WO2019062883A1 - 混合动力汽车及其发电控制方法和装置 - Google Patents

混合动力汽车及其发电控制方法和装置 Download PDF

Info

Publication number
WO2019062883A1
WO2019062883A1 PCT/CN2018/108541 CN2018108541W WO2019062883A1 WO 2019062883 A1 WO2019062883 A1 WO 2019062883A1 CN 2018108541 W CN2018108541 W CN 2018108541W WO 2019062883 A1 WO2019062883 A1 WO 2019062883A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
level
hybrid vehicle
interval
Prior art date
Application number
PCT/CN2018/108541
Other languages
English (en)
French (fr)
Inventor
王春生
许伯良
赵梅君
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Publication of WO2019062883A1 publication Critical patent/WO2019062883A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/08Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of electric propulsion units, e.g. motors or generators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/24Conjoint control of vehicle sub-units of different type or different function including control of energy storage means
    • B60W10/26Conjoint control of vehicle sub-units of different type or different function including control of energy storage means for electrical energy, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1886Controlling power supply to auxiliary devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2540/00Input parameters relating to occupants
    • B60W2540/10Accelerator pedal position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles

Definitions

  • the present disclosure relates to the field of automotive technology, and in particular, to a power generation control method for a hybrid vehicle, a power generation control device for a hybrid vehicle, and a hybrid vehicle.
  • the vehicle speed-power curve is usually checked according to the current vehicle speed, and then multiplied by the first coefficient found according to the SOC (State Of Charge) value, and multiplied by the current SOC and The second coefficient obtained by the difference of the SOC balance point is finally limited by the power generation capacity of the vehicle to obtain the power generation.
  • SOC State Of Charge
  • the present disclosure aims to solve at least one of the technical problems in the related art to some extent.
  • the first object of the present disclosure is to provide a power generation control method for a hybrid vehicle that can enhance the power conservation capability.
  • a second object of the present disclosure is to provide a power generation control device for a hybrid vehicle.
  • a third object of the present disclosure is to propose a hybrid vehicle.
  • a power generation control method for a hybrid vehicle includes the steps of: acquiring a gradient of a hybrid vehicle, a throttle depth, and a power of a powered device, according to the slope.
  • the target of the hybrid vehicle is determined according to the gradient, the throttle depth, and the power of the electric equipment by acquiring the gradient of the hybrid vehicle, the throttle depth, and the power of the electric equipment.
  • the electric level is obtained by acquiring the SOC value and the SOC balance point of the power battery of the hybrid vehicle, determining the power generation demand level of the hybrid vehicle according to the SOC value of the power battery and the SOC balance point, and then obtaining the maximum allowable power generation of the auxiliary motor of the hybrid vehicle.
  • the power generation control method of the hybrid vehicle may be based on the gradient of the hybrid vehicle, the throttle depth, the power of the electric equipment, the SOC value of the power battery, the SOC balance point, and the maximum allowable power generation of the sub-motor.
  • the engine determines the power generation level by the power generation output power of the engine in the preset optimal economic region and the allowable charging power of the power battery, so that the judgment condition is more comprehensive, and can comprehensively judge according to the state of the vehicle, the state of power consumption of the user, and the power generation capability of the vehicle. Power generation, to achieve power generation control combined with power consumption, improve the overall vehicle power protection capacity and enhance user experience.
  • a power generation control apparatus for a hybrid vehicle includes a controller and a memory, the memory storing a plurality of instructions, the instructions being adapted to be loaded by the controller And performing: obtaining the gradient of the hybrid vehicle, the throttle depth, and the power of the powered device, and determining a target power level of the hybrid vehicle according to the slope, the throttle depth, and the power of the powered device; Obtaining a SOC value and a SOC balance point of a power battery of the hybrid vehicle, determining a power generation demand level of the hybrid vehicle according to the SOC value of the power battery and an SOC balance point; acquiring a secondary motor of the hybrid vehicle The maximum allowable power generation, the power generation output power of the engine in a preset optimal economic region, and the allowable charging power of the power battery, and according to the maximum allowable power generation of the secondary motor, the engine is within a preset optimal region.
  • the level of demand for power generation and the power generation capacity level determines the final level of the hybrid vehicle, and controls the power generation of the hybrid vehicle according to the final power level.
  • the power generation control device of the hybrid vehicle determines the target of the hybrid vehicle according to the gradient, the throttle depth, and the power of the electric equipment by acquiring the gradient of the hybrid vehicle, the throttle depth, and the power of the electric equipment.
  • the charging power determines the power generation capability level of the hybrid vehicle; and determines the final power generation level of the hybrid vehicle according to the target power consumption level, the power generation demand level, and the power generation capability level, and controls the power generation of the hybrid vehicle according to the final power generation level
  • the power generation control device of the hybrid vehicle may be based on the gradient of the hybrid vehicle, the throttle depth, the power of the electric equipment, the SOC value of the power battery, the SOC balance point, the maximum allowable power generation of the sub motor,
  • the engine determines the power generation level by the power generation output power in the preset optimal economic region and the allowable charging power of the power battery, so that the judgment condition is more comprehensive, and the power generation can be comprehensively judged according to the state of the vehicle, the state of power consumption of the user, and the power generation capability of the vehicle. Power, to achieve power generation control combined with power consumption, improve vehicle power protection capacity and enhance user experience.
  • a hybrid vehicle proposed by the third aspect of the present disclosure includes the power generation control device of the hybrid vehicle as described above.
  • the power generation control device of the hybrid vehicle can comprehensively determine the power generation according to the state of charge of the vehicle, the state of power consumption of the user, and the power generation capability, thereby achieving power generation control combined with power consumption, and improving the overall power generation.
  • the car protects the power and enhances the user experience.
  • FIG. 2a is a schematic structural view of a power system of a hybrid vehicle according to an embodiment of the present disclosure
  • FIG. 2b is a schematic structural view of a power system of a hybrid vehicle according to another embodiment of the present disclosure
  • FIG. 3 is a block schematic diagram of a power system of a hybrid vehicle in accordance with another embodiment of the present disclosure.
  • FIG. 7 is a flowchart of determining a power generation capability level of a hybrid vehicle according to an embodiment of the present disclosure
  • FIG. 8 is a flow chart of determining a final power generation of a hybrid vehicle in accordance with an embodiment of the present disclosure
  • a power generation control method of a hybrid vehicle, a power system of a hybrid vehicle, and a hybrid vehicle according to an embodiment of the present disclosure will be described below with reference to the drawings.
  • the powertrain 200 of the hybrid vehicle includes an engine 1, a power motor 2, a power battery 3, a DC-DC converter 4, and a sub-motor 5.
  • the engine 1 outputs power to the wheels 7 of the hybrid vehicle through the clutch 6; the power motor 2 is used to output the driving force to the wheels 7 of the hybrid vehicle.
  • the power system of the embodiment of the present disclosure can provide power for the hybrid vehicle to normally travel through the engine 1 and/or the power motor 2.
  • the power source of the power system 200 may be the engine 1 and the power motor 2, that is, any one of the engine 1 and the power motor 2 may separately output power to the wheel 7, or the engine 1 And the power motor 2 can simultaneously output power to the wheel 7.
  • the power battery 3 is used to supply power to the power motor 2; the sub motor 5 is connected to the engine 1, for example, the sub motor 5 can be connected to the engine 1 through the train wheel end of the engine 1.
  • the sub-motors 5 are respectively connected to the power motor 2, the DC-DC converter 4, and the power battery 3, and the sub-motor 5 performs power generation by the engine 1 to charge the power battery 3, supply power to the power motor 2, and supply DC- At least one of the DC converter 4 power supply.
  • the engine 1 can drive the secondary motor 5 to generate electricity, and the electric energy generated by the secondary motor 5 can be supplied to at least one of the power battery 3, the power motor 2, and the DC-DC converter 4.
  • the engine 1 can drive the sub-motor 5 to generate electricity while outputting power to the wheel 7, or can separately drive the sub-motor 5 to generate electricity.
  • the power motor 2 and the sub-motor 5 respectively serve as a drive motor and a generator, and the sub-motor 5 has a high power generation and power generation efficiency at a low speed, thereby meeting the power demand of the low-speed travel, and maintaining the low speed of the whole vehicle.
  • the electric balance maintains the low speed smoothness of the whole vehicle and improves the dynamic performance of the whole vehicle.
  • the sub-motor 5 may be used to start the engine 1, that is, the sub-motor 5 may have a function of enabling the engine 1 to be started, for example, when the engine 1 is started, the sub-motor 5 may drive the crankshaft of the engine 1. In order to bring the piston of the engine 1 to the ignition position, the starting of the engine 1 is achieved, whereby the sub-motor 5 can realize the function of the starter in the related art.
  • the driving force of the power system 200 is output to a pair of front wheels 71, and the whole vehicle can adopt a driving mode of two drives; when the engine 1 drives a pair of front wheels 71
  • the power motor 2 drives the pair of rear wheels 72, the driving force of the power system 200 is output to the pair of front wheels 71 and the pair of rear wheels 72, respectively, and the entire vehicle can be driven by a four-wheel drive.
  • the powertrain 200 of the hybrid vehicle further includes a final drive 8 and a transmission 90, wherein the engine 1 passes through the clutch 6, the transmission 90, and the final drive.
  • the power is output to the first wheel of the hybrid vehicle, for example, a pair of front wheels 71, and the power motor 2 outputs a driving force to the first wheel of the hybrid vehicle such as the pair of front wheels 71 through the final drive 8.
  • the clutch 6 and the transmission 90 can be integrated.
  • the powertrain 200 of the hybrid vehicle further includes a first transmission 91 and a second transmission 92, wherein the engine 1 passes the clutch 6 and
  • the first transmission 91 outputs power to a first wheel of the hybrid vehicle, such as a pair of front wheels 71, and the power motor 2 outputs a driving force to a second wheel of the hybrid vehicle, such as a pair of rear wheels 72, through the second transmission 92.
  • the clutch 6 and the first transmission 91 can be integrated.
  • the sub-motor 5 further includes a first controller 51
  • the power motor 2 further includes a second controller 21, and the sub-motor 5 passes through the first controller 51 respectively. It is connected to the power battery 3 and the DC-DC converter 4, and is connected to the power motor 2 through the first controller 51 and the second controller 21.
  • the first controller 51 is respectively connected to the second controller 21, the power battery 3 and the DC-DC converter 4, and the first controller 51 may have an AC-DC conversion unit, and the sub-motor 5 generates AC power when generating electricity, AC-DC
  • the conversion unit converts the alternating current generated by the high voltage motor 2 into a high voltage direct current such as 600V high voltage direct current to realize at least one of charging the power battery 3, supplying power to the power motor 2, and supplying power to the DC-DC converter 4.
  • the second controller 21 may have a DC-AC conversion unit, the first controller 51 may convert the alternating current generated by the secondary motor 5 into high-voltage direct current, and the DC-AC conversion unit may further convert the high-voltage direct current generated by the first controller 51. It is converted to alternating current to supply power to the power motor 2.
  • the sub-motor 5 when the sub-motor 5 performs power generation, the sub-motor 5 can charge the power battery 3 through the first controller 51 and/or supply power to the DC-DC converter 4. Further, the sub motor 5 can also supply power to the power motor 2 through the first controller 51 and the second controller 21.
  • the DC-DC converter 4 is also connected to the power battery 3.
  • the DC-DC converter 4 is also connected to the power motor 2 via a second controller 21.
  • the first controller 51 has a first DC terminal DC1
  • the second controller 21 has a second DC terminal DC2
  • the DC-DC converter 4 has a third DC terminal DC3.
  • the third DC terminal DC3 of the DC-DC converter 4 can be connected to the first DC terminal DC1 of the first controller 51 to perform DC-DC on the high voltage DC power output by the first controller 51 through the first DC terminal DC1. Transform.
  • the third DC terminal DC3 of the DC-DC converter 4 can also be connected to the power battery 3, and the first DC terminal DC1 of the first controller 51 can be connected to the power battery 3 to pass the first controller 51.
  • the first DC terminal DC1 outputs high voltage direct current to the power battery 3 to charge the power battery 3.
  • the DC-DC converter 4 is also respectively connected to the first electrical device 10 and the low voltage battery 20 in the hybrid vehicle to supply power to the first electrical device 10 and the low voltage battery 20, and
  • the low voltage battery 20 is also connected to the first electrical device 10.
  • the low voltage battery 20 is connected to the first electrical device 10 to supply power to the first electrical device 10.
  • the low voltage battery 20 can be the first electrical device. 10 power supply, thus ensuring the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode, which helps to meet the user's mileage requirements for the whole vehicle.
  • the third DC terminal DC3 of the DC-DC converter 4 is connected to the first controller 51
  • the fourth DC terminal DC4 of the DC-DC converter 4 is connected to the first electrical device 10 and the low voltage battery 20, respectively, when the power motor 2.
  • the sub-motor 5 can generate power to supply power to the first electric device 10 and/or charge the low-voltage battery 20 through the first controller 51 and the DC-DC converter 4. In order to make the hybrid car run in pure fuel mode.
  • the sub motor 5 and the DC-DC converter 4 have a separate power supply path.
  • the power motor 2, the second controller 21, and the power battery 3 fail, the electric drive cannot be realized.
  • the sub motor 5 and the DC are passed.
  • the separate power supply channel of the DC converter 4 can ensure the low-voltage power consumption of the whole vehicle, ensuring that the whole vehicle can be driven in pure fuel mode, and helps to meet the user's mileage requirements for the whole vehicle.
  • the first controller 51, the second controller 21, and the power battery 3 are also respectively coupled to the second electrical device 30 in the hybrid vehicle.
  • the first DC terminal DC1 of the first controller 51 can be connected to the second electrical device 30, and when the secondary motor 5 performs power generation, the secondary motor 5 can pass through the first controller. 51 directly supplies power to the second electrical device 30.
  • the AC-DC conversion unit of the first controller 51 can also convert the alternating current generated by the secondary motor 5 into high-voltage direct current and directly supply power to the second electrical device 30.
  • the power battery 3 can also be coupled to the second electrical device 30 to power the second electrical device 30. That is to say, the high voltage direct current output from the power battery 3 can be directly supplied to the second electric device 30.
  • the second electrical device 30 can be a high-voltage electrical device, and can include, but is not limited to, an air conditioner compressor, a PTC (Positive Temperature Coefficient) heater, and the like.
  • power generation by the sub-motor 5 makes it possible to charge the power battery 3, or supply power to the power motor 2, or supply power to the first electric device 10 and the second electric device 30.
  • the power battery 3 can supply power to the power motor 2 through the second controller 21, or supply power to the second electric device 30, and can also supply power to the first electric device 10 and/or the low-voltage battery 20 through the DC-DC converter 4. This enriches the power supply mode of the whole vehicle, meets the power demand of the whole vehicle under different working conditions, and improves the performance of the whole vehicle.
  • the low voltage may refer to a voltage of 12V (volts) or 24V
  • the high voltage may refer to a voltage of 600V, but is not limited thereto.
  • the engine can be prevented from participating in driving at a low speed, thereby eliminating the use of the clutch, reducing clutch wear or slip, while reducing the sense of frustration and improving comfort, and At low speeds, the engine can be operated in an economical area, and only power generation is not driven, fuel consumption is reduced, engine noise is reduced, low-speed electric balance and low-speed smoothness of the vehicle are maintained, and overall vehicle performance is improved.
  • the secondary motor can directly charge the power battery, and can also supply power for low-voltage devices such as low-voltage batteries, first electrical equipment, etc., and can also be used as a starter.
