WO2019062590A1 - 冷却集成组件和电池组件 - Google Patents

冷却集成组件和电池组件 Download PDF

Info

Publication number
WO2019062590A1
WO2019062590A1 PCT/CN2018/106128 CN2018106128W WO2019062590A1 WO 2019062590 A1 WO2019062590 A1 WO 2019062590A1 CN 2018106128 W CN2018106128 W CN 2018106128W WO 2019062590 A1 WO2019062590 A1 WO 2019062590A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
port
assembly
cooling
plate
Prior art date
Application number
PCT/CN2018/106128
Other languages
English (en)
French (fr)
Inventor
张荣荣
邹江
朱振山
Original Assignee
浙江三花汽车零部件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江三花汽车零部件有限公司 filed Critical 浙江三花汽车零部件有限公司
Priority to US16/624,827 priority Critical patent/US11476514B2/en
Priority to PL18860173.6T priority patent/PL3690360T3/pl
Priority to EP18860173.6A priority patent/EP3690360B1/en
Publication of WO2019062590A1 publication Critical patent/WO2019062590A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6554Rods or plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/61Types of temperature control
    • H01M10/613Cooling or keeping cold
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/62Heating or cooling; Temperature control specially adapted for specific applications
    • H01M10/625Vehicles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/653Means for temperature control structurally associated with the cells characterised by electrically insulating or thermally conductive materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/655Solid structures for heat exchange or heat conduction
    • H01M10/6556Solid parts with flow channel passages or pipes for heat exchange
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/60Heating or cooling; Temperature control
    • H01M10/65Means for temperature control structurally associated with the cells
    • H01M10/656Means for temperature control structurally associated with the cells characterised by the type of heat-exchange fluid
    • H01M10/6569Fluids undergoing a liquid-gas phase change or transition, e.g. evaporation or condensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to the field of heat exchange cooling technology, and in particular to a cooling integrated component and a battery assembly.
  • a battery in a pure electric vehicle or a hybrid vehicle or some electrical appliances generates a large amount of heat during operation, and the battery temperature rises, so it needs to be cooled to maintain it within a suitable operating temperature range.
  • a cooling integrated component provided by the technical solution of the present invention includes a cooling assembly and a valve assembly, the cooling assembly has a first interface, a second interface, the valve assembly and the cooling assembly are fixedly disposed; the valve assembly includes a block and a spool assembly, the block having a mounting hole, at least a portion of the spool assembly being located in the mounting hole;
  • the valve assembly includes a first fluid passage, one end of the first fluid passage is a first port of the block, and the other end of the first fluid passage is a second port of the block, the block is a second port is located at an inner end surface of the block, the inner end surface faces the cooling assembly, the first interface and the second port of the block are electrically connected, and a passage area of the first fluid passage is zero More than zero, and the passage flow area of the first fluid passage varies between zero and the rated flow area of the first fluid passage;
  • the cooling assembly includes a bottom plate and a flow passage plate, the bottom plate and the flow passage a plate mating arrangement, the cooling assembly includes a second fluid passage, the second fluid passage is located between the bottom plate and the flow passage plate, and the second fluid passage communicates with the first interface and the second interface.
  • the technical solution of the present invention further provides a battery assembly comprising a battery module and a cooling integrated assembly according to the above, the cooling integrated assembly comprising a cooling assembly, the cooling assembly comprising a bottom plate and a flow channel plate, the bottom plate and the bottom plate
  • the bottom plate includes a flat plate portion, the flat plate portion is located at a side of the bottom plate opposite to the flow path plate, and at least a portion of the battery module is in contact with the flat plate portion or is thermally conductive. Component contact settings.
  • the components in the solution including the valve assembly and the cooling assembly, the valve assembly and the cooling assembly are fixedly arranged, the cooling integrated assembly is simple and compact;
  • the valve assembly includes a first fluid passage, the first fluid passage The passage area of the passage varies between zero and the rated flow area of the first fluid passage,
  • the cooling assembly includes a second fluid passage, and the second fluid passage is located between the bottom plate and the flow passage plate to help improve heat exchange efficiency.
  • the heat exchange efficiency of the battery assembly is high.
  • FIG. 1 is a schematic structural view of a first embodiment of a battery assembly provided by the present invention
  • FIG. 2 is a schematic structural view of a cooling integrated component in the battery assembly of FIG. 1;
  • Figure 3 is a cross-sectional view of the cooling integrated assembly of Figure 2;
  • Figure 4 is a schematic view showing the structure of the valve core assembly of Figure 3;
  • FIG. 5 is a schematic structural view of a bottom plate of a cooling component in the cooling integrated component of FIG. 2;
  • FIG. 6 is a schematic structural view of a flow passage plate of a cooling assembly in the cooling integrated component of FIG. 2;
  • FIG. 7 is a schematic structural view of a block in the cooling integrated component of FIG. 3;
  • Figure 8 is a cross-sectional view of the block of Figure 7;
  • Figure 9 is a cross-sectional view showing the structure of a second embodiment of the cooling integrated assembly provided by the present invention.
  • Figure 10 is a schematic view showing the structure of the valve cartridge assembly of Figure 9;
  • FIG. 11 is a schematic structural view of a block in the cooling integrated component of FIG. 10;
  • Figure 12 is a bottom view of Figure 11;
  • Figure 13 is a cross-sectional view of the block of Figure 11;
  • Figure 14 is a cross-sectional view showing the structure of a third embodiment of the cooling integrated assembly provided by the present invention.
  • Figure 15 is a schematic view showing the structure of the valve core assembly of Figure 14;
  • Figure 16 is a schematic structural view of the block in the cooling integrated component of Figure 15;
  • Figure 17 is a bottom view of Figure 16;
  • Figure 18 is a cross-sectional view of the block of Figure 16;
  • Figure 19 is a cross-sectional view showing the structure of a fourth embodiment of the cooling integrated assembly provided by the present invention.
  • Figure 20 is a schematic view showing the structure of the valve core assembly and the coil assembly of Figure 19;
  • FIG. 21 is a schematic structural view of a block in the cooling assembly of FIG. 20;
  • Figure 22 is a bottom view of Figure 21;
  • Figure 23 is a cross-sectional view of the block of Figure 21;
  • Figure 24 is a cross-sectional view showing the structure of a fifth embodiment of the cooling integrated assembly provided by the present invention.
  • Figure 25 is a schematic view showing the structure of Figure 24 after removing the valve plug assembly
  • 26 is a schematic structural view of a block in the cooling integrated component of FIG. 25;
  • Figure 27 is a bottom view of Figure 26;
  • Figure 28 is a cross-sectional view of the block of Figure 26;
  • Figure 29 is a cross-sectional view showing the structure of a sixth embodiment of the cooling integrated assembly provided by the present invention.
  • Figure 30 is a schematic view showing the structure of Figure 29 after removing the valve plug assembly
  • Figure 31 is a schematic structural view of the block in the cooling integrated assembly of Figure 30;
  • Figure 32 is a cross-sectional view of the block of Figure 31;
  • Figure 33 is a cross-sectional view showing the structure of a seventh embodiment of the cooling integrated assembly provided by the present invention.
  • Figure 34 is a schematic view showing the structure of Figure 33 after removing the valve plug assembly
  • Figure 35 is a schematic structural view of the block in the cooling integrated assembly of Figure 34;
  • Figure 36 is a cross-sectional view of the block of Figure 35;
  • FIG. 37 is a cross-sectional view showing the structure of an eighth embodiment of a cooling integrated assembly provided by the present invention.
  • Figure 38 is a schematic view showing the structure of the valve cartridge assembly of Figure 37;
  • Figure 39 is a transverse cross-sectional view of the position corresponding to the first port of the block and the fourth port of the block in Figure 37;
  • FIG. 40 is a schematic structural view of a block in the cooling integrated component of FIG. 37;
  • Figure 41 is a perspective view of Figure 40
  • Figure 42 is a transverse cross-sectional view taken along the plane of the first port of the block and the fourth port axis of the block of Figure 41;
  • Figure 43 is a vertical cross-sectional view taken along the plane in which the third port of the block and the second port of the block are axially located in Figure 41;
  • 44 is a schematic illustration of another embodiment of a cooling integrated assembly
  • Figure 46 is a schematic illustration of another embodiment of a cooling integrated assembly
  • Figure 47 is a schematic illustration of another embodiment of a cooling integrated assembly.
