WO2019062597A1 - 陶瓷窑余热综合回收利用系统 - Google Patents

陶瓷窑余热综合回收利用系统 Download PDF

Info

Publication number
WO2019062597A1
WO2019062597A1 PCT/CN2018/106195 CN2018106195W WO2019062597A1 WO 2019062597 A1 WO2019062597 A1 WO 2019062597A1 CN 2018106195 W CN2018106195 W CN 2018106195W WO 2019062597 A1 WO2019062597 A1 WO 2019062597A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
flue gas
hot air
heat exchanger
waste heat
Prior art date
Application number
PCT/CN2018/106195
Other languages
English (en)
French (fr)
Inventor
刘效洲
张宇
刘文星
Original Assignee
广东工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广东工业大学 filed Critical 广东工业大学
Publication of WO2019062597A1 publication Critical patent/WO2019062597A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D17/00Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
    • F27D17/004Systems for reclaiming waste heat

Definitions

  • the invention relates to a ceramic kiln, in particular to a waste heat recovery system of a ceramic kiln.
  • ceramic kiln uses gas as a heat source. Whether the ratio of gas to combustion gas during combustion directly affects the energy consumption. When the amount of gas is too small, the combustion is incomplete. The incomplete combustion products contain a lot of substances that pollute the environment, and also cause waste of energy. When the amount of gas is too large, the excess air is taken away and a large amount of heat is taken away. A big loss of heat. In addition, the temperature of the flue gas at the flue gas outlet of the ceramic kiln is usually as high as 400 degrees Celsius. If these high-temperature flue gas is directly discharged into the environment, it will not only cause energy waste, but also cause a certain degree of damage to the environment.
  • the ceramic kiln is also built longer and the cross section is wider and wider, but at the same time the temperature inside the kiln is more and more difficult to control, and because the temperature in the kiln is not Burning defects such as deformation and chromatic aberration caused by uniformity are also becoming more and more serious. Therefore, it has become a focus of the industry to provide a ceramic kiln that can uniformly kiln temperature and simultaneously reduce energy consumption and pollution.
  • a mosaic ceramic kiln waste heat power generation comprehensive utilization system disclosed in Chinese Patent Application No. 201510066385.6 which comprises a furnace body, a waste heat boiler and a steam turbine generator.
  • the inside of the furnace body comprises a cooling zone adjacent to the discharge port, a flue gas recovery zone adjacent to the feed port, and a sintering zone between the cooling zone and the flue gas recovery zone, the furnace body being connected on the side wall at the flue gas recovery zone
  • the flue gas main pipe is used for recovering the high temperature flue gas
  • the first flue gas pipe and the hot air pipe are connected to the flue gas main pipe, and the first flue gas pipe returns part of the flue gas to the mixing burner for combustion support, hot air
  • the pipeline exhausts the remaining flue gas through the waste heat boiler and discharges it to the chimney.
  • the water in the waste heat boiler is heated to high temperature steam by the waste heat of the high temperature flue gas and then sent to the turbine generator for power generation via the pipeline.
  • disadvantages or disadvantages (1) insufficient utilization of the residual heat of the kiln to preheat the gas and the combustion gas, and the combustion efficiency is low; (2) lack of temperature control method, it is difficult to make the temperature in the kiln uniform.
  • the object of the present invention is to provide a ceramic kiln waste heat comprehensive recycling system, which can fully utilize the high temperature flue gas and hot air heat energy discharged from the waste heat recovery zone of the ceramic kiln and the cooling zone to significantly improve energy utilization.
  • the present invention provides a ceramic kiln waste heat comprehensive recycling system, comprising: a gas assisting main pipe, a gas main pipe and a furnace body, wherein the two ends of the furnace body are respectively provided with a feeding port and a discharging port, and the furnace
  • the inside of the body comprises a flue gas waste heat recovery zone adjacent to the feed inlet, a cooling zone adjacent to the discharge port, and a sintering zone between the flue gas waste heat recovery zone and the cooling zone, and the furnace body is on the top wall of the flue gas waste heat recovery zone
  • a flue gas main pipe for discharging high-temperature flue gas is connected adjacent to the feed port, and a first flue gas pipe is connected to the flue gas main pipe, and the first flue gas pipe is connected with the first heat exchanger to set high-temperature flue gas.
  • the first heat exchanger Delivered to the first heat exchanger, the first heat exchanger comprises a high temperature flue gas inlet, a low temperature flue gas outlet, a cold air inlet and a hot air outlet, the high temperature flue gas inlet is connected to the first flue gas pipeline, and the hot air outlet is passed
  • the hot air pipeline is connected with the gas assisting main pipe, and the low temperature flue gas outlet is connected to the chimney through the pipeline, and the high temperature flue gas from the first flue gas pipeline enters the first heat exchanger from the high temperature flue gas inlet and enters the self-cooling air inlet.
  • the cold air of the device is preheated, and the formed hot air is used as a combustion gas through the hot air outlet through the hot air line;
  • the furnace body is connected with a cooling air duct and a hot air pipeline on the side wall of the cooling zone.
  • the hot air pipe is connected to the second heat exchanger to transport the hot air to the second heat exchanger, and the second heat exchanger comprises a hot air inlet, a cold air outlet, a cold gas inlet and a hot gas outlet, and the hot gas outlet passes through the hot gas pipeline.
  • the cold air outlet is connected to the chimney through a pipeline, wherein the hot air from the hot air pipe enters the second heat exchanger from the hot air inlet to pre-cool the cold gas entering the second heat exchanger from the cold gas inlet
  • the hot, hot gas is introduced into the gas main pipe through the hot gas outlet through the hot gas outlet as a combustion gas.
  • a second flue gas pipeline is connected to the flue gas manifold, and the second flue gas pipeline is connected with the hot air pipeline to collect 30%-40% of the total flue gas in the flue gas manifold.
  • the gas is mixed with hot air and then sent to the combustion gas main.
  • the high-temperature flue gas from the flue gas waste heat recovery area of 400-500 degrees Celsius is discharged to the flue gas main pipe, and the high-temperature flue gas which accounts for 60%-80% of the total high-temperature flue gas enters the first exchange through the first flue gas pipeline.
  • the heat exchanger after heat exchange with cold air of 20 to 25 degrees Celsius, hot air of 300 to 400 degrees Celsius is formed into the hot air line, and the low temperature flue gas of 180 to 200 degrees Celsius is discharged to the chimney; 20% to 40% of the total amount of high-temperature flue gas is connected to the hot air line via the second flue gas line, and is mixed with hot air of 300 to 400 degrees Celsius in the hot air line to form a mixed gas of 350 to 450 degrees Celsius. Transfer to the gas mains.
  • a smoke blowing fan is arranged in the flue gas main pipe, a flue gas heat exchange fan is arranged in the first flue gas pipeline, and a flue gas circulation fan is arranged in the second flue gas pipeline.
  • the cooling air duct is disposed on a side wall of the cooling zone away from the discharge port to blow cooling air from the cooling fan into the cooling zone, and the hot air pipe is disposed in the cooling zone adjacent to the discharge port.
  • the other side wall is used to discharge hot air generated by the cooling zone.
  • the hot air from the cooling zone of 300 to 400 degrees Celsius enters the second heat exchanger via the hot air pipe, and is exchanged with the cold gas of 20 to 25 degrees Celsius to form a hot gas of 180 to 200 degrees Celsius through the hot gas.