  • the embodiment of the present disclosure also proposes a power generation control method for the hybrid vehicle.
  • the power generation control method of the hybrid vehicle of the embodiment of the present disclosure includes the following steps:
  • S1 Obtain the gradient of the hybrid vehicle, the throttle depth and the power of the electric equipment, and determine the target power level of the hybrid vehicle according to the gradient, the throttle depth and the power of the electric equipment.
  • the slope is the ratio of the vertical height to the horizontal length of the slope
  • the depth of the throttle is the depth at which the accelerator pedal is depressed
  • the current working power of the electrical equipment is the total power of all current electrical equipment.
  • the electrical equipment can be low-voltage electrical equipment, such as air conditioners, radios, and the like.
  • S2 Obtain an SOC value and a SOC balance point of the power battery of the hybrid vehicle, and determine a power generation demand level of the hybrid vehicle according to the SOC value of the power battery and the SOC balance point.
  • the SOC balance point may be a target SOC value set by the user. Even if the SOC value of the power battery is kept as close as possible to the SOC balance point, when the SOC value of the power battery is lower than the SOC balance point, the power battery may be charged.
  • S3 obtaining the maximum allowable power generation of the auxiliary motor of the hybrid vehicle, the power generation output power of the engine in the preset optimal economic region, and the allowable charging power of the power battery, and according to the maximum allowable power generation of the secondary motor, the engine is in advance
  • the power generation output power in the optimal economic area and the allowable charging power of the power battery are determined to determine the power generation capability level of the hybrid vehicle.
  • the target power level can be divided into three power levels, that is, the maximum power level, the standard power level, and the economic power level.
  • the power demand level and the power generation capacity are also It can be divided into three levels, that is, the power generation demand level can be divided into the maximum power generation demand level, the standard power generation demand level, and the economic power generation demand level.
  • the power generation capability level can be divided into a maximum power generation capability level, a standard power generation capability level, and an economic power generation capability level.
  • the power generation control method of the hybrid vehicle may be based on the gradient of the hybrid vehicle, the throttle depth, the power of the electric equipment, the SOC value of the power battery, the SOC balance point, and the maximum allowable power generation of the sub-motor.
  • the engine determines the power generation level by the power generation output power of the engine in the preset optimal economic region and the allowable charging power of the power battery, so that the judgment condition is more comprehensive, and can comprehensively judge according to the state of the vehicle, the state of power consumption of the user, and the power generation capability of the vehicle.
  • the power generation capacity can be determined according to the sum of the target power consumption level, the power generation demand level and the power generation capability level of the hybrid vehicle, thereby realizing the power generation control combined with the power consumption situation, improving the overall vehicle power conservation capability, and improving the user experience.
  • determining a target power consumption level of the hybrid vehicle according to the gradient, the throttle depth, and the power of the electric equipment includes: obtaining a slope interval to which the slope belongs, and acquiring a slope target corresponding to the slope interval to which the slope belongs The power level is obtained; the throttle depth interval to which the throttle depth belongs is obtained, and the throttle depth target power level corresponding to the throttle depth interval to which the throttle depth belongs is obtained; the power interval to which the power of the power device belongs is acquired, and the power of the power device belongs to The power target power level corresponding to the power interval; the highest level among the slope target power level, the throttle depth target power level, and the power target power level is used as the target power level.
  • the slope is positively correlated with the grade of the slope target. That is to say, the higher the slope target power level, the higher the slope in the corresponding slope interval, and the throttle depth is positively correlated with the throttle depth target power level, that is, The higher the throttle depth target power level, the higher the throttle depth in the corresponding throttle depth interval, the power of the power equipment is positively correlated with the power target power level, that is, the higher the power target power level, the corresponding power The higher the operating power of the electrical equipment in the interval.
  • Each of the gradient of the hybrid vehicle, the depth of the throttle, and the operating power of the electric equipment can be divided into three sections, and the three sections can respectively correspond to the maximum power level, the standard power level, and the economic power level, that is,
  • the three slope intervals correspond to the maximum power consumption grade, the slope standard power consumption grade and the slope economic power grade
  • the three throttle depth intervals correspond to the throttle depth maximum power level, the throttle depth standard power level and the throttle depth economic power.
  • Level the three power intervals correspond to the maximum power consumption level, the power standard power level, and the power economy power level.
  • the maximum power level is higher than the standard power level
  • the standard power level is higher than the economic power level.
  • Determining the grade of the slope according to the gradient may include: dividing the slope of the hybrid vehicle into a first slope interval, a second slope interval, and a third slope interval, wherein the first slope interval is greater than A1%, and the second slope interval is greater than or equal to A2. % is less than or equal to A1%, and the third slope interval is greater than 0 and less than A2%.
  • the slope power level corresponding to the first slope interval is the maximum power level
  • the slope belongs to the second slope.
  • the slope power level corresponding to the second slope interval is the standard power level.
  • the slope grade corresponding to the third slope interval is the economic power level.
  • Determining the throttle depth power level according to the throttle depth may include: dividing the throttle depth of the hybrid vehicle into a first depth interval, a second depth interval, and a third depth interval, where the first depth interval is greater than B1%, and the second depth interval is If it is greater than B2% and less than or equal to B1%, the third depth interval is greater than 0 and less than or equal to B2%.
  • the throttle depth target power consumption level corresponding to the first throttle depth interval is the maximum power consumption level
  • the throttle depth target power consumption level corresponding to the second throttle depth interval is the standard power consumption level
  • the throttle depth target power consumption level corresponding to the third throttle depth interval is an economic power level, wherein B1>B2>0.
  • Determining the power usage level according to the operating power of the powered device may include: dividing the working power of the powered device of the hybrid vehicle into the first power interval, the second power interval, and the third power interval, where the first power interval is greater than C1kw, the second power interval is greater than or equal to C2kw less than or equal to C1kw, and the third power interval is less than C2kw.
  • the power target power level corresponding to the first power interval is the maximum power consumption level
  • the working power is greater than or equal to C2kw less than or equal to C1kw
  • the working power belongs to the second power interval, and the power target corresponding to the second power interval is the standard power level
  • the working power is less than C2kw
  • the working power is determined to belong to the third power interval, and the power target corresponding to the third power interval
  • the power level is the economic power level, where C1>C2>0.
  • the throttle depth power level and the power level may be used.
  • the priority decreasing order determines the current power level, and the highest level among the slope power level, the throttle depth power level, and the power power level can be used as the power level.
  • the power level of the grade, the power level of the throttle, and the power level of the power is the maximum power level, the power level is the maximum power level, if there is no maximum power level. And if there is at least one standard power level, the power level is the standard power level. If there is neither the maximum power level nor the standard power level, only at least one economic power level, the power level is economic electricity. grade.
  • determining the target power consumption level of the hybrid vehicle of the embodiment of the present disclosure includes the following steps:
  • step S101 The system is powered on, and the slope, the throttle depth, and the power of the powered device are obtained, and step S102, step S109, and step S116 are performed, respectively.
  • step S103 is performed; if no, step S104 is performed.
  • step S105 is performed; if no, step S106 is performed.
  • step S107 is performed; if no, step S108 is performed.
  • step S110 If yes, go to step S110; if no, go to step S111.
  • step S112 If yes, go to step S112; if no, go to step S113.
  • step S114 is performed; if no, step S115 is performed.
  • S116 Determine whether the working power of the powered device is greater than C1kw.
  • step S117 is performed; if no, step S118 is performed.
  • S118 Determine whether the working power of the powered device is greater than C2kw.
  • step S119 is performed; if no, step S120 is performed.
  • S120 Determine whether the working power of the powered device is greater than C3kw.
  • step S121 is performed; if no, step S122 is performed.
  • step S121 Determine that the power target power consumption level is an economic power consumption level, and execute step S123.
  • S122 Determine the power consumption requirement of the electric equipment of the hybrid vehicle, and execute step S123.
  • S123 The highest level of the gradient target power level, the throttle depth target power level, and the power target power level is used as the target power level.
  • determining a power generation demand level of the hybrid vehicle according to the SOC value of the power battery and the SOC balance point includes: acquiring a SOC value interval to which the SOC value of the power battery belongs, and acquiring a SOC value interval to which the SOC value belongs. Corresponding first power generation demand level; obtaining a difference between the SOC balance point of the power battery and the SOC value, obtaining a difference interval to which the difference belongs, and acquiring a second power generation demand level corresponding to the difference interval to which the difference belongs; The highest level among the power generation demand level and the second power generation demand level is used as the power generation demand level.
  • the SOC value of the power battery is positively correlated with the first power generation demand level, that is, the higher the first power generation demand level, the higher the SOC value in the SOC value interval of the corresponding power battery, and the SOC balance point of the power battery and
  • the difference in SOC value is positively correlated with the second power generation demand level, that is, the higher the second power generation demand level, the higher the difference in the corresponding difference interval.
  • the SOC value and the difference of the power battery can be divided into three sections, and the three sections respectively correspond to the maximum power generation demand level, the standard power generation demand level, and the economic power generation demand level, that is, the three power battery SOC value intervals respectively correspond to the maximum power generation demand.
  • Level, standard power generation demand level and economic power generation demand level, the three difference intervals correspond to the maximum power generation demand level, the standard power generation demand level and the economic power generation demand level, wherein the maximum power generation demand level is higher than the standard power generation demand level, and the standard power generation demand level The rating is higher than the economic power rating.
  • Determining the first power generation demand level according to the SOC value of the power battery may include: dividing the SOC value of the power battery into the first SOC value interval, the second SOC value interval, and the third SOC value, where the first SOC value interval is greater than s2 % is less than or equal to s3%, the second SOC value interval is greater than s1% and less than or equal to s2%, and the third SOC value interval is less than or equal to s1%.
  • the SOC value of the power battery when the SOC value of the power battery is greater than s2% and less than or equal to s3%, it is determined that the SOC value of the power battery belongs to the first SOC value interval, and the first power generation demand level is the maximum power generation demand level, when the SOC value of the power battery is greater than When s1% is less than or equal to s2%, it is determined that the SOC value of the power battery belongs to the second SOC value interval, and the first power generation demand level is the standard power generation demand level, and when the SOC value of the power battery is less than or equal to s1%, the power battery is determined.
  • the SOC value belongs to the third SOC value interval, and the first power generation demand level is the economic power generation demand level, where s1 ⁇ s2 ⁇ s3.
  • Determining the second power generation demand level according to the difference between the SOC balance point of the power battery and the SOC value may include: obtaining a difference value by subtracting the SOC value from the SOC balance point of the power battery, and dividing the difference into the first difference interval, the first The second difference interval and the third difference interval, the first difference interval is greater than or equal to n1%, the second difference interval is greater than or equal to n2% and less than n1%, and the third difference interval is greater than or equal to n3% and less than N2%.
  • the difference when the difference is greater than or equal to n1%, it is determined that the difference belongs to the first difference interval, and the second power generation demand level is the maximum power generation demand level, and when the difference is greater than or equal to n2% and less than n1%, the difference is judged. It belongs to the second difference interval, and the second power generation demand level is the standard power generation demand. When the difference is greater than or equal to n3% and less than n2%, the difference is determined to belong to the third difference interval, and the second power generation demand level is the economic power generation demand. , where n1>n2>n3.
  • the power generation may be determined according to the order of the maximum power generation demand level, the standard power generation demand level, and the economic power generation demand level priority decreasing.
  • the demand level that is, the highest level among the first power generation demand level and the second power generation demand level can be used as the power generation demand level.
  • the hybrid vehicle of the embodiment of the present disclosure determines the power generation demand level including the following steps:
  • step S201 Acquire the SOC value of the power battery, and perform step S202 and step S209, respectively.
  • S202 Determine whether the SOC value of the power battery is greater than s2% and less than or equal to s3%.
  • step S203 is performed; if no, step S204 is performed.
  • step S203 Determine that the first power generation demand level is the maximum power generation demand level, and perform step S217.
  • S204 Determine whether the SOC value of the power battery is greater than s1% and less than or equal to s2%.
  • step S205 is performed; if no, step S206 is performed.
  • S206 Determine whether the SOC value of the power battery is less than or equal to s1%.
  • step S207 is performed; if no, step S208 is performed.
  • step S207 Determine that the first power generation demand level is an economic power generation demand level, and perform step S217.
  • step S211 If yes, go to step S211; if no, go to step S212.
  • step S211 Determine that the second power generation demand level is the maximum power generation demand level, and perform step S217.
  • step S213 If yes, go to step S213; if no, go to step S214.
  • step S215 is performed; if no, step S216 is performed.
  • step S215 Determine that the second power generation demand level is an economic power generation demand level, and perform step S217.
  • S217 Determine whether the first power generation demand level is greater than the second power generation demand level. Among them, the maximum power generation demand level is greater than the standard power generation demand level, and the standard power generation demand level is greater than the economic power generation demand level.
  • step S218 If yes, go to step S218; if no, go to step S219.
  • S218 Determine that the first power generation demand level is a power generation demand level.
  • the power generation output power range to which the output power belongs and obtain the engine power generation capability level corresponding to the power generation output power range to which the power generation output power of the engine belongs in the preset optimal economic region; and obtain the allowable charging power to which the allowable charging power of the power battery belongs Interval, and obtaining a power battery power generation capability level corresponding to the allowable charging power range to which the allowable charging power of the power battery belongs; the lowest level among the secondary motor power generation capability level, the engine power generation capability level, and the power battery power generation capability level is used as the power generation energy Level.