  • cooling assembly 201 bottom plate, 202 flow channel plate, 202a second fluid passage, 20a first interface, 20b second interface;
  • the cooling assembly of the cooling integrated component is substantially the same, the cooling assembly includes a bottom plate and a flow channel plate, and the valve assembly formed by the combination of the valve core assembly and the block has a throttling function, and different embodiments are based on the block structure.
  • the battery module is shown in the drawings of the first embodiment, and the cooling assembly in the other embodiments is also used to fit the battery module, and the drawings are not shown.
  • FIG. 1 is a schematic structural view of a first embodiment of a battery assembly provided by the present invention
  • FIG. 2 is a schematic structural view of a cooling integrated component in the battery assembly of FIG. 1
  • FIG. 4 is a schematic structural view of the cooling assembly bottom plate 201 in the cooling integrated assembly shown in FIG. 2
  • FIG. 6 is a cooling integrated structure shown in FIG. Schematic diagram of the cooling assembly runner plate 202 in the assembly.
  • the battery assembly includes a battery module 40 and a cooling integrated assembly, and the battery module 40 is placed in a cooling integrated assembly including a cooling assembly 20, a spool assembly 30, and a block 10, a spool assembly 30 and a block 10
  • the valve assembly formed after assembly has a throttling function.
  • the cooling assembly 20 is shown in FIGS. 3-5.
  • the cooling assembly 20 includes at least two layers.
  • the cooling assembly 20 includes a bottom plate 201 and a flow channel plate 202.
  • the connecting block 10 and the bottom plate 201 are fixed and fixed together.
  • the cooling integrated assembly includes a valve assembly, the valve assembly and the cooling assembly 20 are fixedly disposed, and the valve assembly includes a block 10 and a spool assembly 30.
  • the block 10 can be directly fixed to the bottom plate 201, and the block 10 can also be fixed to the bottom plate 201 after being fixed by an external structure.
  • the bottom plate 201 has a flat plate or a portion where there is a bend (shown as a flat plate structure) or a curved plate, etc., one side of which can be welded and fixed to the flow channel plate 202, the welded surface can be provided with a composite layer; the other side of the bottom plate 201 has a flat plate.
  • the portion of the bottom plate 201 can also be the mounting surface of the block 10, and the bottom plate 201 includes the first interface 20a and the second portion. Interface 20b.
  • Thermally conductive elements include, but are not limited to, metal sheets, metal sheets, or other thermally conductive materials.
  • the first interface 20a is in communication with the block 10
  • the second interface 20b is in communication with the block 10
  • the soldering of the bottom plate 201 and the flow channel plate 202 can be provided, for example, on one of the contact faces of the two layers, the melting point of the composite layer material.
  • the composite layer is disposed such that the bottom plate 201 and the flow channel plate 202 can be melted by the furnace so that the bottom plate 201 and the flow channel plate 202 are welded together.
  • there are other ways to solder the two there are other ways to solder the two.
  • the flow channel plate 202 is provided with a projection 202e and a recess 202b which protrudes in a direction away from the bottom plate 201, the recess 202b is opposed to the projection, and the recess 202b is located in the flow passage.
  • the plate 202 faces one side of the bottom plate 201, the cooling assembly 20 includes a second fluid passage 202a, and the second fluid passage 202a is located between the wall portion of the flow passage plate 202 forming the groove 202b and the bottom plate 201; the flow passage plate 202 includes a main body portion 202f, the groove 202b is continuously extended, the main body portion 202f is sealingly disposed with the bottom plate 201, and the groove 202b includes a first end portion 202c and a second end portion 202d.
  • the first end portion 202c is located opposite to the first interface 20a, and second The position of the end portion 202d is opposite to the second interface 20b; here, the first end portion 202c and the second end portion 202d of the groove refer to the starting end and the end of the groove extension.
  • the second fluid passage 202a is used for the circulation of a refrigerant or other refrigerant medium (e.g., CO2), and the following embodiments are all described in terms of refrigerant for the sake of simplicity of description.
  • the second fluid passage 202a should cover the entire surface of the flow passage plate 202 as much as possible, and reduce the flow resistance as much as possible, and the distribution of the second fluid passage 202a can be optimized under this demand.
  • the fluid enters the second fluid passage 202a from the first interface 20a, and the fluid absorbs external heat between the bottom plate 201 and the flow passage plate 202. Since the relative thickness of the flow passage plate 202 and the bottom plate 201 is small, the flat plate portion and the battery module 40 are At least part of the contact arrangement or contact by the heat conducting element allows the heat of the battery module to be quickly transferred to the fluid through the bottom plate 201, which is more efficient in cooling.
  • the thickness of the bottom plate 201 and the flow channel plate 202 is generally 0.8-2.5 mm.
  • FIG. 7 is a schematic structural view of the connecting block 10 in the cooling integrated assembly shown in FIG. 3.
  • FIG. 8 is a cross-sectional view of the connecting block 10 in FIG.
  • the cooling assembly 20 has a first interface 20a and a second interface 20b.
  • the refrigerant enters the second fluid passage 202a from the first interface 20a, and then flows out from the second interface 20b after the cycle.
  • the block 10 fixed to the cooling assembly 20 has a block first port 101, a block second port 102, a block third port 103, a block fourth port 104, and a spool for mounting the spool assembly 30. Mounting holes 105 for the components.
  • the block 10 can be mounted on the surface of the bottom plate 201 of the cooling assembly 20, and is almost in close contact with the surface of the bottom plate 201.
  • one side of the surface of the bottom plate 201 is defined as an inner end surface, that is, facing the bottom plate of the cooling assembly 20.
  • One side of 201 is an inner end face.
  • the third port 103 of the block and the second port 102 of the block are located at the inner end surface of the block 10.
  • the block 10 and the cooling assembly 20 can be directly welded and fixed to form an integral body, and after the welding is fixed, the first interface 20a of the cooling assembly 20 is required.
  • the second port 102 is connected to the second port 102, the second interface 20b and the third port 103 are connected, and the first port 101 and the fourth port 104 are located at the same end of the block 10.
  • the first port 101 of the block and the fourth port 104 of the block are located at the outer end surface of the block 10, opposite to the inner end surface.
  • the end face is intended to be the outer contour of the block, and is not limited to one plane; for example, the block first port 101 and the block fourth port 104 described herein are located at the same end face of the block 10
  • the first block 101 of the finger joint block and the fourth port 104 of the block block are located on the same side of the outer contour of the block 10, and the ports may not be disposed on the same plane.
  • the opening of the mounting hole 105 is provided at the side end surface of the connecting block 10.
  • the connecting block 10 in FIG. 7 is substantially a rectangular parallelepiped structure (the corner end position has rounded corners, and the side provided with the mounting hole 105 has a thicker side.
  • the thickness of the mounting hole 105 is provided in one of the four side end faces, and the mounting hole 105 can communicate with the block first port 101 and the block second port 102.
  • the block second port 102 and the block third port 103 are distributed along the length direction of the block 10 of the rectangular parallelepiped structure, corresponding to the positions of the first interface 20a and the second interface 20b; correspondingly, the first port 101 and the block are connected
  • the fourth port 104 can also be distributed along the length direction of the block 10. As shown in FIG. 7, the opening of the mounting hole 105 is close to the side end surface of the first port 101 of the block, and at this time, the first port 101 and the second block of the block are connected.
  • a passage for facilitating the flow of the refrigerant is formed between the ports 102, the third port 103 of the block, and the fourth port 104 of the block, and is defined as a first fluid passage 10c and a third fluid passage 10d, respectively.