  • the pipeline enters the gas main pipe and is used as a gas, and the formed cold air of 180 to 200 degrees Celsius is discharged to the chimney.
  • the first heat exchanger or the second heat exchanger is a rotary heat recovery unit.
  • the rotary heat recovery device includes an outer cylinder, a rotating heat storage tray disposed coaxially with the outer cylinder in the outer cylinder, a first partition disposed on one side of the rotating heat storage tray, and a setting a second partition on the other side of the rotating heat storage tray; wherein the first partition and the second partition are located on the same longitudinal section of the outer cylinder, the first partition separating the front section of the outer cylinder into the first smoke The air passage and the first air flow passage, the second partition partitions the rear portion of the outer cylinder into the second flue gas passage and the second air flow passage; and the end of the first flue gas passage away from the rotating heat accumulating disc Forming a high temperature flue gas inlet, the end of the second flue gas passage away from the rotating heat accumulating disc forms a low temperature flue gas outlet, the high temperature flue gas inlet is connected with the first flue gas pipeline, the low temperature flue gas outlet is connected to the chimney, and the second An end of the air flow path away from the
  • the rotary heat recovery device includes an outer cylinder, a rotating heat storage tray disposed coaxially with the outer cylinder in the outer cylinder, a first partition disposed on one side of the rotating heat storage tray, and a setting a second partition on the other side of the rotating heat storage tray; wherein the first partition and the second partition are located on the same longitudinal section of the outer cylinder, the first partition separating the front section of the outer cylinder into the first cooling a second flow path separating the rear portion of the outer cylinder into a second cooling air flow passage and a second gas flow passage; the end of the first cooling air flow passage away from the rotating heat storage tray forms a hot air inlet a cold air outlet is formed at an end of the second cooling air passage away from the rotating heat storage tray, the hot air inlet is connected to the hot air pipeline, the cold air outlet is connected to the chimney, and the end of the second gas flow passage away from the rotating heat storage tray forms cold gas.
  • the inlet, the end of the first gas flow path away from the rotating heat storage tray forms a hot gas outlet, and the cold gas enters the second heat exchanger through the cold gas inlet, and the hot gas outlet enters the gas main pipe through the hot gas pipeline as the gas.
  • the first or second heat exchanger can be a heat pipe heat exchanger or a coil heat exchanger.
  • the sintering zone comprises at least three control zones arranged in sequence along the longitudinal direction of the furnace body, each control zone comprising: a thermocouple disposed on the sidewall of the furnace body of each control zone to obtain each control zone Corresponding zone temperature data in the sintering zone; at least four nozzles, at least four nozzles are arranged on the side wall of the furnace body of each control zone; and a control box, the control box is provided with a box body and is accommodated in the box body a mixer, a gas control branch pipe connected between the mixer and the gas assisting main pipe through a side wall of the tank, a gas control branch pipe connected between the mixer and the gas main pipe through another side wall of the tank body, and
  • the mixer extends through the end wall of the tank to the mixed gas branch pipe outside the tank, and the mixed gas branch pipe outside the tank is respectively connected with at least four nozzles to inject the gas and the combustion-supporting gas into the furnace body to generate heat release.
  • a first induced draft fan is disposed on the auxiliary gas control branch pipe outside the box body, and the first electric valve, the first thermometer and the first flow meter are disposed on the gas-assisting control branch pipe inside the box body.
  • a second induced draft fan is disposed on the gas control branch pipe outside the box body, and the second electric valve, the second thermometer and the second flow meter are disposed on the gas control branch pipe inside the box body.
  • the first electric valve and the second electric valve of each control box are independently controlled such that the opening degree of the first electric valve changes according to the preset air-fuel ratio as the opening degree of the second electric valve changes.
  • the temperature in the furnace corresponding to at least three of the control zones is set to gradually decrease from the feed port to the discharge port.
  • the mixed gas branch pipes located outside the tank are respectively connected to at least fifteen nozzles, for example, may be connected to twenty nozzles to inject the gas and the combustion-supporting gas into the furnace body to generate heat release.
  • the mixer is provided with a combustion gas inlet, a gas inlet and a mixed gas outlet, the gas inlet is connected to the gas control branch, the gas inlet is connected to the gas control branch, and the mixed gas outlet is connected to the mixed gas branch.
  • the gas inlet is tangentially disposed along the side wall of the mixer such that the gas creates a swirl within the mixer to enhance mixing with the combustion gas.
  • a swirling fan is arranged in the mixer adjacent to the mixed gas outlet to make the gas and the combustion gas mixture more uniform.
  • the beneficial effects of the invention are as follows: (1) preheating the cold air by using the high-temperature flue gas discharged from the high-temperature flue gas waste heat recovery zone, and preheating the cold gas by the hot air discharged from the cooling zone, thereby effectively utilizing the high-temperature flue gas and The heat of hot air also improves the combustion efficiency; (2) The hot flue gas discharged from the ceramic kiln and the hot air formed by heat exchange are used as mixed combustion gas, which not only effectively recycles the hot flue gas of the ceramic kiln, but also reduces The emission of flue gas reduces the amount of nitrogen oxides generated, and achieves energy saving and environmental protection; (3) It can control the temperature of each control zone separately, which not only realizes the effective use of energy, but also guarantees the quality of ceramic products. .
  • Fig. 1 is a schematic view showing the construction of a ceramic kiln waste heat recovery and utilization system of the present invention.
  • Fig. 2 is a cross-sectional view showing the A-A of Fig. 1.
  • Fig. 3 is a view showing the configuration of a first heat exchanger of the present invention.
  • Fig. 4 is a view showing the configuration of a control box of the present invention.
  • the ceramic kiln waste heat comprehensive recycling system of the present invention comprises: a furnace body 100 , a gas assisting gas main pipe 200 , and a gas main pipe 300 .
  • FIG. 2 is an internal plan view of the furnace body 100. As shown in FIG. 2, the two ends of the furnace body 100 are respectively provided with a feed port 101 and a discharge port 102, and the inside of the furnace body includes waste heat of the flue gas adjacent to the feed port 101. A recovery zone 103, a cooling zone 105 adjacent the discharge port 102, and a sintering zone 104 between the flue gas waste heat recovery zone 103 and the cooling zone 105.
  • the furnace body 100 is connected to a side wall of the cooling zone 105 with a cooling duct 106. The cooling air from the cooling fan is blown into the cooling zone 105 via the cooling duct 106 to cool the ceramic workpiece P.
  • the ceramic workpiece P enters the furnace body 100 from the feed port 101 by a conveying device (not shown) for heat treatment, and sequentially passes through the flue gas waste heat recovery zone 103, the sintering zone 104, and the cooling zone 105, and then exits through the discharge port 102.
  • Furnace body 100 Furnace body 100.
