WO2019064859A1 - 操作入力装置及びドアハンドル - Google Patents

操作入力装置及びドアハンドル Download PDF

Info

Publication number
WO2019064859A1
WO2019064859A1 PCT/JP2018/027649 JP2018027649W WO2019064859A1 WO 2019064859 A1 WO2019064859 A1 WO 2019064859A1 JP 2018027649 W JP2018027649 W JP 2018027649W WO 2019064859 A1 WO2019064859 A1 WO 2019064859A1
Authority
WO
WIPO (PCT)
Prior art keywords
threshold
capacitance
equal
operating body
operation input
Prior art date
Application number
PCT/JP2018/027649
Other languages
English (en)
French (fr)
Inventor
和人 大下
高井 大輔
俊季 中村
Original Assignee
アルプスアルパイン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプスアルパイン株式会社 filed Critical アルプスアルパイン株式会社
Priority to JP2019544335A priority Critical patent/JP6876815B2/ja
Priority to EP18861602.3A priority patent/EP3690912B1/en
Publication of WO2019064859A1 publication Critical patent/WO2019064859A1/ja
Priority to US16/789,770 priority patent/US11365571B2/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/54Electrical circuits
    • E05B81/64Monitoring or sensing, e.g. by using switches or sensors
    • E05B81/76Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60JWINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
    • B60J5/00Doors
    • B60J5/04Doors arranged at the vehicle sides
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05BLOCKS; ACCESSORIES THEREFOR; HANDCUFFS
    • E05B81/00Power-actuated vehicle locks
    • E05B81/54Electrical circuits
    • E05B81/64Monitoring or sensing, e.g. by using switches or sensors
    • E05B81/76Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles
    • E05B81/77Detection of handle operation; Detection of a user approaching a handle; Electrical switching actions performed by door handles comprising sensors detecting the presence of the hand of a user
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/048Interaction techniques based on graphical user interfaces [GUI]
    • G06F3/0487Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser
    • G06F3/0488Interaction techniques based on graphical user interfaces [GUI] using specific features provided by the input device, e.g. functions controlled by the rotation of a mouse with dual sensing arrangements, or of the nature of the input device, e.g. tap gestures based on pressure sensed by a digitiser using a touch-screen or digitiser, e.g. input of commands through traced gestures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H36/00Switches actuated by change of magnetic field or of electric field, e.g. by change of relative position of magnet and switch, by shielding
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/94Electronic switching or gating, i.e. not by contact-making and –breaking characterised by the way in which the control signals are generated
    • H03K17/96Touch switches
    • H03K17/962Capacitive touch switches
    • H03K17/9622Capacitive touch switches using a plurality of detectors, e.g. keyboard
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • E05Y2400/85User input means
    • E05Y2400/852Sensors
    • E05Y2400/854Switches
    • EFIXED CONSTRUCTIONS
    • E05LOCKS; KEYS; WINDOW OR DOOR FITTINGS; SAFES
    • E05YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES E05D AND E05F, RELATING TO CONSTRUCTION ELEMENTS, ELECTRIC CONTROL, POWER SUPPLY, POWER SIGNAL OR TRANSMISSION, USER INTERFACES, MOUNTING OR COUPLING, DETAILS, ACCESSORIES, AUXILIARY OPERATIONS NOT OTHERWISE PROVIDED FOR, APPLICATION THEREOF
    • E05Y2400/00Electronic control; Electrical power; Power supply; Power or signal transmission; User interfaces
    • E05Y2400/80User interfaces
    • E05Y2400/85User input means
    • E05Y2400/856Actuation thereof
    • E05Y2400/858Actuation thereof by body parts, e.g. by feet
    • E05Y2400/86Actuation thereof by body parts, e.g. by feet by hand
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K2217/00Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00
    • H03K2217/94Indexing scheme related to electronic switching or gating, i.e. not by contact-making or -breaking covered by H03K17/00 characterised by the way in which the control signal is generated
    • H03K2217/96Touch switches
    • H03K2217/96066Thumbwheel, potentiometer, scrollbar or slider simulation by touch switch