  • the passage flow area of the first fluid passage 10c is zero and above, and the passage flow area of the first fluid passage 10c varies between zero and the rated flow area of the first fluid passage 10c.
  • the rated flow area of the first fluid passage 10c refers to the flow area of the first fluid passage 10c when the spool assembly 30 is at the maximum opening degree.
  • the passage flow area of the first fluid passage 10c refers to a flow area of a section of the first fluid passage 10c having the smallest fluid flow area, such as a section of the throttle, wherein the flow area is the cross-sectional area of the inner diameter of the fluid passage.
  • the block first port 101 and the block third port 103 are slightly offset in the axial direction of the mounting hole 105 to be respectively docked to the inlet and outlet positions of the installed spool member.
  • the block first port 101, the block fourth port 104, and the block second port 102 and the block third port 103 are also distributed along the length direction of the block 10.
  • the refrigerant entering from the first port 101 of the block can be throttled by the spool member and then flowed to the second port 102 of the block, and then passed through the first
  • the interface 20a enters the second fluid channel 202a, participates in heat exchange, and then flows out through the second interface 20b, and flows out of the cooling integrated component through the third port 103 of the block and the fourth port 104 of the block.
  • the flow paths of the refrigerant are indicated by arrows.
  • the valve core assembly 30 includes a valve needle and an orifice
  • the throttle hole is a part of the first fluid passage 10c
  • the valve core assembly forms the throttle hole, the valve needle and the wall portion of the orifice There is a gap between them, and the flow area of the orifice is more than zero; or the valve needle extends into the orifice, and the flow area of the orifice is zero.
  • the cooling integrated component may also include a valve ball and an orifice, the orifice is a part of the first fluid passage 10c, and the valve ball closes the orifice, and the flow area of the orifice is zero; If there is a gap between the orifices, the orifice has a fluid area of zero or more.
  • the block 10 is also provided with a threaded bore 108 for the screw or bolt 108a to be threaded from the threaded bore 108 to compress the spool assembly 30.
  • the block 10 and the cooling assembly 20 can be fixed.
  • the block 10 and the cooling assembly 20 can be fixed by welding.
  • Welding between the bottom plate 201 and the block 10 can be achieved by providing a composite layer or other solder.
  • the bottom plate 201 includes projections 55, 56 projecting toward the block, and the inner end surface of the block 10 is provided with a groove which is provided in cooperation with the projections 55, 56.
  • the groove is disposed around the second port 102 of the block, such that the protrusion 55 and the groove form a weld bead around the second port 102 of the block, which not only ensures the welding strength of the block and the cooling assembly, but also provides a convexity
  • the groove and the groove are such that the second port 102 of the block is sealed, and the risk of leakage is not easily generated.
  • there is also a groove around the third port 103 of the block and the groove is matched with the protrusion 56 to ensure the welding strength of the third port 103 of the block and the cooling assembly.
  • the arrangement of the projections on the bottom plate 201 can be achieved, for example, by rolling the fixed cooling assembly 20.
  • the block 10 is provided with protrusions 57 and 58.
  • the protrusion 57 is located at a peripheral position of the third port 103 of the block, and the protrusion 58 is located at a position around the second port 102 of the block, and the cooling assembly 20 is disposed.
  • the protrusions 57, 58 are matched with the grooves of the cooling assembly 20 and fixed by welding, so that the protrusions 57, 58 are relatively easy to weld with the cooling assembly 20, the welding strength is high, and the second port of the block can also be lowered. 102. Risk of leakage around the third port 103 of the block.
  • the projections 57, 58 may be in the form of a single piece or in the form of a rib.
  • the cooling integrated assembly includes a fixing member 50, and the connecting block 10 and the cooling assembly 20 may be fixed by means of a fixing member 50 such as a bolt.
  • the block 10 is provided with a first fixing hole
  • the cooling assembly 20 is provided with a second fixing hole.
  • the second fixing hole corresponds to the first fixing hole of the block 10, and one of the ends 51 of the fixing member 50 has a larger diameter than the first fixing hole.
  • the block 10 and the cooling assembly 20 can be directly fixed by bolts, or the block 10 and the cooling assembly 20 can be fixed by welding first, and then bolted, that is, the fixing member at this time is a bolt.
  • the cooling integrated assembly further includes a fixing plate 53 including at least two side portions, one side portion abutting against the block 10 and the other side abutting against the cooling assembly 20, the fixing plate
  • the 53 can be bent in the form of a hook between the cooling unit 20 and the block 10 between the two side portions of the fixed plate 53.
  • the two sides of the fixing plate 53 are respectively provided with through holes 54.
  • the connecting block 10 and the cooling assembly 20 are also provided with through holes, and the through holes of the fixing plate 53 are corresponding to the through holes provided on the connecting block 10 and the cooling assembly 20, and
  • the fixing member is inserted into the through holes, and the fixing member is screwed with the through holes to fix the fixing plate 53, the block 10, and the cooling assembly 20.
  • the fixing member is, for example, a bolt, a screw or the like.
  • the assembly 20 and the block 10 are provided with through holes corresponding to the positions so as to be fastened by the fixing members.
  • the components in the solution including the valve core assembly 30, the block 10 and the cooling assembly 20, are fixedly integrated, and the first interface of the cooling assembly 20 and the second port 102 of the block are electrically connected, so that the cooling integrated assembly has a simple structure.
  • the block 10 includes a first fluid passage 10c, and the passage flow area of the first fluid passage 10c varies between zero and the rated flow area of the first fluid passage 10c, so that the flow rate through the cooling assembly 20 can be Control helps to improve heat transfer efficiency. Compared with the traditional thermal expansion valve, it can make more precise adjustment. When applied to the cooling of the car battery, it can ensure that the working temperature and the ambient temperature of the battery are in the optimal range.
  • the block 10 is very close to the cooling assembly 20, and the refrigerant enters the cooling assembly 20 for heat exchange after being throttled in the block 10, thereby reducing the gas-liquid stratification of the refrigerant caused by the connecting pipe.
  • the gas-liquid mixture distribution is uniform, and the closest to the theoretical design, the less influence on the heat exchange performance, thereby improving the heat exchange efficiency;
  • cooling integrated component is simpler and less time-consuming to install; when installing to a vehicle or other equipment, it is only necessary to install the component, no need to arrange the mounting bracket, and no need to install an external pipe connection expansion valve and Cooling assembly 20;
  • the final outlet of the cooling integrated component (the fourth port 104 of the block) can be at the same end surface as the first port 101 of the block, and the structure is very compact, and the connection of the external pipe is also facilitated.
  • the refrigerant inlet and outlet of the entire assembly may be connected with the same pressure block at the joint when connecting the external pipeline (Fig. 6 shows two clamp mounting holes 107), that is, the same pressure block is pressed into the connection position, thereby Further saving parts can reduce cost and product weight, and the structure is more compact.
  • the block 10 is a "one in one out” configuration, that is, the path between the first port 101 of the block and the second port 102 of the block is a working flow path.
  • a second fluid passage between the block third port 103 and the block fourth port 104 is further provided in the block 10, the purpose of which is to allow the refrigerant flowing out of the cooling assembly 10 to flow out of the block 10, and then
  • the final outlet can be at the same end face as the first port 101 of the block, so that the refrigerant inlet and outlet of the entire assembly can be connected to the same pipe at the joint when the external pipe is connected, that is, the same block is pressed and connected. This further saves parts and makes the structure more compact.
  • the mounting performance of the cooling integrated component is also more reliable. Since the connecting pipe is no longer required between the spool assembly and the cooling assembly, the shock resistance is significantly improved, and the risk of leakage between the spool assembly and the cooling assembly 20 is significantly reduced. .
  • the first port 101 and the fourth port 104 of the block are located at the outer end surface of the block 10, and the second port 102 and the third port 103 of the block are located in the block 10.
  • the end face, and the mounting hole 105 is located at the side end face, as shown in FIG. 8, at this time, the refrigerant flow path formed by the first port 101 of the block-the spool member (the position of the mounting hole 105)-the second port 102 of the block is almost
  • the through block 10 has a linear shape, and the path through which the refrigerant formed between the block fourth port 104 and the block third port 103 flows out is also linear.
