffer container 33, and the sample container 26 are set in the sample tray 25.
  • barcodes are attached to the consumables, ie, the capillary cartridge 01, the migration medium container 28, the anode buffer container 29, and the cathode buffer container 33.
  • the user reads the barcode information of each consumable item by the barcode reader installed in the apparatus. In this way, it is possible to manage the production number, the expiration date, the number of times of use, etc. of each consumable item.
  • step 201 the set capillary 02 is kept at a constant temperature by the thermostatic bath unit 41.
  • step 202 the capillary head 03 and the electrode (cathode) 04 of the capillary 02 are inserted into the anode side cleaning tank 31 and the cathode side cleaning tank 36 by Y-axis drive and Z-axis drive movements of the autosampler unit 20, respectively. Thereby, the capillary head 03 and the electrode (cathode) 04 are cleaned.
  • step 203 the capillary head 03 and the electrode (cathode) 04 of the capillary 02 are inserted into the migration medium container 28 and the waste liquid tank 34 by the Y-axis drive and Z-axis drive of the autosampler unit 20, respectively.
  • the liquid feeding mechanism 27 is driven to feed the electrophoresis medium sealed in the electrophoresis medium container 28 to the capillary 02.
  • step 202 the capillary head 03 and the electrode (cathode) 04 of the capillary 02 are inserted into the anode side cleaning tank 31 and the cathode side cleaning tank 36 by the Y-axis drive and Z-axis drive of the autosampler unit 20 again. . Thereby, the capillary head 03 and the electrode (cathode) 04 are cleaned.
  • the capillary head 03 of the capillary 02 and the electrode (cathode) 04 are inserted into the buffer tank 32 for sample introduction on the anode side and the sample container 26 by Y-axis drive and Z-axis drive of the autosampler unit 20, respectively.
  • the electrode 44 is also inserted into the anode-side sample introduction buffer tank 32. Thereby, both ends of the capillary 02 are conducted. In this state, a high voltage is applied to introduce the sample in the sample container 26 into the capillary 02.
  • step 202 the capillary head 03 and the electrode (cathode) 04 of the capillary 02 are inserted into the anode side cleaning tank 31 and the cathode side cleaning tank 36 by the Y-axis drive and Z-axis drive of the autosampler unit 20 again. . Thereby, the capillary head 03 and the electrode (cathode) 04 are cleaned.
  • the capillary head 03 of the capillary 02 and the electrode (cathode) 04 are respectively subjected to the anode buffer buffer 30 for electrophoresis on the anode side and the electrophoresis on the cathode side by the Y axis drive and Z axis drive of the autosampler unit 20 again. It inserts in the buffer solution tank 35. At this time, the electrode 44 is also inserted into the anode side electrophoresis buffer tank 30. Thereby, both ends of the capillary 02 are conducted. In this state, high voltage is applied to carry out electrophoresis. The sample which has migrated is detected by the irradiation detection unit 42.
  • step 202 the capillary head 03 and the electrode (cathode) 04 of the capillary 02 are inserted into the anode side cleaning tank 31 and the cathode side cleaning tank 36 by the Y-axis drive and Z-axis drive of the autosampler unit 20 again. . Thereby, the capillary head 03 and the electrode (cathode) 04 are cleaned.
  • One analysis is completed by analyzing the data detected by this series of motions.
  • the X drive 22 on the sample tray 25 is driven to switch the position of the sample container 26 and the above operation is repeated.
  • An electrophoresis medium used for capillary electrophoresis has a high viscosity, for example, an electrophoresis medium having a viscosity of 100 cP or more and a viscosity of 300 cP or more.
  • a solution having a viscosity of around 1 cP is used.
  • the viscosity of water is about 0.89 cP, and the migration medium and the migration medium washing solution have a difference in viscosity of 100 times or more.
  • the flow velocity of the liquid is different between the central portion in the capillary and the inner wall in the capillary, and the central portion has a higher flow velocity than the vicinity of the inner wall.
  • a difference in the flow velocity of the liquid is likely to occur between the central portion in the capillary and the vicinity of the inner wall in the capillary. Therefore, it has been suggested that different regions of the liquid tend to increase at the center and in the vicinity of the inner wall in the capillary, and the volume of the liquid to be exchanged increases.
