WO2019062880A1 - 混合动力汽车及其发电控制方法和装置 - Google Patents

混合动力汽车及其发电控制方法和装置 Download PDF

Info

Publication number
WO2019062880A1
WO2019062880A1 PCT/CN2018/108538 CN2018108538W WO2019062880A1 WO 2019062880 A1 WO2019062880 A1 WO 2019062880A1 CN 2018108538 W CN2018108538 W CN 2018108538W WO 2019062880 A1 WO2019062880 A1 WO 2019062880A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
motor
engine
hybrid vehicle
Prior art date
Application number
PCT/CN2018/108538
Other languages
English (en)
French (fr)
Inventor
王春生
许伯良
熊伟
罗永官
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019062880A1 publication Critical patent/WO2019062880A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/24Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/26Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the motors or the generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K6/00Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00
    • B60K6/20Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs
    • B60K6/22Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs
    • B60K6/28Arrangement or mounting of plural diverse prime-movers for mutual or common propulsion, e.g. hybrid propulsion systems comprising electric motors and internal combustion engines ; Control systems therefor, i.e. systems controlling two or more prime movers, or controlling one of these prime movers and any of the transmission, drive or drive units Informative references: mechanical gearings with secondary electric drive F16H3/72; arrangements for handling mechanical energy structurally associated with the dynamo-electric machine H02K7/00; machines comprising structurally interrelated motor and generator parts H02K51/00; dynamo-electric machines not otherwise provided for in H02K see H02K99/00 the prime-movers consisting of electric motors and internal combustion engines, e.g. HEVs characterised by apparatus, components or means specially adapted for HEVs characterised by the electric energy storing means, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/06Combustion engines, Gas turbines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/08Electric propulsion units
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/80Technologies aiming to reduce greenhouse gasses emissions common to all road transportation technologies
    • Y02T10/92Energy efficient charging or discharging systems for batteries, ultracapacitors, supercapacitors or double-layer capacitors specially adapted for vehicles