Definitions

  • the present invention relates to an operation input device and a door handle.
  • a door handle for opening and closing the door is provided on the outside of a car or the like on the door of the car or the like.
  • a vehicle door open / close control device capable of performing such operations as opening and closing a door of a car or the like by touching a door handle (for example, Patent Document 1).
  • an operation such as opening and closing of a door can be performed by bringing a hand in contact with a door handle or the like and moving the touched hand.
  • the gesture operation varies depending on the person who operates, etc. It may not be possible to accurately determine whether or not false detection may be made.
  • a substrate formed of an insulator, a plurality of detection electrodes provided on the surface of the substrate, and a control unit are provided, and the control unit is provided on the substrate.
  • the disclosed operation input device it is possible to provide an operation input device with little variation due to a person who operates the gesture operation.
  • the operation input device in the first embodiment will be described.
  • the operation input device in the present embodiment is built in a door handle attached to a door of a car or the like, and can input operation information through the door handle.
  • the operation input device in the present embodiment is built in a door handle 100 attached to a door 10 of an automobile or the like as shown in FIG.
  • a circuit board 110 formed of an insulator is provided inside the door handle 100, and one end of a substantially rectangular circuit board 110 is provided on the surface of the circuit board 110.
  • a plurality of detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120j are sequentially arranged in a line from the side 110a to the other end 110b, that is, along the longitudinal direction of the circuit board 110. It is arranged.
  • the integrated circuit 130 is mounted on the circuit board 110, and the detection electrodes 120 a, 120 b, 120 c, 120 d, 120 e, 120 f, 120 g, 120 h, 120 i and 120 j are connected to the integrated circuit 130.
  • the integrated circuit 130 is provided with a switch 131 connected to each of the detection electrodes 120 a, 120 b, 120 c, 120 d, 120 e, 120 f, 120 g, 120 h, 120 i and 120 j, By closing the switch 131, a predetermined voltage Vdd can be applied to the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, and 120j.
  • the potential at each of the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120j can be detected, and the detected potential is amplified by the amplifier 132, and the ADC (Analog- A to-digital converter (AD converter) 133 converts an analog signal into a digital signal.
  • the capacitance between each of the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120j and the finger 200 is It can be calculated. Information of the calculated capacitance between each of the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120j and the finger 200 is transmitted to the control unit 135.
  • the operation input device is formed of the integrated circuit 130 and the circuit board 110 on which the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i and 120j are formed
  • the integrated circuit 130 includes a switch 131, an amplifier 132, an ADC 133, an arithmetic unit 134, a control unit 135, and the like.
  • the circuit board 110 on which the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120j are formed may be described as a sensor unit, and in the present application, Since the operation is performed by the finger 200, the finger 200 may be described as an operating body.
  • the capacitance between each of the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120h, 120i, 120j and the finger 200 thus obtained is obtained.
  • the gesture input by the finger 200 can be detected based on the information of.
  • gesture input by the finger 200 in the present embodiment is performed by moving the finger 200 so as to have a locus shown by an alternate long and short dash line in FIG. 4. Specifically, as shown in FIG. 4, the finger 200 is moved from the side of one end 110 a of the circuit board 110 to the side of the other end 110 b, and at the center of the circuit board 110, Gesture input is performed by performing an operation of bringing 200 close to the circuit board 110.
  • a gesture such as sliding the finger in the lateral direction while contacting or approaching the surface of the door handle in FIG.
  • the trajectory of the finger 200 as the gesture input shown in FIG. 4 is, as shown in FIG. 5A, from the side of one end 110 a of the circuit board 110 to the other end 110 b of the finger 200.
  • An operation of moving the finger 200 toward the circuit board 110 while moving the finger 200 from the side of one end 110 a of the circuit board 110 toward the other end 110 b as shown in FIG. It can be divided into the operation of leaving from.
  • the direction in which the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, and 120j in the circuit board 110 are arranged is taken as the X direction, and a direction perpendicular to this direction. Will be described as the Y direction.
  • the distance Y at which the circuit board 110 and the finger 200 are closest is the distance in the Y direction, and when the finger 200 is moved as shown in FIG. 4, it depends on the position of X as shown in FIG. And the distance Y changes.
  • Capacitance is generated between each of the detection electrodes 120 a, 120 b, 120 c, 120 d, 120 e, 120 f, 120 g, 120 h, 120 i, 120 j and the finger 200 on the circuit board 110, but the finger 200 is a circuit board 110.
  • the capacitance between the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120 and the finger 200 becomes large, and the finger 200 moves to the circuit board 110.
  • the distance between the detection electrodes 120 a, 120 b, 120 c, 120 d, 120 e, 120 f, 120 g, 120 h, 120 i, 120 i and the finger 200 decreases, the distance between the detection electrodes 120 a, 120 b, 120 c, 120 d.
  • the direction in which the finger 200 moves in the X direction, and the right direction in FIG. 6 and the like may be described as the + X direction.
  • the distance Y gradually decreases, the distance Y gradually increases from the middle.
  • the capacitance value between the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120j and the finger 200 in the circuit board 110 is also shown.
  • the distance Y between the first finger 200 and the circuit board 110 is small at a long portion, and increases at a short central portion between the finger 200 and the circuit board 110. Thereafter, the distance Y between the finger 200 and the circuit board 110 is again It becomes smaller as it gets longer.
  • FIG. 6B shows a temporal change of the capacitance detected in the operation input device according to the present embodiment. Specifically, it shows a temporal change in electrostatic capacitance between the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i, 120j and the finger 200 on the circuit board 110. .
  • Time T1, T2, T3, T4, T5, T6, T7, T8, and T9 are time passes in this order, and the finger 200 moves between time T1 and time T9, and the capacitance It is detected.
  • 6B shows the position and electrostatic potential of the peak of the distribution of the capacitance detected by the detection electrodes 120a, 120b, 120c, 120d, 120e, 120f, 120g, 120h, 120i and 120j at each time. It shows the value of capacity. Therefore, it can be considered that the finger 200 is present at the position X where the capacitance peaks at each of the times T1 to T9.
  • FIG. 7 is a flowchart of a detection method of moving the finger 200 in the + X direction and detecting a gesture operation approaching the operation input device in the present embodiment.
  • FIG. 8 is a flowchart of this embodiment while moving the finger 200 in the + X direction. It is a flowchart of the detection method which detects the gesture operation which leaves in the operation input device in the form of.
  • FIG. 7 is a flowchart of a detection method of moving the finger 200 in the + X direction and detecting a gesture operation approaching the operation input device according to the present embodiment. That is, as shown in FIG. 5A, the finger 200 is moved from one end 110a of the circuit board 110 toward the other end 110b, and a gesture operation approaching the circuit board 110 is detected. In the present embodiment, as shown in FIG. 9, in the capacitance to be detected, a first threshold Ct1 and a second threshold Ct2 larger than the first threshold Ct1 and To detect a gesture operation by the finger 200.
  • the position in the X direction at which the first threshold Ct1 is first detected is P1
  • the position in the X direction at which the second threshold Ct2 is detected is P2
  • the position in the X direction at which the second threshold Ct2 is detected is described as P3
  • the position in the X direction at which the first threshold Ct1 is finally detected is described as P4.
  • the first threshold Ct1 is 0.01 pF
  • the second threshold Ct2 is 1 pF.
  • FIG. 9 shows the positions of the electrodes and the values of the capacitances, which become peaks of the distribution of the capacitances detected by the electrodes at each time.
  • step 102 it is determined whether or not the electrostatic capacitance equal to or greater than the first threshold Ct1 is detected in the operation input device in the present embodiment. If a capacitance equal to or greater than the first threshold Ct1 is detected, the process proceeds to step 104. If a capacitance equal to or greater than the first threshold Ct1 is not detected, step 102 is repeated. Specifically, in step 102, a standby state is established until a capacitance equal to or greater than the first threshold Ct1 is detected.
  • the standby state may be measurement of a normal cycle, but may be intermittent operation with a long measurement cycle to save power.
  • a threshold other than the first threshold Ct1 may be set to wake up from the standby state, for example, a threshold lower than the first threshold Ct1.
  • step 104 measurement of capacitance is performed in the operation input device in the present embodiment to perform gesture determination.
  • the measured capacitance value may be stored in the storage unit 136 provided in the control unit 135. For example, the measurement of capacitance is performed every one millisecond. It is to be noted that after the value of the capacitance to be measured first becomes equal to or higher than the first threshold Ct1, the time until the value becomes smaller than the first threshold Ct1 is longer than a predetermined time. In this case, it may be determined that there is no gesture, and the process may move to step 102.
  • the process may proceed to step 102.
  • step 106 it is determined whether or not the change in the position of the finger 200 when the finger 200 approaches is a predetermined direction and a predetermined length or more. Specifically, the movement direction Xa1 of the finger 200 in the X direction from the position P1 at which the first threshold Ct1 is exceeded and the position P2 at which the second threshold Ct2 is later on, and the position The length L1 of P1 and the position P2 is calculated, and it is determined whether the moving direction Xa1 of the finger 200 in the X direction is the + X direction and the length L1 is equal to or longer than a predetermined length.
  • this predetermined length may be described as a first length.
  • step 110 it is determined whether the time during which the detected capacitance is equal to or greater than the first threshold Ct1 (detection time ⁇ T) is less than or equal to a predetermined time.
  • time T1 when the measured capacitance value first becomes equal to or greater than the first threshold Ct1, and finally the first threshold Ct1.
  • the predetermined time is, for example, 500 ms, and in this embodiment, this predetermined time may be described as a first time.
  • the direction in the X direction when the finger 200 approaches the operation input device in the present embodiment is the same as the direction in the X direction when the finger leaves To judge. Specifically, the movement direction of the finger 200 in the X direction from the position P3 at which the first threshold Ct1 is finally reached and the position P4 at which the second threshold Ct2 is finally reached Get Xa2. If the movement direction Xa1 and the movement direction Xa2 are the same and both are in the + X direction, the process proceeds to step 114. If the movement direction Xa1 and the movement direction Xa2 are not the same direction or if both are in the + X direction, the process proceeds to step 102.
  • step 114 the control unit 135 or the like recognizes that the operation by the finger 200 is a gesture operation. Thereby, it is possible to open the door on which the door handle in which the operation input device in this embodiment is built is attached.
  • step 106 operation input can be performed using the operation input device in the present embodiment.
  • the process after step 106 may be performed while measuring the capacitance after the capacitance becomes equal to or greater than the second threshold value Ct2.
  • FIG. 8 is a flowchart of a detection method of moving the finger 200 in the + X direction and detecting a gesture operation away from the operation input device according to the present embodiment. That is, as shown in FIG. 5B, the finger 200 is moved from one end 110 a of the circuit board 110 to the other end 110 b, and a gesture operation of separating from the circuit board 110 is detected. Also in this case, as shown in FIG. 9, in the capacitance to be detected, the first threshold Ct1 and the second threshold Ct2 larger than the first threshold Ct1 are set. Then, the gesture operation by the finger 200 is detected.
  • step 102 it is determined whether or not the electrostatic capacitance equal to or greater than the first threshold Ct1 is detected in the operation input device in the present embodiment. If a capacitance equal to or greater than the first threshold Ct1 is detected, the process proceeds to step 104. If a capacitance equal to or greater than the first threshold Ct1 is not detected, step 102 is repeated.
  • step 104 measurement of capacitance is performed in the operation input device in the present embodiment to perform gesture determination.
  • the measured capacitance value may be stored in the storage unit 136 provided in the control unit 135.
  • step 108 it is determined whether or not the change in the position of the finger 200 when the finger 200 is released is a predetermined direction and a predetermined length or more. Specifically, the movement direction Xa2 of the finger 200 in the X direction from the position P3 at which the second threshold Ct2 is finally reached or more and the position P4 at last the first threshold Ct1 or greater; The length L2 of the position P3 and the position P4 is calculated, and it is determined whether the moving direction Xa2 of the finger 200 in the X direction is the + X direction and the length L2 is equal to or longer than a predetermined length.
  • this predetermined length may be described as a second length.
  • step 110 it is determined whether the time during which the detected capacitance is equal to or greater than the first threshold Ct1 (detection time ⁇ T) is less than or equal to a predetermined time. To judge. If the detection time ⁇ T is equal to or less than the predetermined time, the process proceeds to step 112. If the detection time ⁇ T is not equal to or less than the predetermined time, the process proceeds to step 102.
  • step 112 the direction in the X direction when the finger 200 approaches the operation input device in the present embodiment is the same as the direction in the X direction when the finger leaves To judge. If the movement direction Xa1 and the movement direction Xa2 are the same and both are in the + X direction, the process proceeds to step 114. When the movement direction Xa1 and the movement direction Xa2 are not the same direction or in the + X direction, the process proceeds to step 102.