  • the solution exchange in the capillary was verified with a solution having a higher viscosity than the migration medium washing solution which is considered to cause a difference in the flow velocity of the liquid in the central portion and the inner wall vicinity in the capillary.
  • the solution substitution of high viscosity solutions is unlikely to produce a difference due to the influence of viscosity in the central part of the capillary and in the vicinity of the inner wall, and there is a possibility that solution exchange can be achieved more easily than using the migration medium washing solution. It was suggested.
  • the migration medium necessary to replace two high viscosity solutions, for example two different migration media, for example, in exchange from a migration medium having a viscosity of about 100 cp with a migration medium having a viscosity of about 350 cp.
  • the volume was replaceable at least equal to the volume of the capillary.
  • the flow rate was equally replaceable at the settable flow rate.
  • the exchange was also possible in the exchange from a running medium with a viscosity of about 350 cp to a running medium with a viscosity of about 100 cp.
  • the effect is reduced in cost such as reduction of the electrophoresis medium washing solution and reduction of the electrophoresis medium volume for replacing the electrophoresis medium washing solution and the electrophoresis medium,
  • it is possible to further improve the user-friendliness of the user, such as the reduction of the washing time with the migration medium washing solution and the reduction of the filling time of the migration medium.
  • the present apparatus is provided with a display unit on the front when the thermostat door 43 is closed.
  • the display is displayed on the display unit.
  • the current migration medium information is displayed in the GUI of FIG. 6 in step 207 of FIG.
  • the user confirms the displayed electrophoresis medium, presses the install button 301, and reads it into the electrophoresis apparatus.
  • a GUI for reading the migration medium to be replaced, FIG. 7, is displayed.
  • the user removes the migration medium container before replacement.
  • the barcode information of the migration medium to be replaced is displayed by the barcode reader installed in the apparatus.
  • the information on the migration medium, FIG. 8, is displayed, and the user can confirm. After confirmation, the user presses the install button 301 and reads it into the device.
  • a new loading medium container mounting instruction is displayed in FIG.
  • confirmation by clicking sound at the time of attachment of the migration medium container is instructed. This helps the user to confirm that the loading medium container is attached, and has an effect of preventing the insufficient loading of the loading medium container.
  • the user mounts a new electrophoresis medium container, and proceeds to the next step 211 after confirming the click sound.
  • FIG. 10 is displayed, and a screen on which the capillary can be filled with the migration medium is displayed. By pressing the filling start button 302 on the screen for starting filling, filling is started, and the filling rate of the migration medium is displayed as needed. When the filling rate reaches 100%, the migration medium exchange wizard ends.
  • the capillary electrophoresis apparatus not using a syringe pump is one example, and even in the electrophoresis apparatus in which the electrophoresis medium is filled in the capillary using a syringe pump etc. It is possible to apply the migration medium exchange method according to the invention described above without using a media wash solution.
  • 01 capillary cartridge, 02: capillary, 03: capillary head, 04: electrode (cathode), 20: auto sampler unit, 21: sampler base, 22: X axis driver, 23: Y axis driver, 24: Z axis Drive body, 25: sample tray, 26: sample container, 27: liquid feeding mechanism, 28: migration medium container, 29: anode side buffer container, 30: anode side electrophoresis buffer tank, 31: anode side cleaning tank , 32: Anode-side sample introduction buffer bath, 33: cathode-side buffer vessel, 34: waste bath, 35: cathode-side electrophoresis buffer bath, 36: cathode-side washing bath, 40: irradiation detection / thermostatic bath Unit, 41: constant temperature bath unit, 42: irradiation detection unit, 43: constant temperature bath door, 44: electrode (anode), 200: Analysis work flowchart (each consumables set) 201: Analysis work flow chart (temperature adjustment of capillar