Definitions

  • the present disclosure relates to the field of hybrid electric vehicles, and in particular, to a power generation control method for a hybrid vehicle, a power generation controller for a hybrid vehicle, and a hybrid vehicle.
  • Hybrid vehicles are one of the new energy vehicles that are driven by engines and/or motors.
  • the front motor of the hybrid vehicle functions as a generator while acting as a drive motor, and the structure is complicated and the noise and vibration are large at the time of power generation, resulting in poor ride comfort.
  • the drive motor participates in the whole vehicle drive, the power generation efficiency and the vehicle power are hard to reach a better state during power generation, and the vehicle energy consumption will also increase relatively.
  • an object of the present disclosure is to provide a power generation control method for a hybrid vehicle, which can reduce power generation noise and vibration of the hybrid vehicle, improve vehicle ride comfort, and can improve power generation efficiency and reduce vehicle energy consumption.
  • a second object of the present disclosure is to provide a power generation controller for a hybrid vehicle.
  • a third object of the present disclosure is to propose a hybrid vehicle.
  • a first aspect of the present disclosure provides a power generation control method for a hybrid vehicle, wherein the hybrid vehicle includes an engine, a power motor, a power battery, a DC-DC converter, and the engine a coupled secondary motor that outputs power to a wheel of the hybrid vehicle through a clutch for outputting a driving force to a wheel of the hybrid vehicle, the power battery for supplying the power Powering the motor, the secondary motor is respectively connected to the power motor, the DC-DC converter and the power battery, and the secondary motor generates power under the driving of the engine, and the power generation control method comprises the following steps Obtaining a current power of the power battery, acquiring a current gear of the hybrid vehicle, and acquiring a current vehicle speed of the hybrid vehicle; controlling according to the current power, the current gear, and the current vehicle speed The secondary motor enters a corresponding power generation mode, wherein a power generation mode of the secondary motor includes an in-situ power generation mode, and an original Throttle power generation mode, power generation mode and the
  • the power of the power battery, the gear position of the hybrid vehicle, and the vehicle speed are obtained, and the sub motor is controlled according to the power of the power battery, the gear position of the hybrid vehicle, and the vehicle speed.
  • the sub motor is controlled according to the power of the power battery, the gear position of the hybrid vehicle, and the vehicle speed.
  • the ground generation mode, the in-situ throttle operation mode, the series power generation mode, or the hybrid power generation mode power generation by the sub-motor can reduce power generation noise and vibration, improve vehicle ride comfort, and can pass a relatively simple structure.
  • the series power generation is realized, and the hybrid power generation can be realized without affecting the driving motor, thereby improving the power generation efficiency and reducing the energy consumption of the entire vehicle.
  • a second aspect of the present disclosure provides a power generation controller for a hybrid vehicle, wherein the hybrid vehicle includes an engine, a power motor, a power battery, a DC-DC converter, and the engine a coupled secondary motor that outputs power to a wheel of the hybrid vehicle through a clutch for outputting a driving force to a wheel of the hybrid vehicle, the power battery for supplying the power Powering the motor, the secondary motor is respectively connected to the power motor, the DC-DC converter and the power battery, and the secondary motor generates power under the driving of the engine, the power controller and the power generation controller a secondary motor is connected, the power generation controller is configured to: acquire a current power of the power battery; acquire a current gear of the hybrid vehicle; acquire a current vehicle speed of the hybrid vehicle; and according to the current power, the current The gear and the current vehicle speed control the secondary motor to enter a corresponding power generation mode, wherein the power generation mode of the secondary motor includes an in-situ Power generation mode, in-situ throttle operation mode
  • the auxiliary motor can be controlled according to the power of the power battery, the gear position of the hybrid vehicle, and the vehicle speed.
  • In-situ power generation mode, in-situ throttle operation mode, series power generation mode, or hybrid power generation mode, power generation by the sub-motor can reduce power generation noise and vibration, improve vehicle ride comfort, and can be simpler.
  • the structure realizes series power generation, and can realize hybrid power generation without affecting the driving motor, thereby improving power generation efficiency and reducing vehicle energy consumption.
  • a three-side embodiment of the present disclosure proposes a hybrid vehicle including a power generation controller of a hybrid vehicle proposed by the second aspect of the present disclosure.
  • power generation noise and vibration can be reduced, vehicle smoothness can be improved, power generation efficiency can be improved, and vehicle energy consumption can be reduced.
  • FIG. 1 is a schematic structural view of a hybrid vehicle according to an embodiment of the present disclosure
  • FIG. 2 is a flowchart of a power generation control method of a hybrid vehicle according to an embodiment of the present disclosure
  • FIG. 3 is a flow chart of a control method of an in-situ power generation mode according to an embodiment of the present disclosure
  • FIG. 4 is a flow chart of a control method for a stepping-in throttle power generation mode according to an embodiment of the present disclosure
  • FIG. 5 is a flow chart of a control method of a series power generation mode according to an embodiment of the present disclosure
  • FIG. 6 is a flow chart of a control method of a hybrid power generation mode according to an embodiment of the present disclosure
  • FIG. 7 is a flow chart of a control method of a power generation mode according to an embodiment of the present disclosure.
  • FIG. 8 is a flow chart of a control method for performing an anti-trail start according to an embodiment of the present disclosure
  • FIG. 9 is a schematic structural view of a hybrid vehicle according to an embodiment of the present disclosure.
  • FIG. 10 is a block schematic diagram of a hybrid vehicle in accordance with an embodiment of the present disclosure.
  • the hybrid vehicle includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, and a sub motor 5 connected to the engine, and the engine 1 passes through the clutch 6.
  • the power is output to the wheel of the hybrid vehicle
  • the power motor 2 is used to output the driving force to the wheel of the hybrid vehicle
  • the power battery 3 is used to supply power to the power motor
  • the auxiliary motor 5 is respectively connected with the power motor, the DC-DC converter and the power battery.
  • the sub motor 5 generates electric power by the engine, and electric energy generated by the sub motor 5 can be supplied to at least one of the power battery 3, the power motor 2, and the DC-DC converter 4.
  • the power motor 2 and the sub-motor 5 respectively serve as a drive motor and a generator, and the sub-motor 5 has a high power generation and power generation efficiency at a low speed, thereby meeting the power demand of the low-speed travel, and maintaining the low speed of the whole vehicle.
  • the electric balance maintains the low speed smoothness of the whole vehicle and improves the dynamic performance of the whole vehicle.
  • the secondary motor 5 may be a BSG (Belt-driven Starter Generator) motor.
  • the sub-motor 5 belongs to a high-voltage motor.
  • the power generation voltage of the sub-motor 5 is equivalent to the voltage of the power battery 3, so that the electric energy generated by the sub-motor 5 can directly charge the power battery 3 without voltage conversion, and can also directly Power motor 2 and/or DC-DC converter 4 are powered.
  • the sub-motor 5 is also a high-efficiency generator. For example, when the sub-motor 5 is driven by the engine 1 at an idle speed, the power generation efficiency of 97% or more can be achieved.
  • the DC-DC converter 4 is also connected to a low voltage load 7 and a low voltage battery 8 in a hybrid vehicle, respectively, to supply a low voltage load 7 and a low voltage battery 8, and the low voltage battery 8 is also connected to the low voltage load 7.
  • FIG. 2 is a flow chart of a power generation control method of a hybrid vehicle according to an embodiment of the present disclosure.
  • a power generation control method for a hybrid vehicle includes the following steps:
  • the SOC (State of Charge) value of the power battery can be obtained by the battery management system, and the current gear of the hybrid vehicle is obtained by the gearbox control unit. And obtaining the current speed of the hybrid vehicle through the vehicle speed sensor.
  • the secondary motor controlling the secondary motor to enter a corresponding power generation mode according to the current power, the current gear, and the current vehicle speed, wherein the power generation mode of the secondary motor includes an in-situ power generation mode, an in-situ throttle power generation mode, a series power generation mode, and a hybrid power generation mode.
  • the secondary motor when the current power of the power battery is less than the first power and the current gear is the P range (parking), the secondary motor is controlled to enter the in-situ power generation mode.
  • the accelerator pedal of the hybrid vehicle in the in-situ power generation mode, the accelerator pedal of the hybrid vehicle is not depressed, the power motor does not output the driving force, the clutch is disengaged to disconnect the power output from the engine to the wheel, and the engine drives the sub-motor to operate to generate electricity.
  • the first electric quantity is lower than the balance point of the charging and discharging of the power battery, and when the current electric quantity of the power battery is less than the first electric quantity, even if the electric power is generated by controlling the sub motor during the running, the power battery is charged, in a short time It is difficult to make the power consumption of the power battery satisfy the power demand of the power motor when the hybrid vehicle is running, and thus the power motor cannot output the driving force according to the entire vehicle demand.
  • the engine When the hybrid vehicle is engaged in the P range, neither the power motor nor the engine outputs the driving force to the wheel, and the speed of the hybrid vehicle is generally zero. At this time, the engine outputs power to the sub-motor, and the sub-motor negative torque is operated to function as a generator, so that the power battery can be charged.
  • the secondary motor can be controlled to stop generating power.
  • the fifth power is greater than the balance point of the power battery charging and discharging.
  • the power battery can provide sufficient power for the power motor to separately drive the wheel.
  • the engine When the hybrid vehicle is running, the engine can drive the auxiliary motor to generate or not according to the real-time power of the power battery.
  • the secondary motor generates electricity, and the clutches may not be combined, that is, the engine may not directly output power to the wheels.
  • the control sub-motor when the current power of the power battery is less than the second power and the current gear is in the P range, the control sub-motor enters the in-situ throttle power generation mode.
  • the accelerator pedal of the hybrid vehicle is depressed, the power motor does not output the driving force, the clutch is disengaged to disconnect the power output from the engine to the wheel, and the engine drives the sub-motor to operate.
  • the second electric quantity is larger than the first electric quantity, and the power generation power can be increased and the charging of the power battery can be accelerated by depressing the accelerator pedal compared with the above-described in-situ power generation mode.
  • the secondary motor can be controlled to stop generating power, wherein the sixth power is greater than the second power.
  • the control sub-motor when the current power of the power battery is less than the third power, the current gear is non-P gear, and the current vehicle speed is less than the first vehicle speed, the control sub-motor enters the series power generation mode. Wherein, in the series power generation mode, the power motor outputs the driving force, the clutch is disengaged to disconnect the power output from the engine to the wheel, and the engine drives the sub motor to operate to generate electricity.