  • step 114 the control unit 135 or the like recognizes that the operation by the finger 200 is a gesture operation. Thereby, it is possible to open the door on which the door handle in which the operation input device in this embodiment is built is attached.
  • operation input can be performed using the operation input device in the present embodiment.
  • the lengths L1 and L2 are the length of time May be used.
  • the combination of the operation input method 1 shown in FIG. 7 and the operation input method 2 shown in FIG. 8 may be used.
  • step 108 shown in FIG. 8 may be added between step 106 and step 110 in the flowchart shown in FIG. 7.
  • different functions may be added depending on the direction in which the finger 200 moves, for example, the opening / closing direction of the door.
  • FIG. 10 is a flowchart of a detection method for moving the finger 200 in the + X direction and detecting a gesture operation approaching the operation input device.
  • FIG. 11 is a gesture operation for moving the finger 200 in the + X direction and moving away from the operation input device Is a flowchart of a detection method for detecting
  • the position in the X direction at which the first threshold Ct1 is detected first is P1
  • the position in the X direction at which the second threshold Ct2 is detected is P2
  • the position in the X direction at which the second threshold Ct2 is detected is described as P3
  • the position in the X direction at which the first threshold Ct1 is finally detected is described as P4.
  • FIG. 12 shows the position of the electrode and the value of the capacitance, which become the peak of the distribution of the capacitance detected at each electrode at each time.
  • step 202 in the operation input device, it is determined whether or not a capacitance equal to or greater than a first threshold Ct1 is detected. If a capacitance equal to or greater than the first threshold Ct1 is detected, the process proceeds to step 204, and if a capacitance equal to or greater than the first threshold Ct1 is not detected, step 202 is repeated.
  • step 204 measurement of capacitance is performed in the operation input device in the present embodiment to perform gesture determination.
  • the measured capacitance value may be stored in the storage unit 136 provided in the control unit 135. For example, the measurement of capacitance is performed every one millisecond. It is to be noted that after the value of the capacitance to be measured first becomes equal to or higher than the first threshold Ct1, the time until the value becomes smaller than the first threshold Ct1 is longer than a predetermined time. In this case, it may be determined that there is no gesture, and the process may move to step 202.
  • the capacitance does not become equal to or greater than the second threshold Ct2 after the first predetermined threshold Ct1 or more after the electrostatic capacitance reaches the first threshold Ct1, it is determined that there is no gesture. And may move on to step 202.
  • step 206 the change in the position of the finger 200 when the finger 200 approaches is a predetermined direction, and the finger 200 is opposed to the length LH in the state in which the finger 200 is approaching. It is determined whether or not the value of the change length L1 of the position of the finger 200 at the time when the value of L approaches is equal to or greater than a predetermined value.
  • the length L1 of P1 and position P2 is calculated, the position in the X direction in which the second threshold Ct2 is detected is P2, and the position in the X direction in which the second threshold Ct2 is finally detected is P3.
  • the length LH of the position P2 and the position P3 is calculated, and it is determined whether the moving direction Xa1 of the finger 200 in the X direction is the + X direction and the ratio of the length L1 to the length LH is a predetermined value or more to decide.
  • the process proceeds to step 210 and the length to the length LH If the ratio of L1 is not equal to or greater than the predetermined value, the process proceeds to step 202.
  • step 210 it is determined whether the time during which the detected capacitance is equal to or greater than the first threshold Ct1 (detection time ⁇ T) is less than or equal to a predetermined time. To judge. If the detection time ⁇ T is equal to or less than the predetermined time, the process proceeds to step 212. If the detection time ⁇ T is not equal to or less than the predetermined time, the process proceeds to step 202.
  • step 212 it is determined whether or not the direction in the X direction when the finger 200 approaches the operation input device is the same as the direction in the X direction when the finger leaves. If the movement direction Xa1 and the movement direction Xa2 are the same and both are in the + X direction, the process proceeds to step 214. If the moving direction Xa1 and the moving direction Xa2 are not the same direction or if both are in the + X direction, the process proceeds to step 202.
  • step 214 the control unit 135 or the like recognizes that the operation by the finger 200 is a gesture operation. Thus, it is possible to open the door on which the door handle incorporating the operation input device is attached.
  • step 204 operation input can be performed using the operation input device.
  • the present invention is not limited to this.
  • the processes after step 206 may be performed while measuring the capacitance.
  • FIG. 11 moves the finger 200 from one end 110 a of the circuit board 110 toward the other end 110 b and detects a gesture operation away from the circuit board 110.
  • step 202 in the operation input device, it is determined whether or not a capacitance equal to or greater than a first threshold Ct1 is detected. If a capacitance equal to or greater than the first threshold Ct1 is detected, the process proceeds to step 204, and if a capacitance equal to or greater than the first threshold Ct1 is not detected, step 202 is repeated.
  • step 204 measurement of capacitance is performed in the operation input device in the present embodiment to perform gesture determination.
  • the measured capacitance value may be stored in the storage unit 136 provided in the control unit 135.
  • step 208 the change in the position of the finger 200 when the finger 200 is released is a predetermined direction, and the finger 200 with respect to the length LH in the state in which the finger 200 is in proximity. It is determined whether or not the value of the change length L2 of the position of the finger 200 at the time of separation is equal to or greater than a predetermined value.
  • step 210 it is determined whether the time during which the detected capacitance is equal to or greater than the first threshold Ct1 (detection time ⁇ T) is less than or equal to a predetermined time.
  • time T1 when the measured capacitance value first becomes equal to or greater than the first threshold Ct1, and finally the first threshold Ct1.
  • the predetermined time is, for example, 500 ms, and in this embodiment, this predetermined time may be described as a first time.
  • step 212 it is determined whether or not the direction in the X direction when the finger 200 approaches the operation input device is the same as the direction in the X direction when the finger leaves. Specifically, the movement direction Xa1 of the finger 200 in the X direction is determined from the position P1 at which the first threshold Ct1 or more is reached and the position P2 at which the second threshold Ct2 is exceeded. obtain. In addition, the movement direction Xa2 of the finger 200 in the X direction is obtained from the position P3 at which the first threshold Ct1 or more is reached and the position P4 at which the second threshold Ct2 is finally exceeded. .
  • step 214 If the movement direction Xa1 and the movement direction Xa2 are the same and both are in the + X direction, the process proceeds to step 214. If the moving direction Xa1 and the moving direction Xa2 are not the same direction or if both are in the + X direction, the process proceeds to step 202.
  • step 214 the control unit 135 or the like recognizes that the operation by the finger 200 is a gesture operation. Thus, it is possible to open the door on which the door handle incorporating the operation input device is attached.
  • operation input can be performed using the operation input device.
  • This embodiment may be a combination of the operation input method 3 shown in FIG. 10 and the operation input method 4 shown in FIG. Specifically, step 208 shown in FIG. 11 may be added between step 206 and step 210 in the flowchart shown in FIG.
  • FIG. 13 is a flowchart of a detection method for detecting a gesture operation in which the finger 200 is moved in the + X direction and initially approaches the operation input device and then leaves.
  • FIG. 13 moves the finger 200 from one end 110 a of the circuit board 110 to the other end 110 b as shown in FIG. 4, and initially makes the gesture operation to approach and then leave the circuit board 110. It is something to detect. Also in the present embodiment, as shown in FIG. 14, in the capacitance to be detected, the first threshold Ct1 and the second threshold Ct2 larger than the first threshold Ct1 and To detect a gesture operation by the finger 200.
  • the position in the X direction at which the first threshold Ct1 is first detected is P1
  • the position in the X direction at which the second threshold Ct2 is detected is P2
  • the position in the X direction at which the second threshold Ct2 is detected is described as P3
  • the position in the X direction at which the first threshold Ct1 is finally detected is described as P4.
  • FIG. 14 shows the position of the electrode and the value of the capacitance which become the peak of the distribution of the capacitance detected at each electrode at each time.
  • step 302 in the operation input device, it is determined whether or not a capacitance equal to or greater than a first threshold Ct1 is detected. If a capacitance equal to or greater than the first threshold Ct1 is detected, the process proceeds to step 304. If a capacitance equal to or greater than the first threshold Ct1 is not detected, step 302 is repeated.
  • step 304 measurement of capacitance is performed in the operation input device according to the present embodiment to perform gesture determination.
  • the measured capacitance value may be stored in the storage unit 136 provided in the control unit 135. For example, the measurement of capacitance is performed every one millisecond. It is to be noted that after the value of the capacitance to be measured first becomes equal to or higher than the first threshold Ct1, the time until the value becomes smaller than the first threshold Ct1 is longer than a predetermined time. In this case, it may be determined that there is no gesture, and the process may move to step 302.
  • the capacitance does not become equal to or greater than the second threshold Ct2 after the first predetermined threshold Ct1 or more after the electrostatic capacitance reaches the first threshold Ct1, it is determined that there is no gesture. And may move to step 302.
  • step 306 the value of the length LL which is equal to or greater than the first threshold Ct1 with respect to the length LH which is equal to or greater than the second threshold Ct2 is equal to or greater than a predetermined value. Determine if there is. Specifically, the moved length LL of the finger 200 in the X direction from the position P1 at which the first threshold Ct1 or more is reached and the position P4 at which the first threshold Ct1 is finally exceeded Is calculated, and the moved length LH of the finger 200 in the X direction is calculated from the position P2 at which the second threshold Ct2 is reached first and the position P3 at which the second threshold Ct2.
  • step 308 If the value of the length LL for the length LH is greater than or equal to a predetermined value, the process proceeds to step 308. If the value of the length LL for the length LH is not greater than or equal to a predetermined value, the process proceeds to step 302. Do.
  • step 308 movement of the finger 200 in the X direction until it becomes the second threshold Ct2 or more after it first becomes the second threshold Ct2 or more.
  • the direction Xb matches the moving direction Xa of the finger 200 in the X direction until the first threshold Ct1 is reached and then the first threshold Ct1 is reached first. Is judged.
  • the movement direction Xa of the finger 200 in the X direction is obtained from the position P1 at which the first threshold Ct1 or more is reached first and the position P4 at which the first threshold Ct1 is finally reached or above.
  • the movement direction Xb of the finger 200 in the X direction is obtained from the position P2 at which the second threshold Ct2 is first obtained and the position P3 at which the second threshold Ct2 is finally obtained. It is determined whether or not the movement directions Xa and Xb of the finger 200 in the direction are the same and in the + X direction. If the moving directions Xa and Xb of the finger 200 in the X direction are the same and the + X direction, the process proceeds to step 310, and the moving directions Xa and Xb of the finger 200 in the X direction are not the same or If it is not in the + X direction, the process proceeds to step 302.
  • step 310 after the detected capacitance first reaches or exceeds the first threshold Ct1, the time until the second threshold Ct2 or above is reached.
  • Detection time ⁇ Ta1 is equal to or less than a predetermined time, and finally becomes equal to or more than the second threshold Ct2, and then the time (detection time ⁇ Ta2) to become equal to or more than the first threshold Ct1 is predetermined It is determined whether it is less than or equal to time. Specifically, in the case shown in FIG. 14, time T2 when the measured capacitance value first becomes greater than or equal to the first threshold Ct1, and then the second threshold Ct2 first.
  • step 312 the control unit 135 or the like recognizes that the operation by the finger 200 is a gesture operation.
  • the control unit 135 recognizes that the operation by the finger 200 is a gesture operation.
  • the control unit 135 recognizes that the operation by the finger 200 is a gesture operation.
  • step 304 operation input can be performed using the operation input device.
  • the case where the measurement of capacitance is collectively performed in step 304 has been described, but the present invention is not limited to this.
  • FIG. 15 shows the positions of the electrodes and the values of the capacitances, which become peaks of the distribution of the capacitances detected by the electrodes at each time.
  • the moving length of the peak position of the detected capacitance within a predetermined time ⁇ Ts.
  • the time has moved by a predetermined length or more, it may be determined that the gesture operation has been performed.
  • predetermined time ⁇ Ts T4-T1
  • the distance ⁇ Ps from the peak position Ps1 of capacitance at time T1 to the peak position Ps4 of capacitance at time T4 is a predetermined distance or more You may judge by whether there is any.
  • the value of the peak of the detected capacitance within the predetermined time ⁇ Ts is the second threshold
  • Ct2 or more it may be determined that a gesture operation has been performed.
  • the gesture operation is performed when the peak of the detected capacitance or the barycentric coordinate continues to move continuously in a predetermined direction, for example, the + X direction within a predetermined time ⁇ Ts.
  • a predetermined direction for example, the + X direction within a predetermined time ⁇ Ts.
  • the gesture operation when a plurality of requirements among the above requirements are satisfied, it may be determined that the gesture operation has been performed. In addition, when all the requirements among the above requirements are satisfied, it may be determined that the gesture operation has been performed, and in this case, the determination that the gesture operation has been performed can be made strict. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • User Interface Of Digital Computer (AREA)
  • Switches That Are Operated By Magnetic Or Electric Fields (AREA)
  • Position Input By Displaying (AREA)