  • the maximum allowable power generation of the secondary motor is positively correlated with the secondary motor power generation capability level, that is, the higher the secondary motor power generation capability level, the higher the maximum allowable power generation of the corresponding secondary motor, and the engine is at the preset optimal economy.
  • the power generation output power in the area is positively correlated with the engine power generation capability level. That is, the higher the engine power generation capability level, the higher the power generation output power of the corresponding engine in the preset optimal economic region, and the allowable charging power of the power battery. It is positively correlated with the power battery power generation capability level, that is, the higher the power battery power generation capability, the higher the allowable charging power of the corresponding power battery.
  • the power generation output power range in the region corresponds to the maximum power generation capability level, the standard power generation capability level, and the economic power generation capability level, respectively, and the allowable charging power intervals of the three power batteries correspond to the maximum power generation capability level, the standard power generation capability level, and the economic power generation capability level, respectively.
  • the maximum power generation capability level is higher than the standard power generation capability level, and the standard power generation capability level is greater than the economic power generation capability level.
  • the interval threshold corresponding to the maximum power generation capability level is P1KW
  • the interval threshold corresponding to the standard power generation capability level is P2KW
  • economic generation is performed.
  • the interval threshold corresponding to the capability level is P3KW, where P1>P2>P3.
  • Determining the secondary motor power generation capability level according to the maximum allowable power generation of the secondary motor includes: when the maximum allowable power generation of the secondary motor is greater than or equal to the P1KW interval, determining that the power generation capability level of the secondary motor is the maximum power generation capability level, and the maximum allowable power generation of the secondary motor When the power is greater than or equal to P2KW and less than P1KW, the power generation capability of the secondary motor is judged to be the standard power generation capability level. When the maximum allowable power generation of the secondary motor is greater than or equal to P3KW and less than P2KW, the power generation capability of the secondary motor is determined to be economical. Ability level.
  • Determining the engine power generation capability level according to the power generation output power of the engine in the preset optimal region includes: when the power generation output power of the engine is greater than or equal to the P1KW interval, determining that the engine power generation capability level is the maximum power generation capability level, when the engine power generation When the output power is greater than or equal to P2KW and less than the P1KW interval, the engine power generation capability level is determined to be the standard power generation capability level. When the power generation output power of the engine is greater than or equal to P3KW and less than the P2KW interval, the engine power generation capability level is determined as the economic power generation capability. grade.
  • Determining the power battery power generation capability level according to the allowable electric power of the power battery includes: when the allowable charging electric power of the power battery is greater than or equal to P1KW, determining that the power battery power generation capability level is the maximum power generation capability level, when the allowable charging power is greater than or equal to P2KW and less than When P1KW, the power battery power generation capability level is determined to be a standard power generation capability level. When the allowable charging power is greater than or equal to P3KW and less than P2KW, the power battery power generation capability level is determined to be an economic power generation capability level.
  • the sub-motor power generation capability level, the generator power generation capability level, and the power battery generation are separately determined based on the maximum allowable power generation of the secondary motor, the power generation output power of the engine in the preset optimal economic region, and the allowable charging power of the power battery.
  • the power generation capability level can be judged according to the order of increasing the maximum power generation capability level, the standard power generation capability level, and the economic power generation capability level, and the secondary motor power generation capability level, the generator power generation capability level, and the power battery power generation capability can be obtained.
  • the lowest level in the rank is used as the power generation capability level.
  • the hybrid vehicle of the embodiment of the present disclosure determines the power generation capability level including the following steps:
  • S302 Determine whether the maximum allowable power generation of the secondary motor is greater than or equal to P1KW.
  • step S303 If yes, go to step S303; if no, go to step S304.
  • S304 Determine whether the maximum allowable power generation of the secondary motor is greater than or equal to P2KW.
  • step S305 is performed; if no, step S306 is performed.
  • S306 Determine whether the maximum allowable power generation of the secondary motor is greater than or equal to P3KW.
  • step S307 If yes, go to step S307; if no, go to step S308.
  • step S307 Determine the power generation capability level of the secondary motor as the economic power generation capability level, and execute step S323.
  • step S308 It is determined that the power generation capability of the sub-motor is insufficient, and step S323 is performed.
  • S309 Determine whether the power output of the engine in the preset optimal economic region is greater than or equal to P1KW.
  • step S310 If yes, go to step S310; if no, go to step S311.
  • S311 Determine whether the power output of the engine in the preset optimal economic region is greater than or equal to P2KW.
  • step S312 If yes, go to step S312; if no, go to step S313.
  • step S312 Determine the engine power generation capability level as the standard power generation capability level, and execute step S323.
  • S313 Determine whether the power output of the engine in the preset optimal economic region is greater than or equal to P3KW.
  • S316 Determine whether the allowable charging power of the power battery is greater than or equal to P1KW.
  • step S317 If yes, go to step S317; if no, go to step S318.
  • S317 Determine the power battery power generation capability level as the maximum power generation capability level, and execute step S323.
  • S318 Determine whether the allowable charging power of the power battery is greater than or equal to P2KW.
  • S320 Determine whether the allowable charging power of the power battery is greater than or equal to P3KW.
  • step S321 If yes, go to step S321; if no, go to step S322.
  • step S321 Determine the power battery power generation capability level as the economic power generation capability level, and execute step S323.
  • step S322 Determine that the power battery power generation capability is insufficient, and perform step S323.
  • S323 The lowest level among the secondary motor power generation capability level, the engine power generation capability level, and the power battery power generation capability level is determined as the power generation capability level.
  • determining a final power generation level of the hybrid vehicle according to the target power consumption level, the power generation demand level, and the power generation capability level includes: using the highest level between the target power consumption level and the power generation demand level as the power generation target level And the lowest level between the power generation target level and the power generation capability level is taken as the final power generation level.
  • the hybrid vehicle of the embodiment of the present disclosure determines the final power generation level including the following steps:
  • S401 Acquire a target power level, a power generation demand level, and a power generation capability level.
  • step S403 If yes, go to step S403; if no, go to step S404.
  • step S403 Determine the target power consumption level as the power generation target level, and execute step S405.
  • S405 Determine whether the power generation target level is greater than the power generation capability level.
  • step S406 If yes, go to step S406; if no, go to step S407.
  • S406 Determine the power generation capability level as the final power generation level.
  • S407 Determine the power generation target level as the final power generation level.
  • controlling the power generation of the hybrid vehicle according to the final power generation level includes: obtaining the final power generation corresponding to the final power generation level; and controlling the hybrid vehicle to generate power according to the final power generation power.
  • the hybrid vehicle is determined according to the gradient, the throttle depth, and the power of the electric equipment by acquiring the gradient of the hybrid vehicle, the throttle depth, and the power of the electric equipment.
  • the target power consumption level is obtained, the SOC value and the SOC balance point of the power battery of the hybrid vehicle are obtained, the power generation demand level of the hybrid vehicle is determined according to the SOC value of the power battery and the SOC balance point, and then the maximum of the auxiliary motor of the hybrid vehicle is obtained.
  • the power generation demand level and the power generation capability level determine the final power generation level of the hybrid vehicle, and control the power generation of the hybrid vehicle according to the final power generation level. Therefore, the power generation control method of the hybrid vehicle according to the embodiment of the present disclosure may be based on the gradient of the hybrid vehicle, the throttle depth, the power of the electric equipment, the SOC value of the power battery, the SOC balance point, and the maximum allowable power generation of the sub-motor.
  • the engine determines the power generation level by the power generation output power of the engine in the preset optimal economic region and the allowable charging power of the power battery, so that the judgment condition is more comprehensive, and can comprehensively judge according to the state of the vehicle, the state of power consumption of the user, and the power generation capability of the vehicle. Power generation, to achieve power generation control combined with power consumption, improve the overall vehicle power protection capacity and enhance user experience.
  • the power generation control apparatus 100 of the hybrid vehicle of the embodiment of the present disclosure includes a controller 500 and a memory 300, and the memory 300 stores a plurality of instructions 400 adapted to be loaded and executed by the controller 500: acquisition of the hybrid The slope of the power car, the depth of the throttle and the power of the electric equipment, determine the target power level of the hybrid vehicle according to the gradient, the throttle depth and the power of the electric equipment; obtain the SOC value and the SOC balance point of the power battery of the hybrid vehicle, Determining the power generation demand level of the hybrid vehicle according to the SOC value of the power battery and the SOC balance point; obtaining the maximum allowable power generation of the auxiliary motor of the hybrid vehicle, the power generation output power of the engine in the preset optimal economic region, and the power battery Allowing charging power, and determining a power generation capability level of the hybrid vehicle according to the maximum allowable power generation of the secondary motor, the power
  • the controller 500 further performs: acquiring a slope interval to which the gradient belongs, and acquiring a slope target power level corresponding to the slope interval to which the slope belongs; acquiring a throttle depth interval to which the throttle depth belongs, and acquiring a throttle depth The throttle depth target power level corresponding to the throttle depth interval; the power interval to which the power of the power device belongs, and the power target power level corresponding to the power interval to which the power of the power device belongs; and the slope target power level The highest level of the throttle depth target power level and the power target power level is used as the target power level.
  • the slope is positively correlated with the slope target power level
  • the throttle depth is positively correlated with the throttle depth target power level
  • the power of the powered device is positively correlated with the power target power level
  • the controller 500 further performs: acquiring a SOC value interval to which the SOC value of the power battery belongs, and acquiring a first power generation demand level corresponding to the SOC value interval to which the SOC value belongs; acquiring the SOC balance point of the power battery And a difference value from the SOC value, obtaining a difference interval to which the difference belongs, and acquiring a second power generation demand level corresponding to the difference interval to which the difference belongs; and setting a highest level among the first power generation demand level and the second power generation demand level As a power generation demand level.
  • the SOC value of the power battery is positively correlated with the first power generation demand level, and the difference between the SOC balance point and the SOC value of the power battery is positively correlated with the second power generation demand level.
  • the controller 500 further performs: acquiring an allowable power generation power interval to which the maximum allowable power generation of the secondary motor belongs, and acquiring a power generation capability of the auxiliary motor corresponding to the allowable power generation power range to which the maximum allowable power generation of the secondary motor belongs Level; obtaining a power generation output power range to which the power generation output power of the engine belongs in a preset optimal economic region, and acquiring an engine power generation corresponding to a power generation output power range to which the power generation output power of the engine in the preset optimal economic region belongs Capability level; obtaining an allowable charging power interval to which the allowable charging power of the power battery belongs, and obtaining a power battery power generation capability level corresponding to the allowable charging power range to which the allowable charging power of the power battery belongs; and a secondary motor power generation capability level and an engine power generation capability The lowest level among the rank and power battery power generation levels is used as the power generation capability level.
  • the maximum allowable power generation of the secondary motor is positively correlated with the secondary motor power generation capability level, and the power generation output power of the engine in the preset optimal economic region is positively correlated with the engine power generation capability level, and the power battery is allowed.
  • the charging power is positively correlated with the power battery generation capability level.
  • the controller 500 further performs: setting the highest level between the target power level and the power generation demand level as the power generation target level, and using the lowest level between the power generation target level and the power generation capability level as the final power generation. grade.
  • the controller 500 further performs: acquiring the final power generation corresponding to the final power generation level, and controlling the hybrid vehicle to generate power according to the final power generation power.
  • the power generation control device of the hybrid vehicle determines the hybrid vehicle according to the gradient, the throttle depth, and the power of the electric equipment by acquiring the gradient of the hybrid vehicle, the throttle depth, and the power of the electric equipment.
  • the target power consumption level obtain the SOC value and the SOC balance point of the power battery of the hybrid vehicle, determine the power generation demand level of the hybrid vehicle according to the SOC value of the power battery and the SOC balance point; and obtain the maximum allowable power of the auxiliary motor of the hybrid vehicle
  • the power generation control device of the hybrid vehicle may be based on the gradient of the hybrid vehicle, the throttle depth, the power of the electric equipment, the SOC value of the power battery, the SOC balance point, the maximum allowable power generation of the sub motor,
  • the engine determines the power generation level by the power generation output power in the preset optimal economic region and the allowable charging power of the power battery, so that the judgment condition is more comprehensive, and the power generation can be comprehensively judged according to the state of the vehicle, the state of power consumption of the user, and the power generation capability of the vehicle. Power, to achieve power generation control combined with power consumption, improve vehicle power protection capacity and enhance user experience.
  • Embodiments of the present disclosure also propose a hybrid vehicle.
  • the hybrid vehicle 1000 includes the above-described power generation control device 100 for a hybrid vehicle.
  • the power generation control device of the hybrid vehicle can comprehensively determine the power generation according to the state of charge of the vehicle, the state of power consumption of the user, and the power generation capability, thereby achieving power generation control combined with power consumption, and improving the overall power generation.
  • the car protects the power and enhances the user experience.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include at least one of the features, either explicitly or implicitly.
  • the meaning of "a plurality” is at least two, such as two, three, etc., unless specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed”, and the like, are to be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated or defined otherwise. , or integrated; can be mechanical or electrical connection; can be directly connected, or indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements, unless otherwise specified Limited.
  • the specific meanings of the above terms in the present disclosure can be understood by those skilled in the art on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)
  • Hybrid Electric Vehicles (AREA)