  • the third power is equal to the first power.
  • the hybrid car can be in a running state, for example, it can be D gear (forward gear), R gear (reverse gear) or N gear (neutral gear).
  • the vehicle speed is less than the first vehicle speed, it is not necessary to control the engine to output power to the wheel.
  • the power battery cannot provide sufficient power for the power motor to separately drive the wheels.
  • the engine can output power to the sub-motor, so that the sub-motor negative torque operates to function as a generator, thereby charging the power battery, so that the power battery provides sufficient power for the power motor to separately drive the wheels, and the engine does not Directly output power to the wheels.
  • the secondary motor can be controlled to stop generating power, wherein the seventh power is greater than the third power.
  • the engine can be controlled to output power to the wheels. Therefore, when the current power of the power battery is greater than the seventh power, or the vehicle speed of the hybrid vehicle is greater than the second vehicle speed, the series power generation mode may be exited, wherein the second vehicle speed is greater than the first vehicle speed.
  • the control sub-motor when the current power of the power battery is less than the fourth power, the current gear is non-P gear, and the current vehicle speed is greater than the second vehicle speed, the control sub-motor enters the hybrid power generation mode.
  • the accelerator pedal of the hybrid vehicle is depressed, the clutch is combined to output the power of the engine to the wheel to drive the hybrid vehicle, and the engine drives the secondary motor to operate to generate electricity.
  • the fourth power is greater than the first power and less than the second power.
  • the engine can be controlled to output power to the wheels.
  • both the power motor and the engine directly output the driving force to the wheel and participate in the driving of the whole vehicle. Since the front battery of the power battery is less than the fourth power, the power battery cannot provide sufficient power for the driving output force of the power motor. Therefore, the engine can be controlled to output power to the sub-motor while the power is output to the sub-motor, so that the sub-motor negative torque operates to function as a generator, thereby charging the power battery.
  • the secondary motor can be controlled to stop generating power, wherein the eighth power is greater than the fourth power.
  • the series power generation mode can be directly switched to the hybrid power generation mode.
  • the settings of the sixth power, the seventh power, and the eighth power are similar to the fifth power, and are all set to meet the operational requirements of the hybrid vehicle.
  • the size of the first to eighth electric quantities depends on the specifications and performance of the power battery, the drive motor, etc., and is inconvenient to set as a specific value.
  • the control sub-motor determines whether the power battery has failed, and if the power battery fails, the control sub-motor enters the power generation mode.
  • the engine drives the sub-motor to generate electricity, and performs voltage regulation control to supply power for the low-voltage load and the high-voltage load of the hybrid vehicle.
  • a voltage stabilizing circuit can be connected at the output end of the sub motor to regulate the output of the sub motor.
  • the DC-DC converter can convert the high voltage direct current output from the power battery and/or the high voltage direct current output from the secondary motor into low voltage direct current and output the low voltage direct current to the low voltage load.
  • the low voltage load may include, but is not limited to, a lamp, a radio, and the like.
  • the DC-DC converter can also be coupled to a low voltage battery to charge the low voltage battery.
  • the sub-motor can generate electricity to supply the low-voltage load and/or charge the low-voltage battery, thereby ensuring the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can realize pure fuel. Drive in mode to meet driving needs.
  • the high-voltage direct current output from the secondary motor can also directly supply power to the high-voltage load, thereby ensuring high-voltage power consumption of the entire vehicle in the event of a failure of the power battery.
  • the high-voltage load may include, but is not limited to, a car air conditioner or the like, and the comfort of the hybrid vehicle is ensured by supplying power to the vehicle-mounted air conditioner.
  • the auxiliary motor when the auxiliary motor is in the local power generation mode, the in-situ throttle power generation mode, and the series connection
  • the power generation mode and the hybrid power generation mode not only the power battery can be charged, but also the low voltage battery can be charged, and the low voltage load and the high voltage load can be supplied.
  • the secondary motor power can be used to charge the low voltage battery, supply the low voltage load and the high voltage load, and not to charge the power battery due to the failure of the power battery.
  • the low voltage may refer to a voltage of 12V or 24V, that is, the output voltage of the low voltage battery is 12V
  • the rated voltage of the low voltage load is 12V
  • the high voltage may refer to the voltage of 600V, that is, the high voltage load.
  • the rated voltage is 600V.
  • the secondary motor can also be used to effect activation of the engine. Specifically, it can be determined whether the engine has a starting demand, and if the engine has a starting demand, the secondary motor is controlled to perform an anti-towing start of the engine.
  • the secondary motor can be operated with positive torque to function as a motor, thereby driving the crankshaft of the engine to rotate the piston of the engine to the ignition position, thereby realizing the starting of the engine, whereby the secondary motor can realize the function of the starting machine in the related art.
  • the power generation control method of the hybrid vehicle obtains the power of the power battery, the gear position and the vehicle speed of the hybrid vehicle, and according to the power of the power battery, the gear position and the vehicle speed of the hybrid vehicle.
  • the sub-motor By controlling the sub-motor to enter the in-situ power generation mode, the in-situ throttle operation mode, the series power generation mode, or the hybrid power generation mode, power generation by the sub-motor can reduce power generation noise and vibration, improve vehicle ride comfort, and
  • the series power generation is realized by a relatively simple structure, and the hybrid power generation can be realized without affecting the driving motor, thereby improving the power generation efficiency and reducing the energy consumption of the entire vehicle.
  • controlling the sub-motor to enter the in-situ power generation mode may include:
  • the conditions for in-situ power generation may include, but are not limited to, (1) power-on electronic control systems such as vehicle controllers and engine management systems; (2) the currently selected mode of the vehicle is a hybrid mode, ie, an engine and a power motor. All should participate in the vehicle drive; (3) the current gear is the P gear; (4) the SOC of the power battery is in the preset range, the SOC ⁇ A is satisfied, the SOC ⁇ B is not satisfied, A, B are preset (5) BSG motor power generation function is normal; (6) power battery charging function is normal; (7) vehicle speed is less than the preset vehicle speed, specifically zero vehicle speed.
  • step S102 If the condition for performing the in-situ power generation is satisfied, step S102 is performed; otherwise, step S105 is performed.
  • S102 The vehicle controller issues a BSG motor power generation start command and simultaneously gives a target speed and a target torque of the BSG motor.
  • step S104 is performed; if no, step S105 is performed.
  • controlling the sub-motor to enter the in-situ throttle power generation mode may include:
  • the conditions for performing the in-situ throttle operation may include, but are not limited to, (1) powering up the electronic control system of the vehicle controller, the engine management system, etc.; (2) the mode currently selected by the vehicle is the hybrid mode, ie, the engine And the power motor must participate in the whole vehicle drive; (3) the current gear is the P gear; (4) the SOC of the power battery is in the preset range, the SOC ⁇ E is satisfied, the SOC ⁇ F is not satisfied, E, F are Preset value; (5) BSG motor power generation function is normal; (6) Power battery charging function is normal; (7) Vehicle speed is less than preset vehicle speed, specifically zero vehicle speed; (8) Throttle function is normal; (9) Brake function normal.
  • step S202 If the condition for performing the throttle power generation in place is satisfied, step S202 is performed; otherwise, step S205 is performed.
  • the vehicle controller issues a BSG motor power generation start command and simultaneously gives a target speed and a target torque of the BSG motor.
  • S203 Determine whether the BSG motor receives and executes the power generation start command, and determines whether the rotation speed of the BSG motor is stable at the target rotation speed.
  • step S204 is performed; if no, step S205 is performed.
  • controlling the sub-motor to enter the series power generation mode may include:
  • the conditions for performing series power generation may include, but are not limited to, (1) powering up the electronic control system of the vehicle controller, the engine management system, the transmission control unit, etc.; (2) the mode currently selected by the vehicle is a hybrid mode.
  • both the engine and the power motor must participate in the whole vehicle drive; (3) the current gear is non-P gear; (4) the SOC of the power battery is in the preset range, the SOC ⁇ A is satisfied, and the SOC ⁇ B is not satisfied, A, B is the preset value; (5) BSG motor power generation function is normal; (6) The maximum allowable charging power and maximum allowable discharge power of the power battery are in the preset range, and the maximum allowable charging power of the power battery is greater than or equal to the target power generation.
  • the maximum allowable discharge power of the power battery is equal to or greater than the target discharge power and less than the target discharge power; (7) the vehicle speed is within the preset range, the vehicle speed is less than wkm/h, and the vehicle speed is greater than ykm/h.
  • w, y are preset values; (8) the drive motor function is normal; (9) the drive motor torque is in the preset range, the drive motor torque is greater than or equal to the target drive torque is satisfied, less than the target (10) The accelerator pedal depth is within the preset range; (11) The slope of the road where the hybrid vehicle is currently located is in the preset range, the slope is less than or equal to h, and greater than or equal to i is not satisfied, h, i are The default value.
  • step S302 If the condition for performing series power generation is satisfied, step S302 is performed; otherwise, step S307 is performed.
  • the vehicle controller issues a serial request to the transmission control unit.
  • step S303 determining whether the clutch is disengaged. If yes, step S304 is performed; if no, step S307 is performed.
  • the vehicle controller issues a BSG motor power generation start command and simultaneously gives a target speed and a target torque of the BSG motor.
  • step S306 If yes, go to step S306; if no, go to step S307.
  • controlling the sub-motor to enter the hybrid power generation mode may include:
  • the conditions for performing the hybrid power generation may include, but are not limited to, (1) powering up the electronic control system of the vehicle controller, the engine management system, the transmission control unit, etc.; (2) the engine has no warm-up request; (3) the current The gear position is D gear or R gear; (4) The SOC of the power battery is in the preset range, and the SOC ⁇ A is satisfied; (5) The BSG motor power generation function is normal; (6) The power battery charging function is normal; (7) Currently not In series power generation mode; (8) does not trigger the body stability control system; (9) engine speed is greater than 900 rev / min, and the engine responds to the target torque; (10) the accelerator pedal depth is greater than zero; (11) clutch combination; (12) The vehicle demand torque is not zero; (13) 15 conditions are not triggered.
  • step S402 If the condition for performing the hybrid power generation is satisfied, step S402 is performed; otherwise, step S405 is performed.
  • the vehicle controller issues a BSG motor power generation start command and simultaneously gives a target speed and a target torque of the BSG motor.