Abstract

絶縁体により形成された基板と、前記基板の表面に設けられた複数の検出電極と、制御部と、を有し、前記制御部は、前記基板に操作体を近づけた際に、各々の前記検出電極と前記操作体との間に生じる静電容量を検出し、検出された前記検出電極と前記操作体との間に生じる静電容量が、第1のしきい値以上となる時間、または、前記第1のしきい値以上となる間に前記操作体が移動した長さに基づき前記操作体によるジェスチャー操作がなされたか否かを判断することを特徴とする操作入力装置。

Description

操作入力装置及びドアハンドル
 本発明は、操作入力装置及びドアハンドルに関するものである。
 自動車等のドアには、ドアを開閉するためのドアハンドルが自動車等の外側に設けられている。このような自動車等のドアの開閉等の操作をドアハンドルに触れることで行うことのできる車両用ドア開閉制御装置が開示されている(例えば、特許文献1)。
 具体的には、このような車両用ドア開閉制御装置では、ドアハンドル等に手を接触させて、接触させた手を動かすことにより、ドアの開閉等の操作をすることができる。
特開2009-79353号公報 特開平10-308148号公報
 しかしながら、車両用ドア開閉制御装置等において、ジェスチャーにより情報を入力し車両用ドアの開閉を行うことを想定した場合、ジェスチャー操作は操作する人等によりバラツキがあるため、ジェスチャー操作による入力がなされたか否かを正確に判断することができず、誤検出がなされる場合がある。
 このため、ジェスチャー操作において、操作する人等によるバラツキの少ない操作入力装置が求められている。
 本実施の形態の一観点によれば、絶縁体により形成された基板と、前記基板の表面に設けられた複数の検出電極と、制御部と、を有し、前記制御部は、前記基板に操作体を近づけた際に、各々の前記検出電極と前記操作体との間に生じる静電容量を検出し、検出された前記検出電極と前記操作体との間に生じる静電容量が、第1のしきい値以上となる時間、または、前記第1のしきい値以上となる間に前記操作体が移動した長さに基づき前記操作体によるジェスチャー操作がなされたか否かを判断することを特徴とする。
 開示の操作入力装置によれば、ジェスチャー操作において、操作する人等によるバラツキの少ない操作入力装置を提供することができる。
第1の実施の形態におけるドアハンドルが取り付けられているドアの説明図 第1の実施の形態におけるドアハンドルの説明図 第1の実施の形態における操作入力装置の構造図 操作入力装置におけるジェスチャー操作の説明図 第1の実施の形態における操作入力装置のジェスチャー操作の説明図(1) 第1の実施の形態における操作入力装置のジェスチャー操作の説明図(2) 第1の実施の形態における操作入力装置の説明図(1) 第1の実施の形態における操作入力装置の説明図(2) 第1の実施の形態における操作入力方法のフローチャート(1) 第1の実施の形態における操作入力方法のフローチャート(2) 第1の実施の形態における操作入力方法の説明図 第2の実施の形態における操作入力方法のフローチャート(1) 第2の実施の形態における操作入力方法のフローチャート(2) 第2の実施の形態における操作入力方法の説明図 第3の実施の形態における操作入力方法のフローチャート 第3の実施の形態における操作入力方法の説明図 第4の実施の形態における操作入力方法の説明図
 実施するための形態について、以下に説明する。尚、同じ部材等については、同一の符号を付して説明を省略する。
 〔第1の実施の形態〕
 第1の実施の形態における操作入力装置について説明する。本実施の形態における操作入力装置は、自動車等のドアに取り付けられているドアハンドルに内蔵されているものであり、ドアハンドルを介し操作情報を入力することができる。
 具体的には、本実施の形態における操作入力装置は、図1に示すような自動車等のドア10に取り付けられているドアハンドル100に内蔵されている。図2に示されるように、ドアハンドル100の内部には、絶縁体により形成された回路基板110が設けられており、回路基板110の表面には、略長方形の回路基板110の一方の端部110aから他方の端部110bに向かって、即ち、回路基板110の長手方向に沿って、複数の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jが順に一列に配置されている。また、回路基板110には、集積回路130が搭載されており、各々の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jは集積回路130に接続されている。
 図3に示されるように、集積回路130には、検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jの各々と接続されているスイッチ131が設けられており、スイッチ131を閉じることにより、検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jに所定の電圧Vddを印加することができる。これにより、検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jの各々における電位を検出することができ、検出された電位をアンプ132により増幅し、ADC(Analog-to-digital converter:ADコンバータ)133によりアナログ信号をデジタル信号に変換する。このように変換されたデジタル信号に基づき、演算部134において、各々の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jと指200との間の静電容量を算出することができる。算出された各々の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jと指200との間の静電容量の情報は、制御部135に伝達される。
 本実施の形態における操作入力装置は、検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jが形成されている回路基板110と、集積回路130により形成されており、集積回路130は、スイッチ131、アンプ132、ADC133、演算部134、制御部135等を有している。尚、本願においては、検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jが形成されている回路基板110をセンサ部と記載する場合があり、また、本願においては、指200により操作がなされるものであるため、指200を操作体と記載する場合がある。
 本実施の形態における操作入力装置においては、このように得られた各々の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jと指200との間の静電容量の情報に基づき、指200によるジェスチャー入力を検出することができる。
 (ジェスチャー入力)
 次に、本実施の形態における指200によるジェスチャー入力について説明する。本実施の形態においては、指200によるジェスチャー入力は、図4の一点鎖線に示す軌跡となるように指200を動かすことによりなされる。具体的には、図4に示すように、回路基板110の一方の端部110aの側から他方の端部110bの側に向かって、指200を動かすとともに、回路基板110の中央部分において、指200を回路基板110に近接させる動作を行うことにより、ジェスチャー入力がなされる。このようなケースとしては、例えば、図2のドアハンドルの表面に指を接触あるいは近接しながら横方向にスライドさせるようなジェスチャーを行う時などが考えられる。
 ところで、図4に示されるジェスチャー入力となる指200の軌跡は、図5Aに示されるように、指200を回路基板110の一方の端部110aの側から他方の端部110bの側に向かって動かすとともに、回路基板110に近づける操作と、図5Bに示されるように、指200を回路基板110の一方の端部110aの側から他方の端部110bの側に向かって動かすとともに、回路基板110から離れる操作とに分けることができる。
 図4に示される操作について、回路基板110における検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jが配列されている方向をX方向とし、この方向に垂直な方向をY方向として説明する。この場合、回路基板110と指200とが最も近くなる距離YはY方向における距離であり、図4に示されるように指200を動かすと、図6Aに示されるように、Xの位置に依存して距離Yが変化する。
 回路基板110における各々の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jと指200との間には、各々静電容量が生じるが、指200が回路基板110に近づいた場合には、各々の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120と指200との間の静電容量は大きくなり、指200が回路基板110から遠ざかる場合には、各々の検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120と指200との間の静電容量は小さくなる。本実施の形態においては、X方向において指200が移動する方向、図6等において右方向を+X方向と記載する場合がある。
 即ち、ジェスチャー入力の際の指200の移動する軌跡が、図4に示されるような場合では、図6Aに示すように、指200を+X方向、即ち、位置Xの値が増える方向に動かすと、最初は、距離Yが徐々に短くなるが、途中から距離Yが徐々に長くなる。このため、回路基板110における検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jと指200との間における静電容量の値も、図6Bに示されるように、最初の指200と回路基板110との距離Yが長い部分では小さく、指200と回路基板110との距離Yの短い中央部分では大きくなり、その後、指200と回路基板110との距離Yが再び長くなると小さくなる。
 尚、図6Bは、本実施の形態における操作入力装置において検出される静電容量の時間的な変化を示すものである。具体的には、回路基板110における検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jと指200との間における静電容量の時間的な変化を示すものである。時刻T1、T2、T3、T4、T5、T6、T7、T8、T9は、この順で時間が経過するものであり、時刻T1から時刻T9までの間において指200が移動し、静電容量が検出される。図6Bは、各々の時刻において、検出電極120a、120b、120c、120d、120e、120f、120g、120h、120i、120jにより検出される静電容量からなる分布のピークとなる電極の位置と静電容量の値を示している。このため、各々の時刻T1~T9における静電容量のピークとなる位置Xに指200が存在しているものと考えることができる。
 本実施の形態における操作入力装置における操作入力方法について、図7及び図8に基づき説明する。図7は、指200を+X方向に動かすとともに、本実施の形態における操作入力装置に近づくジェスチャー操作を検出する検出方法のフローチャートであり、図8は、指200を+X方向に動かすとともに、本実施の形態における操作入力装置に離れるジェスチャー操作を検出する検出方法のフローチャートである。
 (操作入力方法1)
 図7は、指200を+X方向に動かすとともに、本実施の形態における操作入力装置に近づくジェスチャー操作を検出する検出方法のフローチャートである。即ち、図5Aに示されるように、回路基板110の一方の端部110aから他方の端部110bに向かって指200を動かすとともに、回路基板110に近づくジェスチャー操作を検出するものである。本実施の形態においては、図9に示されるように、検出される静電容量において、第1のしきい値Ct1と、第1のしきい値Ct1よりも大きい第2のしきい値Ct2とを設定して、指200によるジェスチャー操作を検出する。本実施の形態においては、最初に第1のしきい値Ct1が検出されたX方向の位置をP1、この後、第2のしきい値Ct2が検出されたX方向の位置をP2、最後に第2のしきい値Ct2が検出されたX方向の位置をP3、そして、最後に第1のしきい値Ct1が検出されたX方向の位置をP4として説明する。本実施の形態においては、例えば、第1のしきい値Ct1は0.01pFであり、第2のしきい値Ct2は1pFであるものとする。尚、図9では、各々の時間において、各電極で検出される静電容量からなる分布のピークとなる電極の位置と静電容量の値を示している。
 最初に、ステップ102(S102)に示されるように、本実施の形態における操作入力装置において、第1のしきい値Ct1以上の静電容量を検出したか否かが判断される。第1のしきい値Ct1以上の静電容量を検出した場合にはステップ104に移行し、第1のしきい値Ct1以上の静電容量が検出されない場合には、ステップ102を繰り返す。具体的には、ステップ102において、第1のしきい値Ct1以上の静電容量が検出されるまでは待機状態となる。待機状態は、通常の周期の測定でもよいが、省電力のため測定周期の長い間欠動作にしてもよい。待機状態から目覚めるのに第1のしきい値Ct1以外の閾値、例えば、第1のしきい値Ct1より低い閾値を設けてもよい。
 次に、ステップ104(S104)に示されるように、本実施の形態における操作入力装置において静電容量の測定を行いジェスチャー判別を行う。測定された静電容量の値は制御部135内に設けられた記憶部136に記憶してもよい。例えば、静電容量の測定は、1m秒毎に行う。尚、測定される静電容量の値が、最初に第1のしきい値Ct1以上となった後、その後に第1のしきい値Ct1未満となるまでの時間が、所定の時間よりも長い場合には、ジェスチャー無しと判断し、ステップ102に移行してもよい。また、静電容量が、最初に第1のしきい値Ct1以上となった後に、別の所定の時間が経過しても第2のしきい値Ct2以上にならない場合には、ジェスチャー無しと判断し、ステップ102に移行してもよい。