Abstract

一种混合动力汽车及其发电控制方法和装置,控制方法包括:获取混合动力汽车的坡度、油门深度和用电设备的功率,确定混合动力汽车的目标用电等级(S1);获取混合动力汽车的动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级(S2);获取混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级(S3);根据目标用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,并根据最终发电等级对混合动力汽车的发电进行控制(S4)。从而实现发电控制结合用电情况,提高整车保电能力,提升用户体验。

Description

混合动力汽车及其发电控制方法和装置
相关申请的交叉引用
本申请基于申请号为201710909310.9,申请日为2017年09月29日的中国专利申请提出,并要求该中国专利申请的优先权,该中国专利申请的全部内容在此引入本申请作为参考。
技术领域
本公开涉及汽车技术领域,特别涉及一种混合动力汽车的发电控制方法、一种混合动力汽车的发电控制装置、以及一种混合动力汽车。
背景技术
相关混合动力系统的用电策略中,通常根据当前车速查车速-功率曲线,然后乘以根据SOC(State Of Charge,荷电状态)值查得的第一系数,再乘以根据当前SOC和SOC平衡点的差值得到的第二系数,最后受整车发电能力的限制得到发电功率。
但是,相关技术存在的问题是,考虑不够全面,不能根据实际情况进行发电,容易造成整车保电能力下降,例如夏天在坡道上长时间堵车,此时空调用电量很大,容易出现电量下降较快的情况,导致整车保电能力下降,影响用户的体验。
发明内容
本公开旨在至少在一定程度上解决相关技术中的技术问题之一。为此,本公开的第一个目的在于提出一种混合动力汽车的发电控制方法,能够增强保电能力。
本公开的第二个目的在于提出一种混合动力汽车的发电控制装置。
本公开的第三个目的在于提出一种混合动力汽车。
为达到上述目的,本公开第一方面实施例提出的一种混合动力汽车的发电控制方法,包括以下步骤:获取所述混合动力汽车的坡度、油门深度和用电设备的功率,根据所述坡度、所述油门深度和所述用电设备的功率确定所述混合动力汽车的目标用电等级;获取所述混合动力汽车的动力电池的SOC值和SOC平衡点,根据所述动力电池的SOC值和SOC平衡点确定所述混合动力汽车的发电需求等级;获取所述混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和所述动力电池的允许充电功率,并根据所述副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和所述动力电池的允许充电功率确定所述混合动力汽车的发电能力等级;根据所述 目标用电等级、所述发电需求等级和所述发电能力等级确定所述混合动力汽车的最终发电等级,并根据所述最终发电等级对所述混合动力汽车的发电进行控制。
根据本公开实施例提出的混合动力汽车的发电控制方法,通过获取混合动力汽车的坡度、油门深度和用电设备的功率,根据坡度、油门深度和用电设备的功率确定混合动力汽车的目标用电等级,获取混合动力汽车的动力电池的SOC值和SOC平衡点,根据动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级,然后获取混合动力汽车的副电机的最大允许发电功率,并根据副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级,根据目标用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,并根据最终发电等级对混合动力汽车的发电进行控制。由此,本公开实施例的混合动力汽车的发电控制方法,可根据混合动力汽车的坡度、油门深度、用电设备的功率、动力电池的SOC值、SOC平衡点、副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定发电等级,从而判断条件更加全面,能够根据整车的电量状态、用户用电状态和发电能力等综合判断发电功率,实现发电控制结合用电情况,提高整车保电能力,提升用户体验。
为达到上述目的,本公开第二方面实施例提出的一种混合动力汽车的发电控制装置,包括控制器和存储器,所述存储器存储有多条指令,所述指令适于由所述控制器加载并执行:获取所述混合动力汽车的坡度、油门深度和用电设备的功率,根据所述坡度、所述油门深度和所述用电设备的功率确定所述混合动力汽车的目标用电等级;获取所述混合动力汽车的动力电池的SOC值和SOC平衡点,根据所述动力电池的SOC值和SOC平衡点确定所述混合动力汽车的发电需求等级;获取所述混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和所述动力电池的允许充电功率,并根据所述副电机的最大允许发电功率、发动机在预设的最佳区域内的发电输出功率和所述动力电池的允许充电功率确定所述混合动力汽车的发电能力等级;以及根据所述目标用电等级、所述发电需求等级和所述发电能力等级确定所述混合动力汽车的最终发电等级,并根据所述最终发电等级对所述混合动力汽车的发电进行控制。
根据本公开实施例提出的混合动力汽车的发电控制装置,通过获取混合动力汽车的坡度、油门深度和用电设备的功率,根据坡度、油门深度和用电设备的功率确定混合动力汽车的目标用电等级;获取混合动力汽车的动力电池的SOC值和SOC平衡点,根据动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级;获取混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允 许充电功率,并根据副电机的最大允许发电功率、发动机在预设的最佳区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级;以及根据目标用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,并根据最终发电等级对混合动力汽车的发电进行控制。由此,本公开实施例的混合动力汽车的发电控制装置可根据混合动力汽车的坡度、油门深度、用电设备的功率、动力电池的SOC值、SOC平衡点、副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定发电等级,从而判断条件更加全面,能够根据整车的电量状态、用户用电状态和发电能力等综合判断发电功率,实现发电控制结合用电情况,提高整车保电能力,提升用户体验。
为达到上述目的,本公开第三方面实施例提出的混合动力汽车,包括如上所述的混合动力汽车的发电控制装置。
根据本公开实施例的混合动力汽车,通过混合动力汽车的发电控制装置,能够根据整车的电量状态、用户用电状态和发电能力等综合判断发电功率,实现发电控制结合用电情况,提高整车保电能力,提升用户体验。
附图说明
图1是根据本公开一个实施例的混合动力汽车的的方框示意图;
图2a是根据本公开一个实施例的混合动力汽车的动力系统的结构示意图;
图2b是根据本公开另一个实施例的混合动力汽车的动力系统的结构示意图;
图3是根据本公开另一个实施例的混合动力汽车的动力系统的方框示意图;
图4是根据本公开实施例的混合动力汽车的发电控制方法的流程图;
图5是根据本公开实施例的混合动力汽车确定目标用电等级的流程图;
图6是根据本公开实施例的混合动力汽车确定发电需求等级的流程图;
图7是根据本公开实施例的混合动力汽车确定发电能力等级的流程图;
图8是根据本公开实施例的混合动力汽车确定最终发电功率的流程图;
图9是根据本公开实施例的混合动力汽车的发电控制装置的方框示意图;以及
图10是根据本公开实施例的混合动力汽车的方框示意图。
具体实施方式
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
下面参考附图描述本公开实施例的混合动力汽车的发电控制方法、混合动力汽车的动力系统和混合动力汽车。
根据图1-3的实施例,该混合动力汽车的动力系统200包括:发动机1、动力电机2、动力电池3、DC-DC变换器4和副电机5。
结合图1至图3所示,发动机1通过离合器6将动力输出到混合动力汽车的车轮7;动力电机2用于输出驱动力至混合动力汽车的车轮7。也就是说,本公开实施例的动力系统可通过发动机1和/或动力电机2为混合动力汽车正常行驶提供动力。在本公开的一些实施例中,动力系统200的动力源可以是发动机1和动力电机2,也就是说,发动机1和动力电机2中的任一个可单独输出动力至车轮7,或者,发动机1和动力电机2可同时输出动力至车轮7。
动力电池3用于给动力电机2供电;副电机5与发动机1相连,例如,副电机5可通过发动机1的轮系端与发动机1相连。副电机5分别与动力电机2、DC-DC变换器4和动力电池3相连,副电机5在发动机1的带动下进行发电时以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。换言之,发动机1可带动副电机5发电,副电机5产生的电能可提供至动力电池3、动力电机2和DC-DC变换器4中的至少一个。应当理解的是,发动机1可在输出动力到车轮7的同时带动副电机5发电,也可在单独带动副电机5发电。
由此,动力电机2和副电机5分别对应充当驱动电机和发电机,由于低速时副电机5具有较高的发电功率和发电效率,从而可以满足低速行驶的用电需求,可以维持整车低速电平衡,维持整车低速平顺性,提升整车的动力性能。
在一些实施例中,副电机5可为BSG(Belt-driven Starter Generator,皮带传动启动/发电一体化电机)电机。需要说明的是,副电机5属于高压电机,例如副电机5的发电电压与动力电池3的电压相当,从而副电机5产生的电能可以不经过电压变换直接给动力电池3充电,还可直接给动力电机2和/或DC-DC变换器4供电。并且副电机5也属于高效发电机,例如在发动机1怠速转速下带动副电机5发电即可实现97%以上的发电效率。
另外,在本公开的一些实施例中,副电机5可用于启动发动机1,即副电机5可具有实现启动发动机1的功能,例如当启动发动机1时,副电机5可带动发动机1的曲轴转动,以使发动机1的活塞达到点火位置,从而实现发动机1的启动,由此副电机5可实现相关技术中启动机的功能。
如上所述,发动机1和动力电机2均可用于驱动混合动力汽车的车轮7。例如,如图2a所示,发动机1和动力电机2共同驱动混合动力汽车的同一车轮例如一对前轮71(包括左前轮和右前轮);又如,如图2b所示,发动机1可驱动混合动力汽车的第一车轮例如一 对前轮71(包括左前轮和右前轮),动力电机2可驱动力至混合动力汽车的第二车轮例如一对后轮72(包括左后轮和右后轮)。
当发动机1和动力电机2共同驱动一对前轮71时,动力系统200的驱动力均输出至一对前轮71,整车可采用两驱的驱动方式;当发动机1驱动一对前轮71且动力电机2驱动一对后轮72时,动力系统200的驱动力分别输出至一对前轮71和一对后轮72,整车可采用四驱的驱动方式。
在发动机1和动力电机2共同驱动同一车轮时,结合图2a所示,混合动力汽车的动力系统200还包括主减速器8和变速器90,其中,发动机1通过离合器6、变速器90以及主减速器8将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过主减速器8输出驱动力至混合动力汽车的第一车轮例如一对前轮71。其中,离合器6与变速器90可集成设置。
在发动机1驱动第一车轮且动力电机2驱动第二车轮时,结合图2b所示,混合动力汽车的动力系统200还包括第一变速器91和第二变速器92,其中,发动机1通过离合器6和第一变速器91将动力输出到混合动力汽车的第一车轮例如一对前轮71,动力电机2通过第二变速器92输出驱动力至混合动力汽车的第二车轮例如一对后轮72。其中,离合器6与第一变速器91可集成设置。
在本公开的一些实施例中,如图1至图3所示,副电机5还包括第一控制器51,动力电机2还包括第二控制器21,副电机5通过第一控制器51分别连接到动力电池3和所述DC-DC变换器4,并通过第一控制器51和第二控制器21连接到动力电机2。
第一控制器51分别与第二控制器21、动力电池3和DC-DC变换器4相连,第一控制器51可具有AC-DC变换单元,副电机5发电时可产生交流电,AC-DC变换单元可将高压电机2发电产生的交流电变换为高压直流电例如600V高压直流电,以实现给动力电池3充电、给动力电机2供电、给DC-DC变换器4供电中的至少一个。
第二控制器21可具有DC-AC变换单元,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-AC变换单元可再将第一控制器51变换出的高压直流电变换为交流电,以给动力电机2供电。
如图3所示,在副电机5进行发电时,副电机5可通过第一控制器51给动力电池3充电和/或给DC-DC变换器4供电。此外,副电机5还可通过第一控制器51和第二控制器21给动力电机2供电。
在一些实施例中,如图1至图3所示,DC-DC变换器4还与动力电池3相连。DC-DC变换器4还通过第二控制器21与动力电机2相连。
在一些实施例中,如图3所示,第一控制器51具有第一直流端DC1,第二控制器21 具有第二直流端DC2,DC-DC变换器4具有第三直流端DC3,DC-DC变换器4的第三直流端DC3可与第一控制器51的第一直流端DC1相连,以对第一控制器51通过第一直流端DC1输出的高压直流电进行DC-DC变换。并且,DC-DC变换器4的第三直流端DC3还可与动力电池3相连,进而第一控制器51的第一直流端DC1可与动力电池3相连,以使第一控制器51通过第一直流端DC1输出高压直流电至动力电池3以给动力电池3充电。进一步地,DC-DC变换器4的第三直流端DC3还可与第二控制器21的第二直流端DC2相连,进而第一控制器51的第一直流端DC1可与第二控制器21的第二直流端DC2相连,以使第一控制器51通过第一直流端DC1输出高压直流电至第二控制器21以给动力电机2供电。
在一些实施例中,如图3所示,DC-DC变换器4还分别与混合动力汽车中的第一电器设备10和低压蓄电池20相连以给第一电器设备10和低压蓄电池20供电,且低压蓄电池20还与第一电器设备10相连。
在一些实施例中,如图3所示,DC-DC变换器4还具有第四直流端DC4,DC-DC变换器4可将动力电池3输出的高压直流电和/或副电机5通过第一控制器51输出的高压直流电转换为低压直流电,并通过第四直流端DC4输出该低压直流电。进一步地,DC-DC变换器4的第四直流端DC4可与第一电器设备10相连,以给第一电器设备10供电,其中,第一电器设备10可为低压用电设备,包括但不限于车灯、收音机等。DC-DC变换器4的第四直流端DC4还可与低压蓄电池20相连,以给低压蓄电池20充电。
并且,低压蓄电池20与第一电器设备10相连,以给第一电器设备10供电,特别地,在副电机5停止发电且动力电池3故障或电量不足时,低压蓄电池20可为第一电器设备10供电,从而保证整车的低压用电,确保整车可实现纯燃油模式行驶,有助于满足用户对整车的行驶里程需求。
如上,DC-DC变换器4的第三直流端DC3与第一控制器51相连,DC-DC变换器4的第四直流端DC4分别与第一电器设备10和低压蓄电池20相连,当动力电机2、第二控制器21和动力电池3发生故障时,副电机5可进行发电以通过第一控制器51和DC-DC变换器4给第一电器设备10供电和/或给低压蓄电池20充电,以使混合动力汽车以纯燃油模式行驶。
当动力电机2、第二控制器21和动力电池3发生故障时,第一控制器51可将副电机5发电产生的交流电变换为高压直流电,DC-DC变换器4可将第一控制器50变换出的高压直流电变换为低压直流电,以给第一电器设备10供电和/或给低压蓄电池20充电。