  • S403. Determine whether the BSG motor receives and executes the power generation start command, and determines whether the rotation speed of the BSG motor is stable at the target rotation speed.
  • step S404 is performed; if no, step S405 is performed.
  • controlling the sub-motor to enter the power generation mode may include:
  • step S501 The vehicle controller determines whether the main contactor of the battery management system is disconnected. If yes, go to step S502; if no, go to step S513.
  • step S502 determining whether the engine is operating normally. If yes, go to step S503; if no, go to step S513.
  • step S503 determining whether the functions of the DC-DC converter and the BSG motor are normal. If yes, step S504 is performed; if no, step S514 is performed.
  • the first preset rotational speed is a rotational speed determined according to whether or not the voltage stabilization protection is performed. If yes, go to step S505; if no, go to step S515.
  • step S505. Determine whether the engine speed is greater than or equal to a second preset speed.
  • the second preset speed is the minimum speed limited by the voltage regulation control. If yes, go to step S506; if no, go back to step S503.
  • step S506 Determine whether the back electromotive force of the BSG motor is greater than the bus voltage of the BSG motor. If yes, go to step S516; if no, go to step S507.
  • the vehicle controller issues a BSG power generation start command and enters the voltage stabilization control mode.
  • steps S508 to S512 are performed.
  • step S510 Determine whether the DC-DC converter receives the power generation start command issued by the vehicle controller, and whether it is currently in the voltage stabilization control mode. If yes, go to step S511; if no, go to step S512.
  • DC-DC converter maintains the preset startup mode. That is, the DC-DC converter does not limit the startup current and performs normal startup.
  • S514 does not perform voltage regulation control, and performs fault processing on the DC-DC converter and the BSG motor.
  • controlling the operation of the secondary motor to perform reverse dragging of the engine may include:
  • step S601 judging whether the engine has a starting demand, and determining whether the engine and the BSG motor are both faultless. If yes, step S602 is performed; if not, the current control flow is ended.
  • the vehicle controller issues a clutch forced separation command to the transmission control unit.
  • the transmission control unit determines whether the clutch is successfully separated. If yes, go to step S604; if no, go back to step S602.
  • the vehicle controller issues an anti-drag control command, an engine start command, and a given engine target speed.
  • the BSG motor receives the reverse drag control command and starts running to reverse the engine.
  • step S606 The vehicle controller determines whether the engine speed reaches the target speed. If yes, go to step S607; if no, go back to step S605.
  • the vehicle controller issues a reverse drag stop command, sets the target rotational speed to 0, and clears the clutch forced release command.
  • the BSG motor receives the reverse drag stop command and stops the reverse drag engine.
  • the present disclosure also proposes a power generation controller 100 for a hybrid vehicle.
  • the power generation controller 100 of the hybrid vehicle of the embodiment of the present disclosure is connected to the sub-motor 5.
  • the power generation controller is configured to acquire the current power of the power battery, obtain the current gear of the hybrid vehicle, and obtain the current vehicle speed of the hybrid vehicle, and control the auxiliary motor to enter the corresponding according to the current power, the current gear, and the current vehicle speed.
  • the power generation mode wherein the power generation mode of the secondary motor includes an in-situ power generation mode, an in-situ throttle power generation mode, a series power generation mode, and a hybrid power generation mode.
  • the power generation controller may acquire the SOC value of the power battery through the battery management system to obtain the current power of the power battery, wherein the power generation controller may include a battery management system, or may be associated with the battery management system. Communicate.
  • the power generation controller may acquire the current gear of the hybrid vehicle through the transmission control unit, wherein the power generation controller may include a transmission control unit or may communicate with the transmission control unit.
  • the power generation controller may acquire the current vehicle speed of the hybrid vehicle through the vehicle speed sensor, wherein the power generation controller may include a vehicle speed sensor.
  • the power generation controller may acquire the wheel speed through the vehicle speed sensor and calculate the current vehicle speed according to the wheel speed calculation.
  • the power generation controller may control the secondary motor to enter the in-situ power generation mode when the current power is less than the first power and the current gear is the P range.
  • the accelerator pedal of the hybrid vehicle is not depressed, the power motor does not output the driving force, the clutch is disengaged to disconnect the power output from the engine to the wheel, and the engine drives the sub-motor to operate to generate electricity.
  • the first electric quantity is lower than the balance point of the charging and discharging of the power battery, and when the current electric quantity of the power battery is less than the first electric quantity, even if the electric power is generated by controlling the sub motor during the running, the power battery is charged, in a short time It is difficult to make the power consumption of the power battery satisfy the power demand of the power motor when the hybrid vehicle is running, and thus the power motor cannot output the driving force according to the entire vehicle demand.
  • the power controller can control the secondary motor to stop generating power when the current power of the power battery is greater than the fifth power.
  • the fifth power is greater than the balance point of the power battery charging and discharging.
  • the power battery can provide sufficient power for the power motor to separately drive the wheel.
  • the engine can drive the auxiliary motor to generate or not according to the real-time power of the power battery.
  • the secondary motor generates electricity, and the clutches may not be combined, that is, the engine may not directly output power to the wheels.
  • the power generation controller controls the secondary motor to enter the in-situ throttle power generation mode when the current power is less than the second power and the current gear is the P range.
  • the accelerator pedal of the hybrid vehicle is depressed, the power motor does not output the driving force, the clutch is disengaged to disconnect the power output from the engine to the wheel, and the engine drives the sub-motor to operate.
  • the second electric quantity is larger than the first electric quantity, and the power generation power can be increased and the charging of the power battery can be accelerated by depressing the accelerator pedal compared with the above-described in-situ power generation mode.
  • the power generation controller may control the secondary motor to stop generating power, wherein the sixth power is greater than the second power.
  • the power generation controller controls the sub-motor to enter the series power generation mode when the current power is less than the third power, the current gear is non-P gear, and the current vehicle speed is less than the first vehicle speed.
  • the power motor outputs the driving force
  • the clutch is disengaged to disconnect the power output from the engine to the wheel
  • the engine drives the sub motor to operate to generate electricity.
  • the third power is equal to the first power.
  • the hybrid car can be in a running state, for example, it can be D gear, R gear or N gear.
  • the vehicle speed is less than the first vehicle speed, it is not necessary to control the engine to output power to the wheel.
  • the power battery cannot provide sufficient power for the power motor to separately drive the wheels.
  • the engine can output power to the sub-motor, so that the sub-motor negative torque operates to function as a generator, thereby charging the power battery, so that the power battery provides sufficient power for the power motor to separately drive the wheels, and the engine does not Directly output power to the wheels.
  • the secondary motor can be controlled to stop generating power, wherein the seventh power is greater than the third power.
  • the power generation controller may control the engine to output power to the wheels. Therefore, when the current power of the power battery is greater than the seventh power, or the vehicle speed of the hybrid vehicle is greater than the second vehicle speed, the power generation controller may control the secondary motor to exit the series power generation mode, wherein the second vehicle speed is greater than the first vehicle speed.
  • the power generation controller controls the sub-motor to enter the hybrid power generation mode when the current power is less than the fourth power, the current gear is non-P gear, and the current vehicle speed is greater than the second vehicle speed.
  • the accelerator pedal of the hybrid vehicle is depressed, the clutch is combined to output the power of the engine to the wheel to drive the hybrid vehicle, and the engine drives the secondary motor to operate to generate electricity.
  • the fourth power is greater than the first power and less than the second power.
  • the power generation controller can control the engine to output power to the wheels.
  • both the power motor and the engine directly output the driving force to the wheel to participate in the driving of the whole vehicle, and since the current power of the power battery is less than the fourth power, the power battery cannot provide sufficient power for the driving output force of the power motor. Therefore, the power generation controller can control the engine to output power to the secondary motor while outputting power to the wheel, and operate the negative torque of the secondary motor to function as a generator, thereby charging the power battery.
  • the power generation controller may control the secondary motor to stop generating power, wherein the eighth power is greater than the fourth power.
  • the power generation controller can control the secondary motor to directly switch from the series power generation mode to the hybrid power generation mode.
  • the settings of the sixth power, the seventh power, and the eighth power are similar to the fifth power, and are all set to meet the operational requirements of the hybrid vehicle.
  • the size of the first to eighth electric quantities depends on the specifications and performance of the power battery, the drive motor, etc., and is inconvenient to set as a specific value.
  • the power generation controller of the hybrid vehicle of the embodiment of the present disclosure may be further configured to determine whether the power battery is faulty, and when the power battery fails, control the secondary motor to enter a power generation mode, wherein, in the power generation mode, the engine is driven
  • the secondary motor operates to generate electricity and is regulated to provide power to the low-voltage and high-voltage loads of the hybrid vehicle.
  • the power generation controller can also be used to determine whether the engine has a starting demand, and when the engine has a starting demand, control the secondary motor to operate to reverse the engine.
  • the auxiliary motor can be controlled according to the power of the power battery, the gear position of the hybrid vehicle, and the vehicle speed.
  • In-situ power generation mode, in-situ throttle operation mode, series power generation mode, or hybrid power generation mode, power generation by the sub-motor can reduce power generation noise and vibration, improve vehicle ride comfort, and can be simpler.
  • the structure realizes series power generation, and can realize hybrid power generation without affecting the driving motor, thereby improving power generation efficiency and reducing vehicle energy consumption.
  • the present disclosure also proposes a hybrid vehicle.
  • the hybrid vehicle 1000 of the embodiment of the present disclosure includes the power generation controller 100 of the hybrid vehicle proposed in the above embodiment of the present disclosure.
  • power generation noise and vibration can be reduced, vehicle smoothness can be improved, power generation efficiency can be improved, and vehicle energy consumption can be reduced.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Abstract