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Electrochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)
  • Electrostatic Separation (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

キャピラリを用いた電気泳動装置において、同一のキャピラリを用いて電気泳動行う場合、泳動媒体の交換を行う場合がある。異なる泳動媒体に交換する場合、従来は泳動媒体交換のために泳動媒体洗浄液による洗浄を行い、泳動媒体との入れ替えが必要となっており、コスト高であり、時間もかかった。 本発明の電気泳動装置は、キャピラリの先端に設けられた陽極側のキャピラリヘッドと、電気泳動に用いる泳動媒体が充填された泳動媒体容器と、泳動媒体容器からキャピラリ内に泳動媒体を充填する充填機構を備え、充填機構は、泳動媒体洗浄溶液を使用せずに、既に泳動媒体が充填されているキャピラリに、充填されている泳動媒体とは異なる泳動媒体を充填する。

Description

キャピラリ電気泳動装置
 本発明は、核酸やタンパク質等を分離分析するキャピラリ電気泳動装置に関する。
 近年、キャピラリを用いた電気泳動装置は、核酸やタンパク質の解析をはじめ様々な分離分析測定に使用されている。キャピラリを用いた電気泳動装置は平板型電気泳動装置に比べ、サンプル毎のキャピラリによって泳動できるため、サンプル間のコンタミネーションも無く、より高い電圧を試料に印加可能であり、高速で電気泳動を行うことができる。
 また、泳動媒体の自動充填・交換、サンプルの自動注入ができるといった連続使用ができるようになり、1つの装置による幅広い活用と短時間の分離分析測定が求められている。
 特許文献1では、泳動媒体をシリンジポンプにて充填を行っている。シリンジポンプ機能の備わった中継流路ブロックがあり、キャピラリを接続させ、シリンジポンプにて泳動媒体を吸引し、キャピラリに吐出を行うことで充填させる。中継流路ブロックには他にも電気泳動を行うための緩衝液も接続されており、中継流路ブロック内のバルブの開閉を行うことで流路の切替えを行っている。
 特許文献2では、泳動媒体が充填された泳動媒体充填容器からキャピラリの先端に設けられたキャピラリヘッドに、シリンジポンプを使用せずに泳動媒体の注入を行っている。シリンジポンプを使用する場合に比べ、ランニングコストの低減、ユーザ作業性の向上が可能となっている。
 一般的に目的や用途に応じて、泳動媒体を選択し、分離分析測定に使用される。そのため、キャピラリを用いた電気泳動装置において、同一のキャピラリを用いて、異なった分離分析測定を行う場合、泳動媒体を交換する必要が生じる場合がある。この場合、異なる泳動媒体をキャピラリに充填する前に泳動媒体洗浄溶液によるキャピラリ内の洗浄を行う。そして、キャピラリ内の洗浄後、泳動媒体による置換が必要であり、一般的にキャピラリ容量の数倍の泳動媒体が必要となる。これは、泳動媒体洗浄溶液がキャピラリ内に残り、泳動媒体洗浄溶液と泳動媒体が混合した状態で電気泳動を行った場合、分離分析性能が低下するためである。
特開2008-8621号 WO2016/157272
 キャピラリを用いた電気泳動装置において、同一のキャピラリを用いて電気泳動を行う場合、泳動媒体の交換を行う場合がある。前述したように、従来は異なる泳動媒体をキャピラリに充填する前に泳動媒体洗浄溶液による洗浄を行うため、泳動媒体洗浄溶液や洗浄工程、泳動媒体交換といった泳動媒体洗浄液と泳動媒体との入れ替え等が必要となる。
 本発明は、このような泳動媒体の交換に伴い、前述した作業の手間やコスト、時間等の削減を実現するキャピラリ電気泳動装置を提供することにある。
 上記目的を達成するために、本発明において、電気泳動によって、キャピラリ内にサンプルを送液し、当該サンプルを光学検出する電気泳動装置において、キャピラリの先端に設けられたキャピラリヘッドと、電気泳動に用いる泳動媒体が充填された泳動媒体容器と泳動媒体容器からキャピラリ内に泳動媒体を充填する機構を備え、泳動媒体洗浄溶液を使用せず、泳動媒体が充填されているキャピラリに、異なる泳動媒体を充填するキャピラリ電気泳動装置を提供する。
 本発明により、泳動媒体洗浄溶液の削減、洗浄工程や泳動媒体交換といった泳動媒体洗浄溶液と泳動媒体との入れ替え工程が不要となり、コスト削減、作業時間短縮等の効率化が可能となる。
キャピラリ電気泳動装置の一構成を示す概要図。 キャピラリ電気泳動装置の上面図。 キャピラリ電気泳動装置のA-A断面図。 分析ワークフロー。 泳動媒体交換ワークフロー。 泳動媒体交換GUI(交換前泳動媒体情報)。 泳動媒体交換GUI(交換泳動媒体読み込み)。 泳動媒体交換GUI(交換泳動媒体情報)。 泳動媒体交換GUI(交換泳動媒体容器取り付け)。 泳動媒体交換GUI(交換泳動媒体の充填)。