  • This straight-up flow path is arranged such that the flow resistance is small and the pressure is lowered when the refrigerant flows in the block 10, which can improve the efficiency of heat exchange.
  • FIG. 9 is a cross-sectional view showing the structure of the second embodiment of the cooling integrated assembly provided by the present invention
  • FIG. 10 is a schematic structural view of the valve assembly 30 after removing the valve core assembly 30
  • 10 is a schematic structural view of the block 10 in the integrated assembly
  • FIG. 12 is a bottom view of FIG. 11
  • FIG. 13 is a cross-sectional view of the block 10 of FIG.
  • the structure of the block 10 of this embodiment is different from that of the first embodiment, and the other structures are substantially the same.
  • the connection mode and the conduction mode of the block 10 and the cooling unit 20 are also substantially the same, and details are not described herein.
  • the opening of the mounting hole 105 of the valve plug member and the first port 101 of the block and the fourth port 104 of the block are located at the outer end surface of the block 10, opposite to the inner end surface, and the threaded hole at this time
  • the opening of the 108 is provided at the side end surface of the block 10.
  • the second port 102 and the third port 103 of the block are also disposed on the inner end surface, and the inner end surface is attached to the bottom plate 201 of the cooling assembly 20 to be electrically connected to the first interface 20a and the second interface 20b.
  • the refrigerant entering the interior of the block 10 from the first port 101 of the block needs to flow through the mounting hole 105.
  • a drainage flow can be provided inside the block 10.
  • the track 10a is connected to the first port 101 and the mounting hole 105 of the block, as shown in FIG.
  • the mounting hole 105 and the second port 102 of the block can be formed by directly penetrating the inner and outer end faces of the block 10.
  • the flow path of the first port 101 of the block - the position of the spool member (the position of the mounting hole 105) - the second port 102 of the block has a bent portion, so that the entire The height of the path is shortened, and the thickness required for the entire block 10 is reduced, thereby simplifying the structure of the block 10.
  • the block 10 is a thin block structure and is also substantially rectangular parallelepiped.
  • the distance between the first port 101 of the block and the inner end surface can be small (the distance between the fourth port 104 and the inner end surface of the block can also be small), and the mounting hole 105 requires a certain thickness to satisfy the valve.
  • the block 10 may have a processing pre-port 106.
  • the processing pre-port 106 and the block second port 102 and the block third port 103 are both at the inner end surface, and the inclined drainage channel 10a formed from the processing pre-port 106 is formed, that is, the oblique channel.
  • the height direction of the block 10 is an up-and-down direction, and the drain channel 10a has an upper port and a lower port, the upper port is in communication with the mounting hole 105, and the lower port is in communication with the first port 101 of the block. It is apparent that the drain flow path 10a at this time is a part of the first fluid passage 10c.
  • the processing pre-opening 106 is located at the inner end surface for facilitating the processing of the drainage flow channel 10a, and after the bonding block 10 is welded to the cooling assembly 20, it is attached to the surface of the bottom plate 201, and the sealing property can also be satisfied.
  • a through hole may be formed directly through the inner and outer end faces of the block 10 in the thickness (upper and lower direction of FIG. 13), and one port of the through hole is the first port 101 of the block.
  • the processing pre-port 106 can be opened at another port.
  • the drainage channel 10a can pass through the through-hole from the processing pre-port 106 and then communicate with the mounting hole 105. At this time, the drainage channel 10a is also The first port 101 of the connecting block is communicated through the through hole, which is convenient to process and easy to implement.
  • FIG. 14 is a cross-sectional view showing a structure of a cooling integrated assembly according to a third embodiment of the present invention
  • FIG. 15 is a schematic structural view of the valve assembly 30 after removing the valve core assembly 30
  • 15 is a schematic structural view of the block 10 in the integrated assembly
  • FIG. 17 is a bottom view of FIG. 16
  • FIG. 18 is a cross-sectional view of the block 10 of FIG.
  • the hole of the mounting hole 105 in the third embodiment is also disposed on the outer end surface of the block 10 with the first port 101 of the block and the fourth port 104 of the block.
  • the screw hole 108 is provided in the same manner.
  • a side end surface of the block 10, and a drain flow path 10a that connects the first port 101 of the block and the mounting hole 105 is formed inside the block 10.
  • the outer end surface of the block 10 is partially provided with a slope, and the opening of the mounting hole 105 is provided at the inclined surface.
  • the connecting block 10 is also in the form of a thin block, and the outer end surface of the connecting block 10 forms a step at the position of the mounting hole 105.
  • the top surface of the step has a sloped surface, and vertically penetrates the inclined surface to the inner end surface to form a through-hole.
  • One port of the through hole is an opening of the mounting hole 105, and the other port is the second port 102 of the block.
  • the orifice equivalent diameter of the mounting hole 105 is larger than the passage section equivalent diameter of the drain runner 10a, and thus, the mounting hole 105 can serve as a processing pre-port of the drain runner 10a.
  • the through hole penetrating through the inclined surface is inclined, that is, the mounting hole 105 is also inclined, and is inclined from the outside to the inside toward the first port 101 of the block, so that it is not necessary to separately provide the processing pre-port of the drainage channel 10a.
  • the mounting hole 105 on the inclined surface can be used as a processing pre-port.
  • the drain flow path 10a is machined inside the block 10 from the mounting hole 105, and the angle of inclination of the drain flow path 10a thus formed with respect to the inner end surface can be reduced, or can be parallel to the inner end surface.
  • the flow path is gentler, and the flow resistance and pressure drop are smaller as compared with the second embodiment. .
  • FIG. 19 is a cross-sectional view of a fourth embodiment of a cooling integrated assembly provided by the present invention.
  • FIG. 20 is a schematic structural view of the valve assembly and the coil assembly of FIG. 19;
  • FIG. FIG. 22 is a bottom view of the block 10 of FIG. 21;
  • FIG. 23 is a cross-sectional view of the block 10 of FIG.
  • the openings of the mounting holes 105 in the fourth embodiment are also provided on the outer end surface, and the screw holes 108 are provided on the side end faces of the block 10, and the connecting blocks are formed inside the block 10.
  • the inner and outer end faces of the through block 10 form a mounting hole 105 and a block second port 102.
  • the drainage flow channel 10a includes a communication groove and an inclined channel.
  • the communication groove is formed on the inner end surface, and the notch of the communication groove forms a processing pre-opening 106, which communicates with the first port 101 of the block, as shown in FIG.
  • the cross-sectional area of the pre-port 106 is larger than the cross-sectional area of the first port 101 of the block.
  • the first port 101 of the block and the processing pre-port 106 are in contact with each other to penetrate the inner and outer end faces of the block 10.
  • the processing pre-opening 106 is disposed adjacent to the second port 102 of the block, and is processed from the position of the communicating groove close to the second port 102 of the block to the inner side to form an inclined channel of the draining flow path 10a.
  • the length of the guiding flow path 10a is relatively short.
  • the refrigerant passes through the communication port of the first port 101-drainage flow path 10a - the inclined channel of the drainage flow path 10a - the valve core member (the position of the mounting hole 105) - the second port 102 is connected.
  • the communication groove at the processing pre-port 106 also serves as the second fluid passage of the flow path of the refrigerant, and the length of the inclined channel of the processed drainage channel 10a is relatively short, and the flow resistance and the pressure drop can be reduced to some extent. .
  • FIG. 24 is a cross-sectional view showing a structure of a cooling integrated component according to a fifth embodiment of the present invention
  • FIG. 25 is a schematic structural view of the valve assembly 30 after removing the valve core assembly 30
  • 25 is a schematic structural view of the block 10 in the integrated assembly
  • FIG. 27 is a bottom view of FIG. 26
  • FIG. 28 is a cross-sectional view of the block 10 of FIG.