  • the furnace body 100 is connected with a flue gas main pipe 110 adjacent to the feed port 101 on the top wall of the flue gas waste heat recovery zone 103, and a smoke exhaust fan is disposed in the flue gas main pipe 110 to discharge the high temperature smoke.
  • the gas is discharged from the furnace body 100.
  • a first flue gas pipeline 120 is connected to the flue gas manifold 110, and the first flue gas pipeline 120 is connected to the first heat exchanger 400, so that the high-temperature flue gas is exchanged through the first heat exchanger 400, and then discharged. To the chimney 500.
  • the first heat exchanger 400 includes a high temperature flue gas inlet 401, a low temperature flue gas outlet 402, a cold air inlet 403, and a hot air outlet 404.
  • the high temperature flue gas inlet 401 is connected to the first flue gas line 120, and the hot air outlet 404 is passed.
  • the hot air line 130 is connected to the combustion gas main pipe 200, and the low temperature flue gas outlet 402 is connected to the chimney 500 through a line.
  • the flue gas main pipe 110 is further connected with a second flue gas pipeline 140, and the second flue gas pipeline 140 is disposed.
  • the flue gas circulation fan returns the high temperature flue gas, which accounts for 30% (by volume) of the total amount of flue gas in the flue gas main pipe 110, to the combustion gas main pipe 200 via the hot air line 130.
  • the high-temperature flue gas of about 500 degrees Celsius from the flue gas waste heat recovery area 103 is discharged out of the furnace body 100 along the flue gas main pipe 110, wherein the high-temperature flue gas which accounts for 70% of the total amount of the high-temperature flue gas passes through the first flue gas line 120.
  • the formed hot air of about 350 degrees Celsius enters the combustion gas main pipe 200 through the hot air line 130 as the combustion gas, and about 180 after the cooling.
  • the low temperature flue gas of Celsius is discharged to the chimney 500.
  • the high-temperature flue gas which accounts for about 30% of the total amount of the high-temperature flue gas, is mixed with the hot air in the hot air line 130 via the second flue gas line 140 to form a mixed gas of about 400 degrees Celsius and then enters the assist gas main pipe 200.
  • the formation of a mixed combustion-supporting gas not only effectively reduces the amount of high-temperature hot flue gas emissions, but also utilizes the heat carried by the high-temperature hot flue gas.
  • the furnace body 100 is connected to the hot water line 150 adjacent to the discharge port 102 on the side wall of the cooling zone 105 , so that the hot air generated at the cooling zone 105 is discharged to the furnace body 100 , and the hot air pipeline 150 is coupled to the second heat exchanger 600 to recover heat carried by the hot air.
  • the second heat exchanger 600 includes a hot air inlet 601, a cold air outlet 602, a cold gas inlet 603, and a hot gas outlet 604.
  • the hot gas outlet 604 is connected to the gas main pipe 300 through the hot gas line 160.
  • the cold air outlet 602 is connected to the chimney 500 through a pipeline.
  • about 300 degrees Celsius of hot air from the cooling zone can enter the second heat exchanger 600 via the hot air line 150, and after heat exchange with cold gas of about 20 degrees Celsius, a hot gas of about 200 degrees Celsius is formed.
  • the hot gas line 160 enters the gas main pipe 300 for use as a gas, and the formed cold air of about 180 degrees Celsius is discharged to the chimney 500. Therefore, the low-temperature combustion gas and the low-temperature gas used in the furnace body 100 can be preheated by the high-temperature flue gas and hot air discharged from the furnace body, respectively.
  • the first heat exchanger and the second heat exchanger of the present invention are both a rotary heat recovery device.
  • the first heat exchanger 400 will be described as an example.
  • the first heat exchanger 400 includes an outer cylinder 410, a rotating heat storage tray 420 disposed coaxially with the outer cylinder 410 in the outer cylinder 410, and a rotating heat storage tray.
  • a first partition 430 on one side of the 420 and a second partition 440 disposed on the other side of the rotating heat storage tray 420.
  • first partition 430 and the second partition 440 are located on the same longitudinal section of the outer cylinder 410, and the first partition 430 divides the front section of the outer cylinder 410 into the first air flow passage 451 and the first air flow.
  • Lane 452 second partition 440 divides the rear section of outer cylinder 410 into second flue gas passage 453 and second air flow passage 454.
  • the flue gas inlet 401 is connected to the first flue gas line 120, the low temperature flue gas outlet 402 is connected to the chimney 500, and the end of the second air flow path 454 away from the rotating heat accumulating disc 420 forms a cold air inlet 403, the first air flow
  • the end of the passage 452 remote from the rotating heat storage tray 420 forms a hot air outlet 404 through which cold air enters into the first heat exchanger 400, and the hot air outlet 404 is connected to the assist gas main pipe 200 through the hot air line 130. Therefore, hot air is used as the combustion gas.
  • the sinter zone 104 includes four control zones (not labeled) disposed in sequence along the longitudinal direction of the furnace body 100.
  • Each control zone includes a thermocouple 107, a control box 108, and four nozzles 109.
  • the thermocouple 107 is disposed on the sidewall of the furnace body of each control zone, so that the partition temperature data in the sintering zone corresponding to each control zone can be obtained.
  • the control box 108 is provided with a box body 1081, a mixer 1082 housed in the box body 1081, and a gas-assisted gas control connected between the mixer 1082 and the gas-assisting gas main pipe 200 through a side wall of the box body.
  • a first induced draft fan F1 is disposed on the gas-assisted gas control branch pipe 1083 outside the casing 1081, and a first electric valve V1 is disposed on the gas-assisted gas control branch pipe 1083 inside the casing 1081.
  • a second induced draft fan F2 is disposed on the gas control branch pipe 1084 outside the box body 1081, and the second electric valve V2, the second thermometer T2 and the second are disposed on the gas control branch pipe 1084 inside the box body 1081.
  • each control box 108 has its own independent induced draft fan to introduce the combustion gas and the gas, and the temperature and flow of the combustion gas and the gas in each control zone can be independently monitored, thereby further facilitating the control of different control zone temperatures. Controls the gradient of the partition temperature.
  • the four control zones can control the opening degree of the second electric valve V2 in each control zone according to the corresponding thermocouple 107 to obtain the partition temperature data in the corresponding sintering zone 104, respectively.
  • the second flow meter W2 transmits the obtained gas flow rate data and the gas temperature data obtained by the second thermometer T2 to a control center (central controller, not shown), and the gas flow data obtained by the control center according to the second flow meter W2,
  • the gas temperature data obtained by the second thermometer T2, the combustion gas flow data in the combustion gas control branch pipe 1083 obtained by the first flow meter W1, and the combustion gas temperature data in the combustion gas control branch pipe 1083 obtained by the first thermometer T1 are coupled to each of each other.
  • the opening degree of the first electric valve V1 in the zone is controlled.
  • the mixed gas of the assisted gas and the gas after adjusting the flow rate is injected into the combustion heat release of the furnace through the four nozzles 109, so that the combustion gas flow data obtained by the first flow meter W1 in each control zone and the second flow meter W2 are obtained.
  • the ratio of the gas flow data reaches the optimal air-fuel ratio preset by the system, which not only realizes the automatic adjustment of the temperature, but also saves energy more effectively.