 以下、図面に従い、本発明の種々の実施例を説明する。種々の実施例を説明するための全図において、同一機能を有するものは同一符号を付した。
 以下、図1~図3を用いて、実施例1のキャピラリカートリッジ、及びそれを用いた電気泳動装置の構成及び配置を説明する。図1に、実施例1のキャピラリ電気泳動装置の装置構成図を示す。本装置は、装置上部にある照射検出/恒温槽ユニット40と、装置下部にあるオートサンプラーユニット20の、二つのユニットに大きく分けることが出来る。
 上記の注入機構であるオートサンプラーユニット20には、サンプラーベース21の上にY軸駆動体23が搭載され、Y軸に駆動を行うことが出来る。Y軸駆動体23にはZ軸駆動体24が搭載され、Z軸に駆動を行うことが出来る。Z軸駆動体24の上にはサンプルトレイ25が搭載され、サンプルトレイ25の上に、泳動媒体容器28、陽極側緩衝液容器29、陰極側緩衝液容器33、サンプル容器26をユーザがセットする。サンプル容器26は、サンプルトレイ25上に搭載されたX軸駆動体22の上にセットされ、サンプルトレイ25上でサンプル容器26のみがX軸に駆動することが出来る。Z軸駆動体24には送液機構27も搭載される。この送液機構27は泳動媒体容器28の下方に配置される。
 照射検出/恒温槽ユニット40には、上記の恒温槽である恒温槽ユニット41、恒温槽ドア43があり、中を一定の温度に保つことが出来る。恒温槽ユニット41の後方には上記の照射検出部である照射検出ユニット42が搭載され、電気泳動時の検出を行うことが出来る。恒温槽ユニット41の中に、後で詳述するキャピラリカートリッジ01をユーザがセットし、恒温槽ユニット41にてキャピラリを恒温に保ちながら電気泳動を行い、照射検出ユニット42にて検出を行う。また、恒温槽ユニット41には、電気泳動のための高電圧印加時にGNDに落とすための電極(陽極)44も搭載されてある。
 キャピラリカートリッジ01は恒温槽ユニット41に固定される。泳動媒体容器28、陽極側緩衝液容器29、陰極側緩衝液容器33、サンプル容器26は、オートサンプラーユニット20にてYZ軸に駆動することができ、サンプル容器26のみ、さらにX軸に駆動することが出来る。固定されたキャピラリカートリッジ01のキャピラリに、泳動媒体容器28、陽極側緩衝液容器29、陰極側緩衝液容器33、サンプル容器26が、オートサンプラーユニット20の動きで任意の位置に自動で接続することが出来る。
 図2に、図1に示したキャピラリ電気泳動装置を上面から見た図を示す。サンプルトレイ25上にセットされた陽極側緩衝液容器29には、陽極側電気泳動用緩衝液槽30、陽極側洗浄槽31、陽極側サンプル導入用緩衝液槽32がある。また、陰極側緩衝液容器33には、廃液槽34、陰極側電気泳動用緩衝液槽35、陰極側洗浄槽36がある。
 泳動媒体容器28、陽極側緩衝液容器29、陰極側緩衝液容器33、サンプル容器26は図示のような位置関係に配置される。これにより、恒温槽ユニット41内のキャピラリカートリッジのキャピラリ02との接続の際の陽極側-陰極側の位置関係は、「泳動媒体容器28-廃液槽34」、「陽極側電気泳動用緩衝液槽30-陰極側電気泳動用緩衝液槽35」、「陽極側洗浄槽31-陰極側洗浄槽36」、「陽極側サンプル導入用緩衝液槽32-サンプル容器26」となる。
 図3に、図2におけるA-A断面図を示す。泳動媒体容器28はサンプルトレイ25にセットされる。また、送液機構27は、送液機構27に内蔵されたプランジャが、泳動媒体容器28の下方になるように配置される。
 電気泳動の際、キャピラリ02の図3における右側が陰極側となり、左側が陽極側となる。オートサンプラーユニット20が「陽極側電気泳動用緩衝液槽30-陰極側電気泳動用緩衝液槽35」の位置に移動し、陰極側のキャピラリ02に高電圧がかかり、陰極側緩衝液容器33、陽極側緩衝液容器29を介し、電極(陽極)44にてGNDに流すことで電気泳動を行う。なお、サンプルトレイ25の位置を固定して、照射検出/恒温槽ユニット40を可動にする装置構造にしても良い。
 次に、図4を用いて本実施例における分析ワークフローを説明する。
 ステップ200にて、ユーザはキャピラリカートリッジ01を恒温槽ユニット41にセットする。また、泳動媒体容器28、陽極側緩衝液容器29及び陰極側緩衝液容器33、サンプル容器26をサンプルトレイ25にセットする。図は省略するが、消耗品であるキャピラリカートリッジ01、泳動媒体容器28、陽極側緩衝液容器29、陰極側緩衝液容器33にはバーコードが貼り付けられてある。ユーザは装置に各消耗品をセットする際、装置に搭載しているバーコードリーダーにて各消耗品のバーコード情報を読み込む。これにより、各消耗品の製番や使用期限、使用回数等を管理することが出来る。