  • the structure of the mounting hole 105 in the embodiment 5 is also provided on the outer end surface, and the screw hole 108 is provided on the side end surface of the block 10, and the connecting block is formed inside the block 10.
  • the inner and outer end faces of the through block 10 form a mounting hole 105 and a block second port 102.
  • the processing pre-port is not provided, and the first port 101 of the block is directly used as the processing pre-port.
  • the connecting port is processed from the side wall of the first port 101 of the block.
  • the side wall of the first port 101 and the drainage channel 10a of the mounting hole 105, the drainage channel 10a is also an inclined oblique channel, the height direction of the block 10 is up and down, and the drainage channel 10a has an upper port and a lower port.
  • the port is in communication with the first port 101 of the block, and the lower port is in communication with the mounting hole 105.
  • This embodiment does not need to provide a processing pre-port when forming the drainage flow channel 10a, and the inclination direction of the drainage flow channel 10a corresponds to the inlet position of the first port 101 of the block and the valve core member.
  • the first port 101 of the block is located. The outer end surface is above, the inlet position of the valve core member is located at the bottom of the mounting hole 105, and is below, and the drain flow passage 10a is also inclined from the top to the bottom, so that the flow resistance and the pressure drop are smaller.
  • the first port 101 of the block is used as a processing pre-port, which has a relatively high process requirement.
  • FIG. 29 is a cross-sectional view showing a structure of a cooling integrated assembly according to a sixth embodiment of the present invention
  • FIG. 30 is a schematic structural view of the valve assembly 30 after removing the valve core assembly 30
  • FIG. 30 is a cross-sectional view of the block 10 of FIG. 31 in FIG.
  • the structure of the mounting hole 105 in the embodiment 6 is also provided on the outer end surface, and the screw hole 108 is provided at the side end surface of the block 10, and a communication block is formed inside the block 10, and is basically the same as the structure of the embodiment 2-5.
  • the inner and outer end faces of the through block 10 form a mounting hole 105 and a block second port 102.
  • the machining pre-opening 106 is provided, and the machining pre-opening 106 is provided on the side end surface of the joint block 10, and the side end surface is close to the side of the mounting hole 105.
  • the draining flow path 10a thus directly processed forms a wall portion of the mounting hole 105 through the connecting block 10, and the draining flow path 10a at this time has a first end port (the right end port in FIG. 30) and a second end port (in FIG. 30).
  • the left end port is connected to the first port 101 of the block, and the second end port is located at the side end face of the block 10.
  • the drain channel 10a is vertically connected vertically to the first port 101 of the block and Mounting holes 105. In this way, the processing process is simple and easy to implement, and compared with the second embodiment, the flow resistance and pressure drop of the refrigerant when passing through the flow path 10a are smaller.
  • processing pre-opening 106 Since the processing pre-opening 106 is located at the side end surface of the block 10, the position of the processing pre-opening 106 can be blocked by the plug 10b to achieve effective sealing, as shown in FIG.
  • FIG. 33 is a cross-sectional view showing the structure of the cooling integrated assembly according to the seventh embodiment of the present invention
  • FIG. 34 is a schematic structural view of the valve assembly 30 after removing the valve core assembly 30
  • 34 is a schematic structural view of the block 10 in the cooling integrated assembly
  • FIG. 36 is a cross-sectional view of the block 10 in FIG.
  • the structure is basically the same as that of the sixth embodiment. The only difference is that in the seventh embodiment, when the first port 101 of the block is processed, the inner and outer end faces of the block 10 are directly penetrated, and the through hole of the inner end face is engaged with the bottom plate 201 of the cooling unit 20. seal.
  • the refrigerant flows through the first port 101 of the block and then enters the drain flow path 10a, the flow resistance and the pressure drop are reduced.
  • the position of the inner end surface after the penetration needs to be dependent on the bonding with the bottom plate 201. Welding achieves sealing.
  • FIG. 37 is a cross-sectional view showing the structure of the eighth embodiment of the cooling integrated assembly according to the present invention
  • FIG. 38 is a schematic structural view of the valve assembly 30 after removing the valve core assembly 30
  • 37 is a transverse cross-sectional view corresponding to the position of the first port 101 of the block and the fourth port 104 of the block
  • FIG. 40 is a schematic structural view of the block 10 of the cooling integrated component of FIG. 37
  • FIG. 41 is a perspective view of FIG. 40
  • FIG. 43 is the third port 103 of the block and the second port 102 of the block along the block of FIG.
  • the structure of the block 10 of this embodiment is different from that of the foregoing embodiment, and the other structures are substantially the same.
  • the connection mode and the conduction mode of the block 10 and the cooling unit 20 are also the same, and are not described herein.
  • the first port 101 and the fourth port 104 of the block are located at the side end surface of the block 10, and the second port 102 and the third port 103 of the block are still located at the inner end surface.
  • the mounting hole 105 on which the valve core member is mounted is located at the outer end surface of the block 10.
  • FIG. 41 shows the internal tunnel structure in a broken line.
  • the inner and outer end faces of the through block 10 form a mounting hole 105 and the second port 102 of the block, and the first port 101 of the block disposed on the side is vertically connected to the mounting hole 105;
  • the third end port 103 of the block extending upwardly from the inner end surface (which does not need to penetrate the outer end surface, as shown in FIG. 43), and the fourth port 104 disposed on the side surface of the block is vertically connected to the third port 103 of the block.
  • the refrigerant enters the interior of the block 10 laterally from the first port 101 of the block, and then enters the mounting hole 105 vertically through the spool member to enter the cooling assembly 20, and flows into the block vertically from the third port 103 of the block after heat exchange.
  • the cooling integrated component when installed in a car, it is generally disposed at a battery position at the bottom of the automobile, and the inner end surface and the outer end surface are vertically distributed to facilitate battery bonding.
  • the first port 101 of the block and the fourth port 104 of the block need to be connected to an external pipe.
  • the first block 101 of the block and the fourth port 104 of the block are located at the side end faces, when the external pipe is installed or removed. The operator only needs to operate from the side, and is not limited by the installation space.
  • the mounting hole 105 is not limited to being provided on the outer end surface, and may be provided on the side end surface, and is provided, for example, on the side end surface adjacent to the first port 101 of the block shown in FIG.
  • the mounting hole 105 when the mounting hole 105 is disposed on the outer end surface of the block 10, the mounting hole 105 can be formed directly through the inner and outer end faces, and the second port 102 of the block can also be formed, and the flow resistance and pressure drop of the refrigerant flow are relatively more. small.
  • the cooling assembly 10 is bonded to the battery to realize cooling.