Landscapes

  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air Supply (AREA)
  • Waste-Gas Treatment And Other Accessory Devices For Furnaces (AREA)

Abstract

一种陶瓷窑余热综合回收利用系统,包括:助燃气总管(200)、燃气总管(300)及炉体(100),炉体(100)的两端分别设有进料口(101)和出料口(102),炉体(100)内部包括烟气余热回收区(103)、冷却区(105)及烧结区(104),炉体(100)于烟气余热回收区(103)的顶壁上连接有烟气总管(110),烟气总管(110)上连接有第一烟气管路(120),第一烟气管路(120)与第一换热器(400)相连接,第一换热器(400)包括高温烟气入口(401)、低温烟气出口(402)、冷空气入口(403)及热空气出口(404),高温烟气入口(401)与第一烟气管路(120)相连接,热空气出口(404)通过热空气管线(130)与助燃气总管(200)相连接;炉体(100)于冷却区(105)的侧壁上连接有热风管路(150),热风管路(150)与第二换热器(600)相连接,第二换热器(600)包括热风入口(601)、冷风出口(602)、冷燃气入口(603)及热燃气出口(604),热燃气出口(604)通过热燃气管线(160)与燃气总管(300)相连接。

Description

陶瓷窑余热综合回收利用系统 技术领域
本发明涉及一种陶瓷窑,特别涉及一种陶瓷窑的余热回收系统。
背景技术
面对日益严峻的环境问题和能源危机,全世界都在大力提倡节能减排,尤其是对于耗能和污染都较严重的相关产业,如何进行节能减排改造,已经成为相关领域技术人员在设计该类设备时必须要考虑的因素。
以陶瓷窑为例,陶瓷窑炉以燃气作为热源,燃烧时燃气与助燃气的配比是否合理直接影响到能耗的大小。助燃气量过少时,燃烧不完全,不完全燃烧产物中含有大量污染环境的物质,同时也造成能源的浪费;而助燃气量过大时,过量的空助燃气排出时又带走大量的热量,加大了热量的损失。此外,陶瓷窑的烟气出口处的烟气温度通常会高达400摄氏度,如果将这些高温烟气直接排放到环境中,不但会造成能源浪费,而且还会对环境造成一定程度的破坏。再进一步,目前随着陶瓷的市场需求量越来越大,陶瓷窑炉也越建越长、截面也愈来愈宽,但同时窑内温度也越来越难以控制,而由于窑内温度不均匀造成的诸如变形、色差等烧成缺陷也日趋严重。因此,提供一种可均匀窑内温度、并可同时减少能耗和污染的陶瓷窑炉成为业内关注的焦点。
如中国专利申请号201510066385.6公开的一种马赛克陶瓷窑炉余热发电综合利用系统,其包括炉体、余热锅炉以及汽轮发电机。炉体内部包括邻近出料口的冷却区、邻近进料口的烟气回收区、以及位于冷却区与烟气回收区之间的烧结区,炉体在烟气回收区处的侧壁上连接有烟气总管用于回收高温烟气,烟气总管上连接有第一烟气管路和热风管路,第一烟气管路将部分烟气回流至混合烧嘴用于助燃,热风管路将剩余烟气流经余热锅炉换热后排出至烟囱,余热锅炉中的水利用高温烟气的余热加热成高温蒸汽后经由管线输送至汽轮发电机发电。然而,该存 在以下缺点或不足:(1)未充分利用窑炉余热来预热燃气及助燃气,燃烧效率低;(2)缺少温度控制方法,难以使窑内温度均匀。
因此,提供一种能够可减少能耗和污染、并可同时均匀窑内温度的陶瓷窑余热综合回收利用系统成为业内急需解决的问题。
发明内容
本发明的目的是提供一种陶瓷窑余热综合回收利用系统,其能够充分利用陶瓷窑炉烟气余热回收区及冷却区排出的高温烟气以及热风的热能,显著提高能源利用率。
为了实现上述目的,本发明提供了一种陶瓷窑余热综合回收利用系统,包括:助燃气总管、燃气总管以及炉体,其中,炉体的两端分别设有进料口和出料口,炉体内部包括邻近进料口的烟气余热回收区、邻近出料口的冷却区、以及位于烟气余热回收区与冷却区之间的烧结区,炉体于烟气余热回收区的顶壁上在邻近进料口处连接有用于排放高温烟气的烟气总管,烟气总管上连接有第一烟气管路,第一烟气管路与第一换热器相连接以将高温烟气输送至第一换热器,第一换热器包括高温烟气入口、低温烟气出口、冷空气入口及热空气出口,高温烟气入口与第一烟气管路相连接,热空气出口通过热空气管线与助燃气总管相连接,低温烟气出口通过管线与烟囱相连接,来自第一烟气管路的高温烟气自高温烟气入口进入第一换热器后对自冷空气入口进入第一换热器的冷空气进行预热,形成的热空气通过热空气出口经由热空气管线进入助燃气总管中作为助燃气使用;炉体于冷却区的侧壁上连接有冷却风管和热风管路,热风管路与第二换热器相连接以将热风输送至第二换热器,第二换热器包括热风入口、冷风出口、冷燃气入口及热燃气出口,热燃气出口通过热燃气管线与燃气总管相连接,冷风出口通过管线与烟囱相连接,其中,来自热风管路的热风自热风入口进入第二换热器后对自冷燃气入口进入第二换热器的冷燃气进行预热,形成的热燃气通过热燃气出口经由热燃气管线进入燃气总管中作为助燃气使用。
可选择地,烟气总管上还连接有第二烟气管路,第二烟气管路与热空气管线相连接以将占烟气总管中烟气总量的30%~40%的高温烟气与 热空气混合后再输送至助燃气总管中。
其中,来自烟气余热回收区的400~500摄氏度的高温烟气排放至烟气总管,占高温烟气总量的60%~80%的高温烟气经由第一烟气管路进入第一换热器中,与20~25摄氏度的冷空气进行热交换后,形成的300~400摄氏度的热空气进入热空气管线中,形成的180~200摄氏度的低温烟气排放至烟囱;占高温烟气总量的20%~40%的高温烟气经由第二烟气管路与热空气管线相连接,与热空气管线中的300~400摄氏度的热空气混合形成350~450摄氏度的混合气后再输送至助燃气总管中。
可选择地,烟气总管内设有抽烟风机,第一烟气管路中设有烟气换热风机,第二烟气管路中设有烟气循环风机。