 次に、ステップ106(S106)に示されるように、指200が近づく際の指200の位置の変化が、所定の方向であって所定の長さ以上であるか否かを判断する。具体的には、第1のしきい値Ct1以上となった位置P1と、その後に、第2のしきい値Ct2以上となった位置P2より、X方向における指200の移動方向Xa1と、位置P1と位置P2の長さL1を算出し、X方向における指200の移動方向Xa1が+X方向であって、長さL1が所定の長さ以上であるか否かを判断する。X方向における指200の移動方向Xa1が+X方向であって、かつ、長さL1が所定の長さ以上である場合には、ステップ110に移行し、長さL1が所定の長さ以上ではない場合には、ステップ102に移行する。本実施の形態においては、この所定の長さを第1の長さと記載する場合がある。
 次に、ステップ110(S110)に示されるように、検出される静電容量が、第1のしきい値Ct1以上となっている時間(検出時間ΔT)が、所定の時間以下であるか否かを判断する。具体的には、図9に示される場合では、測定された静電容量の値が、最初に第1のしきい値Ct1以上となった時刻T1と、最後に第1のしきい値Ct1となった時刻T9より、第1のしきい値Ct1以上となっている検出時間ΔTをΔT=T9-T1より算出し、この検出時間ΔTが所定の時間以下であるか否かを判断する。検出時間ΔTが所定の時間以下である場合には、ステップ112に移行し、検出時間ΔTが所定の時間以下ではない場合には、ステップ102に移行する。所定の時間は、例えば、500m秒であり、本実施の形態においては、この所定の時間を第1の時間と記載する場合がある。
 次に、ステップ112(S112)に示されるように、本実施の形態における操作入力装置に指200が近づく際のX方向の向きと指が離れる際のX方向の向きとが同じであるか否かを判断する。具体的には、最後に第1のしきい値Ct1以上となった位置P3と、その後に、最後に第2のしきい値Ct2以上となった位置P4より、X方向における指200の移動方向Xa2を得る。移動方向Xa1と移動方向Xa2とが同じ方向であって、ともに+X方向である場合には、ステップ114に移行する。移動方向Xa1と移動方向Xa2とが同じ方向ではない場合やともに+X方向では場合には、ステップ102に移行する。
 次に、ステップ114(S114)に示されるように、制御部135等において、指200による操作がジェスチャー操作であるものと認識される。これにより、本実施の形態における操作入力装置が内蔵されているドアハンドルが取り付けられているドアを開くことができる。
 以上の工程により、本実施の形態における操作入力装置を用いて操作入力をすることができる。尚、上記の説明では、便宜上、ステップ104において、静電容量をまとめて測定する場合について説明したが、これに限定されるものではない。例えば、静電容量が第2のしきい値Ct2以上となった後に、静電容量の測定を行いながら、ステップ106以降の工程を行うものであってもよい。
 (操作入力方法2)
 図8は、指200を+X方向に動かすとともに、本実施の形態における操作入力装置より離れるジェスチャー操作を検出する検出方法のフローチャートである。即ち、図5Bに示されるように、回路基板110の一方の端部110aから他方の端部110bに向かって指200を動かすとともに、回路基板110より離れるジェスチャー操作を検出するものである。この場合においても、図9に示されるように、検出される静電容量において、第1のしきい値Ct1と、第1のしきい値Ct1よりも大きい第2のしきい値Ct2とを設定して、指200によるジェスチャー操作を検出する。
 最初に、ステップ102(S102)に示されるように、本実施の形態における操作入力装置において、第1のしきい値Ct1以上の静電容量を検出したか否かが判断される。第1のしきい値Ct1以上の静電容量を検出した場合にはステップ104に移行し、第1のしきい値Ct1以上の静電容量が検出されない場合には、ステップ102を繰り返す。
 次に、ステップ104(S104)に示されるように、本実施の形態における操作入力装置において静電容量の測定を行いジェスチャー判別を行う。測定された静電容量の値は制御部135内に設けられた記憶部136に記憶してもよい。
 次に、ステップ108(S108)に示されるように、指200が離れる際の指200の位置の変化が、所定の方向であって所定の長さ以上であるか否かを判断する。具体的には、最後に第2のしきい値Ct2以上となった位置P3と、最後に第1のしきい値Ct1以上となった位置P4より、X方向における指200の移動方向Xa2と、位置P3と位置P4の長さL2を算出し、X方向における指200の移動方向Xa2が+X方向であって、長さL2が所定の長さ以上であるか否かを判断する。X方向における指200の移動方向Xa2が+X方向であって、かつ、長さL2が所定の長さ以上である場合には、ステップ110に移行し、長さL2が所定の長さ以上ではない場合には、ステップ102に移行する。本実施の形態においては、この所定の長さを第2の長さと記載する場合がある。
 次に、ステップ110(S110)に示されるように、検出される静電容量が、第1のしきい値Ct1以上となっている時間(検出時間ΔT)が、所定の時間以下であるか否かを判断する。検出時間ΔTが所定の時間以下である場合には、ステップ112に移行し、検出時間ΔTが所定の時間以下ではない場合には、ステップ102に移行する。
 次に、ステップ112(S112)に示されるように、本実施の形態における操作入力装置に指200が近づく際のX方向の向きと指が離れる際のX方向の向きとが同じであるか否かを判断する。移動方向Xa1と移動方向Xa2とが同じ方向であって、ともに+X方向である場合には、ステップ114に移行する。移動方向Xa1と移動方向Xa2とが同じ方向ではない場合や、ともに+X方向では場合には、ステップ102に移行する。
 次に、ステップ114(S114)に示されるように、制御部135等において、指200による操作がジェスチャー操作であるものと認識される。これにより、本実施の形態における操作入力装置が内蔵されているドアハンドルが取り付けられているドアを開くことができる。
 以上の工程により、本実施の形態における操作入力装置を用いて操作入力をすることができる。
 また、上記においては、ステップ106では距離である長さL1を基準に、ステップ108では距離である長さL2を基準に判断する場合について説明したが、上記の長さL1及びL2は時間の長さであってもよい。また、図7に示される操作入力方法1と、図8に示される操作入力方法2とを組み合わせたものであってもよい。具体的には、図7に示すフローチャートのステップ106とステップ110との間に、図8に示されるステップ108を加え得たものであってもよい。また、ステップ106、ステップ108においては、指200が動く方向によって、違う機能、例えば、ドアの開閉方向等を付加するものであってもよい。
 〔第2の実施の形態〕
 次に、第2の実施の形態について説明する。本実施の形態は、図2等に示されるドアハンドルに内蔵されている操作入力装置を用いた操作入力方法である。本実施の形態における操作入力方法について、図10及び図11に基づき説明する。図10は、指200を+X方向に動かすとともに、操作入力装置に近づくジェスチャー操作を検出する検出方法のフローチャートであり、図11は、指200を+X方向に動かすとともに、操作入力装置より離れるジェスチャー操作を検出する検出方法のフローチャートである。
 (操作入力方法3)
 図10は、図5Aに示されるように、回路基板110の一方の端部110aから他方の端部110bに向かって指200を動かすとともに、回路基板110に近づくジェスチャー操作を検出するものである。本実施の形態においても、図12に示されるように、検出される静電容量において、第1のしきい値Ct1と、第1のしきい値Ct1よりも大きい第2のしきい値Ct2とを設定して、指200によるジェスチャー操作を検出する。本実施の形態においても、最初に第1のしきい値Ct1が検出されたX方向の位置をP1、この後、第2のしきい値Ct2が検出されたX方向の位置をP2、最後に第2のしきい値Ct2が検出されたX方向の位置をP3、最後に第1のしきい値Ct1が検出されたX方向の位置をP4として説明する。尚、図12では、各々の時間において、各電極で検出される静電容量からなる分布のピークとなる電極の位置と静電容量の値を示している。
 最初に、ステップ202(S202)に示されるように、操作入力装置において、第1のしきい値Ct1以上の静電容量を検出したか否かが判断される。第1のしきい値Ct1以上の静電容量を検出した場合にはステップ204に移行し、第1のしきい値Ct1以上の静電容量が検出されない場合には、ステップ202を繰り返す。
 次に、ステップ204(S204)に示されるように、本実施の形態における操作入力装置において静電容量の測定を行いジェスチャー判別を行う。測定された静電容量の値は制御部135内に設けられた記憶部136に記憶してもよい。例えば、静電容量の測定は、1m秒毎に行う。尚、測定される静電容量の値が、最初に第1のしきい値Ct1以上となった後、その後に第1のしきい値Ct1未満となるまでの時間が、所定の時間よりも長い場合には、ジェスチャー無しと判断し、ステップ202に移行してもよい。また、静電容量が、最初に第1のしきい値Ct1以上となった後に、別の所定の時間が経過しても第2のしきい値Ct2以上にならない場合には、ジェスチャー無しと判断し、ステップ202に移行してもよい。
 次に、ステップ206(S206)に示されるように、指200が近づく際の指200の位置の変化が所定の方向であって、指200が近接している状態の長さLHに対す指200が近づく際の指200の位置の変化の長さL1の値が、所定の値以上であるか否かを判断する。具体的には、第1のしきい値Ct1以上となった位置P1と、その後に、第2のしきい値Ct2以上となった位置P2より、X方向における指200の移動方向Xa1と、位置P1と位置P2の長さL1を算出し、第2のしきい値Ct2が検出されたX方向の位置をP2、最後に第2のしきい値Ct2が検出されたX方向の位置をP3より、位置P2と位置P3の長さLHを算出し、X方向における指200の移動方向Xa1が+X方向であって、長さLHに対する長さL1の比率が所定の値以上であるか否かを判断する。X方向における指200の移動方向Xa1が+X方向であって、かつ、長さLHに対する長さL1の比率が所定の値以上である場合には、ステップ210に移行し、長さLHに対する長さL1の比率が所定の値以上ではない場合には、ステップ202に移行する。
 次に、ステップ210(S210)に示されるように、検出される静電容量が、第1のしきい値Ct1以上となっている時間(検出時間ΔT)が、所定の時間以下であるか否かを判断する。検出時間ΔTが所定の時間以下である場合には、ステップ212に移行し、検出時間ΔTが所定の時間以下ではない場合には、ステップ202に移行する。
 次に、ステップ212(S212)に示されるように、操作入力装置に指200が近づく際のX方向の向きと指が離れる際のX方向の向きとが同じであるか否かを判断する。移動方向Xa1と移動方向Xa2とが同じ方向であって、ともに+X方向である場合には、ステップ214に移行する。移動方向Xa1と移動方向Xa2とが同じ方向ではない場合やともに+X方向では場合には、ステップ202に移行する。
 次に、ステップ214(S214)に示されるように、制御部135等において、指200による操作がジェスチャー操作であるものと認識される。これにより、操作入力装置が内蔵されているドアハンドルが取り付けられているドアを開くことができる。
 以上の工程により、操作入力装置を用いて操作入力をすることができる。尚、上記においては、説明の便宜上、ステップ204において、静電容量の測定をまとめて行う場合について説明したが、これに限定されるものではない。例えば、静電容量が第2のしきい値Ct2以上となった場合には、静電容量の測定を行いながら、ステップ206以降の工程を行うものであってもよい。
 (操作入力方法4)
 図11は、図5Bに示されるように、回路基板110の一方の端部110aから他方の端部110bに向かって指200を動かすとともに、回路基板110より離れるジェスチャー操作を検出するものである。
 最初に、ステップ202(S202)に示されるように、操作入力装置において、第1のしきい値Ct1以上の静電容量を検出したか否かが判断される。第1のしきい値Ct1以上の静電容量を検出した場合にはステップ204に移行し、第1のしきい値Ct1以上の静電容量が検出されない場合には、ステップ202を繰り返す。
 次に、ステップ204(S204)に示されるように、本実施の形態における操作入力装置において静電容量の測定を行いジェスチャー判別を行う。測定された静電容量の値は制御部135内に設けられた記憶部136に記憶してもよい。