  • the cooling integrated component is not limited to cooling the battery of the vehicle, and is also used for other situations where contact heat exchange is required. Can be applied.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Secondary Cells (AREA)

Abstract

一种冷却集成组件和电池组件,冷却集成组件包括冷却组件、阀组件,冷却组件具有第一、第二接口,阀组件和冷却组件固设形成一体;阀组件包括接块和阀芯组件,接块至少具有安装阀芯组件的安装孔,以及连通安装孔的接块第一、第二端口,第二端口位于接块内端面,内端面朝向冷却组件,第一接口和第二端口导通;阀组件包括第一流体通道,通道的一端为接块第一端口,另一端为第二端口,第一流体通道的通道流通面积为零及零以上,且第一流体通道的通道流通面积在零与第一流体通道的额定流通面积范围内变化。该冷却集成组件结构简单且紧凑,有助于提高换热效率。

Description

冷却集成组件和电池组件
本申请要求于2017年09月30日提交中国专利局、申请号为201710923232.8、发明名称为“冷却板集成组件和电池组件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及换热冷却技术领域,具体涉及一种冷却集成组件和电池组件。
背景技术
纯电动车或混合动力车或者一些电器中的电池在操作时会产生大量的热量,电池温度升高,因此,需要对其进行冷却,使其维持在适宜的工作温度范围。
发明内容
本发明目的在于提供一种冷却集成组件和电池组件。
本发明技术方案提供的冷却集成组件,包括冷却组件、阀组件,所述冷却组件具有第一接口、第二接口,所述阀组件和所述冷却组件固定设置;所述阀组件包括接块和阀芯组件,所述接块具有安装孔,所述阀芯组件的至少部分位于所述安装孔;
所述阀组件包括第一流体通道,所述第一流体通道的一端为所述接块 第一端口,所述第一流体通道的另一端为所述接块第二端口,所述接块第二端口位于所述接块的内端面,所述内端面朝向所述冷却组件,所述第一接口和所述接块第二端口导通,所述第一流体通道的通道流通面积为零及零以上,且所述第一流体通道的通道流通面积在零与所述第一流体通道的额定流通面积范围内变化;所述冷却组件包括底板和流道板,所述底板与所述流道板配合设置,所述冷却组件包括第二流体通道,所述第二流体通道位于所述底板与所述流道板之间,所述第二流体通道连通所述第一接口与所述第二接口。
本发明的技术方案还提供一种电池组件,包括电池模块和根据上述所述的冷却集成组件,所述冷却集成组件包括冷却组件,所述冷却组件包括底板和流道板,所述底板与所述流道板配合固定,所述底板包括平板部,所述平板部位于所述底板相对背离所述流道板的一侧,所述电池模块的至少部分与所述平板部接触设置或通过导热元件接触设置。
如上设置,可达到如下技术效果:本方案中的组件,包括阀组件和冷却组件,阀组件和冷却组件固定设置,冷却集成组件结构简单、紧凑;阀组件包括第一流体通道,第一流体通道的通道流通面积在零与第一流体通道的额定流通面积范围内变化,冷却组件包括第二流体通道,第二流体通道位于底板与流道板之间,有助于提高换热效率。本方案中的电池组件,由于电池模块的至少部分与平板部接触设置或通过导热元件接触设置,如此电池组件换热效率较高。
附图说明
图1为本发明所提供电池组件第一实施方式的结构示意图;
图2为图1电池组件中冷却集成组件的结构示意图;
图3为图2冷却集成组件的剖视图;
图4为图3中去除阀芯组件后的结构示意图;
图5为图2冷却集成组件中冷却组件底板的结构示意图;
图6为图2冷却集成组件中冷却组件流道板的结构示意图;
图7为图3冷却集成组件中接块的结构示意图;
图8为图7中接块的剖视图;
图9为本发明所提供冷却集成组件第二实施方式的结构剖视图;
图10为图9中去除阀芯组件后的结构示意图;
图11为图10冷却集成组件中接块的结构示意图;
图12为图11的仰视图;
图13为图11中接块的剖视图;
图14为本发明所提供冷却集成组件第三实施方式的结构剖视图;
图15为图14中去除阀芯组件后的结构示意图;
图16为图15冷却集成组件中接块的结构示意图;
图17为图16的仰视图;
图18为图16中接块的剖视图;
图19为本发明所提供冷却集成组件第四实施方式的结构剖视图;
图20为图19中去除阀芯组件和线圈组件后的结构示意图;
图21为图20冷却组件组件中接块的结构示意图;
图22为图21的仰视图;
图23为图21中接块的剖视图;
图24为本发明所提供冷却集成组件第五实施方式的结构剖视图;
图25为图24中去除阀芯组件后的结构示意图;
图26为图25冷却集成组件中接块的结构示意图;
图27为图26的仰视图;
图28为图26中接块的剖视图;
图29为本发明所提供冷却集成组件第六实施方式的结构剖视图;
图30为图29中去除阀芯组件后的结构示意图;
图31为图30冷却集成组件中接块的结构示意图;
图32为图31中接块的剖视图;
图33为本发明所提供冷却集成组件第七实施方式的结构剖视图;
图34为图33中去除阀芯组件后的结构示意图;
图35为图34冷却集成组件中接块的结构示意图;
图36为图35中接块的剖视图;
图37为本发明所提供冷却集成组件第八实施方式的结构剖视图;
图38为图37中去除阀芯组件后的结构示意图;
图39为图37中对应于接块第一端口、接块第四端口位置处的横向剖视图;
图40为图37冷却集成组件中接块的结构示意图;
图41为图40的透视图;
图42为沿图41中接块第一端口、接块第四端口轴线所在的面进行剖视的横向剖视图;
图43为沿图41中接块第三端口、接块第二端口轴向所在的面进行剖视的竖向剖视图;
图44为冷却集成组件的其他实施方式的示意图;
图45为冷却集成组件的其他实施方式的示意图;
图46为冷却集成组件的其他实施方式的示意图;
图47为冷却集成组件的其他实施方式的示意图。
图1-47中部分附图标记说明如下:
10接块、101接块第一端口、102接块第二端口、103接块第三端口、104接块第四端口、105安装孔、106加工预口、107压板安装孔、108螺纹孔、108a螺钉、10a引流流道、10b堵头、10c第一流体通道、10d第三流体通道;
20冷却组件、201底板、202流道板、202a第二流体通道、20a第一接口、20b第二接口;
30阀芯组件、40电池模块。
具体实施方式
为了使本领域的技术人员更好地理解本发明的技术方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。以下所有实施方式中,冷却集成组件的冷却组件大体相同,冷却组件包括底板和流道板,阀芯组 件和接块组合后形成的阀组件,具有节流功能,不同实施方式是基于接块结构的多种变形,第一实施方式的附图中示出电池模块,其余实施方式中的冷却组件也用于配合电池模块,附图不再显示。
作为一种实施方式,请参考图1-6,图1为本发明所提供电池组件第一实施方式的结构示意图;图2为图1电池组件中冷却集成组件的结构示意图;图3为图2冷却集成组件的剖视图;图4为图3中去除阀芯组件30后的结构示意图;图5为图2所示冷却集成组件中冷却组件底板201的结构示意图;图6为图2所示冷却集成组件中冷却组件流道板202的结构示意图。
该实施方式中,电池组件包括电池模块40和冷却集成组件,电池模块40置于冷却集成组件,冷却集成组件包括冷却组件20、阀芯组件30以及接块10,阀芯组件30和接块10组合后形成的阀组件具有节流功能。冷却组件20如图3-5所示,冷却组件20包括至少两层结构,冷却组件20包括底板201和流道板202,接块10与底板201保持固定,二者配合固定。
冷却集成组件包括阀组件,阀组件和冷却组件20固定设置,阀组件包括接块10和阀芯组件30。
接块10可以与底板201直接固定,接块10也可以通过外部结构固定后与底板201保持固定。
底板201为平板或部分地方有弯折(图示为平板结构)或者弧形板等,其一面与流道板202可以焊接固定,焊接的该面可设置复合层;底板201的另一面具有平板部,可与电池模块40的至少部分接触设置或通过导热元 件接触设置,底板201另一面同样也可以是接块10的安装面,如图4所示,底板201包括第一接口20a和第二接口20b。导热元件包括但不限于金属片、金属薄板或其他导热材料。