可选择地,冷却风管在远离出料口处设于冷却区的一侧壁上以将来自冷却风机的冷却风吹入冷却区内,热风管路在邻近出料口处设于冷却区的另一侧壁上用于排放冷却区产生的热风。
其中,来自冷却区的300~400摄氏度的热风经由热风管路进入第二换热器中,与20~25摄氏度的冷燃气进行热交换后,形成的180~200摄氏度的热燃气经由热燃气管线进入燃气总管中作为燃气使用,形成的180~200摄氏度的冷风排放至烟囱。
可选择地,第一换热器或第二换热器为旋转余热回收器。
在第一换热器中,旋转余热回收器包括外筒体、与外筒体同轴线设置于外筒体内的转动蓄热盘、设置于转动蓄热盘一侧的第一隔板以及设置于转动蓄热盘另一侧的第二隔板;其中,第一隔板和第二隔板位于外筒体的同一纵向截面上,第一隔板将外筒体的前段分隔为第一烟气流道和第一空气流道,第二隔板将外筒体的后段分隔为第二烟气流道和第二空气流道;第一烟气流道的远离转动蓄热盘的一端形成高温烟气入口,第二烟气流道的远离转动蓄热盘的一端形成低温烟气出口,高温烟气入口与第一烟气管路相连接,低温烟气出口连接至烟囱,第二空气流道的远离转动蓄热盘的一端形成冷空气入口,第一空气流道的远离转动蓄热盘的一端形成热空气出口,冷空气通过冷空气入口进入至第一换热器中,热空气出口通过热空气管线与助燃气总管相连接以将热空气作为助燃气使用。
在第二换热器中,旋转余热回收器包括外筒体、与外筒体同轴线设置于外筒体内的转动蓄热盘、设置于转动蓄热盘一侧的第一隔板以及设置于转动蓄热盘另一侧的第二隔板;其中,第一隔板和第二隔板位于外筒体的同一纵向截面上,第一隔板将外筒体的前段分隔为第一冷却风流道和第一燃气流道,第二隔板将外筒体的后段分隔为第二冷却风流道和第二燃气流道;第一冷却风流道的远离转动蓄热盘的一端形成热风入口,第二冷却风流道的远离转动蓄热盘的一端形成冷风出口,热风入口与热风管路相连接,冷风出口连接至烟囱,第二燃气流道的远离转动蓄热盘的一端形成冷燃气入口,第一燃气流道的远离转动蓄热盘的一端形成热燃气出口,冷燃气通过冷燃气入口进入至第二换热器中,热燃气出口通过热燃气管线进入燃气总管中作为燃气使用。
可选择地,第一或第二换热器可为热管换热器或盘管换热器。
可选择地,烧结区包括沿炉体的纵向方向依次设置的至少三个控制分区,每个控制分区包括:热电偶,其设置于每个控制分区的炉体侧壁上以获得每个控制分区对应的烧结区内的分区温度数据;至少四个喷嘴,至少四个喷嘴间隔设置于每个控制分区的炉体侧壁上;以及控制箱,控制箱设有箱体、容置于箱体内的混合器、穿过箱体一侧壁连接于混合器与助燃气总管之间的助燃气控制支管、穿过箱体另一侧壁连接于混合器与燃气总管之间的燃气控制支管、以及自混合器穿过箱体一端壁延伸至箱体外部的混合气支管,位于箱体外部的混合气支管分别与至少四个喷嘴相连以将燃气和助燃气体喷射至炉体内燃烧放热。
可选择地,位于箱体外部的助燃气控制支管上设有第一引风机,位于箱体内部的助燃气控制支管上设有第一电动阀、第一温度计以及第一流量计。
可选择地,位于箱体外部的燃气控制支管上设有第二引风机,位于箱体内部的燃气控制支管上设有第二电动阀、第二温度计以及第二流量计。
可选择地,各控制箱的第一电动阀和第二电动阀均独立控制,使得第一电动阀的开度按照预设空燃比随着第二电动阀的开度变化而变化。
可选择地,至少三个控制分区对应的炉内的温度设定为从进料口向 出料口逐渐降低。
可选择地,位于箱体外部的混合气支管分别与至少十五个喷嘴相连,比如,可与二十个喷嘴相连以将燃气和助燃气体喷射至炉体内燃烧放热。
可选择地,混合器设有助燃气入口、燃气入口以及混合气出口,助燃气入口与助燃气控制支管相连接,燃气入口与燃气控制支管相连接,混合气出口与混合气支管相连接。燃气入口沿混合器的侧壁切向设置使得燃气在混合器内形成旋流以增强与助燃气的混合。同时,混合器内邻近混合气出口设置旋流风机使得燃气与助燃气混合更加均匀。
本发明的有益效果是:(1)、利用高温烟气余热回收区排放的高温烟气对冷空气进行预热,冷却区排放的热风对冷燃气进行预热,不仅有效利用了高温烟气及热风的热量,同时提高了燃烧效率;(2)、将陶瓷窑排放的热烟气及通过热交换形成的热空气作为混合助燃气,不仅有效循环利用了陶瓷窑的热烟气,而且减少了烟气的排放量,降低氮氧化物生成量,实现节能环保;(3)、能够单独对每个控制分区的温度进行更精确的控制,不仅实现能源的有效利用,而且保证了陶瓷产品的质量。
附图说明
图1示出了本发明的陶瓷窑余热综合回收利用系统的构造示意图。
图2示出了图1的A-A截面示意图。
图3示出了本发明的第一换热器的构造示意图。
图4示出了本发明的控制箱的构造示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
请参照图1,作为一种非限制性实施方式,本发明的陶瓷窑余热综合回收利用系统包括:炉体100、助燃气总管200以及燃气总管300。
其中,图2为炉体100的内部俯视图,如图2所示,炉体100的两端分别设有进料口101和出料口102,炉体内部包括邻近进料口101的烟气余热回收区103、邻近出料口102的冷却区105、以及位于烟气余热回收区103与冷却区105之间的烧结区104。炉体100在冷却区105的一侧壁上连接有冷却风管106,来自冷却风机的冷却风经由冷却风管106吹入冷却区105内对陶瓷工件P进行冷却。由此,陶瓷工件P通过传送装置(图未示)从进料口101进入炉体100内进行热处理,依次经历烟气余热回收区103、烧结区104、冷却区105后经由出料口102离开炉体100。
在该非限制性实施方式中,炉体100在烟气余热回收区103的顶壁上于邻近进料口101处连接有烟气总管110,烟气总管110内设有抽烟风机从而将高温烟气自炉体100中排出。烟气总管110上连接有第一烟气管路120,第一烟气管路120与第一换热器400相连接,从而将高温烟气经由第一换热器400换热后,再排出至烟囱500。第一换热器400包括高温烟气入口401、低温烟气出口402、冷空气入口403及热空气出口404,高温烟气入口401与第一烟气管路120相连接,热空气出口404通过热空气管线130与助燃气总管200相连接,低温烟气出口402通过管线与烟囱500相连接。