 次に、ステップ208(S208)に示されるように、指200が離れる際の指200の位置の変化が所定の方向であって、指200が近接している状態の長さLHに対する指200が離れる際の指200の位置の変化の長さL2の値が、所定の値以上であるか否かを判断する。具体的には、最後に第2のしきい値Ct2以上となった位置P3と、最後に第1のしきい値Ct1以上となった位置P4より、X方向における指200の移動方向Xa2と、位置P3と位置P4の長さL2を算出し、第2のしきい値Ct2が検出されたX方向の位置P2、最後に第2のしきい値Ct2が検出されたX方向の位置P3より、位置P2と位置P3の長さLHを算出し、X方向における指200の移動方向Xa2が+X方向であって、長さL2が所定の長さ以上であるか否かを判断する。X方向における指200の移動方向Xa2が+X方向であって、かつ、長さLHに対する長さL2の比率が所定の値以上であるか否かを判断する。X方向における指200の移動方向Xa2が+X方向であって、かつ、長さLHに対する長さL2の比率が所定の値以上である場合には、ステップ210に移行し、長さLHに対する長さL2の比率が所定の値以上ではない場合には、ステップ202に移行する。
 次に、ステップ210(S210)に示されるように、検出される静電容量が、第1のしきい値Ct1以上となっている時間(検出時間ΔT)が、所定の時間以下であるか否かを判断する。具体的には、図12に示される場合では、測定された静電容量の値が、最初に第1のしきい値Ct1以上となった時刻T1と、最後に第1のしきい値Ct1となった時刻T9より、第1のしきい値Ct1以上となっている検出時間ΔTをΔT=T9-T1より算出し、この検出時間ΔTが所定の時間以下であるか否かを判断する。検出時間ΔTが所定の時間以下である場合には、ステップ212に移行し、検出時間ΔTが所定の時間以下ではない場合には、ステップ202に移行する。所定の時間は、例えば、500m秒であり、本実施の形態においては、この所定の時間を第1の時間と記載する場合がある。
 次に、ステップ212(S212)に示されるように、操作入力装置に指200が近づく際のX方向の向きと指が離れる際のX方向の向きとが同じであるか否かを判断する。具体的には、最初に第1のしきい値Ct1以上となった位置P1と、その後に、第2のしきい値Ct2以上となった位置P2より、X方向における指200の移動方向Xa1を得る。また、最後に第1のしきい値Ct1以上となった位置P3と、その後に、最後に第2のしきい値Ct2以上となった位置P4より、X方向における指200の移動方向Xa2を得る。移動方向Xa1と移動方向Xa2とが同じ方向であって、ともに+X方向である場合には、ステップ214に移行する。移動方向Xa1と移動方向Xa2とが同じ方向ではない場合やともに+X方向では場合には、ステップ202に移行する。
 次に、ステップ214(S214)に示されるように、制御部135等において、指200による操作がジェスチャー操作であるものと認識される。これにより、操作入力装置が内蔵されているドアハンドルが取り付けられているドアを開くことができる。
 以上の工程により、操作入力装置を用いて操作入力をすることができる。本実施の形態は、図10に示される操作入力方法3と、図11に示される操作入力方法4とを組み合わせたものであってもよい。具体的には、図10に示すフローチャートのステップ206とステップ210との間に、図11に示されるステップ208を加え得たものであってもよい。
 尚、上記以外の内容については、第1の実施の形態と同様である。
 〔第3の実施の形態〕
 次に、第3の実施の形態について説明する。本実施の形態は、図2等に示されるドアハンドルに内蔵されている操作入力装置を用いた操作入力方法である。本実施の形態における操作入力方法について、図13に基づき説明する。図13は、指200を+X方向に動かすとともに、最初は操作入力装置に近づき、その後離れるジェスチャー操作を検出する検出方法のフローチャートである。
 (操作入力方法5)
 図13は、図4に示されるように、回路基板110の一方の端部110aから他方の端部110bに向かって指200を動かすとともに、最初は、回路基板110に近づき、その後離れるジェスチャー操作を検出するものである。本実施の形態においても、図14に示されるように、検出される静電容量において、第1のしきい値Ct1と、第1のしきい値Ct1よりも大きい第2のしきい値Ct2とを設定して、指200によるジェスチャー操作を検出する。本実施の形態においては、最初に第1のしきい値Ct1が検出されたX方向の位置をP1、この後、第2のしきい値Ct2が検出されたX方向の位置をP2、最後に第2のしきい値Ct2が検出されたX方向の位置をP3、最後に第1のしきい値Ct1が検出されたX方向の位置をP4として説明する。尚、図14では、各々の時間において、各電極で検出される静電容量からなる分布のピークとなる電極の位置と静電容量の値を示している。
 最初に、ステップ302(S302)に示されるように、操作入力装置において、第1のしきい値Ct1以上の静電容量を検出したか否かが判断される。第1のしきい値Ct1以上の静電容量を検出した場合にはステップ304に移行し、第1のしきい値Ct1以上の静電容量が検出されない場合には、ステップ302を繰り返す。
 次に、ステップ304(S304)に示されるように、本実施の形態における操作入力装置において静電容量の測定を行いジェスチャー判別を行う。測定された静電容量の値は制御部135内に設けられた記憶部136に記憶してもよい。例えば、静電容量の測定は、1m秒毎に行う。尚、測定される静電容量の値が、最初に第1のしきい値Ct1以上となった後、その後に第1のしきい値Ct1未満となるまでの時間が、所定の時間よりも長い場合には、ジェスチャー無しと判断し、ステップ302に移行してもよい。また、静電容量が、最初に第1のしきい値Ct1以上となった後に、別の所定の時間が経過しても第2のしきい値Ct2以上にならない場合には、ジェスチャー無しと判断し、ステップ302に移行してもよい。
 次に、ステップ306(S306)に示されるように、第2のしきい値Ct2以上となる長さLHに対する第1のしきい値Ct1以上となる長さLLの値が、所定の値以上であるか否かを判断する。具体的には、最初に第1のしきい値Ct1以上となった位置P1と、最後に第1のしきい値Ct1以上となった位置P4より、X方向における指200の移動した長さLLを算出し、最初に第2のしきい値Ct2以上となった位置P2と、最後に第2のしきい値Ct2以上となった位置P3より、X方向における指200の移動した長さLHを算出し、長さLHに対する長さLLの値が所定の値以上であるか否かを判断する。長さLHに対する長さLLの値が所定の値以上である場合には、ステップ308に移行し、長さLHに対する長さLLの値が所定の値以上ではない場合には、ステップ302に移行する。
 次に、ステップ308(S308)に示されるように、最初に第2のしきい値Ct2以上となった後、最後に第2のしきい値Ct2以上となるまでのX方向における指200の移動方向Xbと、最初に第1のしきい値Ct1以上となった後、最後に第1のしきい値Ct1以上となるまでのX方向における指200の移動方向Xaとが一致しているか否かが判断される。具体的には、最初に第1のしきい値Ct1以上となった位置P1と、最後に第1のしきい値Ct1以上となった位置P4より、X方向における指200の移動方向Xaを得て、最初に第2のしきい値Ct2以上となった位置P2と、最後に第2のしきい値Ct2以上となった位置P3より、X方向における指200の移動方向Xbを得て、X方向における指200の移動方向Xa及びXbが同じ方向であって、+X方向であるか否かが判断される。X方向における指200の移動方向Xa及びXbが同じ方向であって、+X方向である場合には、ステップ310に移行し、X方向における指200の移動方向Xa及びXbが同じ方向ではない、または、+X方向ではない場合には、ステップ302に移行する。
 次に、ステップ310(S310)に示されるように、検出される静電容量が、最初に第1のしきい値Ct1以上となった後、第2のしきい値Ct2以上となるまでの時間(検出時間ΔTa1)が所定の時間以下であって、最後に第2のしきい値Ct2以上となった後、第1のしきい値Ct1以上となるまでの時間(検出時間ΔTa2)が所定の時間以下であるか否かが判断される。具体的には、図14に示される場合では、測定された静電容量の値が、最初に第1のしきい値Ct1以上となった時刻T2と、その後最初に第2のしきい値Ct2以上となった時刻T4より、検出時間ΔTa1をΔTa1=T4-T2より算出し、測定された静電容量の値が、最後に第2のしきい値Ct2以上となった時刻T6と、最後に第1のしきい値Ct1以上となった時刻T8より、検出時間ΔTa2をΔTa2=T8-T6より算出し、検出時間ΔTa1が所定の時間以下であって、かつ、検出時間ΔTa2が所定の時間以下であるか否かを判断する。検出時間ΔTa1が所定の時間以下であって、かつ、検出時間ΔTa2が所定の時間以下である場合には、ステップ312に移行し、検出時間ΔTa1が所定の時間以下ではないか、または、検出時間ΔTa2が所定の時間以下ではない場合には、ステップ302に移行する。
 次に、ステップ312(S312)に示されるように、制御部135等において、指200による操作がジェスチャー操作であるものと認識される。これにより、操作入力装置が内蔵されているドアハンドルが取り付けられているドアを開くことができる。
 以上の工程により、操作入力装置を用いて操作入力をすることができる。尚、上記においては、説明の便宜上、ステップ304において、静電容量の測定をまとめて行う場合について説明したが、これに限定されるものではない。
 尚、上記以外の内容については、第1の実施の形態等と同様である。
 〔第4の実施の形態〕
 次に、第4の実施の形態について図15に基づき説明する。本実施の形態は、第1の実施の形態から第3の実施の形態を別の視点から捉えたものであり、内容的には一部重複している。尚、図15では、各々の時刻において、各電極で検出される静電容量からなる分布のピークとなる電極の位置と静電容量の値を示している。
 本実施の形態においては、検出される静電容量が、最初に第1のしきい値Ct1以上となった後、所定の時間ΔTs内に、検出される静電容量のピーク位置の移動する長さが所定の長さ以上移動した場合に、ジェスチャー操作がなされたものとの判断をしてもよい。具体的には、所定の時間ΔTs=T4-T1とした場合に、時刻T1における静電容量のピーク位置Ps1から時刻T4における静電容量のピーク位置Ps4とまでの距離ΔPsが所定の距離以上であるか否かにより判断してもよい。
 また、検出される静電容量が、最初に第1のしきい値Ct1以上となった後、所定の時間ΔTs内に、検出される静電容量のピークの値が、第2のしきい値Ct2以上となった場合に、ジェスチャー操作がなされたものとの判断をしてもよい。具体的には、所定の時間ΔTs=T4-T1とした場合に、時刻T4における静電容量のピークの値が、第2のしきい値Ct2以上であるか否かにより判断してもよい。
 また、所定の時間ΔTs内に、検出される静電容量のピークや重心座標が、所定の方向、例えば、+X方向に連続して移動し続けた場合に、ジェスチャー操作がなされたものとの判断をしてもよい。具体的には、時刻T1における静電容量のピーク位置Ps1から、時刻T2における静電容量のピーク位置Ps2、時刻T3における静電容量のピーク位置Ps3、時刻T4における静電容量のピーク位置Ps4まで、連続して+X方向に移動したか否かにより判断してもよい。
 また、所定の時間ΔTs内に、検出される静電容量が、連続して増加し続けた場合、または、連続して減少し続けた場合に、ジェスチャー操作がなされたものとの判断をしてもよい。具体的には、時刻T1における静電容量のピークの値、時刻T2における静電容量のピークの値、時刻T3における静電容量のピークの値、時刻T4における静電容量のピークの値が、連続して増加し続けたか否かにより判断してもよい。同様に、所定の時間ΔTs=T9-T6とした場合には、時刻T6における静電容量のピークの値、時刻T7における静電容量のピークの値、時刻T8における静電容量のピークの値、時刻T9における静電容量のピークの値が、連続して減少し続けたか否かにより判断してもよい。
 また、最初に第1のしきい値Ct1以上となった後、他の所定の時間ΔTp1内に、静電容量の値が第1のしきい値Ct1未満となった場合には、ジェスチャー操作がなされたものとの判断をしてもよい。具体的には、所定の時間ΔTp1=T10-T1とした場合に、時刻T10における静電容量の値が、第1のしきい値Ct1以下となったか否かにより判断してもよい。また、最初に第2のしきい値Ct2以上となった後、所定の時間ΔTp2内に、静電容量の値が第1のしきい値Ct1未満となった場合には、ジェスチャー操作がなされたものとの判断をしてもよい。具体的には、所定の時間ΔTp2=T10-T3とした場合に、時刻T10における静電容量の値が、第1のしきい値Ct1未満となったか否かにより判断してもよい。尚、ノイズの少ない測定環境の良いところでは、ステップ106、ステップ108に相当する条件だけで判別してもよい。
 本実施の形態においては、上記の要件のうち複数の要件が満たされた場合に、ジェスチャー操作がなされたものと判断してもよい。また、上記の要件のうちすべての要件が満たされた場合に、ジェスチャー操作がなされたものと判断してもよく、この場合には、ジェスチャー操作がなされたものとの判断が厳しくすることができる。
 以上、実施の形態について詳述したが、特定の実施形態に限定されるものではなく、特許請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 尚、本国際出願は、2017年9月29日に出願した日本国特許出願第2017-191202号に基づく優先権を主張するものであり、その出願の全内容は本国際出願に援用する。
10    ドア
100   ドアハンドル
110   回路基板
110a  一方の端部
110b  他方の端部
120a、120b、120c、120d、120e、120f、120g、120h、120i、120j   検出電極
130   集積回路
131   スイッチ
132   アンプ
133   ADC
134   演算部
135   制御部
136   記憶部
200   指