第一接口20a与接块10连通,第二接口20b与接块10连通,底板201与流道板202的焊接例如可在两者接触面的其中一个板上设置复合层,复合层材料的熔点低于流道板202、底板201,复合层的设置使得底板201与流道板202过炉能熔化,使得底板201与流道板202焊接在一起。当然,两者的焊接还可以有其他方式。
结合参照图4和图6,流道板202设置有凸起202e和凹槽202b,该凸起202e朝着背离底板201的方向凸伸,凹槽202b与凸起相对,凹槽202b位于流道板202面向底板201的一侧,冷却组件20包括有第二流体通道202a,第二流体通道202a位于流道板202形成凹槽202b的壁部与底板201之间;流道板202包括主体部202f,凹槽202b连续延伸设置,主体部202f与底板201密封设置,凹槽202b包括第一末端部202c和第二末端部202d,第一末端部202c的位置与第一接口20a相对,第二末端部202d的位置与第二接口20b相对;此处,凹槽的第一末端部202c、第二末端部202d是指凹槽延伸的起始端和终端。该第二流体通道202a用于制冷剂或其他制冷介质(例如CO2)的流通,为了简化描述,以下实施方式均以制冷剂进行相关描述。第二流体通道202a应尽量布满整个流道板202的板面,并尽量减小流阻,可在此需求下对第二流体通道202a的分布进行优化设计。如此,流体自第一接口20a进入第二流体通道202a,流体在底板201与流道板202之间吸收外部热量,由于流道板202和底板201相对厚度较小,平板部与 电池模块40的至少部分接触设置或通过导热元件接触,使得电池模块的热量可迅速经底板201传递给流体,电池冷却效率较高。
底板201、流道板202的厚度一般为0.8-2.5mm,如此,与平板部接触设置的电池模块可更为快速将热量经平板部传递给冷却组件内的流体,实现高效地换热。
请继续参考7-10,图7为图3所示冷却集成组件中接块10的结构示意图;图8为图7中接块10的剖视图。
结合图3和图6,冷却组件20具有第一接口20a、第二接口20b,制冷剂从第一接口20a进入第二流体通道202a内,循环后再从第二接口20b流出。与冷却组件20固定的接块10则具有接块第一端口101、接块第二端口102、接块第三端口103、接块第四端口104,以及用于安装阀芯组件30中阀芯部件的安装孔105。
如图2所示,接块10可以安装在冷却组件20的底板201表面,与底板201表面几乎贴合,这里定义接块10贴合底板201表面的一面为内端面,即朝向冷却组件20底板201的一面为内端面。接块第三端口103和接块第二端口102即位于接块10的内端面,接块10和冷却组件20可以直接焊接固定形成一体,并要求焊接固定后,冷却组件20的第一接口20a和接块第二端口102导通,第二接口20b和接块第三端口103导通,并且接块第一端口101和接块第四端口104位于接块10的同一端面,该实施方式中,接块第一端口101和接块第四端口104位于接块10的外端面,与内端面相对。
本文中,所述的端面意指为接块的外部轮廓,并不局限为一个平面;例如,本文所述的接块第一端口101和接块第四端口104位于接块10的同 一端面是指接块第一端口101与接块第四端口104位于接块10的外部轮廓上的同一侧部,端口可以不设置于在同一个平面上。
当然,在接块各面为平面结构时,此时的位于同一端面才是狭义的端面之意。
另外,安装孔105的孔口设于接块10的侧端面,图7中的接块10大致为一长方体结构(角端位置有圆角,且设有安装孔105的一侧具有更厚的厚度),安装孔105的孔口设于四个侧端面之一,安装孔105能够连通接块第一端口101和接块第二端口102。
接块第二端口102、接块第三端口103沿长方体结构的接块10的长度方向分布,与第一接口20a、第二接口20b位置对应;相应地,接块第一端口101和接块第四端口104也可沿接块10长度方向分布,如图7所示,安装孔105的孔口靠近接块第一端口101的侧端面,此时接块第一端口101和接块第二端口102之间、接块第三端口103和接块第四端口104之间均形成便于制冷剂流动的通路,分别定义为第一流体通道10c、第三流体通道10d。第一流体通道10c的通道流通面积为零及零以上,且第一流体通道10c的通道流通面积在零与第一流体通道10c的额定流通面积范围内变化。其中第一流体通道10c的额定流通面积是指阀芯组件30在最大开度时第一流体通道10c的流通面积。第一流体通道10c的通道流通面积是指第一流体通道10c内流体流通面积最小的一段的流通面积,例如节流的一段,其中流通面积是该流体通道内径的截面积。
该实施方式中,接块第一端口101和接块第三端口103在安装孔105 轴向上稍微错开,以便分别对接到安装的阀芯部件的进口和出口位置。其余实施方式中,接块第一端口101、接块第四端口104,以及接块第二端口102、接块第三端口103也均采用沿接块10长度方向分布的方式。
这样,当阀芯组件30的阀芯部件安装到安装孔105内后,自接块第一端口101进入的制冷剂可经阀芯部件节流后流向接块第二端口102,然后经第一接口20a进入第二流体通道202a内,参与换热,再由第二接口20b流出,经过接块第三端口103、接块第四端口104流出冷却集成组件,图3中以及下述其他实施方式的对应附图中,均以箭头表示制冷剂的流动路径。本实施方式中,阀芯组件30包括阀针与节流孔,节流孔为所述第一流体通道10c的一部分,阀芯组件形成所述节流孔,阀针与节流孔的壁部之间留有间隙,节流孔的流通面积为零以上;或者阀针伸入节流孔,节流孔的流通面积为零。
作为其他实施方式,冷却集成组件也可以包括阀球与节流孔,节流孔为第一流体通道10c的一部分,阀球封闭节流孔,则节流孔的流通面积为零;阀球与节流孔之间有间隙,则节流孔的流体面积为零以上。
如图7所示,接块10还设有螺纹孔108,以便螺钉或螺栓108a自螺纹孔108拧入以压紧阀芯组件30。
接块10与冷却组件20的固定方式有多种,例如,接块10与冷却组件20可以采用焊接方式固定。底板201与接块10之间可通过设置复合层或者其他焊料实现焊接。参照图46,底板201包括有凸起55、56,凸起55、56朝着接块方向凸伸,接块10的内端面设置有凹槽,该凹槽与凸起55、 56配合设置。具体地,凹槽设置于接块第二端口102周围,如此凸起55与凹槽在接块第二端口102周围形成焊缝,不仅保证接块与冷却组件的焊接强度,而且由于设置了凸起和凹槽,使得接块第二端口102密封,不易产生泄露风险。同理,在接块第三端口103周围也有一圈凹槽,凹槽与凸起56配合设置,保证接块第三端口103与冷却组件的焊接强度。底板201上凸起的设置方式例如可通过对固定后的冷却组件20进行滚压实现。
作为其他实施方式,参照图47,接块10设置有凸起57、58,凸起57位于接块第三端口103周边位置,凸起58位于接块第二端口102周边位置,冷却组件20设置有凹槽,凸起57、58与冷却组件20的凹槽配合设置并焊接固定,如此凸起57、58与冷却组件20焊接相对容易,焊接强度较高,而且也能降低接块第二端口102、接块第三端口103周围的泄露风险。凸起57、58可以单块,或者以凸筋的形式。
参照图44,冷却集成组件包括固定件50,接块10与冷却组件20可以采用固定件50,例如螺栓的方式固定。接块10设置有第一固定孔,冷却组件20设置有第二固定孔,第二固定孔与接块10的第一固定孔相对应,固定件50的其中一个末端51直径大于第一固定孔、第二固定孔的直径,固定件50的大部分伸入固定孔,且固定件与第一固定孔、第二固定孔螺纹配合,固定件的末端51未伸入第一固定孔、第二固定孔,由于该末端51直径较大,固定件的末端51可与冷却组件20的底部相抵,其中冷却组件20的底部是指未设置接块10的侧部。接块10与冷却组件20直接可单独通过螺栓固定,或者接块10与冷却组件20两者之间先通过焊接固定,再采用螺栓固定,即此时的固定件是螺栓。