一种混合动力汽车的发电控制方法,该混合动力汽车包括发动机(1)、动力电机(2)、动力电池(3)、DC-DC变换器(4)、与发动机(1)相连的副电机(5),该方法包括以下步骤:获取动力电池(3)的当前电量,并获取混合动力汽车的当前挡位,以及获取混合动力汽车的当前车速;根据当前电量、当前挡位和当前车速控制副电机(5)进入相应的发电模式,其中,副电机(5)的发电模式包括原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式。该方法能够减小混合动力汽车的发电噪音和振动,提高整车平顺性,并能够提高发电效率,降低整车能耗。还公开了一种混合动力汽车及发电控制系统。

Description

混合动力汽车及其发电控制方法和装置
相关申请的交叉引用
本申请基于申请号为201710909326.X,申请日为2017年09月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及混合动力汽车技术领域,特别涉及一种混合动力汽车的发电控制方法、一种混合动力汽车的发电控制器和一种混合动力汽车。
背景技术
随着能源的不断消耗,新能源车型的开发和利用已逐渐成为一种趋势。混合动力汽车作为新能源车型中的一种,通过发动机和/或电机进行驱动。
但是,在相关技术中,混合动力汽车的前电机在充当驱动电机的同时还充当发电机,结构复杂而且发电时噪音和振动均较大,导致整车平顺性也较差。并且,如果驱动电机参与整车驱动,在发电时发电效率和整车动力均难以达到较佳的状态,整车能耗也会相对增加。
发明内容
本公开旨在至少在一定程度上解决上述技术中的技术问题之一。为此,本公开的一个目的在于提出一种混合动力汽车的发电控制方法,能够减小混合动力汽车的发电噪音和振动,提高整车平顺性,并能够提高发电效率,降低整车能耗。
本公开的第二个目的在于提出一种混合动力汽车的发电控制器。
本公开的第三个目的在于提出一种混合动力汽车。
为达到上述目的,本公开第一方面实施例提出了一种混合动力汽车的发电控制方法,其中,所述混合动力汽车包括发动机、动力电机、动力电池、DC-DC变换器、与所述发动机相连的副电机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮,所述动力电机用于输出驱动力至所述混合动力汽车的车轮,所述动力电池用于给所述动力电机供电,所述副电机分别与所述动力电机、所述DC-DC变换器和所述动力电池相连,所述副电机在所述发动机的带动下进行发电,所述发电控制方法包括以下步骤:获取所述动力电池的当前电量,并获取所述混合动力汽车的当前挡位,以及获取所述混合动力汽车的当前车 速;根据所述当前电量、所述当前挡位和所述当前车速控制所述副电机进入相应的发电模式,其中,所述副电机的发电模式包括原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式。
根据本公开实施例的混合动力汽车的发电控制方法,通过获取动力电池的电量、混合动力汽车的挡位和车速,并根据动力电池的电量、混合动力汽车的挡位和车速控制副电机进入原地发电模式、原地踩油门发电模式、串联发电模式或混联发电模式,由此,通过副电机发电,能够减小发电噪音和振动,提高整车平顺性,另外,能够通过较为简单的结构实现串联发电,并能够在不影响驱动电机的前提下实现混联发电,从而能够提高发电效率,降低整车能耗。
为达到上述目的,本公开第二方面实施例提出了一种混合动力汽车的发电控制器,其中,所述混合动力汽车包括发动机、动力电机、动力电池、DC-DC变换器、与所述发动机相连的副电机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮,所述动力电机用于输出驱动力至所述混合动力汽车的车轮,所述动力电池用于给所述动力电机供电,所述副电机分别与所述动力电机、所述DC-DC变换器和所述动力电池相连,所述副电机在所述发动机的带动下进行发电,所述发电控制器与所述副电机相连,所述发电控制器用于:获取所述动力电池的当前电量;获取所述混合动力汽车的当前挡位;获取所述混合动力汽车的当前车速;根据所述当前电量、所述当前挡位和所述当前车速控制所述副电机进入相应的发电模式,其中,所述副电机的发电模式包括原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式。
根据本公开实施例的混合动力汽车的发电控制器,在获取动力电池的电量、混合动力汽车的挡位和车速后,可根据动力电池的电量、混合动力汽车的挡位和车速控制副电机进入原地发电模式、原地踩油门发电模式、串联发电模式或混联发电模式,由此,通过副电机发电,能够减小发电噪音和振动,提高整车平顺性,另外,能够通过较为简单的结构实现串联发电,并能够在不影响驱动电机的前提下实现混联发电,从而能够提高发电效率,降低整车能耗。
为达到上述目的,本公开三方面实施例提出了一种混合动力汽车,其包括本公开第二方面实施例提出的混合动力汽车的发电控制器。
根据本公开实施例的混合动力汽车,能够减小发电噪音和振动,提高整车平顺性,并能够提高发电效率,降低整车能耗。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过对本公开的实践了解到。
附图说明
图1为根据本公开实施例的混合动力汽车的结构示意图;
图2为根据本公开实施例的混合动力汽车的发电控制方法的流程图;
图3为根据本公开一个具体实施例的原地发电模式的控制方法流程图;
图4为根据本公开一个具体实施例的原地踩油门发电模式的控制方法流程图;
图5为根据本公开一个具体实施例的串联发电模式的控制方法流程图;
图6为根据本公开一个具体实施例的混联发电模式的控制方法流程图;
图7为根据本公开一个具体实施例的供电发电模式的控制方法流程图;
图8为根据本公开一个具体实施例的进行反拖启动的控制方法流程图;
图9为根据本公开一个实施例的混合动力汽车的结构示意图;
图10为根据本公开实施例的混合动力汽车的方框示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面结合附图来描述本公开实施例的混合动力汽车及其发电控制方法和发电控制器。
在本公开的实施例中,如图1所示,混合动力汽车包括发动机1、动力电机2、动力电池3、DC-DC变换器4、与发动机相连的副电机5,发动机1通过离合器6将动力输出到混合动力汽车的车轮,动力电机2用于输出驱动力至混合动力汽车的车轮,动力电池3用于给动力电机供电,副电机5分别与动力电机、DC-DC变换器和动力电池相连,副电机5在发动机的带动下进行发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。
由此,动力电机2和副电机5分别对应充当驱动电机和发电机,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。
在一些实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可以不经过电压变换直接给动力电池3充电,还可直接给动力电机2和/或DC-DC变换器4供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
如图1所示,DC-DC变换器4还分别与混合动力汽车中的低压负载7和低压蓄电池8 相连以给低压负载7和低压蓄电池8供电,且低压蓄电池8还与低压负载7相连。
图2为根据本公开实施例的混合动力汽车的发电控制方法的流程图。
如图2所示,本公开实施例的混合动力汽车的发电控制方法,包括以下步骤:
S1,获取动力电池的当前电量,并获取混合动力汽车的当前挡位,以及获取混合动力汽车的当前车速。
在本公开的一个实施例中,可通过电池管理系统获取动力电池的SOC(State of Charge,荷电状态,也叫剩余电量)值,并通过变速箱控制单元获取混合动力汽车的当前挡位,以及通过车速传感器获取混合动力汽车的当前车速。
S2,根据当前电量、当前挡位和当前车速控制副电机进入相应的发电模式,其中,副电机的发电模式包括原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式。
在本公开的一个实施例中,当动力电池的当前电量小于第一电量且当前挡位为P挡(泊车挡)时,控制副电机进入原地发电模式。其中,在原地发电模式下,混合动力汽车的油门踏板未被踩下,动力电机不输出驱动力,离合器分离以断开发动机向车轮输出的动力,发动机带动副电机运转以进行发电。
其中,第一电量低于动力电池充放电的平衡点,当动力电池的当前电量小于第一电量时,即便是在行驶的过程中通过控制副电机发电以给动力电池充电,在短时间内也难以使动力电池的电量满足混合动力汽车行驶时动力电机的用电需求,因而无法使动力电机根据整车需求输出驱动力。
当混合动力汽车挂P挡时,动力电机和发动机均不向车轮输出驱动力,混合动力汽车的车速一般为零。此时,通过发动机向副电机输出动力,使副电机负扭矩运转以起到发电机的作用,从而可为动力电池充电。随着发电和充电的进行,在动力电池的当前电量大于第五电量时,可控制副电机停止发电。其中,第五电量大于动力电池充放电的平衡点。在动力电池的当前电量大于第五电量时,动力电池可为动力电机单独驱动车轮提供足够的电量,在混合动力汽车行驶时,可根据动力电池的实时电量控制发动机带动副电机进行发电或不带动副电机进行发电,而离合器可不结合,即发动机可不向车轮直接输出动力。
在本公开的一个实施例中,当动力电池的当前电量小于第二电量且当前挡位为P挡时,控制副电机进入原地踩油门发电模式。其中,在原地踩油门发电模式下,混合动力汽车的油门踏板被踩下,动力电机不输出驱动力,离合器分离以断开发动机向车轮输出的动力,发动机带动副电机运转以进行发电。
其中,第二电量大于第一电量,与上述的原地发电模式相比,通过踩下油门踏板,能够提高发电功率,加快对动力电池的充电。随着发电和充电的进行,在动力电池的当前电量大于第六电量时,可控制副电机停止发电,其中,第六电量大于第二电量。
在本公开的一个实施例中,当动力电池的当前电量小于第三电量、当前挡位为非P挡且当前车速小于第一车速时,控制副电机进入串联发电模式。其中,在串联发电模式下,动力电机输出驱动力,离合器分离以断开发动机向车轮输出的动力,发动机带动副电机运转以进行发电。
其中,第三电量等于第一电量。当前挡位为非P挡时,混合动力汽车可处于行驶状态,例如可以是D挡(前进挡)、R挡(倒挡)或N挡(空挡)等。车速小于第一车速时,不必要控制发动机向车轮输出动力,然而由于动力电池的前电量小于第三电量,动力电池无法为动力电机单独驱动车轮提供足够的电量。此时,可通过发动机向副电机输出动力,使副电机负扭矩运转以起到发电机的作用,从而可为动力电池充电,使动力电池为动力电机单独驱动车轮提供足够的电量,而发动机不向车轮直接输出动力。
随着发电和充电的进行,在动力电池的当前电量大于第七电量时,可控制副电机停止发电,其中,第七电量大于第三电量。另外,在混合动力汽车的车速大于第二车速时,可控制发动机向车轮输出动力。因此,在动力电池的当前电量大于第七电量,或混合动力汽车的车速大于第二车速时,可退出串联发电模式,其中,第二车速大于第一车速。
在本公开的一个实施例中,当动力电池的当前电量小于第四电量、当前挡位为非P挡且当前车速大于第二车速时,控制副电机进入混联发电模式。其中,在混联发电模式下,混合动力汽车的油门踏板被踩下,离合器结合以将发动机的动力输出到车轮以驱动混合动力汽车,发动机带动副电机运转以进行发电。
其中,第四电量大于第一电量且小于第二电量。如上面所描述的,在混合动力汽车的车速大于第二车速时,可控制发动机向车轮输出动力。此时动力电机和发动机均直接向车轮输出驱动力,参与整车的驱动,而由于动力电池的前电量小于第四电量,动力电池无法为动力电机输出驱动力提供足够的电量。因而,可控制发动机在向车轮输出动力的同时,向副电机输出动力,使副电机负扭矩运转以起到发电机的作用,从而可为动力电池充电。
随着发电和充电的进行,在动力电池的当前电量大于第八电量时,可控制副电机停止发电,其中,第八电量大于第四电量。
当然,在副电机处于串联发电模式时,如果车速达到第二车速,则可由串联发电模式直接切换至混联发电模式。
需要说明的是,第六电量、第七电量和第八电量的设定和第五电量类似,均是以能够满足混合动力汽车的运行需求为标准而设定的。第一至第八电量的大小取决于动力电池、驱动电机等的规格和性能,在此不便设定为具体数值。
在本公开的一个实施例中,还可判断动力电池是否发生故障,如果动力电池发生故障,则控制副电机进入供电发电模式。其中,在供电发电模式下,发动机带动副电机运转以进 行发电,并进行稳压控制,以为混合动力汽车的低压负载和高压负载进行供电。
其中,可在副电机的输出端处连接稳压电路,以对副电机的输出进行稳压控制。
在一些实施例中,DC-DC变换器可将动力电池输出的高压直流电和/或副电机输出的高压直流电转换为低压直流电,并向低压负载输出该低压直流电。其中,低压负载可包括但不限于车灯、收音机等。DC-DC变换器还可与低压蓄电池相连,以给低压蓄电池充电。
如上,当动力电池发生故障(主接触器断开)时,副电机可进行发电以给低压负载供电和/或给低压蓄电池充电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,从而满足行驶需求。副电机输出的高压直流电还可直接为高压负载进行供电,由此,可在动力电池发生故障的情况下保证整车的高压用电。其中,高压负载可包括但不限于车载空调等,通过为车载空调供电,保障混合动力汽车的舒适性。
需要说明的是,基于上述DC-DC变换器与低压负载、低压蓄电池之间,以及副电机与高压负载之间的连接关系,当副电机处于原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式时,不仅可为动力电池充电,还可为低压电池充电、为低压负载和高压负载进行供电。当然,在供电发电模式下,由于动力电池出现故障,副电机发电可用于为低压电池充电、为低压负载和高压负载进行供电,而不用于对动力电池充电。
需要说明的是,在本公开的实施例中,低压可指12V或24V的电压,即低压蓄电池的输出电压为12V,低压负载的额定电压为12V,高压可指600V的电压,即高压负载的额定电压为600V。
另外,在本公开的一个实施例中,副电机还可用于实现发动机的启动。具体地,可判断发动机是否有启动需求,如果发动机有启动需求,则控制副电机运转以对发动机进行反拖启动。副电机可正扭矩运转以起到电动机的作用,从而可带动发动机的曲轴转动,以使发动机的活塞达到点火位置,实现发动机的启动,由此副电机可实现相关技术中启动机的功能。
综上所述,根据本公开实施例的混合动力汽车的发电控制方法,通过获取动力电池的电量、混合动力汽车的挡位和车速,并根据动力电池的电量、混合动力汽车的挡位和车速控制副电机进入原地发电模式、原地踩油门发电模式、串联发电模式或混联发电模式,由此,通过副电机发电,能够减小发电噪音和振动,提高整车平顺性,另外,能够通过较为简单的结构实现串联发电,并能够在不影响驱动电机的前提下实现混联发电,从而能够提高发电效率,降低整车能耗。