由此,副电机5和DC-DC变换器4有一路单独供电通道,当动力电机2、第二控制器21和动力电池3发生故障时,无法实现电动驱动,此时通过副电机5和DC-DC变换器4 的单独供电通道,可以保证整车的低压用电,确保整车可实现纯燃油模式行驶,有助于满足用户对整车的行驶里程需求。
进一步结合图3的实施例,第一控制器51、第二控制器21和动力电池3还分别与混合动力汽车中的第二电器设备30相连。
在一些实施例中,如图3所示,第一控制器51的第一直流端DC1可与第二电器设备30相连,当副电机5进行发电时,副电机5可通过第一控制器51直接给第二电器设备30供电。换言之,第一控制器51的AC-DC变换单元还可将副电机5发电产生的交流电变换为高压直流电,并直接给第二电器设备30供电。
动力电池3还可与第二电器设备30相连,以给第二电器设备30供电。即言,动力电池3输出的高压直流电可直接供给第二电器设备30。
其中,第二电器设备30可为高压电器设备,可包括但不限于空调压缩机、PTC(Positive Temperature Coefficient,正的温度系数)加热器等。
如上,通过副电机5发电,可实现为动力电池3充电、或为动力电机2供电、或为第一电器设备10和第二电器设备30供电。并且,动力电池3可通过第二控制器21为动力电机2供电,或为第二电器设备30供电,也可通过DC-DC变换器4为第一电器设备10和/或低压蓄电池20供电。由此丰富了整车供电方式,满足整车在不同工况下的用电需求,提升了整车的性能。
需要说明的是,在本公开实施例中,低压可指12V(伏)或24V的电压,高压可指600V的电压,但不限于此。
由此,本公开实施例的混合动力汽车的动力系统中,能够使发动机在低速时不参与驱动,进而不使用离合器,减少离合器磨损或滑磨,同时减少了顿挫感,提高了舒适性,并且在低速时能够使发动机工作在经济区域,只发电不驱动,减少油耗,降低发动机噪音,维持整车低速电平衡及低速平顺性,提升整车性能。而且,副电机能够直接为动力电池充电,同时也可为低压器件例如低压蓄电池、第一电器设备等供电,还可作启动机用。
基于上述混合动力汽车的动力系统的结构,本公开实施例还提出了一种混合动力汽车的发电控制方法。
如图4所示,本公开实施例的混合动力汽车的发电控制方法包括以下步骤:
S1:获取混合动力汽车的坡度、油门深度和用电设备的功率,根据坡度、油门深度和用电设备的功率确定混合动力汽车的目标用电等级。
需要说明的是,坡度为坡面的铅直高度与水平长度的比,油门深度为油门踏板被踩下的深度,用电设备的当前工作功率为当前所有用电设备的总功率。其中,用电设备可为低压用电设备,例如空调器、收音机等。
S2:获取混合动力汽车的动力电池的SOC值和SOC平衡点,根据动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级。
其中,SOC平衡点可为用户设置的目标SOC值,即使动力电池的SOC值尽量保持在SOC平衡点附近,当动力电池的SOC值低于SOC平衡点时,可给动力电池充电。
S3:获取混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率,并根据副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级。
其中,发动机在预设的最佳经济区域内的发电输出功率可以指:发动机在满足驱动需求后并在经济区内运行时能够用于发电的输出功率。
在本公开的一个具体实施例中,可将目标用电等级分为三个用电等级,即最大用电等级、标准用电等级和经济用电等级,同样地,发电需求等级和发电能力也可分为三个等级,即发电需求等级可分为最大发电需求等级、标准发电需求等级和经济发电需求等级,发电能力等级可分为最大发电能力等级、标准发电能力等级和经济发电能力等级。
S4:根据目标用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,并根据最终发电等级对混合动力汽车的发电进行控制。
由此,本公开实施例的混合动力汽车的发电控制方法,可根据混合动力汽车的坡度、油门深度、用电设备的功率、动力电池的SOC值、SOC平衡点、副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定发电等级,从而判断条件更加全面,能够根据整车的电量状态、用户用电状态和发电能力等综合判断发电功率,可根据混合动力汽车的目标用电等级、发电需求等级和发电能力等级总和确定发电等级,从而实现发电控制结合用电情况,提高整车保电能力,提升用户体验。
根据本公开的一个实施例,根据坡度、油门深度和用电设备的功率确定混合动力汽车的目标用电等级,包括:获取坡度所属的坡度区间,并获取坡度所属的坡度区间对应的坡度目标用电等级;获取油门深度所属的油门深度区间,并获取油门深度所属的油门深度区间对应的油门深度目标用电等级;获取用电设备的功率所属的功率区间,并获取用电设备的功率所属的功率区间对应的功率目标用电等级;将坡度目标用电等级、油门深度目标用电等级和功率目标用电等级中的最高等级作为目标用电等级。
其中,坡度与坡度目标用电等级正相关,也就是说,坡度目标用电等级越高,对应的坡度区间内的坡度越高,油门深度与油门深度目标用电等级正相关,也就是说,油门深度 目标用电等级越高,对应的油门深度区间内的油门深度越高,用电设备的功率与功率目标用电等级正相关,也就是说,功率目标用电等级越高,对应的功率区间内的用电设备的工作功率越高。
可将混合动力汽车的坡度、油门深度和用电设备的工作功率中的每个均划分为三个区间,三个区间可分别对应最大用电等级、标准用电等级和经济用电等级,即三个坡度区间分别对应坡度最大用电等级、坡度标准用电等级和坡度经济用电等级;三个油门深度区间分别对应油门深度最大用电等级、油门深度标准用电等级和油门深度经济用电等级;三个功率区间分别对应功率最大用电等级、功率标准用电等级和功率经济用电等级。其中,最大用电等级高于标准用电等级,标准用电等级高于经济用电等级。
根据坡度确定坡度用电等级可包括:可将混合动力汽车的坡度划分第一坡度区间、第二坡度区间和第三坡度区间,第一坡度区间为大于A1%,第二坡度区间为大于等于A2%且小于等于A1%,以及第三坡度区间为大于0小于A2%。其中,当坡度大于A1%时,判断坡度属于第一坡度区间,第一坡度区间对应的坡度用电等级为最大用电等级;当坡度大于A2%且小于等于A1%时,坡度属于第二坡度区间,第二坡度区间对应的坡度用电等级为标准用电等级,当坡度大于0小于等于A2%时,坡度属于第三坡度区间,第三坡度区间对应的坡度用电等级为经济用电等级,其中,A1>A2>0。
根据油门深度确定油门深度用电等级可包括:可将混合动力汽车的油门深度划分为第一深度区间、第二深度区间和第三深度区间,第一深度区间为大于B1%,第二深度区间为大于B2%小于等于B1%,第三深度区间为大于0小于等于B2%。其中,当油门深度大于B1%时,判断油门深度属于第一油门深度区间,第一油门深度区间对应的油门深度目标用电等级为最大用电等级;当油门深度大于B2%小于等于B1%时,判断油门深度属于第二油门深度区间,第二油门深度区间对应的油门深度目标用电等级为标准用电等级;当油门深度大于0小于等于B2%时,判断油门深度属于第三油门深度区间,第三油门深度区间对应的油门深度目标用电等级为经济用电等级,其中,B1>B2>0。
根据用电设备的工作功率确定功率用电等级可包括:可将混合动力汽车的用电设备的工作功率划分为第一功率区间、第二功率区间和第三功率区间,第一功率区间为大于C1kw,第二功率区间为大于等于C2kw小于等于C1kw,第三功率区间为小于C2kw。其中,当用电设备的工作功率大于C1kw时,判断工作功率属于第一功率区间,第一功率区间对应的功率目标用电等级为最大用电等级;当工作功率大于等于C2kw小于等于C1kw时,判断工作功率属于第二功率区间,第二功率区间对应的功率目标用电等级为标准用电等级;当 工作功率小于C2kw时,判断工作功率属于第三功率区间,第三功率区间对应的功率目标用电等级为经济用电等级,其中,C1>C2>0。
在根据坡度、油门深度和用电设备的当前工作功率单独判断出坡度用电等级、油门深度用电等级和功率用电等级之后,可按照最大用电等级、标准用电等级、经济用电等级优先级递减的顺序判断出当前用电等级,即可将坡度用电等级、油门深度用电等级和功率用电等级中的最高等级作为用电等级。
也就是说,坡度用电等级、油门深度用电等级和功率用电等级中如果有任一个的用电等级为最大用电等级,则用电等级为最大用电等级,如果没有最大用电等级,而有至少一个标准用电等级,则用电等级为标准用电等级,如果既没有最大用电等级也没有标准用电等级,只有至少一个经济用电等级,则用电等级为经济用电等级。
根据本公开的一个具体实施例,如图5所示,本公开实施例的混合动力汽车确定目标用电等级包括以下步骤:
S101:系统上电,获取坡度、油门深度和用电设备的功率,分别执行步骤S102、步骤S109和步骤S116。
S102:判断坡度值是否大于A1%。
如果是,则执行步骤S103;如果否,则执行步骤S104。
S103:确定坡度目标用电等级为最大用电等级,并执行步骤S123。
S104:判断坡度值是否大于A2%。
如果是,则执行步骤S105;如果否,则执行步骤S106。
S105:确定坡度目标用电等级为标准用电等级,并执行步骤S123。
S106:判断坡度值是否大于0。
如果是,则执行步骤S107;如果否,则执行步骤S108。
S107:确定坡度目标用电等级为经济用电等级,并执行步骤S123。
S108:确定混合动力汽车坡度无用电需求,并执行步骤S123。
S109:判断油门深度是否大于B1%。
如果是,则执行步骤S110;如果否,则执行步骤S111。
S110:确定油门深度目标用电等级为最大用电等级,并执行步骤S123。
S111:判断油门深度是否大于B2%。
如果是,则执行步骤S112;如果否,则执行步骤S113。
S112:确定油门深度目标用电等级为标准用电等级,并执行步骤S123。
S113:判断油门深度是否大于0。
如果是,则执行步骤S114;如果否,则执行步骤S115。
S114:确定油门深度目标用电等级为经济用电等级,并执行步骤S123。
S115:确定混合动力汽车油门深度无用电需求,并执行步骤S123。
S116:判断用电设备的工作功率是否大于C1kw。
如果是,则执行步骤S117;如果否,则执行步骤S118。
S117:确定功率目标用电等级为最大用电等级,并执行步骤S123。
S118:判断用电设备的工作功率是否大于C2kw。
如果是,则执行步骤S119;如果否,则执行步骤S120。
S119:确定功率目标用电等级为标准用电等级,并执行步骤S123
S120:判断用电设备的工作功率是否大于C3kw。
如果是,则执行步骤S121;如果否,则执行步骤S122。
S121:确定功率目标用电等级为经济用电等级,并执行步骤S123。
S122:确定混合动力汽车的用电设备无用电需求,并执行步骤S123。
S123:将坡度目标用电等级、油门深度目标用电等级和功率目标用电等级中的最高等级作为目标用电等级。
根据本公开的一个实施例,根据动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级,包括:获取动力电池的SOC值所属的SOC值区间,并获取SOC值所属的SOC值区间对应的第一发电需求等级;获取动力电池的SOC平衡点与SOC值的差值,获取差值所属的差值区间,并获取差值所属的差值区间对应的第二发电需求等级;将第一发电需求等级和第二发电需求等级中的最高等级作为发电需求等级。
其中,动力电池的SOC值与第一发电需求等级正相关,也就是说,第一发电需求等级越高,对应的动力电池的SOC值区间内的SOC值越高,动力电池的SOC平衡点与SOC值的差值与第二发电需求等级正相关,也就是说,第二发电需求等级越高,对应的差值区间内的差值越高。
可将动力电池的SOC值和差值均划分为三个区间,三个区间分别对应最大发电需求等级、标准发电需求等级和经济发电需求等级,即三个动力电池SOC值区间分别对应最大发电需求等级、标准发电需求等级和经济发电需求等级,三个差值区间分别对应最大发电需求等级、标准发电需求等级和经济发电需求等级,其中,最大发电需求等级高于标准发电需求等级,标准发电需求等级高于经济用电等级。
根据动力电池的SOC值确定第一发电需求等级可包括:可将动力电池的SOC值分划为第一SOC值区间、第二SOC值区间和第三SOC值,第一SOC值区间为大于s2%且小于等于s3%,第二SOC值区间为大于s1%且小于等于s2%,以及第三SOC值区间为小于等于s1%。其中,当动力电池的SOC值大于s2%且小于等于s3%时,则判断动力电池的SOC值属于第一SOC值区间,第一发电需求等级为最大发电需求等级,当动力电池的SOC值大于s1%且小于等于s2%时,则判断动力电池的SOC值属于第二SOC值区间,第一发电需求等级为标准发电需求等级,当动力电池的SOC值小于等于s1%时,则判断动力电池的SOC值属于第三SOC值区间,第一发电需求等级为经济发电需求等级,其中,s1<s2<s3。
根据动力电池的SOC平衡点与SOC值的差值确定第二发电需求等级可包括:通过动力电池的SOC平衡点减去SOC值获取差值,可将差值划分为第一差值区间、第二差值区间和第三差值区间,第一差值区间为大于等于n1%,第二差值区间为大于等于n2%且小于n1%,以及第三差值区间为大于等于n3%且小于n2%。其中,当差值大于等于n1%时,则判断差值属于第一差值区间,第二发电需求等级为最大发电需求等级,当差值大于等于n2%且小于n1%时,则判断差值属于第二差值区间,第二发电需求等级为标准发电需求,当差值大于等于n3%且小于n2%时,则判断差值属于第三差值区间,第二发电需求等级为经济发电需求,其中,n1>n2>n3。
在根据动力电池的SOC值和差值单独判断出第一发电需求等级和第二发电需求等级之后,可按照最大发电需求等级、标准发电需求等级和经济发电需求等级优先级递减的顺序判断出发电需求等级,即可将第一发电需求等级和第二发电需求等级中的最高等级作为发电需求等级。
根据本公开的一个具体实施例,如图6所示,本公开实施例的混合动力汽车确定发电需求等级包括以下步骤:
S201:获取动力电池的SOC值,分别执行步骤S202和步骤S209。
S202:判断动力电池的SOC值是否大于s2%且小于等于s3%。
如果是,则执行步骤S203;如果否,则执行步骤S204。
S203:确定第一发电需求等级为最大发电需求等级,并执行步骤S217。
S204:判断动力电池的SOC值是否大于s1%且小于等于s2%。
如果是,则执行步骤S205;如果否,则执行步骤S206。
S205:确定第一发电需求等级为标准发电需求等级,并执行步骤S217。
S206:判断动力电池的SOC值是否小于等于s1%。
如果是,则执行步骤S207;如果否,则执行步骤S208。
S207:确定第一发电需求等级为经济发电需求等级,并执行步骤S217。
S208:确定第一发电需求为无需求,并执行步骤S217。
S209:根据动力电池的SOC平衡点与SOC值计算差值。
S210:判断差值是否大于等于n1%。
如果是,则执行步骤S211;如果否,则执行步骤S212。
S211:确定第二发电需求等级为最大发电需求等级,并执行步骤S217。
S212:判断差值是否大于等于n2%且小于n1%。
如果是,则执行步骤S213;如果否,则执行步骤S214。
S213:确定第二发电需求等级为标准发电需求等级,并执行步骤S217。
S214:判断差值是否大于等于n3%且小于n2%。
如果是,则执行步骤S215;如果否,则执行步骤S216。
S215:确定第二发电需求等级为经济发电需求等级,并执行步骤S217。
S216:确定第二发电需求为无需求,并执行步骤S217。
S217:判断第一发电需求等级是否大于第二发电需求等级。其中,最大发电需求等级大于标准发电需求等级,标准发电需求等级大于经济发电需求等级。
如果是,则执行步骤S218;如果否,则执行步骤S219。
S218:确定第一发电需求等级为发电需求等级。
S219:确定第二发电需求等级为发电需求等级。