作为一种可替代实施方式,为了充分利用陶瓷窑炉的热烟气,如图1所示,烟气总管110上还连接有第二烟气管路140,第二烟气管路140中设置的烟气循环风机将占烟气总管110中烟气总量30%(体积)的高温烟气经由热空气管线130回流至助燃气总管200中。
由此,来自烟气余热回收区103的约500摄氏度的高温烟气沿烟气总管110排放出炉体100,其中,占高温烟气总量70%的高温烟气经由第一烟气管路120进入第一换热器400中,对约20摄氏度的冷空气进行预热后,形成的约350摄氏度的热空气经由热空气管线130进入助燃气总管200作为助燃气使用,而降温后的约180摄氏度的低温烟气排放至烟囱500。同时,占高温烟气总量的约30%的高温烟气则经由第二烟气管路140与热空气管线130中的热空气混合形成约400摄氏度的混合 气体再进入助燃气总管200中,形成混合助燃气体,不仅有效降低了高温热烟气的排放量,而且还利用了高温热烟气携带的热量。
请继续参考图1,炉体100于冷却区105的侧壁上在邻近出料口102处连接有热风管路150,从而将冷却区105处产生的热风排出炉体100,热风管路150与第二换热器600相连接以回收利用热风携带的热量。在该非限制性实施例中,第二换热器600包括热风入口601、冷风出口602、冷燃气入口603及热燃气出口604,热燃气出口604通过热燃气管线160与燃气总管300相连接,冷风出口602通过管线与烟囱500相连接。
由此,来自冷却区的约300摄氏度的热风便可经由热风管路150进入第二换热器600中,与约20摄氏度的冷燃气进行热交换后,形成的约200摄氏度的热燃气便经由热燃气管线160进入燃气总管300中作为燃气使用,而形成的约180摄氏度的冷风则排放至烟囱500。从而,炉体100使用的低温助燃气及低温燃气都可以分别经由炉体排出的高温烟气及热风进行预热。
作为一种可替代实施方式,本发明的第一换热器及第二换热器均为旋转余热回收器,下面,以第一换热器400为例进行说明。如图1和图3所示,第一换热器中400包括外筒体410、与外筒体410同轴线设置于外筒体410内的转动蓄热盘420、设置于转动蓄热盘420一侧的第一隔板430以及设置于转动蓄热盘420另一侧的第二隔板440。其中,第一隔板430和第二隔板440位于外筒体410的同一纵向截面上,第一隔板430将外筒体410的前段分隔为第一烟气流道451和第一空气流道452,第二隔板440将外筒体410的后段分隔为第二烟气流道453和第二空气流道454。由此,第一烟气流道451的远离转动蓄热盘420的一端形成高温烟气入口401,第二烟气流道453的远离转动蓄热盘420的一端形成低温烟气出口402,高温烟气入口401与第一烟气管路120相连接,低温烟气出口402连接至烟囱500,第二空气流道454的远离转动蓄热盘420的一端形成冷空气入口403,第一空气流道452的远离转动蓄热盘420的一端形成热空气出口404,冷空气通过冷空气入口403进入至第一换热器中400,热空气出口404通过热空气管线130与助燃气总管200相连接,从而将热空气作为助燃气使用。
作为另一种可替代实施方式,烧结区104包括沿炉体100的纵向方 向依次设置的四个控制分区(图中未标号)。每个控制分区包括:热电偶107、控制箱108、以及四个喷嘴109。其中,热电偶107设置于每个控制分区的炉体侧壁上,从而能够获得每个控制分区对应的烧结区内的分区温度数据。
如图4所示,控制箱108设有箱体1081、容置于箱体1081内的混合器1082、穿过箱体一侧壁连接于混合器1082与助燃气总管200之间的助燃气控制支管1083、穿过箱体1081另一侧壁连接于混合器1082与燃气总管300之间的燃气控制支管1084、以及自混合器1082穿过箱体一端壁延伸至箱体1081外部的混合气支管1085,位于箱体外部的混合气支管1085分别与四个喷嘴109相连,从而将燃气和助燃气体喷射至炉体内燃烧放热。
如图1和图4所示,位于箱体1081外部的助燃气控制支管1083上设有第一引风机F1,位于箱体1081内部的助燃气控制支管1083上设有第一电动阀V1、第一温度计T1以及第一流量计W1。与此对应地,位于箱体1081外部的燃气控制支管1084上设有第二引风机F2,位于箱体1081内部的燃气控制支管1084上设有第二电动阀V2、第二温度计T2以及第二流量计W2。由此,每个控制箱108都有各自独立的引风机来引入助燃气和燃气,而且各个控制分区的助燃气和燃气的温度与流量均可独立监控,进一步便于不同控制分区温度的控制,实现控制分区温度的梯度变化。
在该非限制性实施例中,四个控制分区便可以分别根据对应的热电偶107获得对应的烧结区104内的分区温度数据来控制每个控制分区内的第二电动阀V2的开度,第二流量计W2将获得的燃气流量数据以及第二温度计T2获得的燃气温度数据传送给控制中心(中央控制器,未图示),控制中心根据第二流量计W2获得的燃气流量数据、第二温度计T2获得的燃气温度数据、第一流量计W1获得的助燃气控制支管1083内的助燃气流量数据及第一温度计T1获得的助燃气控制支管1083内的助燃气温度数据来耦合控制每个控制分区内的第一电动阀V1的开度。通过四个喷嘴109将调整流量后的助燃气和燃气的混合气体喷射至炉体内燃烧放热,使得每个控制分区内的第一流量计W1获得的助燃气流量数据与第二流量计W2获得的燃气流量数据之比达到系统预设的最佳空 燃比,不仅实现了温度的自动调整,还更加有效地节省了能源。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (10)