在本公开的一个具体实施例中,如图3所示,控制副电机进入原地发电模式可包括:
S101,判断是否满足进行原地发电的条件。其中,进行原地发电的条件可包括但不限于(1)整车控制器、发动机管理系统等电子控制系统上电;(2)整车当前选择的模式为混 合动力模式,即发动机和动力电机均要参与整车驱动;(3)当前挡位为P挡;(4)动力电池的SOC处于预设范围,SOC≤A时满足,SOC≥B时不满足,A、B均为预设的值;(5)BSG电机发电功能正常;(6)动力电池充电功能正常;(7)车速小于预设车速,具体可以为零车速。
如果满足进行原地发电的条件,则执行步骤S102;否则执行步骤S105。
S102,整车控制器发出BSG电机发电开始命令同时给定BSG电机的目标转速和目标扭矩。
S103,判断BSG电机是否收到并执行发电开始命令,并判断BSG电机的转速是否稳定在目标转速。
如果是,则执行步骤S104;如果否,则执行步骤S105。
S104,对BSG电机进行稳定转速发电控制。
S105,退出原地发电模式。
在本公开的一个具体实施例中,如图4所示,控制副电机进入原地踩油门发电模式可包括:
S201,判断是否满足进行原地踩油门发电的条件。其中,进行原地踩油门发电的条件可包括但不限于(1)整车控制器、发动机管理系统等的电子控制系统上电;(2)整车当前选择的模式为混合动力模式,即发动机和动力电机均要参与整车驱动;(3)当前挡位为P挡;(4)动力电池的SOC处于预设范围,SOC≤E时满足,SOC≥F时不满足,E、F均为预设的值;(5)BSG电机发电功能正常;(6)动力电池充电功能正常;(7)车速小于预设车速,具体可以为零车速;(8)油门功能正常;(9)刹车功能正常。
如果满足进行原地踩油门发电的条件,则执行步骤S202;否则执行步骤S205。
S202,整车控制器发出BSG电机发电开始命令同时给定BSG电机的目标转速和目标扭矩。
S203,判断BSG电机是否收到并执行发电开始命令,并判断BSG电机的转速是否稳定在目标转速。
如果是,则执行步骤S204;如果否,则执行步骤S205。
S204,对BSG电机进行稳定转速发电控制。
S205,退出原地踩油门发电模式。
在本公开的一个具体实施例中,如图5所示,控制副电机进入串联发电模式可包括:
S301,判断是否满足进行串联发电的条件。其中,进行串联发电的条件可包括但不限于(1)整车控制器、发动机管理系统、变速箱控制单元等的电子控制系统上电;(2)整车当前选择的模式为混合动力模式,即发动机和动力电机均要参与整车驱动;(3)当前挡位 为非P挡;(4)动力电池的SOC处于预设范围,SOC≤A时满足,SOC≥B时不满足,A、B均为预设的值;(5)BSG电机发电功能正常;(6)动力电池最大允许充电功率、最大允许放电功率均处于预设范围,动力电池最大允许充电功率大于等于目标发电功率满足、小于目标发电功率不满足,动力电池最大允许放电功率大于等于目标放电功率满足、小于目标放电功率不满足;(7)车速处于预设范围,车速小于wkm/h满足,车速大于ykm/h不满足,w、y均为预设的值;(8)驱动电机功能正常;(9)驱动电机扭矩处于预设范围,驱动电机扭矩大于等于目标驱动扭矩满足、小于目标驱动扭矩不满足;(10)油门踏板深度处于预设范围;(11)混合动力汽车当前所处路面的坡度处于预设范围,坡度小于等于h满足、大于等于i不满足,h、i均为预设的值。
如果满足进行串联发电的条件,则执行步骤S302;否则执行步骤S307。
S302,整车控制器向变速箱控制单元发出串联请求。
S303,判断离合器是否分离。如果是,则执行步骤S304;如果否,则执行步骤S307。
S304,整车控制器发出BSG电机发电开始命令同时给定BSG电机的目标转速和目标扭矩。
S305,判断BSG电机是否收到并执行发电开始命令,并判断BSG电机的转速是否稳定在目标转速。
如果是,则执行步骤S306;如果否,则执行步骤S307。
S306,对BSG电机进行稳定转速发电控制。
S307,退出串联发电模式。
在本公开的一个具体实施例中,如图6所示,控制副电机进入混联发电模式可包括:
S401,判断是否满足进行混联发电的条件。其中,进行混联发电的条件可包括但不限于(1)整车控制器、发动机管理系统、变速箱控制单元等的电子控制系统上电;(2)发动机无暖机请求;(3)当前挡位为D挡或R挡;(4)动力电池的SOC处于预设范围,SOC≤A时满足;(5)BSG电机发电功能正常;(6)动力电池充电功能正常;(7)当前不处于串联发电模式;(8)未触发车身稳定控制系统;(9)发动机转速大于900转/分,且发动机响应目标扭矩;(10)油门踏板深度大于零;(11)离合器结合;(12)整车需求扭矩不为零;(13)未触发15工况。
如果满足进行混联发电的条件,则执行步骤S402;否则执行步骤S405。
S402,整车控制器发出BSG电机发电开始命令同时给定BSG电机的目标转速和目标扭矩。
S403,判断BSG电机是否收到并执行发电开始命令,并判断BSG电机的转速是否稳定在目标转速。
如果是,则执行步骤S404;如果否,则执行步骤S405。
S404,对BSG电机进行稳定转速发电控制。
S405,退出混联发电模式。
在本公开的一个具体实施例中,如图7所示,控制副电机进入供电发电模式可包括:
S501,整车控制器判断电池管理系统主接触器是否断开。如果是,则执行步骤S502;如果否,则执行步骤S513。
S502,判断发动机是否正常运行。如果是,则执行步骤S503;如果否,则执行步骤S513。
S503,判断DC-DC变换器和BSG电机的功能是否正常。如果是,则执行步骤S504;如果否,则执行步骤S514。
S504,判断发动机转速是否小于等于第一预设转速。其中,第一预设转速为根据是否进行稳压保护而确定的转速。如果是,则执行步骤S505;如果否,则执行步骤S515。
S505,判断发动机转速是否大于等于第二预设转速。其中,第二预设转速为稳压控制时所限制的最低转速。如果是,则执行步骤S506;如果否,则返回步骤S503。
S506,判断BSG电机的反电动势是否大于BSG电机的母线电压。如果是,则执行步骤S516;如果否,则执行步骤S507。
S507,整车控制器发出BSG发电启动命令,并进入稳压控制模式。接下来执行步骤S508~S512。
S508,BSG电机启动发电。
S509,低压负载限制用电功率。
S510,判断DC-DC变换器是否接收到整车控制器发出的发电启动命令,且当前是否处于稳压控制模式。如果是,则执行步骤S511;如果否,则执行步骤S512。
S511,DC-DC变换器启动并限制启动电流。
S512,DC-DC变换器维持预设的启动方式。即DC-DC变换器不限制启动电流,进行正常启动。
S513,不进行稳压控制。
S514,不进行稳压控制,并对DC-DC变换器和BSG电机进行故障处理。
S515,执行提前换挡策略。
S516,执行高转速下的提前换挡策略。
在本公开的一个具体实施例中,如图8所示,控制副电机运转以对发动机进行反拖启动可包括:
S601,判断发动机是否有启动需求,并判断发动机和BSG电机是否均无故障。如果是,则执行步骤S602;如果否,则结束当前控制流程。
S602,整车控制器向变速箱控制单元发出离合器强制分离命令。
S603,变速箱控制单元判断离合器是否成功分离。如果是,则执行步骤S604;如果否,则返回步骤S602。
S604,整车控制器发出反拖控制命令、发动机启动命令以及给定的发动机目标转速。
S605,BSG电机接收反拖控制命令,并开始运转以反拖发动机。
S606,整车控制器判断发动机转速是否达到目标转速。如果是,则执行步骤S607;如果否,则返回步骤S605。
S607,整车控制器发出反拖停止命令、将目标转速设为0并清除离合器强制分离命令。
S608,BSG电机接收反拖停止命令,并停止反拖发动机。
对应上述实施例,本公开还提出一种混合动力汽车的发电控制器100。
如图9所示,本公开实施例的混合动力汽车的发电控制器100与副电机5相连。
其中,该发电控制器用于获取动力电池的当前电量,并获取混合动力汽车的当前挡位,以及获取混合动力汽车的当前车速,并根据当前电量、当前挡位和当前车速控制副电机进入相应的发电模式,其中,副电机的发电模式包括原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式。
在本公开的一个实施例中,发电控制器可通过电池管理系统获取动力电池的SOC值,以得到动力电池的当前电量,其中,发电控制器可包括电池管理系统,或者,可与电池管理系统进行通信。发电控制器可通过变速箱控制单元获取混合动力汽车的当前挡位,其中,发电控制器可包括变速箱控制单元,或者,可与变速箱控制单元进行通信。发电控制器可通过车速传感器获取混合动力汽车的当前车速,其中,发电控制器可包括车速传感器,举例而言,发电控制器可通过车速传感器获取车轮转速,并根据车轮转速计算获取当前车速。
在本公开的一个实施例中,发电控制器在当前电量小于第一电量且当前挡位为P挡时,可控制副电机进入原地发电模式。其中,在原地发电模式下,混合动力汽车的油门踏板未被踩下,动力电机不输出驱动力,离合器分离以断开发动机向车轮输出的动力,发动机带动副电机运转以进行发电。
其中,第一电量低于动力电池充放电的平衡点,当动力电池的当前电量小于第一电量时,即便是在行驶的过程中通过控制副电机发电以给动力电池充电,在短时间内也难以使动力电池的电量满足混合动力汽车行驶时动力电机的用电需求,因而无法使动力电机根据整车需求输出驱动力。
当混合动力汽车挂P挡时,动力电机和发动机均不向车轮输出驱动力,混合动力汽车的车速一般为零。此时,通过发动机向副电机输出动力,使副电机负扭矩运转以起到发电机的作用,从而可为动力电池充电。随着发电和充电的进行,在动力电池的当前电量大于 第五电量时,发电控制器可控制副电机停止发电。其中,第五电量大于动力电池充放电的平衡点。在动力电池的当前电量大于第五电量时,动力电池可为动力电机单独驱动车轮提供足够的电量,在混合动力汽车行驶时,可根据动力电池的实时电量控制发动机带动副电机进行发电或不带动副电机进行发电,而离合器可不结合,即发动机可不向车轮直接输出动力。
在本公开的一个实施例中,发电控制器在当前电量小于第二电量且当前挡位为P挡时,控制副电机进入原地踩油门发电模式。其中,在原地踩油门发电模式下,混合动力汽车的油门踏板被踩下,动力电机不输出驱动力,离合器分离以断开发动机向车轮输出的动力,发动机带动副电机运转以进行发电。
其中,第二电量大于第一电量,与上述的原地发电模式相比,通过踩下油门踏板,能够提高发电功率,加快对动力电池的充电。随着发电和充电的进行,在动力电池的当前电量大于第六电量时,发电控制器可控制副电机停止发电,其中,第六电量大于第二电量。
在本公开的一个实施例中,发电控制器在当前电量小于第三电量、当前挡位为非P挡且当前车速小于第一车速时,控制副电机进入串联发电模式。其中,在串联发电模式下,动力电机输出驱动力,离合器分离以断开发动机向车轮输出的动力,发动机带动副电机运转以进行发电。
其中,第三电量等于第一电量。当前挡位为非P挡时,混合动力汽车可处于行驶状态,例如可以是D挡、R挡或N挡等。车速小于第一车速时,不必要控制发动机向车轮输出动力,然而由于动力电池的前电量小于第三电量,动力电池无法为动力电机单独驱动车轮提供足够的电量。此时,可通过发动机向副电机输出动力,使副电机负扭矩运转以起到发电机的作用,从而可为动力电池充电,使动力电池为动力电机单独驱动车轮提供足够的电量,而发动机不向车轮直接输出动力。
随着发电和充电的进行,在动力电池的当前电量大于第七电量时,可控制副电机停止发电,其中,第七电量大于第三电量。另外,在混合动力汽车的车速大于第二车速时,发电控制器可控制发动机向车轮输出动力。因此,在动力电池的当前电量大于第七电量,或混合动力汽车的车速大于第二车速时,发电控制器可控制副电机退出串联发电模式,其中,第二车速大于第一车速。
在本公开的一个实施例中,发电控制器在当前电量小于第四电量、当前挡位为非P挡且当前车速大于第二车速时,控制副电机进入混联发电模式。其中,在混联发电模式下,混合动力汽车的油门踏板被踩下,离合器结合以将发动机的动力输出到车轮以驱动混合动力汽车,发动机带动副电机运转以进行发电。
其中,第四电量大于第一电量且小于第二电量。如上面所描述的,在混合动力汽车的 车速大于第二车速时,发电控制器可控制发动机向车轮输出动力。此时动力电机和发动机均直接向车轮输出驱动力,参与整车的驱动,而由于动力电池的当前电量小于第四电量,动力电池无法为动力电机输出驱动力提供足够的电量。因而,发电控制器可控制发动机在向车轮输出动力的同时,向副电机输出动力,使副电机负扭矩运转以起到发电机的作用,从而可为动力电池充电。
随着发电和充电的进行,在动力电池的当前电量大于第八电量时,发电控制器可控制副电机停止发电,其中,第八电量大于第四电量。
当然,在副电机处于串联发电模式时,如果车速达到第二车速,则发电控制器可控制副电机由串联发电模式直接切换至混联发电模式。
需要说明的是,第六电量、第七电量和第八电量的设定和第五电量类似,均是以能够满足混合动力汽车的运行需求为标准而设定的。第一至第八电量的大小取决于动力电池、驱动电机等的规格和性能,在此不便设定为具体数值。
另外,本公开实施例的混合动力汽车的发电控制器还可用于判断动力电池是否发生故障,并在动力电池发生故障时,控制副电机进入供电发电模式,其中,在供电发电模式下,发动机带动副电机运转以进行发电,并进行稳压控制,以为混合动力汽车的低压负载和高压负载进行供电。发电控制器还可用于判断发动机是否有启动需求,并在发动机有启动需求时,控制副电机运转以对发动机进行反拖启动。
本公开实施例的混合动力汽车的发电控制器中未披露的细节,请参考本公开实施例的混合动力汽车的发电控制方法中所披露的细节,具体这里不再详述。
根据本公开实施例的混合动力汽车的发电控制器,在获取动力电池的电量、混合动力汽车的挡位和车速后,可根据动力电池的电量、混合动力汽车的挡位和车速控制副电机进入原地发电模式、原地踩油门发电模式、串联发电模式或混联发电模式,由此,通过副电机发电,能够减小发电噪音和振动,提高整车平顺性,另外,能够通过较为简单的结构实现串联发电,并能够在不影响驱动电机的前提下实现混联发电,从而能够提高发电效率,降低整车能耗。
对应上述实施例,本公开还提出一种混合动力汽车。
如图10所示,本公开实施例的混合动力汽车1000,包括本公开上述实施例提出的混合动力汽车的发电控制器100。
根据本公开实施例的混合动力汽车,能够减小发电噪音和振动,提高整车平顺性,并能够提高发电效率,降低整车能耗。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、 “顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本公开的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (11)