 ステップ201にて、恒温槽ユニット41により、セットされたキャピラリ02を一定温度に保つ。
 ステップ202にて、オートサンプラーユニット20のY軸駆動、Z軸駆動の動きで、キャピラリ02のキャピラリヘッド03、電極(陰極)04をそれぞれ陽極側洗浄槽31、陰極側洗浄槽36に挿入する。これにより、キャピラリヘッド03と電極(陰極)04の洗浄を行う。
 ステップ203にて、オートサンプラーユニット20のY軸駆動、Z軸駆動の動きで、キャピラリ02のキャピラリヘッド03、電極(陰極)04をそれぞれ泳動媒体容器28、廃液槽34に挿入する。この状態にて、送液機構27を駆動させ、泳動媒体容器28に封入された泳動媒体をキャピラリ02に送液する。
 ステップ202にて、再度オートサンプラーユニット20のY軸駆動、Z軸駆動の動きで、キャピラリ02のキャピラリヘッド03、電極(陰極)04をそれぞれ陽極側洗浄槽31、陰極側洗浄槽36に挿入する。これにより、キャピラリヘッド03と電極(陰極)04の洗浄を行う。
 ステップ204にて、オートサンプラーユニット20のY軸駆動、Z軸駆動の動きで、キャピラリ02のキャピラリヘッド03、電極(陰極)04をそれぞれ陽極側サンプル導入用緩衝液槽32、サンプル容器26に挿入する。このとき、電極44も陽極側サンプル導入用緩衝液槽32に挿入される。これにより、キャピラリ02の両端が導通される。この状態にて高電圧を印加させ、サンプル容器26内のサンプルをキャピラリ02に導入する。
 ステップ202にて、再度オートサンプラーユニット20のY軸駆動、Z軸駆動の動きで、キャピラリ02のキャピラリヘッド03、電極(陰極)04をそれぞれ陽極側洗浄槽31、陰極側洗浄槽36に挿入する。これにより、キャピラリヘッド03と電極(陰極)04の洗浄を行う。
 ステップ205にて、再度オートサンプラーユニット20のY軸駆動、Z軸駆動の動きで、キャピラリ02のキャピラリヘッド03、電極(陰極)04をそれぞれ陽極側電気泳動用緩衝液槽30、陰極側電気泳動用緩衝液槽35に挿入する。このとき、電極44も陽極側電気泳動用緩衝液槽30に挿入される。これにより、キャピラリ02の両端が導通される。この状態にて高電圧を印加させ、電気泳動を行う。泳動してきたサンプルを、照射検出ユニット42にて検出を行う。
 ステップ202にて、再度オートサンプラーユニット20のY軸駆動、Z軸駆動の動きで、キャピラリ02のキャピラリヘッド03、電極(陰極)04をそれぞれ陽極側洗浄槽31、陰極側洗浄槽36に挿入する。これにより、キャピラリヘッド03と電極(陰極)04の洗浄を行う。
 この一連の動きにて検出したデータを解析することで、一つの分析が終了となる。同一種類の泳動媒体を用いて連続して分析を行う場合は、サンプルトレイ25上のX駆動体22を駆動させ、サンプル容器26の位置を切り替えて上記の動作を繰り返す。
 次に、本実施例において確立した泳動媒体の交換方法について説明する。本発明の課題で述べたように、異なる泳動媒体を設定する場合、通常は泳動媒体洗浄溶液による洗浄を行う。そして、泳動媒体洗浄溶液でキャピラリ内を洗浄後、泳動媒体による置換が必要であり、一般的にキャピラリ容量の数倍の泳動媒体が必要となる。この原因の1つとして、泳動媒体と泳動媒体洗浄溶液の粘度の差があると考えられる。キャピラリ電気泳動に用いられる泳動媒体は粘度が高く、例えば、100cP以上の粘度を持ち、300cP以上の粘度をもつ泳動媒体もある。一方、泳動媒体洗浄溶液は、種類にもよるが、粘度が1cP前後の溶液が使用されている。例えば、泳動媒体洗浄溶液に水を用いる場合、水の粘度は0.89cPほどであり、泳動媒体と泳動媒体洗浄溶液は100倍以上の粘度の差がある。そして、キャピラリに液体を通過させる場合、キャピラリ内の中心部とキャピラリ内の内壁近傍では、液体の流速に差が生じ、中心部の方が内壁近傍に比べ流速は早くなる。粘度に大きな差がある場合、キャピラリ内の中心部とキャピラリ内の内壁近傍では、液体の流速に差が生じやすくなる。そのため、キャピラリ内の中心部と内壁近傍で液体の異なる領域が増加しやすい傾向にあり、交換する液体の容量が増加することが示唆された。そこで、キャピラリ内の中心部と内壁近傍で液体の流速に差が生じやすいと考えられる泳動媒体洗浄溶液よりも、粘度の高い溶液でキャピラリ内の溶液交換を検証した。その結果、粘度の高い溶液同士の溶液置換は、キャピラリ内の中心部と内壁近傍で粘度の影響による差が生じにくく、泳動媒体洗浄溶液を使用するよりも容易に溶液交換が達成できる可能性が示唆された。2種類の高い粘度の溶液、たとえば2種類の異なる泳動媒体の場合、例えば、約100cpの粘度をもつ泳動媒体から約350cpの粘度をもつ泳動媒体での交換において、交換するために必要な泳動媒体容量は、キャピラリの容量と同等以上で交換可能であった。流速は装置設定範囲可能な流速において同等に交換可能であった。約350cpの粘度をもつ泳動媒体から約100cpの粘度をもつ泳動媒体への交換においても同様に交換可能であった。