  1. 一种陶瓷窑余热综合回收利用系统,包括:助燃气总管、燃气总管以及炉体,其中,所述炉体的两端分别设有进料口和出料口,所述炉体内部包括邻近所述进料口的烟气余热回收区、邻近所述出料口的冷却区、以及位于所述烟气余热回收区与所述冷却区之间的烧结区,其特征在于,
    所述炉体于所述烟气余热回收区的顶壁上在邻近所述进料口处连接有用于排放高温烟气的烟气总管,所述烟气总管上连接有第一烟气管路,所述第一烟气管路与第一换热器相连接以将所述高温烟气输送至所述第一换热器,所述第一换热器包括高温烟气入口、低温烟气出口、冷空气入口及热空气出口,所述高温烟气入口与所述第一烟气管路相连接,所述热空气出口通过热空气管线与所述助燃气总管相连接,所述低温烟气出口通过管线与烟囱相连接,来自所述第一烟气管路的高温烟气自所述高温烟气入口进入所述第一换热器后对自所述冷空气入口进入所述第一换热器的冷空气进行预热,形成的热空气通过所述热空气出口经由所述热空气管线进入所述助燃气总管中作为助燃气使用;以及
    所述炉体于所述冷却区的侧壁上连接有冷却风管和热风管路,所述热风管路与第二换热器相连接以将热风输送至所述第二换热器,所述第二换热器包括热风入口、冷风出口、冷燃气入口及热燃气出口,所述热燃气出口通过热燃气管线与所述燃气总管相连接,所述冷风出口通过管线与烟囱相连接,其中,来自所述热风管路的热风自所述热风入口进入所述第二换热器后对自所述冷燃气入口进入所述第二换热器的冷燃气进行预热,形成的热燃气通过所述热燃气出口经由所述热燃气管线进入所述燃气总管中作为助燃气使用。
  2. 如权利要求1所述的陶瓷窑余热综合回收利用系统,其特征在于,所述烟气总管上还连接有第二烟气管路,所述第二烟气管路与所述热空气管线相连接以将占烟气总管中烟气总量的30%~40%的高温烟气与所述热空气混合后再输送至所述助燃气总管中。
  3. 如权利要求2所述的陶瓷窑余热综合回收利用系统,其特征在 于,所述冷却风管在远离所述出料口处设于所述冷却区的一侧壁上以将来自冷却风机的冷却风吹入所述冷却区内,所述热风管路在邻近所述出料口处设于所述冷却区的另一侧壁上用于排放所述冷却区产生的热风。
  4. 如权利要求2所述的陶瓷窑余热综合回收利用系统,其特征在于,所述第一换热器或所述第二换热器为旋转余热回收器,所述旋转余热回收器包括外筒体、与所述外筒体同轴线设置于外筒体内的转动蓄热盘、设置于所述转动蓄热盘一侧的第一隔板以及设置于所述转动蓄热盘另一侧的第二隔板,所述第一隔板将外筒体的前段分隔为第一烟气流道和第一气体流道,所述第二隔板将外筒体的后段分隔为第二烟气流道和第二气体流道。
  5. 如权利要求1所述的陶瓷窑余热综合回收利用系统,其特征在于,所述烧结区包括沿所述炉体的纵向方向依次设置的至少三个控制分区,每个控制分区包括:
    热电偶,其设置于每个所述控制分区的炉体侧壁上以获得每个所述控制分区对应的烧结区内的分区温度数据;
    至少四个喷嘴,所述至少四个喷嘴间隔设置于每个所述控制分区的炉体侧壁上;以及
    控制箱,所述控制箱设有箱体、容置于所述箱体内的混合器、穿过所述箱体一侧壁连接于所述混合器与所述助燃气总管之间的助燃气控制支管、穿过所述箱体另一侧壁连接于所述混合器与所述燃气总管之间的燃气控制支管、以及自所述混合器穿过所述箱体一端壁延伸至所述箱体外部的混合气支管,位于所述箱体外部的所述混合气支管分别与所述至少四个喷嘴相连以将燃气和助燃气体喷射至所述炉体内燃烧放热。
  6. 如权利要求5所述的陶瓷窑余热综合回收利用系统,其特征在于,位于所述箱体外部的所述助燃气控制支管上设有第一引风机,位于所述箱体内部的所述助燃气控制支管上设有第一电动阀、第一温度计以及第一流量计。
  7. 如权利要求6所述的陶瓷窑余热综合回收利用系统,其特征在 于,位于所述箱体外部的所述燃气控制支管上设有第二引风机,位于所述箱体内部的所述燃气控制支管上设有第二电动阀、第二温度计以及第二流量计。
  8. 如权利要求7所述的陶瓷窑余热综合回收利用系统,其特征在于,各控制箱的所述第一电动阀和所述第二电动阀均独立控制,使得所述第一电动阀的开度按照预设空燃比随着所述第二电动阀的开度变化而变化。
  9. 如权利要求8所述的陶瓷窑余热综合回收利用系统,其特征在于,所述至少三个控制分区对应的炉内的温度设定为从所述进料口向所述出料口向另一端逐渐降低。
  10. 如权利要求9所述的陶瓷窑余热综合回收利用系统,其特征在于,所述混合器设有助燃气入口、燃气入口以及混合气出口,所述助燃气入口与所述助燃气控制支管相连接,所述燃气入口与所述燃气控制支管相连接,所述混合气出口与所述混合气支管相连接。
PCT/CN2018/106195 2017-09-18 2018-09-18 陶瓷窑余热综合回收利用系统 WO2019062597A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710839772.8A CN107677136B (zh) 2017-09-18 2017-09-18 陶瓷窑余热综合回收利用系统
CN201710839772.8 2017-09-18