  1. 一种混合动力汽车的发电控制方法,其特征在于,所述混合动力汽车包括发动机、动力电机、动力电池、DC-DC变换器、与所述发动机相连的副电机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮,所述动力电机用于输出驱动力至所述混合动力汽车的车轮,所述动力电池用于给所述动力电机供电,所述副电机分别与所述动力电机、所述DC-DC变换器和所述动力电池相连,所述副电机在所述发动机的带动下进行发电,所述发电控制方法包括以下步骤:
    获取所述动力电池的当前电量,并获取所述混合动力汽车的当前挡位,以及获取所述混合动力汽车的当前车速;
    根据所述当前电量、所述当前挡位和所述当前车速控制所述副电机进入相应的发电模式,其中,所述副电机的发电模式包括原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式。
  2. 根据权利要求1所述的混合动力汽车的发电控制方法,其特征在于,根据所述当前电量、所述当前挡位和所述当前车速控制所述副电机进入相应的发电模式,包括:
    当所述当前电量小于第一电量且所述当前挡位为P挡时,控制所述副电机进入所述原地发电模式,其中,在所述原地发电模式下,所述混合动力汽车的油门踏板未被踩下,所述动力电机不输出驱动力,所述离合器分离以断开所述发动机向所述车轮输出的动力,所述发动机带动所述副电机运转以进行发电;
    当所述当前电量小于第二电量且所述当前挡位为P挡时,控制所述副电机进入所述原地踩油门发电模式,其中,在所述原地踩油门发电模式下,所述混合动力汽车的油门踏板被踩下,所述动力电机不输出驱动力,所述离合器分离以断开所述发动机向所述车轮输出的动力,所述发动机带动所述副电机运转以进行发电,其中,所述第二电量大于所述第一电量;
    当所述当前电量小于第三电量、所述当前挡位为非P挡且所述当前车速小于第一车速时,控制所述副电机进入所述串联发电模式,其中,在所述串联发电模式下,所述动力电机输出驱动力,所述离合器分离以断开所述发动机向所述车轮输出的动力,所述发动机带动所述副电机运转以进行发电,其中,所述第三电量等于所述第一电量;
    当所述当前电量小于第四电量、所述当前挡位为非P挡且所述当前车速大于第二车速时,控制所述副电机进入所述混联发电模式,其中,在所述混联发电模式下,所述混合动力汽车的油门踏板被踩下,所述离合器结合以将所述发动机的动力输出到所述车轮以驱动所述混合动力汽车,所述发动机带动所述副电机运转以进行发电,其中,所述第四电量大 于所述第一电量且小于所述第二电量,所述第二车速大于所述第一车速。
  3. 根据权利要求1或2所述的混合动力汽车的发电控制方法,其特征在于,还包括:
    判断所述动力电池是否发生故障;
    如果所述动力电池发生故障,则控制所述副电机进入供电发电模式,其中,在所述供电发电模式下,所述发动机带动所述副电机运转以进行发电,并进行稳压控制,以为所述混合动力汽车的低压负载和高压负载进行供电。
  4. 根据权利要求1-3中任一项所述的混合动力汽车的发电控制方法,其特征在于,还包括:
    判断所述发动机是否有启动需求;
    如果所述发动机有启动需求,则控制所述副电机运转以对所述发动机进行反拖启动。
  5. 根据权利要求1-4中任一项所述的混合动力汽车的发电控制方法,其特征在于,所述副电机为BSG电机。
  6. 一种混合动力汽车的发电控制器,其特征在于,所述混合动力汽车包括发动机、动力电机、动力电池、DC-DC变换器、与所述发动机相连的副电机,所述发动机通过离合器将动力输出到所述混合动力汽车的车轮,所述动力电机用于输出驱动力至所述混合动力汽车的车轮,所述动力电池用于给所述动力电机供电,所述副电机分别与所述动力电机、所述DC-DC变换器和所述动力电池相连,所述副电机在所述发动机的带动下进行发电,所述发电控制器与所述副电机相连,所述发电控制器用于:
    获取所述动力电池的当前电量;
    获取所述混合动力汽车的当前挡位;
    获取所述混合动力汽车的当前车速;
    根据所述当前电量、所述当前挡位和所述当前车速控制所述副电机进入相应的发电模式,其中,所述副电机的发电模式包括原地发电模式、原地踩油门发电模式、串联发电模式和混联发电模式。
  7. 根据权利要求6所述的混合动力汽车的发电控制器,其特征在于,
    所述发电控制器在所述当前电量小于第一电量且所述当前挡位为P挡时,控制所述副电机进入所述原地发电模式,其中,在所述原地发电模式下,所述混合动力汽车的油门踏板未被踩下,所述动力电机不输出驱动力,所述离合器分离以断开所述发动机向所述车轮输出的动力,所述发动机带动所述副电机运转以进行发电;
    所述发电控制器在所述当前电量小于第二电量且所述当前挡位为P挡时,控制所述副电机进入所述原地踩油门发电模式,其中,在所述原地踩油门发电模式下,所述混合动力汽车的油门踏板被踩下,所述动力电机不输出驱动力,所述离合器分离以断开所述发动机 向所述车轮输出的动力,所述发动机带动所述副电机运转以进行发电,其中,所述第二电量大于所述第一电量;
    所述发电控制器在所述当前电量小于第三电量、所述当前挡位为非P挡且所述当前车速小于第一车速时,控制所述副电机进入所述串联发电模式,其中,在所述串联发电模式下,所述动力电机输出驱动力,所述离合器分离以断开所述发动机向所述车轮输出的动力,所述发动机带动所述副电机运转以进行发电,其中,所述第三电量等于所述第一电量;
    所述发电控制器在所述当前电量小于第四电量、所述当前挡位为非P挡且所述当前车速大于第二车速时,控制所述副电机进入所述混联发电模式,其中,在所述混联发电模式下,所述混合动力汽车的油门踏板被踩下,所述离合器结合以将所述发动机的动力输出到所述车轮以驱动所述混合动力汽车,所述发动机带动所述副电机运转以进行发电,其中,所述第四电量大于所述第一电量且小于所述第二电量,所述第二车速大于所述第一车速。
  8. 根据权利要求6或7所述的混合动力汽车的发电控制器,其特征在于,所述发电控制器还用于判断所述动力电池是否发生故障,并在所述动力电池发生故障时,控制所述副电机进入供电发电模式,其中,在所述供电发电模式下,所述发动机带动所述副电机运转以进行发电,并进行稳压控制,以为所述混合动力汽车的低压负载和高压负载进行供电。
  9. 根据权利要求6-8中任一项所述的混合动力汽车的发电控制器,其特征在于,所述发电控制器还用于判断所述发动机是否有启动需求,并在所述发动机有启动需求时,控制所述副电机运转以对所述发动机进行反拖启动。
  10. 根据权利要求6-9中任一项所述的混合动力汽车的发电控制器,其特征在于,所述副电机为BSG电机。
  11. 一种混合动力汽车,其特征在于,包括根据权利要求6-10中任一项所述的混合动力汽车的发电控制器。
PCT/CN2018/108538 2017-09-29 2018-09-29 混合动力汽车及其发电控制方法和装置 WO2019062880A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710909326.X 2017-09-29
CN201710909326.XA CN109591799B (zh) 2017-09-29 2017-09-29 混合动力汽车及其发电控制方法和发电控制器