 更に、泳動媒体洗浄溶液を使用して泳動媒体を交換した分離性能と、泳動媒体洗浄溶液を使用せず、交換する泳動媒体により泳動媒体の交換を行った分離性能を比較したところ、同等の分離性能を得られることが明らかになった。
 以上の結果より、泳動媒体が充填されたキャピラリに、泳動媒体洗浄溶液による洗浄工程を介さずに異なる泳動媒体を充填した場合、泳動媒体洗浄溶液を使用するよりも短時間に泳動媒体の交換が可能であり、泳動媒体洗浄溶液を使わずとも、泳動媒体の交換の影響なく分離性能が得られることが明らかとなった。
 泳動媒体洗浄溶液を使用せずに泳動媒体の交換を行うことによって、その効果は、泳動媒体洗浄溶液の削減、泳動媒体洗浄溶液と泳動媒体の置換のための泳動媒体容量の削減といったコスト削減、並びに泳動媒体洗浄溶液による洗浄時間の削減、泳動媒体の充填時間の削減等、さらに、ユーザの使いやすさの向上が実現可能となった。
 以上を踏まえ、本実施例における異なる泳動媒体の交換におけるワークフロー並びにGUIを図5~図10を用いて説明する。また、本装置は恒温槽ドア43を閉じた時の前面に表示部を備えている。表示は表示部に画面表示される。
 ユーザが、泳動媒体交換のウィザードを選択すると、図5のステップ207にて、現在の泳動媒体情報が図6のGUIで表示される。ユーザは表示された泳動媒体を確認し、インストールボタン301を押し、泳動装置に読み込む。そして、交換する泳動媒体を読み込むGUI、図7が表示される。ユーザはステップ208によって、交換前の泳動媒体容器を取り外す。続いて、ステップ209にて、装置に搭載しているバーコードリーダーにて交換する泳動媒体のバーコード情報を表示する。泳動媒体の情報、図8が表示され、ユーザは確認することが出来る。ユーザが確認後、インストールボタン301を押し、装置に読み込む。ステップ210において、新しい泳動媒体容器の取り付け指示が、図9で表示される。図9では、泳動媒体容器の取り付け時のクリック音による確認が指示されている。これは、泳動媒体容器の取り付けがされていることをユーザが確認できる手助けとなり、泳動媒体容器の不十分な取り付けを防止する効果がある。ユーザは新しい泳動媒体容器の取り付けを行い、クリック音の確認後、次ステップ211に進む。図10が表示されキャピラリへ泳動媒体の充填が可能な画面となる。充填開始を行う画面上の充填開始ボタン302を押すことで、充填が開始され、泳動媒体の充填率が随時表示される。充填率が100%になると、泳動媒体交換のウィザードは終了となる。
 本実施例における異なる泳動媒体の交換については、シリンジポンプを使用していないキャピラリ電気泳動装置については一例であり、シリンジポンプ等を使用してキャピラリ内へ泳動媒体の充填する電気泳動装置でも、泳動媒体洗浄溶液を使用せずに上記記載した本発明による泳動媒体の交換法を適用することは可能である。
01:キャピラリカートリッジ,02:キャピラリ,03:キャピラリヘッド,04:電極(陰極),20:オートサンプラーユニット,21:サンプラーベース,22:X軸駆動体,23:Y軸駆動体,24:Z軸駆動体,25:サンプルトレイ,26:サンプル容器,27:送液機構,28:泳動媒体容器,29:陽極側緩衝液容器,30:陽極側電気泳動用緩衝液槽,31:陽極側洗浄槽,32:陽極側サンプル導入用緩衝液槽,33:陰極側緩衝液容器,34:廃液槽,35:陰極側電気泳動用緩衝液槽,36:陰極側洗浄槽,40:照射検出/恒温槽ユニット,41:恒温槽ユニット、42:照射検出ユニット,43:恒温槽ドア,44:電極(陽極), 
200:分析ワークフローチャート(各消耗品セット)
201:分析ワークフローチャート(キャピラリの温調)
202:分析ワークフローチャート(キャピラリの洗浄)
203:分析ワークフローチャート(泳動媒体の送液)
204:分析ワークフローチャート(サンプル導入)
205:分析ワークフローチャート(電気泳動)
206:分析ワークフローチャート(分析終了)
207:泳動媒体交換のフローチャート(現在の泳動媒体情報の読み込み)
208:泳動媒体交換のフローチャート(泳動媒体容器の取り外し)
209:泳動媒体交換のフローチャート(バーコードリーダーにて交換泳動媒体情報読み込み)
210:泳動媒体交換のフローチャート(交換泳動媒体容器の取り付け)
211:泳動媒体交換のフローチャート(アレイへの泳動媒体充填)
301:インストールボタン、302:充填開始ボタン