根据本公开的一个实施例,根据副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级,包括:获取副电机的最大允许发电功率所属的允许发电功率区间,并获取副电机的最大允许发电功率所属的允许发电功率区间对应的副电机发电能力等级;获取发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间,并获取发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间对应的发动机发电能力等级;获取动力电池的允许充电功率所属的允许充电功率区间,并获取动力电池的允许充电功率所属的允许充电功率区间对应的动力电池发电能力等级;将副电机发电能力等级、发动机发电能力等级和动力电池发电能力等级中的最低等级作为发电能力等级。
其中,副电机的最大允许发电功率与副电机发电能力等级正相关,也就是说,副电机发电能力等级越高,对应的副电机的最大允许发电功率越高,发动机在预设的最佳经济区 域内的发电输出功率与发动机发电能力等级正相关,也就是说,发动机发电能力等级越高,对应的发动机在预设的最佳经济区域内的发电输出功率越高,动力电池的允许充电功率与动力电池发电能力等级正相关,也就是说,动力电池发电能力越高,对应的动力电池的允许充电功率越高。
副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率中的每个均可划分为三个区间,三个区间可分别对应最大发电能力等级、标准发电能力等级和经济发电能力等级,即三个副电机的最大允许发电功率区间分别对应最大发电能力等级、标准发电能力等级和经济发电能力等级,三个发动机在预设的最佳经济区域内的发电输出功率区间分别对应最大发电能力等级、标准发电能力等级和经济发电能力等级,三个动力电池的允许充电功率区间分别对应最大发电能力等级、标准发电能力等级和经济发电能力等级。其中,最大发电能力等级高于标准发电能力等级,标准发电能力等级大于经济发电能力等级,具体地,最大发电能力等级对应的区间阈值为P1KW,标准发电能力等级对应的区间阈值为P2KW,经济发电能力等级对应的区间阈值为P3KW,其中,P1>P2>P3。
根据副电机的最大允许发电功率确定副电机发电能力等级包括:当副电机最大允许发电功率在大于等于P1KW区间时,则判断副电机的发电能力等级为最大发电能力等级,当副电机最大允许发电功率在大于等于P2KW且小于P1KW区间时,则判断副电机的发电能力为标准发电能力等级,当副电机最大允许发电功率在大于等于P3KW且小于P2KW时,则判断副电机的发电能力为经济发电能力等级。
根据发动机在预设的最佳区域内的发电输出功率确定发动机发电能力等级包括:当发动机的发电输出功率在大于等于P1KW区间时,则判断发动机发电能力等级为最大发电能力等级,当发动机的发电输出功率在大于等于P2KW且小于P1KW区间时,则判断发动机发电能力等级为标准发电能力等级,当发动机的发电输出功率在大于等于P3KW且小于P2KW区间时,则判断发动机发电能力等级为经济发电能力等级。
根据动力电池的允许电功率确定动力电池发电能力等级包括:当动力电池的允许充电电功率在大于等于P1KW时,则判断动力电池发电能力等级为最大发电能力等级,当允许充电功率在大于等于P2KW且小于P1KW时,则判断动力电池发电能力等级为标准发电能力等级,当允许充电功率在大于等于P3KW且小于P2KW时,则判断动力电池发电能力等级为经济发电能力等级。
在根据将副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功 率和动力电池的允许充电功率单独判断出副电机发电能力等级、发电机发电能力等级和动力电池发电能力等级之后,可按照最大发电能力等级、标准发电能力等级和经济发电能力等级优先级递增的顺序判断出发电能力等级,即可将副电机发电能力等级、发电机发电能力等级和动力电池发电能力等级中的最低等级作为发电能力等级。
根据本公开的一个具体实施例,如图7所示,本公开实施例的混合动力汽车确定发电能力等级包括以下步骤:
S301:获取副电机的最大允许发电功率、发电机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率,分别执行步骤S302、步骤S309和步骤S316。
S302:判断副电机的最大允许发电功率是否大于等于P1KW。
如果是,则执行步骤S303;如果否,则执行步骤S304。
S303:确定副电机的发电能力等级为最大发电能力等级,并执行步骤S323。
S304:判断副电机的最大允许发电功率是否大于等于P2KW。
如果是,则执行步骤S305;如果否,则执行步骤S306。
S305:确定副电机的发电能力等级为标准发电能力等级,并执行步骤S323。
S306:判断副电机的最大允许发电功率是否大于等于P3KW。
如果是,则执行步骤S307;如果否,则执行步骤S308。
S307:确定副电机的发电能力等级为经济发电能力等级,并执行步骤S323。
S308:确定副电机的发电能力不足,并执行步骤S323。
S309:判断发动机在预设的最佳经济区域内的发电输出功率是否大于等于P1KW。
如果是,则执行步骤S310;如果否,则执行步骤S311。
S310:确定发动机发电能力等级为最大发电能力等级,并执行步骤S323。
S311:判断发动机在预设的最佳经济区域内的发电输出功率是否大于等于P2KW。
如果是,则执行步骤S312;如果否,则执行步骤S313。
S312:确定发动机发电能力等级为标准发电能力等级,并执行步骤S323。
S313:判断发动机在预设的最佳经济区域内的发电输出功率是否大于等于P3KW。
如果是,则执行步骤S314;如果否,则执行步骤S315。
S314:确定发动机发电能力等级为经济发电能力等级,并执行步骤S323。
S315:确定发动机发电能力不足,并执行步骤S323。
S316:判断动力电池的允许充电功率是否大于等于P1KW。
如果是,则执行步骤S317;如果否,则执行步骤S318。
S317:确定动力电池发电能力等级为最大发电能力等级,并执行步骤S323。
S318:判断动力电池的允许充电功率是否大于等于P2KW。
如果是,则执行步骤S319;如果否,则执行步骤S320。
S319:确定动力电池发电能力等级为标准发电能力等级,并执行步骤S323。
S320:判断动力电池的允许充电功率是否大于等于P3KW。
如果是,则执行步骤S321;如果否,则执行步骤S322。
S321:确定动力电池发电能力等级为经济发电能力等级,并执行步骤S323。
S322:确定动力电池发电能力不足,并执行步骤S323。
S323:将副电机发电能力等级、发动机发电能力等级和动力电池发电能力等级中最低等级确定为发电能力等级。
根据本公开的一个实施例,根据目标用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,包括:将目标用电等级和发电需求等级之间的最高等级作为发电目标等级,并将发电目标等级与发电能力等级之间的最低等级作为最终发电等级。
具体地,如图8所示,本公开实施例的混合动力汽车确定最终发电等级包括以下步骤:
S401:获取目标用电等级、发电需求等级和发电能力等级。
S402:判断目标用电等级是否大于发电需求等级。
如果是,则执行步骤S403;如果否,则执行步骤S404。
S403:确定目标用电等级为发电目标等级,并执行步骤S405。
S404:确定发电需求等级为发电目标等级,并执行步骤S405。
S405:判断发电目标等级是否大于发电能力等级。
如果是,则执行步骤S406;如果否,则执行步骤S407。
S406:确定发电能力等级为最终发电等级。
S407:确定发电目标等级为最终发电等级。
在一些实施例中,根据最终发电等级对混合动力汽车的发电进行控制,包括:获取最终发电等级对应的最终发电功率;根据最终发电功率控制混合动力汽车进行发电。
最终发电等级可为最大发电等级、标准发电等级和经济发电等级,当最终发电等级为最大发电等级时,可根据第一预设发电功率对混合动力汽车的发电进行控制,当最终发电等级为标准发电等级时,可根据第二预设发电功率对混合动力汽车的发电进行控制,当最终发电等级为经济发电等级时,可根据第三预设发电功率进行控制。其中,第一预设发电功率可为P1KW,第二预设发电功率可为P2KW,第三预设发电功率可为P3KW。
综上,根据本公开实施例提出的混合动力汽车的发电控制方法,通过获取混合动力汽车的坡度、油门深度和用电设备的功率,根据坡度、油门深度和用电设备的功率确定混合动力汽车的目标用电等级,获取混合动力汽车的动力电池的SOC值和SOC平衡点,根据动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级,然后获取混合动力汽车的副电机的最大允许发电功率,并根据副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级,根据目标用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,并根据最终发电等级对混合动力汽车的发电进行控制。由此,本公开实施例的混合动力汽车的发电控制方法,可根据混合动力汽车的坡度、油门深度、用电设备的功率、动力电池的SOC值、SOC平衡点、副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定发电等级,从而判断条件更加全面,能够根据整车的电量状态、用户用电状态和发电能力等综合判断发电功率,实现发电控制结合用电情况,提高整车保电能力,提升用户体验。
图9是根据本公开实施例的混合动力汽车的发电控制装置的方框示意图。如图9所示,本公开实施例的混合动力汽车的发电控制装置100包括控制器500和存储器300,存储器300存储有多条指令400,指令400适于由控制器500加载并执行:获取混合动力汽车的坡度、油门深度和用电设备的功率,根据坡度、油门深度和用电设备的功率确定混合动力汽车的目标用电等级;获取混合动力汽车的动力电池的SOC值和SOC平衡点,根据动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级;获取混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率,并根据副电机的最大允许发电功率、发动机在预设的最佳区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级;以及根据目标用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,并根据最终发电等级对混合动力汽车的发电进行控制。
根据本公开的一个实施例,控制器500进一步执行:获取坡度所属的坡度区间,并获取坡度所属的坡度区间对应的坡度目标用电等级;获取油门深度所属的油门深度区间,并获取油门深度所属的油门深度区间对应的油门深度目标用电等级;获取用电设备的功率所属的功率区间,并获取用电设备的功率所属的功率区间对应的功率目标用电等级;以及将坡度目标用电等级、油门深度目标用电等级和功率目标用电等级中的最高等级作为目标用电等级。
根据本公开的一个实施例,坡度与坡度目标用电等级正相关,油门深度与油门深度目 标用电等级正相关,用电设备的功率与功率目标用电等级正相关。
根据本公开的一个实施例,控制器500进一步执行:获取动力电池的SOC值所属的SOC值区间,并获取SOC值所属的SOC值区间对应的第一发电需求等级;获取动力电池的SOC平衡点与SOC值的差值,获取差值所属的差值区间,并获取差值所属的差值区间对应的第二发电需求等级;以及将第一发电需求等级和第二发电需求等级中的最高等级作为发电需求等级。
根据本公开的一个实施例,动力电池的SOC值与第一发电需求等级正相关,动力电池的SOC平衡点与SOC值的差值与第二发电需求等级正相关。
根据本公开的一个实施例,控制器500进一步执行:获取副电机的最大允许发电功率所属的允许发电功率区间,并获取副电机的最大允许发电功率所属的允许发电功率区间对应的副电机发电能力等级;获取发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间,并获取发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间对应的发动机发电能力等级;获取动力电池的允许充电功率所属的允许充电功率区间,并获取动力电池的允许充电功率所属的允许充电功率区间对应的动力电池发电能力等级;以及将副电机发电能力等级、发动机发电能力等级和动力电池发电能力等级中的最低等级作为发电能力等级。
根据本公开的一个实施例,副电机的最大允许发电功率与副电机发电能力等级正相关,发动机在预设的最佳经济区域内的发电输出功率与发动机发电能力等级正相关,动力电池的允许充电功率与动力电池发电能力等级正相关。
根据本公开的一个实施例,控制器500进一步执行:将目标用电等级和发电需求等级之间的最高等级作为发电目标等级,并将发电目标等级与发电能力等级之间的最低等级作为最终发电等级。
根据本公开的一个实施例,控制器500进一步执行:获取最终发电等级对应的最终发电功率,并根据最终发电功率控制混合动力汽车进行发电。
综上,根据本公开实施例提出的混合动力汽车的发电控制装置,通过获取混合动力汽车的坡度、油门深度和用电设备的功率,根据坡度、油门深度和用电设备的功率确定混合动力汽车的目标用电等级;获取混合动力汽车的动力电池的SOC值和SOC平衡点,根据动力电池的SOC值和SOC平衡点确定混合动力汽车的发电需求等级;获取混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率,并根据副电机的最大允许发电功率、发动机在预设的最佳区域内的发电输出功率和动力电池的允许充电功率确定混合动力汽车的发电能力等级;以及根据目标 用电等级、发电需求等级和发电能力等级确定混合动力汽车的最终发电等级,并根据最终发电等级对混合动力汽车的发电进行控制。由此,本公开实施例的混合动力汽车的发电控制装置可根据混合动力汽车的坡度、油门深度、用电设备的功率、动力电池的SOC值、SOC平衡点、副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和动力电池的允许充电功率确定发电等级,从而判断条件更加全面,能够根据整车的电量状态、用户用电状态和发电能力等综合判断发电功率,实现发电控制结合用电情况,提高整车保电能力,提升用户体验。
本公开实施例还提出了一种混合动力汽车。
图10为根据本公开实施例的混合动力汽车的方框示意图。如图10所示,混合动力汽车1000包括上述的混合动力汽车的发电控制装置100。
根据本公开实施例的混合动力汽车,通过混合动力汽车的发电控制装置,能够根据整车的电量状态、用户用电状态和发电能力等综合判断发电功率,实现发电控制结合用电情况,提高整车保电能力,提升用户体验。
在本公开的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本公开和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本公开的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
在本公开中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、 “下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本公开的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本公开的限制,本领域的普通技术人员在本公开的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (19)