Publications (1)

Publication Number Publication Date
WO2019062880A1 true WO2019062880A1 (zh) 2019-04-04

Family

ID=65900684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108538 WO2019062880A1 (zh) 2017-09-29 2018-09-29 混合动力汽车及其发电控制方法和装置

Country Status (3)

Country Link
CN (1) CN109591799B (zh)
TW (1) TWI737921B (zh)
WO (1) WO2019062880A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415163A (zh) * 2021-07-30 2021-09-21 东风商用车有限公司 混合动力汽车低压供电系统、控制方法及混合动力汽车

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110217220B (zh) * 2019-05-13 2020-11-27 江铃汽车股份有限公司 混动汽车能量管理方法、系统、车载终端及存储介质
CN112874507B (zh) * 2019-11-29 2022-07-15 比亚迪股份有限公司 混合动力车辆及其控制方法、装置和系统
CN112874506B (zh) * 2019-11-29 2022-07-15 比亚迪股份有限公司 混合动力车辆及其控制方法、装置和系统
CN113119948B (zh) * 2019-12-31 2022-10-18 比亚迪股份有限公司 混合动力车辆及其发电控制方法、装置和存储介质
CN113602256B (zh) * 2021-08-16 2023-04-25 东风汽车集团股份有限公司 一种混合动力汽车串联工况控制系统及方法
CN114103927A (zh) * 2021-12-09 2022-03-01 安徽江淮汽车集团股份有限公司 一种双电机串并联混动汽车的控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000032610A (ja) * 1998-07-10 2000-01-28 Takayuki Miyao エンジン・電池ハイブリッド駆動装置
EP0744314B1 (en) * 1995-05-24 2000-09-20 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and its control method
CN1843796A (zh) * 2006-05-12 2006-10-11 深圳市五洲龙汽车有限公司 自动变速混合动力电动车
CN206983710U (zh) * 2017-03-31 2018-02-09 比亚迪股份有限公司 混合动力汽车及其动力系统
CN207523430U (zh) * 2017-03-31 2018-06-22 比亚迪股份有限公司 混合动力汽车及其动力系统

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2459696A1 (en) * 2004-03-04 2005-09-04 Tm4 Inc. System and method for starting a combustion engine of a hybrid vehicle
CN201863701U (zh) * 2010-11-15 2011-06-15 东风汽车公司 一种双电机混合动力系统
CN103171547B (zh) * 2011-12-26 2016-06-01 上海大郡动力控制技术有限公司 增程式电动汽车的跛行装置及其使用方法
CN104149777B (zh) * 2013-05-13 2017-04-12 北汽福田汽车股份有限公司 一种四驱混合动力汽车的控制方法
CN103991374B (zh) * 2014-05-08 2016-09-14 江苏大学 基于双转子电机动力耦合器的混合动力车辆系统切换控制方法
CN105501047B (zh) * 2014-09-26 2018-06-26 比亚迪股份有限公司 混合动力汽车及其控制方法和动力传动系统
CN106364306B (zh) * 2016-10-21 2019-09-06 奇瑞汽车股份有限公司 混合动力汽车的动力系统及其运行方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0744314B1 (en) * 1995-05-24 2000-09-20 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and its control method
JP2000032610A (ja) * 1998-07-10 2000-01-28 Takayuki Miyao エンジン・電池ハイブリッド駆動装置
CN1843796A (zh) * 2006-05-12 2006-10-11 深圳市五洲龙汽车有限公司 自动变速混合动力电动车
CN206983710U (zh) * 2017-03-31 2018-02-09 比亚迪股份有限公司 混合动力汽车及其动力系统
CN207523430U (zh) * 2017-03-31 2018-06-22 比亚迪股份有限公司 混合动力汽车及其动力系统

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113415163A (zh) * 2021-07-30 2021-09-21 东风商用车有限公司 混合动力汽车低压供电系统、控制方法及混合动力汽车

Also Published As

Publication number Publication date
TW201914848A (zh) 2019-04-16
CN109591799A (zh) 2019-04-09
TWI737921B (zh) 2021-09-01
CN109591799B (zh) 2020-11-06

Similar Documents

Publication Publication Date Title
WO2019062880A1 (zh) 混合动力汽车及其发电控制方法和装置
KR101776723B1 (ko) 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
JP6678184B2 (ja) ハイブリッド電気自動車、ハイブリッド電気自動車の運転制御方法および装置
US10017174B2 (en) Control system and control method of hybrid electric vehicle
EP0744314B1 (en) Hybrid vehicle and its control method
US20150149014A1 (en) Method of controlling a mild hybrid electric vehicle
KR101703613B1 (ko) 하이브리드 차량의 엔진 기동 시점 제어 방법 및 그 제어 장치
KR101714206B1 (ko) 친환경 차량의 엔진 운전 제어 시스템 및 방법
JP2013071551A (ja) ハイブリッド車両の制御装置
KR101372198B1 (ko) 시동발전기의 발전 출력 제어 방법
JP2008150014A (ja) ハイブリッド電気車両のアイドリング充電時の発電制御方法
JP6374431B2 (ja) 駆動制御機構および駆動制御装置
KR20180022127A (ko) 친환경 차량의 저전압 직류 변환기의 출력 제어 방법 및 그 장치
WO2019062879A1 (zh) 混合动力汽车及其换挡控制方法和系统
WO2019062883A1 (zh) 混合动力汽车及其发电控制方法和装置
KR102474514B1 (ko) 병렬형 하이브리드 차량의 페일 세이프 방법
KR20110062133A (ko) 하이브리드 차량의 제어장치 및 방법
CN115285107A (zh) 一种基于混合动力系统的挡位切换方法及系统
JP2015085707A (ja) ハイブリッド車両の電源システム
CN210591369U (zh) 一种混合动力系统及车辆
WO2023284662A1 (zh) 混动车电池能量控制方法和装置
CN108656929B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
CN112412638B (zh) 车辆及其控制方法、控制装置
TWI667162B (zh) 混合動力汽車及其用電控制方法和裝置
CN103010128A (zh) 基于对原车发电机控制优化的车辆电源系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861382

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861382

Country of ref document: EP

Kind code of ref document: A1