Claims (8)

  1.  電気泳動によって、キャピラリ内にサンプルを送液し、当該サンプルを光学検出する電気泳動装置において、
     キャピラリの先端に設けられた陽極側のキャピラリヘッドと、電気泳動に用いる泳動媒体が充填された泳動媒体容器と、泳動媒体容器からキャピラリ内に泳動媒体を充填する充填機構を備え、
     充填機構は、泳動媒体洗浄溶液を使用せずに、既に泳動媒体が充填されているキャピラリに、充填されている泳動媒体とは異なる泳動媒体を充填するキャピラリ電気泳動装置。
  2.  請求項1において、
     バーコードリーダーをさらに備え、
     (a)  既にキャピラリに充填されている泳動媒体の情報を読み出し、
     (b) 次にキャピラリに充填する泳動媒体の情報をバーコードリーダーにより読み込み、
     (c) その後、装置にセットされた泳動媒体容器から泳動媒体をキャピラリへ充填するキャピラリ電気泳動装置。
  3.  請求項2において、
     表示部をさらに備え、
     工程(a)において、既にキャピラリに充填されている泳動媒体の情報を当該表示部に表示するキャピラリ電気泳動装置。
  4.  請求項3において、
     表示部に表示される泳動媒体の情報には、少なくとも泳動媒体の種類、使用期限、ロット番号、シリアルナンバーを含むキャピラリ電気泳動装置。
  5.  請求項2において、
     工程(b)において、バーコードリーダー、泳動媒体容器、及びバーコードを表示部へ表示するキャピラリ電気泳動装置。
  6.  請求項5において、
     バーコードリーダーで読み込んだ情報には、少なくとも泳動媒体の種類、使用期限、ロット番号、シリアルナンバーを含み、これらの情報を前記表示部へ表示するキャピラリ電気泳動装置。
  7.  請求項5において、
     バーコードリーダーで泳動媒体の情報を読み込んだ後に、容器の装置における設置位置を示す装置図を前記表示部に表示するキャピラリ電気泳動装置。
  8.  請求項7において、
     泳動媒体容器を装置に設置する際に、設置音を確認する必要があることを前記表示部へ表示するキャピラリ電気泳動装置。
PCT/JP2018/035271 2017-09-26 2018-09-25 キャピラリ電気泳動装置 WO2019065558A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201880062102.2A CN111133307B (zh) 2017-09-26 2018-09-25 毛细管电泳装置
DE112018004282.0T DE112018004282T5 (de) 2017-09-26 2018-09-25 Kapillarelektrophoresevorrichtung
US16/650,648 US20200249199A1 (en) 2017-09-26 2018-09-25 Capillary Electrophoresis Apparatus
JP2019545092A JP6805361B2 (ja) 2017-09-26 2018-09-25 電気泳動装置及び電気泳動方法
GB2004367.5A GB2580818B (en) 2017-09-26 2018-09-25 Capillary electrophoresis apparatus
US17/892,506 US20220397549A1 (en) 2017-09-26 2022-08-22 Capillary Electrophoresis Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017184309 2017-09-26
JP2017-184309 2017-09-26