  1. 一种混合动力汽车的发电控制方法,其特征在于,包括以下步骤:
    获取所述混合动力汽车的坡度、油门深度和用电设备的功率,根据所述坡度、所述油门深度和所述用电设备的功率确定所述混合动力汽车的目标用电等级;
    获取所述混合动力汽车的动力电池的SOC值和SOC平衡点,根据所述动力电池的SOC值和SOC平衡点确定所述混合动力汽车的发电需求等级;
    获取所述混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和所述动力电池的允许充电功率,并根据所述副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和所述动力电池的允许充电功率确定所述混合动力汽车的发电能力等级;
    根据所述目标用电等级、所述发电需求等级和所述发电能力等级确定所述混合动力汽车的最终发电等级,并根据所述最终发电等级对所述混合动力汽车的发电进行控制。
  2. 根据权利要求1所述的混合动力汽车的发电控制方法,其特征在于,所述根据所述坡度、所述油门深度和所述用电设备的功率确定所述混合动力汽车的目标用电等级,包括:
    获取所述坡度所属的坡度区间,并获取所述坡度所属的坡度区间对应的坡度目标用电等级;
    获取所述油门深度所属的油门深度区间,并获取所述油门深度所属的油门深度区间对应的油门深度目标用电等级;
    获取所述用电设备的功率所属的功率区间,并获取所述用电设备的功率所属的功率区间对应的功率目标用电等级;
    将所述坡度目标用电等级、所述油门深度目标用电等级和所述功率目标用电等级中的最高等级作为所述目标用电等级。
  3. 根据权利要求2所述的混合动力汽车的发电控制方法,其特征在于,其中,所述坡度与所述坡度目标用电等级正相关,所述油门深度与所述油门深度目标用电等级正相关,所述用电设备的功率与所述功率目标用电等级正相关。
  4. 根据权利要求1至3中任意一项所述的混合动力汽车的发电控制方法,其特征在于,所述根据所述动力电池的SOC值和SOC平衡点确定所述混合动力汽车的发电需求等级,包括:
    获取所述动力电池的SOC值所属的SOC值区间,并获取所述SOC值所属的SOC值区间对应的第一发电需求等级;
    获取所述动力电池的SOC平衡点与SOC值的差值,获取所述差值所属的差值区间, 并获取所述差值所属的差值区间对应的第二发电需求等级;
    将所述第一发电需求等级和所述第二发电需求等级中的最高等级作为所述发电需求等级。
  5. 根据权利要求4所述的混合动力汽车的发电控制方法,其特征在于,其中,所述动力电池的SOC值与所述第一发电需求等级正相关,所述动力电池的SOC平衡点与SOC值的差值与所述第二发电需求等级正相关。
  6. 根据权利要求1至5中任意一项所述的混合动力汽车的发电控制方法,其特征在于,所述根据所述副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和所述动力电池的允许充电功率确定所述混合动力汽车的发电能力等级,包括:
    获取所述副电机的最大允许发电功率所属的允许发电功率区间,并获取所述副电机的最大允许发电功率所属的允许发电功率区间对应的副电机发电能力等级;
    获取所述发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间,并获取所述发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间对应的发动机发电能力等级;
    获取所述动力电池的允许充电功率所属的允许充电功率区间,并获取所述动力电池的允许充电功率所属的允许充电功率区间对应的动力电池发电能力等级;
    将所述副电机发电能力等级、所述发动机发电能力等级和所述动力电池发电能力等级中的最低等级作为所述发电能力等级。
  7. 根据权利要求6所述的混合动力汽车的发电控制方法,其特征在于,其中,所述副电机的最大允许发电功率与所述副电机发电能力等级正相关,所述发动机在预设的最佳经济区域内的发电输出功率与所述发动机发电能力等级正相关,所述动力电池的允许充电功率与所述动力电池发电能力等级正相关。
  8. 根据权利要求1至7中任意一项所述的混合动力汽车的发电控制方法,其特征在于,所述根据所述目标用电等级、所述发电需求等级和所述发电能力等级确定所述混合动力汽车的最终发电等级,包括:
    将所述目标用电等级和所述发电需求等级之间的最高等级作为发电目标等级,并将所述发电目标等级与所述发电能力等级之间的最低等级作为所述最终发电等级。
  9. 根据权利要求1至8中任意一项所述的混合动力汽车的发电控制方法,其特征在于,所述根据所述最终发电等级对所述混合动力汽车的发电进行控制,包括:
    获取所述最终发电等级对应的最终发电功率;
    根据所述最终发电功率控制所述混合动力汽车进行发电。
  10. 一种混合动力汽车的发电控制装置,其特征在于,包括控制器和存储器,所述存 储器存储有多条指令,所述指令适于由所述控制器加载并执行:
    获取所述混合动力汽车的坡度、油门深度和用电设备的功率,根据所述坡度、所述油门深度和所述用电设备的功率确定所述混合动力汽车的目标用电等级;
    获取所述混合动力汽车的动力电池的SOC值和SOC平衡点,根据所述动力电池的SOC值和SOC平衡点确定所述混合动力汽车的发电需求等级;
    获取所述混合动力汽车的副电机的最大允许发电功率、发动机在预设的最佳经济区域内的发电输出功率和所述动力电池的允许充电功率,并根据所述副电机的最大允许发电功率、发动机在预设的最佳区域内的发电输出功率和所述动力电池的允许充电功率确定所述混合动力汽车的发电能力等级;以及
    根据所述目标用电等级、所述发电需求等级和所述发电能力等级确定所述混合动力汽车的最终发电等级,并根据所述最终发电等级对所述混合动力汽车的发电进行控制。
  11. 根据权利要求10所述的混合动力汽车的发电控制装置,其特征在于,所述控制控制器进一步执行:
    获取所述坡度所属的坡度区间,并获取所述坡度所属的坡度区间对应的坡度目标用电等级;
    获取所述油门深度所属的油门深度区间,并获取所述油门深度所属的油门深度区间对应的油门深度目标用电等级;
    获取所述用电设备的功率所属的功率区间,并获取所述用电设备的功率所属的功率区间对应的功率目标用电等级;以及
    将所述坡度目标用电等级、所述油门深度目标用电等级和所述功率目标用电等级中的最高等级作为所述目标用电等级。
  12. 根据权利要求11所述的混合动力汽车的发电控制装置,其特征在于,
    其中,所述坡度与所述坡度目标用电等级正相关,所述油门深度与所述油门深度目标用电等级正相关,所述用电设备的功率与所述功率目标用电等级正相关。
  13. 根据权利要求10至12中任意一项所述的混合动力汽车的发电控制装置,其特征在于,所述控制器进一步执行:
    获取所述动力电池的SOC值所属的SOC值区间,并获取所述SOC值所属的SOC值区间对应的第一发电需求等级;
    获取所述动力电池的SOC平衡点与SOC值的差值,获取所述差值所属的差值区间,并获取所述差值所属的差值区间对应的第二发电需求等级;以及
    将所述第一发电需求等级和所述第二发电需求等级中的最高等级作为所述发电需求等级。
  14. 根据权利要求13所述的混合动力汽车的发电控制装置,其特征在于,其中,所述动力电池的SOC值与所述第一发电需求等级正相关,所述动力电池的SOC平衡点与SOC值的差值与所述第二发电需求等级正相关。
  15. 根据权利要求10至14中任意一项所述的混合动力汽车的发电控制装置,其特征在于,所述控制器进一步执行:
    获取所述副电机的最大允许发电功率所属的允许发电功率区间,并获取所述副电机的最大允许发电功率所属的允许发电功率区间对应的副电机发电能力等级;
    获取所述发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间,并获取所述发动机在预设的最佳经济区域内的发电输出功率所属的发电输出功率区间对应的发动机发电能力等级;
    获取所述动力电池的允许充电功率所属的允许充电功率区间,并获取所述动力电池的允许充电功率所属的允许充电功率区间对应的动力电池发电能力等级;以及
    将所述副电机发电能力等级、所述发动机发电能力等级和所述动力电池发电能力等级中的最低等级作为所述发电能力等级。
  16. 根据权利要求15所述的混合动力汽车的发电控制装置,其特征在于,其中,所述副电机的最大允许发电功率与所述副电机发电能力等级正相关,所述发动机在预设的最佳经济区域内的发电输出功率与所述发动机发电能力等级正相关,所述动力电池的允许充电功率与所述动力电池发电能力等级正相关。
  17. 根据权利要求10至16中任意一项所述的混合动力汽车的发电控制装置,其特征在于,所述指令由控制模块加载并进一步执行:
    将所述目标用电等级和所述发电需求等级之间的最高等级作为发电目标等级,并将所述发电目标等级与所述发电能力等级之间的最低等级作为所述最终发电等级。
  18. 根据权利要求10至17中任意一项所述的混合动力汽车的发电控制装置,其特征在于,所述控制器进一步执行:
    获取所述最终发电等级对应的最终发电功率,并根据所述最终发电功率控制所述混合动力汽车进行发电。
  19. 一种混合动力汽车,其特征在于,包括:
    如权利要求10-18中任一项所述的混合动力汽车的发电控制装置。
PCT/CN2018/108541 2017-09-29 2018-09-29 混合动力汽车及其发电控制方法和装置 WO2019062883A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710909310.9 2017-09-29
CN201710909310.9A CN109572675B (zh) 2017-09-29 2017-09-29 混合动力汽车及其发电控制方法和装置