Publications (1)

Publication Number Publication Date
WO2019062597A1 true WO2019062597A1 (zh) 2019-04-04

Family

ID=61137582

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106195 WO2019062597A1 (zh) 2017-09-18 2018-09-18 陶瓷窑余热综合回收利用系统

Country Status (2)

Country Link
CN (1) CN107677136B (zh)
WO (1) WO2019062597A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578729A (zh) * 2020-06-15 2020-08-25 德亚炉业科技江苏有限公司 一种焙烧炉烟气处理装置
CN111879152A (zh) * 2020-06-16 2020-11-03 东莞市唯美陶瓷工业园有限公司 含硫烟气换热器、陶瓷砖生产系统及含硫烟气换热方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107677136B (zh) * 2017-09-18 2024-04-02 广东工业大学 陶瓷窑余热综合回收利用系统
CN109028989A (zh) * 2018-09-14 2018-12-18 广东中鹏热能科技有限公司 窑炉废热综合利用系统
CN110296601B (zh) * 2019-07-25 2024-05-03 启明星宇节能科技股份有限公司 一种隧道炉窑低氮燃烧系统
CN115265212B (zh) * 2022-07-21 2023-06-16 广州能源检测研究院 一种陶瓷窑炉氢气燃料燃烧系统及节能工艺

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202267079U (zh) * 2011-08-19 2012-06-06 中电投东北电力有限公司 回转式空气预热器密封装置
CN103673592A (zh) * 2013-12-27 2014-03-26 中冶长天国际工程有限责任公司 一种并联预热烧结点火炉用燃气和助燃空气的方法及系统
CN103982911A (zh) * 2014-04-25 2014-08-13 广东工业大学 分段式陶瓷窑燃气与空气联动控制系统
WO2015000584A2 (de) * 2013-07-01 2015-01-08 Eisenmann Ag Verfahren zum sintern von sinterwerkstücken sowie anlage hierfür
CN204345621U (zh) * 2014-09-26 2015-05-20 广东工业大学 天然气陶瓷窑炉节能燃烧系统
CN204495082U (zh) * 2015-02-06 2015-07-22 陈翔 马赛克陶瓷窑炉余热发电综合利用系统
CN105333728A (zh) * 2015-11-08 2016-02-17 广东工业大学 结合生物质气化炉的模块式陶瓷窑炉节能系统
CN107677136A (zh) * 2017-09-18 2018-02-09 广东工业大学 陶瓷窑余热综合回收利用系统
CN207379306U (zh) * 2017-09-18 2018-05-18 广东工业大学 陶瓷窑余热综合回收利用装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2038592A5 (en) * 1969-03-19 1971-01-08 Koho Es Gepipari Miniszterium Tunnel kiln for the firing of refractory - ceramic products
DE3918585C1 (zh) * 1989-04-27 1990-08-16 Jean-Louis Hermann Hauset Be Nieberding
CN104654815B (zh) * 2015-02-06 2018-08-24 陈翔 马赛克陶瓷窑炉余热发电综合利用系统
CN104792154B (zh) * 2015-04-03 2017-01-25 石家庄新华能源环保科技股份有限公司 一种间壁式回转窑装置
CN105423753A (zh) * 2015-11-19 2016-03-23 广东工业大学 具有多孔喷管换热器的连续式低氧高温燃烧熔铝炉
CN105571337B (zh) * 2016-01-27 2019-06-14 广东工业大学 采用生物质气化燃烧发电系统的节能工业窑炉

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN202267079U (zh) * 2011-08-19 2012-06-06 中电投东北电力有限公司 回转式空气预热器密封装置
WO2015000584A2 (de) * 2013-07-01 2015-01-08 Eisenmann Ag Verfahren zum sintern von sinterwerkstücken sowie anlage hierfür
CN103673592A (zh) * 2013-12-27 2014-03-26 中冶长天国际工程有限责任公司 一种并联预热烧结点火炉用燃气和助燃空气的方法及系统
CN103982911A (zh) * 2014-04-25 2014-08-13 广东工业大学 分段式陶瓷窑燃气与空气联动控制系统
CN204345621U (zh) * 2014-09-26 2015-05-20 广东工业大学 天然气陶瓷窑炉节能燃烧系统
CN204495082U (zh) * 2015-02-06 2015-07-22 陈翔 马赛克陶瓷窑炉余热发电综合利用系统
CN105333728A (zh) * 2015-11-08 2016-02-17 广东工业大学 结合生物质气化炉的模块式陶瓷窑炉节能系统
CN107677136A (zh) * 2017-09-18 2018-02-09 广东工业大学 陶瓷窑余热综合回收利用系统
CN207379306U (zh) * 2017-09-18 2018-05-18 广东工业大学 陶瓷窑余热综合回收利用装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111578729A (zh) * 2020-06-15 2020-08-25 德亚炉业科技江苏有限公司 一种焙烧炉烟气处理装置
CN111879152A (zh) * 2020-06-16 2020-11-03 东莞市唯美陶瓷工业园有限公司 含硫烟气换热器、陶瓷砖生产系统及含硫烟气换热方法

Also Published As

Publication number Publication date
CN107677136B (zh) 2024-04-02
CN107677136A (zh) 2018-02-09

Similar Documents

Publication Publication Date Title
WO2019062597A1 (zh) 陶瓷窑余热综合回收利用系统
CN104654815B (zh) 马赛克陶瓷窑炉余热发电综合利用系统
RU2010153610A (ru) Способ получения цементного клинкера и установка для его производства
CN107525090B (zh) 一种点火时即投用脱硝系统的燃煤电站锅炉装置及其使用方法
CN105333449B (zh) 低碳型烟气回流式蒸汽锅炉低氧燃烧系统
WO2016150100A1 (zh) 蓄热式石灰回转窑
CN104208995B (zh) 一种提高锅炉湿法脱硫净烟气温度的热力装置及方法
BRPI0909265B1 (pt) método para queimar produtos em um forno cerâmico, e, forno cerâmico
WO2006017965A1 (fr) Installation de depoussierage de type a sec dotee d’un echangeur thermique pour haut-fourneau
CN105403061B (zh) 一种循环利用冷却余热提高助燃风温度的节能窑炉
CN104121591A (zh) 一种节能高效焚烧炉
CN101921074B (zh) 梁式石灰窑
CN105570918A (zh) 一种节能锅炉
CN204224467U (zh) 石灰窑及电石生产系统
CN102564127A (zh) 一种节能梭式窑
CN102721276A (zh) 陶瓷窑炉节能改造系统
CN208026084U (zh) 熔铝炉烟气回收利用装置
CN207379306U (zh) 陶瓷窑余热综合回收利用装置
CN205228190U (zh) 一种循环利用冷却余热提高助燃风温度的节能窑炉
CN205223311U (zh) 一种针对铸铁管退火炉烟气的收集装置
CN204593847U (zh) 一种高效直燃热风锅炉
CN203980301U (zh) 一种节能高效焚烧炉
CN204495082U (zh) 马赛克陶瓷窑炉余热发电综合利用系统
CN204058259U (zh) 一种以煤粉为燃料的煅烧装置
CN102351442B (zh) 一种煅烧物料的方法和石灰窑装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18861457

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18861457

Country of ref document: EP

Kind code of ref document: A1