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/650,648 A-371-Of-International US20200249199A1 (en) 2017-09-26 2018-09-25 Capillary Electrophoresis Apparatus
US17/892,506 Division US20220397549A1 (en) 2017-09-26 2022-08-22 Capillary Electrophoresis Apparatus

Publications (1)

Publication Number Publication Date
WO2019065558A1 true WO2019065558A1 (ja) 2019-04-04

Family

ID=65902847

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035271 WO2019065558A1 (ja) 2017-09-26 2018-09-25 キャピラリ電気泳動装置

Country Status (6)

Country Link
US (2) US20200249199A1 (ja)
JP (1) JP6805361B2 (ja)
CN (1) CN111133307B (ja)
DE (1) DE112018004282T5 (ja)
GB (1) GB2580818B (ja)
WO (1) WO2019065558A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162183A (ja) * 1998-11-30 2000-06-16 Inst Of Physical & Chemical Res キャピラリー電気泳動装置
JP2010072003A (ja) * 2010-01-04 2010-04-02 Hitachi High-Technologies Corp 電気泳動装置
JP2014228498A (ja) * 2013-05-27 2014-12-08 株式会社日立ハイテクノロジーズ キャピラリ電気泳動装置における分離媒体充填方法
WO2016157272A1 (ja) * 2015-03-27 2016-10-06 株式会社 日立ハイテクノロジーズ 電気泳動装置および電気泳動方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5332481A (en) * 1991-01-29 1994-07-26 Beckman Instruments, Inc. Capillary electrophoresis using replaceable gels
US5569364A (en) * 1992-11-05 1996-10-29 Soane Biosciences, Inc. Separation media for electrophoresis
US5635050A (en) * 1995-08-23 1997-06-03 Beckman Instruments, Inc. Electrophoretic system including means for replacing separation medium
JP2001033427A (ja) * 1999-07-16 2001-02-09 Hitachi Software Eng Co Ltd 電気泳動方法及び電気泳動装置
US6716948B1 (en) * 1999-07-31 2004-04-06 Symyx Technologies, Inc. Controlled-architecture polymers and use thereof as separation media
JP4297922B2 (ja) 2006-06-27 2009-07-15 株式会社日立ハイテクノロジーズ キャピラリ電気泳動装置
US20080110757A1 (en) * 2006-11-15 2008-05-15 Applera Corporation Methods for manipulating separation media
JP2010054195A (ja) * 2006-12-21 2010-03-11 Panasonic Corp キャピラリーユニット、キャピラリー電気泳動装置及びキャピラリー電気泳動方法
JP4801007B2 (ja) * 2007-06-01 2011-10-26 株式会社日立ハイテクノロジーズ 電気泳動装置及びそれに用いられるポンプ機構
US10865440B2 (en) * 2011-10-21 2020-12-15 IntegenX, Inc. Sample preparation, processing and analysis systems
GB2530446B (en) * 2013-07-08 2018-06-13 Hitachi High Tech Corp Capillary electrophoresis device
WO2016190321A1 (ja) * 2015-05-25 2016-12-01 シャープ株式会社 電気泳動ゲル、電気泳動キット、電気泳動装置および電気泳動方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000162183A (ja) * 1998-11-30 2000-06-16 Inst Of Physical & Chemical Res キャピラリー電気泳動装置
JP2010072003A (ja) * 2010-01-04 2010-04-02 Hitachi High-Technologies Corp 電気泳動装置
JP2014228498A (ja) * 2013-05-27 2014-12-08 株式会社日立ハイテクノロジーズ キャピラリ電気泳動装置における分離媒体充填方法
WO2016157272A1 (ja) * 2015-03-27 2016-10-06 株式会社 日立ハイテクノロジーズ 電気泳動装置および電気泳動方法

Also Published As

Publication number Publication date
JPWO2019065558A1 (ja) 2020-10-22
JP6805361B2 (ja) 2020-12-23
DE112018004282T5 (de) 2020-05-14
CN111133307A (zh) 2020-05-08
US20200249199A1 (en) 2020-08-06
GB202004367D0 (en) 2020-05-13
GB2580818A (en) 2020-07-29
CN111133307B (zh) 2023-02-21
GB2580818B (en) 2022-05-04
US20220397549A1 (en) 2022-12-15

Similar Documents

Publication Publication Date Title
US8888980B2 (en) Electrophoresis apparatus and control method thereof
JP2008530524A (ja) 分析器械
CN107209149B (zh) 电泳装置及电泳方法
US20170038337A1 (en) Sample separation/transfer device and sample analysis method
CN110988375A (zh) 试样注入装置和试样注入系统
JP2011220928A (ja) 自動分析装置
JP2009162622A (ja) 分析装置および管理方法
WO2019065558A1 (ja) キャピラリ電気泳動装置
JPWO2018173560A1 (ja) 自動分析装置
JP6068227B2 (ja) 核酸分析装置
US10768189B2 (en) Automatic analysis apparatus
JP6255216B2 (ja) 電気化学測定装置
CN116496881A (zh) 全自动基因处理设备及方法
JP7341308B2 (ja) 電気泳動装置
JP7008744B2 (ja) 自動分析装置および自動分析装置の制御方法
US20240337622A1 (en) Electrophoresis assistance method
JP5978147B2 (ja) 生体物質分析装置
JP2010523942A (ja) マイクロ流路洗浄方法
JP2020052014A (ja) 検体分析装置、検体分析方法およびプログラム
JP2001153841A (ja) 電気泳動装置
CN110967508B (en) Sample analysis device and method, and storage medium containing executable program
JP6353869B2 (ja) 生体分子分析装置
JP6711671B2 (ja) 自動分析装置
JP2016067318A (ja) 核酸検査システム
JPWO2019026133A1 (ja) キャピラリ電気泳動装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863580

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2019545092

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202004367

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20180925

122 Ep: pct application non-entry in european phase

Ref document number: 18863580

Country of ref document: EP

Kind code of ref document: A1