Claims (10)

  1.  絶縁体により形成された基板と、
     前記基板の表面に設けられた複数の検出電極と、
     制御部と、
     を有し、
     前記制御部は、前記基板に操作体を近づけた際に、各々の前記検出電極と前記操作体との間に生じる静電容量を検出し、
     検出された前記検出電極と前記操作体との間に生じる静電容量が、第1のしきい値以上となる時間、または、前記第1のしきい値以上となる間に前記操作体が移動した長さに基づき前記操作体によるジェスチャー操作がなされたか否かを判断することを特徴とする操作入力装置。
  2.  検出された前記検出電極と前記操作体との間に生じる静電容量が、前記第1のしきい値よりも大きな第2のしきい値以上となる時間、または、前記第2のしきい値以上となる間に前記操作体が移動した長さに基づき前記操作体によるジェスチャー操作がなされたか否かを判断することを特徴とする請求項1に記載の操作入力装置。
  3.  絶縁体により形成された基板と、
     前記基板の表面に設けられた複数の検出電極と、
     制御部と、
     を有し、
     前記制御部は、前記基板に操作体を近づけた際に、各々の前記検出電極と前記操作体との間に生じる静電容量を検出し、
     前記静電容量のしきい値となる第1のしきい値と、前記第1のしきい値よりも大きな第2のしきい値が設けられており、
     前記静電容量が、前記第1のしきい値以上となった後、前記第2のしきい値以上となるまでの時間、または、前記静電容量が、前記第1のしきい値以上となった後、前記第2のしきい値以上となるまでの間に前記操作体が移動した長さが、所定の値以上である場合に、前記操作体によるジェスチャー操作がなされたものと判断することを特徴とする操作入力装置。
  4.  絶縁体により形成された基板と、
     前記基板の表面に設けられた複数の検出電極と、
     制御部と、
     を有し、
     前記制御部は、前記基板に操作体を近づけた際に、各々の前記検出電極と前記操作体との間に生じる静電容量を検出し、
     前記静電容量のしきい値となる第1のしきい値と、前記第1のしきい値よりも大きな第2のしきい値が設けられており、
     前記静電容量が、最後に前記第2のしきい値以上となった後、最後に前記第1のしきい値以上となるまでの時間、または、最後に前記第2のしきい値以上となった後、最後に前記第1のしきい値以上となるまでの間に前記操作体が移動した長さが、所定の値以上である場合に、前記操作体によるジェスチャー操作がなされたものと判断することを特徴とする操作入力装置。
  5.  絶縁体により形成された基板と、
     前記基板の表面に設けられた複数の検出電極と、
     制御部と、
     を有し、
     前記制御部は、前記基板に操作体を近づけた際に、各々の前記検出電極と前記操作体との間に生じる静電容量を検出し、
     前記静電容量のしきい値となる第1のしきい値と、前記第1のしきい値よりも大きな第2のしきい値が設けられており、
     前記静電容量が、前記第1のしきい値以上となった後、前記第2のしきい値以上となり、更に、前記第1のしきい値以上前記第2のしきい値未満となった場合に、前記操作体によるジェスチャー操作がなされたものと判断することを特徴とする操作入力装置。
  6.  前記静電容量が、最初に前記第2のしきい値以上となった後、最後に前記第2のしきい値以上となるまでの時間が、所定の時間よりも短い場合に、前記操作体によるジェスチャー操作がなされたものと判断することを特徴とする請求項2から5のいずれかに記載の操作入力装置。
  7.  複数の前記検出電極により検出された静電容量に基づく前記操作体の移動方向が、前記静電容量が、前記第1のしきい値以上となる範囲において、同じ方向である場合に、前記操作体によるジェスチャー操作がなされたものと判断することを特徴とする請求項1から6のいずれかに記載の操作入力装置。
  8.  複数の前記検出電極は、前記基板の長手方向に沿って配列されていることを特徴とする請求項1から7のいずれかに記載の操作入力装置。
  9.  請求項1から8のいずれかに記載の操作入力装置を有するドアハンドル。
  10.  前記操作体によるジェスチャー操作に基づき前記ドアハンドルが制御されるものであることを特徴とする請求項9に記載のドアハンドル。
PCT/JP2018/027649 2017-09-29 2018-07-24 操作入力装置及びドアハンドル WO2019064859A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019544335A JP6876815B2 (ja) 2017-09-29 2018-07-24 操作入力装置及びドアハンドル
EP18861602.3A EP3690912B1 (en) 2017-09-29 2018-07-24 Operation input device and door handle
US16/789,770 US11365571B2 (en) 2017-09-29 2020-02-13 Operation input device and door handle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017191202 2017-09-29
JP2017-191202 2017-09-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/789,770 Continuation US11365571B2 (en) 2017-09-29 2020-02-13 Operation input device and door handle