Publications (1)

Publication Number Publication Date
WO2019062883A1 true WO2019062883A1 (zh) 2019-04-04

Family

ID=65900902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/108541 WO2019062883A1 (zh) 2017-09-29 2018-09-29 混合动力汽车及其发电控制方法和装置

Country Status (3)

Country Link
CN (1) CN109572675B (zh)
TW (1) TWI716701B (zh)
WO (1) WO2019062883A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112406845B (zh) * 2019-08-23 2022-04-15 比亚迪股份有限公司 车辆及其发电控制方法和控制装置
CN111137121B (zh) * 2019-12-18 2021-03-30 东风商用车有限公司 一种挂车、牵引车及其控制方法
CN111559368B (zh) * 2020-04-26 2021-08-13 东风汽车集团有限公司 插电式混合动力汽车的功率控制方法
CN111688669B (zh) * 2020-06-11 2021-11-19 北京汽车股份有限公司 发电机的控制方法、装置、车辆和电子设备
CN113928303B (zh) * 2020-06-29 2023-09-05 比亚迪股份有限公司 车辆的发电控制方法、装置及车辆
CN112622649B (zh) * 2020-12-29 2022-09-30 摩登汽车有限公司 用于串联增程式新能源车的发电控制系统及方法
CN116424298A (zh) * 2022-01-04 2023-07-14 比亚迪股份有限公司 混合动力汽车及其发电方法、装置及整车控制器

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102259646A (zh) * 2011-05-18 2011-11-30 奇瑞汽车股份有限公司 串联混合动力汽车能量控制方法、装置以及串联混合动力汽车
CN104176044A (zh) * 2013-05-22 2014-12-03 上海汽车集团股份有限公司 混合动力车在串联状态下的能量管理方法和混合动力车
US9102318B2 (en) * 2010-02-19 2015-08-11 Ford Global Technologies, Llc Engine power elevation energy management strategies for hybrid vehicles
CN106143483A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN106143467A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN106143481A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN106143482A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车及其控制方法和装置
CN206678765U (zh) * 2017-03-31 2017-11-28 比亚迪股份有限公司 混合动力汽车及其动力系统
CN206983710U (zh) * 2017-03-31 2018-02-09 比亚迪股份有限公司 混合动力汽车及其动力系统
CN207449611U (zh) * 2017-03-31 2018-06-05 比亚迪股份有限公司 混合动力汽车及其动力系统

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3644335B2 (ja) * 2000-01-24 2005-04-27 日産自動車株式会社 ハイブリッド車両の制御装置
JP2010143310A (ja) * 2008-12-17 2010-07-01 Nissan Motor Co Ltd シリーズハイブリッド電気自動車の発電制御装置
JP2012066624A (ja) * 2010-09-21 2012-04-05 Suzuki Motor Corp 電動車両の発電制御装置両
CN105667498B (zh) * 2014-11-18 2018-03-30 上海汽车集团股份有限公司 混合动力汽车串联模式下发电功率的分配方法与装置
CN105730438B (zh) * 2014-12-09 2018-05-11 北汽福田汽车股份有限公司 一种用于串联式混合动力汽车的能量分配方法和装置
CN106379313A (zh) * 2016-11-02 2017-02-08 天津市松正电动汽车技术股份有限公司 一种混合动力汽车发电方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9102318B2 (en) * 2010-02-19 2015-08-11 Ford Global Technologies, Llc Engine power elevation energy management strategies for hybrid vehicles
CN102259646A (zh) * 2011-05-18 2011-11-30 奇瑞汽车股份有限公司 串联混合动力汽车能量控制方法、装置以及串联混合动力汽车
CN104176044A (zh) * 2013-05-22 2014-12-03 上海汽车集团股份有限公司 混合动力车在串联状态下的能量管理方法和混合动力车
CN106143483A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN106143467A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN106143481A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车的控制方法和装置
CN106143482A (zh) * 2015-04-07 2016-11-23 比亚迪股份有限公司 混合动力汽车及其控制方法和装置
CN206678765U (zh) * 2017-03-31 2017-11-28 比亚迪股份有限公司 混合动力汽车及其动力系统
CN206983710U (zh) * 2017-03-31 2018-02-09 比亚迪股份有限公司 混合动力汽车及其动力系统
CN207449611U (zh) * 2017-03-31 2018-06-05 比亚迪股份有限公司 混合动力汽车及其动力系统

Also Published As

Publication number Publication date
TW201914872A (zh) 2019-04-16
CN109572675B (zh) 2020-07-10
TWI716701B (zh) 2021-01-21
CN109572675A (zh) 2019-04-05

Similar Documents

Publication Publication Date Title
WO2019062883A1 (zh) 混合动力汽车及其发电控制方法和装置
KR101776723B1 (ko) 하이브리드 차량의 주행 모드 변환 제어 방법 및 그 제어 장치
US9987944B2 (en) Electric vehicle opportunistic charging systems and methods
KR102186032B1 (ko) 하이브리드 차량의 에너지 관리 방법 및 장치
US9849871B2 (en) Electric vehicle opportunistic charging systems and methods
KR101628516B1 (ko) 하이브리드 차량의 직류변환장치 전압 가변제어 방법
US9421846B2 (en) Vehicle control system
WO2018177361A1 (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
KR101927176B1 (ko) 친환경 차량의 저전압 직류 변환기의 출력 제어 방법 및 그 장치
CN111873983B (zh) 一种混合动力汽车扭矩控制的方法、装置及混合动力汽车
KR101688343B1 (ko) 발전 제어 장치
US9252630B2 (en) Battery charge control apparatus
CN104760488B (zh) 混合动力车辆
WO2019062880A1 (zh) 混合动力汽车及其发电控制方法和装置
CN108656919B (zh) 混合动力汽车及其动力系统和发电控制方法
CN108656929B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
KR101694023B1 (ko) 하이브리드 차량의 엔진 제어 장치 및 방법
CN109591798B (zh) 混合动力汽车及其行车发电控制方法和控制系统
WO2023284662A1 (zh) 混动车电池能量控制方法和装置
CN109572673B (zh) 混合动力汽车及其动力系统和整车控制方法
CN108657165B (zh) 混合动力汽车及其动力系统和发电控制方法
TWI667162B (zh) 混合動力汽車及其用電控制方法和裝置
WO2018177362A1 (zh) 混合动力汽车及其动力系统
CN108656921B (zh) 混合动力汽车的动力系统和发电控制方法及混合动力汽车
CN108656931B (zh) 混合动力汽车及其动力系统和发电控制方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860950

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18860950

Country of ref document: EP

Kind code of ref document: A1