Publications (1)

Publication Number Publication Date
WO2019064859A1 true WO2019064859A1 (ja) 2019-04-04

Family

ID=65902819

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/027649 WO2019064859A1 (ja) 2017-09-29 2018-07-24 操作入力装置及びドアハンドル

Country Status (4)

Country Link
US (1) US11365571B2 (ja)
EP (1) EP3690912B1 (ja)
JP (1) JP6876815B2 (ja)
WO (1) WO2019064859A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025205A (ja) * 2019-07-31 2021-02-22 アイシン精機株式会社 車両用操作検出装置
WO2022196098A1 (ja) * 2021-03-16 2022-09-22 アルプスアルパイン株式会社 操作入力装置
JP7394042B2 (ja) 2020-10-07 2023-12-07 株式会社アイシン 車両用操作検出装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308148A (ja) 1997-05-07 1998-11-17 Honda Lock Mfg Co Ltd 人体接近弁別回路
JP2008004465A (ja) * 2006-06-26 2008-01-10 Fujikura Ltd 静電容量式スイッチ
JP2009079353A (ja) 2007-09-25 2009-04-16 Aisin Seiki Co Ltd 車両用ドア開閉制御装置
JP2010235035A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 静電容量式入力装置および車載機器制御装置
WO2015104752A1 (ja) * 2014-01-08 2015-07-16 株式会社デンソー 静電容量式操作装置
JP2015133206A (ja) * 2014-01-10 2015-07-23 三菱電機株式会社 タッチスイッチ装置、及び、タッチスイッチ装置に用いられる接触有無の判別方法
JP2017147084A (ja) * 2016-02-16 2017-08-24 富士通テン株式会社 スイッチ装置
JP2017191202A (ja) 2016-04-13 2017-10-19 スタンレー電気株式会社 光学素子および光学素子の製造方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8179380B2 (en) * 2008-12-19 2012-05-15 Silicon Laboratories Inc. Method and apparatus for implementing a capacitive touch slider
DE102012100960A1 (de) * 2012-02-06 2013-08-08 Huf Hülsbeck & Fürst Gmbh & Co. Kg Verfahren zum Betrieb einer kapazitiven Sensoranordnung an einem Kraftfahrzeug und zugehörige Einrichtung
US9979389B2 (en) * 2012-07-13 2018-05-22 Semtech Corporation Capacitive body proximity sensor system
DE112014002441B4 (de) * 2013-05-15 2023-08-10 Magna Closures Inc. Verfahren und System zum Betätigen einer Verschlussklappe eines Fahrzeugs
US9569054B2 (en) * 2013-08-19 2017-02-14 Touchsensor Technologies, Llc Capacitive sensor filtering apparatus, method, and system
JP2016100662A (ja) * 2014-11-19 2016-05-30 アイシン精機株式会社 車両用操作検出装置
GB2536475B (en) * 2015-03-18 2018-02-14 Jaguar Land Rover Ltd Reducing erroneous detection of input command gestures
US9818246B2 (en) * 2015-07-29 2017-11-14 Ford Global Technologies, Llc System and method for gesture-based control of a vehicle door
TW201727617A (zh) * 2016-01-27 2017-08-01 Panasonic Ip Man Co Ltd 開關
JP7081089B2 (ja) * 2017-07-06 2022-06-07 株式会社アイシン 車両ドア開閉装置、静電センサ

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10308148A (ja) 1997-05-07 1998-11-17 Honda Lock Mfg Co Ltd 人体接近弁別回路
JP2008004465A (ja) * 2006-06-26 2008-01-10 Fujikura Ltd 静電容量式スイッチ
JP2009079353A (ja) 2007-09-25 2009-04-16 Aisin Seiki Co Ltd 車両用ドア開閉制御装置
JP2010235035A (ja) * 2009-03-31 2010-10-21 Fujikura Ltd 静電容量式入力装置および車載機器制御装置
WO2015104752A1 (ja) * 2014-01-08 2015-07-16 株式会社デンソー 静電容量式操作装置
JP2015133206A (ja) * 2014-01-10 2015-07-23 三菱電機株式会社 タッチスイッチ装置、及び、タッチスイッチ装置に用いられる接触有無の判別方法
JP2017147084A (ja) * 2016-02-16 2017-08-24 富士通テン株式会社 スイッチ装置
JP2017191202A (ja) 2016-04-13 2017-10-19 スタンレー電気株式会社 光学素子および光学素子の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690912A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021025205A (ja) * 2019-07-31 2021-02-22 アイシン精機株式会社 車両用操作検出装置
JP7019635B2 (ja) 2019-07-31 2022-02-15 株式会社アイシン 車両用操作検出装置
JP7394042B2 (ja) 2020-10-07 2023-12-07 株式会社アイシン 車両用操作検出装置
WO2022196098A1 (ja) * 2021-03-16 2022-09-22 アルプスアルパイン株式会社 操作入力装置
JP7382535B2 (ja) 2021-03-16 2023-11-16 アルプスアルパイン株式会社 操作入力装置
DE112022001495T5 (de) 2021-03-16 2024-01-25 Alps Alpine Co., Ltd. Bedieneingabeeinrichtung

Also Published As

Publication number Publication date
US20200181953A1 (en) 2020-06-11
EP3690912B1 (en) 2023-01-11
JP6876815B2 (ja) 2021-05-26
EP3690912A4 (en) 2021-06-09
US11365571B2 (en) 2022-06-21
JPWO2019064859A1 (ja) 2020-07-09
EP3690912A1 (en) 2020-08-05

Similar Documents

Publication Publication Date Title
WO2019064859A1 (ja) 操作入力装置及びドアハンドル
KR100601152B1 (ko) 전하 공유를 이용한 터치 센싱 장치 및 방법
US20060279551A1 (en) Method for object detection on a capacitive touchpad
JP2016098496A (ja) 車両用開閉体の操作検出装置
JP5157360B2 (ja) ステアリングスイッチシステム
JP5659254B2 (ja) 入力操作受付装置、および閾値調整方法
US20210362602A1 (en) Control system for a vehicle
CN102147688B (zh) 提升电容式触摸屏输入准确度的系统及方法
CN104076962A (zh) 一种触摸输入装置的状态控制方法及装置
WO2019181238A1 (ja) ドアハンドル
JP2010236316A (ja) 挟み込み防止装置
JP7402750B2 (ja) 静電センサ、制御装置、およびコンピュータプログラム
JP4732489B2 (ja) 静電容量式タッチパネルの物品検出方法
JP5914419B2 (ja) 入力装置、電子機器
JP4695451B2 (ja) 静電容量式タッチパネルの物品検出方法
JP7149413B2 (ja) 静電容量検出センサ
JP2021146842A (ja) 検出装置
JP2022002169A (ja) 静電センサ、制御装置、およびコンピュータプログラム
WO2019181237A1 (ja) ドアハンドル
JP2018005289A (ja) 入力装置及び入力検出方法並びに車載機器
CN108964649B (zh) 静电电容开关单元
CN104375724A (zh) 移动终端及其触控操作方法
JP7402749B2 (ja) 静電センサ、制御装置、およびコンピュータプログラム
JP6028604B2 (ja) タッチセンサ
WO2022196098A1 (ja) 操作入力装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861602

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019544335

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018861602

Country of ref document: EP

Effective date: 20200429