参照图45,冷却集成组件还包括固定板53和固定件,固定板53包括至少两个侧部,其中一个侧部与接块10相抵靠,另一个侧部与冷却组件20相抵靠,固定板53可以折弯的形式,相当于将冷却组件20和接块10卡设在固定板53的两个侧部之间。固定板53的两个侧部各设置有通孔54,接块10以及冷却组件20也设置有通孔,固定板53通孔与接块10、冷却组件20上设置的通孔对应设置,且固定件插入该等通孔,固定件与该等通孔螺纹配合以实现固定板53、接块10、冷却组件20的固定。固定件例如为螺栓、螺钉等。
作为其他实施方式,固定板也可以为两个,固定板中的一个侧部与接块10相抵靠,另一个固定板的一个侧部与冷却组件20相抵靠,同样,两个固定板和冷却组件20、接块10设有位置对应的通孔,从而通过固定件紧固。
如上设置,可达到如下技术效果:
本方案中的组件,包括阀芯组件30、接块10和冷却组件20,三者固定设置形成一体,冷却组件20的第一接口和接块第二端口102导通,如此冷却集成组件结构简单且紧凑,另外,接块10包括第一流体通道10c,第一流体通道10c的通道流通面积在零与第一流体通道10c的额定流通面积范围内变化,使得流经冷却组件20的流量大小可控,有助于提高换热效率。相比传统的热力膨胀阀,能够进行更为精确的调节,应用至汽车电池的冷却时,可以保证电池工作时的工作温度和环境温度都在最优区间;
而且,接块10与冷却组件20距离非常近,制冷剂几乎在接块10内节流后,即进入冷却组件20内进行换热,减少了连接管路带来的制冷剂气液 分层现象,使得气液混合分布均匀,最接近理论设计,对换热性能的影响较少,从而提高换热效率;
此外,该冷却集成组件,安装更为简单、省时;安装至整车或者其他设备时,仅需安装该组件即可,无需再布置安装支架,也不需要再安装外接管路连接膨胀阀和冷却组件20;
需要强调的是,作为进一步的优化方案,该冷却集成组件最终的出口(接块第四端口104)能够与接块第一端口101处于同一端面,结构非常紧凑,也便于外接管路的连接。而且,整个组件的制冷剂进口、出口可以在连接外接管路时,在连接处安装同一压块(图6示出两个压块安装孔107),即由同一压块压紧连接位置,从而进一步节省零部件,能够降低成本和产品重量,结构也更为紧凑。
应当知晓,接块10为“一进一出”结构即可,即接块第一端口101和接块第二端口102之间的通路为工作流道。这里在接块10中还另设接块第三端口103和接块第四端口104之间的第二流体通道,其目的是让从冷却组件10流出的制冷剂能够从接块10流出,继而使最终的出口能够与接块第一端口101处于同一端面,这样整个组件的制冷剂进口、出口可以在连接外接管路时,在连接处安装同一压块,即由同一压块压紧连接位置,从而进一步节省零部件,结构也更为紧凑。
再者,冷却集成组件的安装性能也更为可靠,由于阀芯组件与冷却组件之间不再需要连接管路,抗震性会显著提升,阀芯组件和冷却组件20之间的泄漏风险显著降低。
值得注意的是,本实施方式中,接块第一端口101和接块第四端口104 位于接块10的外端面,接块第二端口102和接块第三端口103位于接块10的内端面,且安装孔105位于侧端面,如图8所示,此时接块第一端口101-阀芯部件(安装孔105的位置)-接块第二端口102形成的制冷剂流动路径几乎是贯通接块10呈直线状,接块第四端口104和接块第三端口103之间形成的制冷剂流出的路径也同样是直线状。这种直上直下的流动路径设置,使得制冷剂在接块10中流动时流阻较小、压降低,能够提升换热的效率。
作为其他实施方式,请参考图9-13,图9为本发明所提供冷却集成组件第二实施方式的结构剖视图;图10为图9中去除阀芯组件30后的结构示意图;图11为图10冷却集成组件中接块10的结构示意图;图12为图11的仰视图;图13为图11中接块10的剖视图。
该实施方式接块10结构与实施方式1不同,其他结构大体相同,接块10与冷却组件20的连接方式、导通方式也大体相同,不赘述。
第二实施方式中,安装阀芯部件的安装孔105的孔口与接块第一端口101、接块第四端口104均位于接块10的外端面,与内端面相对,此时的螺纹孔108的孔口设于接块10的侧端面。接块第二端口102和接块第三端口103还是设于内端面,内端面贴合在冷却组件20的底板201,以与第一接口20a、第二接口20b导通。
由于安装孔105的孔口也设于外端面,而从接块第一端口101进入接块10内部的制冷剂需要再流经安装孔105,此时,可在接块10内部设有引流流道10a,以连通接块第一端口101和安装孔105,如图13所示。此 时安装孔105和接块第二端口102可以通过直接贯通接块10内外端面形成。如此设置时,与实施方式1中直上直下的流动路径不同,接块第一端口101-阀芯部件(安装孔105的位置)-接块第二端口102的流动路径具有弯折段,这样整个路径的高度变短,整个接块10所需的厚度得以减小,从而精简接块10结构,如图11、13所示,接块10为薄块状结构,也是大致呈长方体。
由于引流流道10a的设置,接块第一端口101与内端面的距离可以很小(接块第四端口104与内端面距离也可以很小),而安装孔105则需要一定厚度以满足阀芯组件30中阀芯部件的安装,所以图11中设置接块第一端口101、接块第四端口104处的端面更低于安装孔105位置,在外端面处形成一台阶。
此外,为了在接块10内部设形成连通接块第一端口101和安装孔105的引流流道10a,接块10可具有加工预口106。如图13所示,加工预口106与接块第二端口102、接块第三端口103均处于内端面,从加工预口106处加工形成的倾斜式的引流流道10a,即斜通道,以接块10高度方向为上下方向,引流通道10a具有上端口和下端口,上端口与所述安装孔105连通,下端口与所述接块第一端口101连通。显然,此时的引流流道10a作为第一流体通道10c的一部分。
加工预口106位于内端面,便于加工引流流道10a,并且在接块10焊接到冷却组件20后,贴合于底板201的表面,也可以满足密封性的要求。
图12、13中,加工接块第一端口101时,可以直接沿厚度(图13上下)方向贯通接块10的内外端面形成贯通孔,贯通孔的一端口即为接块第 一端口101,加工预口106可以在另一端口处开设,加工倾斜的引流流道10a时,引流流道10a可以自加工预口106穿过贯通孔后连通至安装孔105,此时的引流流道10a也就通过贯通孔连通接块第一端口101,加工方便,易于实现。
作为其他实施方式,请参考图14-18,图14为本发明所提供冷却集成组件第三实施方式的结构剖视图;图15为图14中去除阀芯组件30后的结构示意图;图16为图15冷却集成组件中接块10的结构示意图;图17为图16的仰视图;图18为图16中接块10的剖视图。
与实施方式2的结构基本相同,实施方式3中的安装孔105的孔口也是与接块第一端口101、接块第四端口104设于接块10的外端面,螺纹孔108设于接块10的侧端面,并且在接块10内部形成连通接块第一端口101和安装孔105的引流流道10a。
只是,实施方式3中接块10的外端面局部呈斜面设置,安装孔105的孔口设于斜面处。该接块10同样呈薄块状,接块10的外端面在安装孔105的位置形成台阶,如图14、15所示,台阶的顶面呈斜面,垂直地贯通斜面至内端面,形成贯通孔,贯通孔的一端口为安装孔105的孔口,另一端口为接块第二端口102。所述安装孔105的孔口当量直径大于所述引流流道10a的通道截面当量直径,如此,安装孔105可作为引流流道10a的加工预口。
此时,贯通斜面的贯通孔呈倾斜设置,即安装孔105也呈倾斜设置,由外向内地朝向接块第一端口101处倾斜,这样不需要再另设引流流道10a 的加工预口,设于斜面的安装孔105即可作为加工预口。从安装孔105处在接块10内部加工出引流流道10a,由此形成的引流流道10a相对于内端面倾斜角度可以减小,或者可以平行于内端面。如图15所示,制冷剂经第一接块10端口和引流流道10a进入安装孔105处时,相较于实施方式2,流动路径更为平缓,流阻和压降也就会更小。
作为其他实施方式,请参考图19-23,图19为本发明所提供冷却集成组件第四实施方式的结构剖视图;图20为图19中去除阀芯组件和线圈组件后的结构示意图;图21为图20冷却组件中接块10的结构示意图;图22为图21的仰视图;图23为图21中接块10的剖视图。
与实施方式2、3的结构基本相同,实施方式4中的安装孔105的孔口也是设于外端面,螺纹孔108设于接块10的侧端面,并且在接块10内部形成连通接块第一端口101和安装孔105的引流流道10a。贯通接块10的内、外端面形成安装孔105和接块第二端口102。实施方式4中,引流流道10a包括连通槽和斜通道,连通槽开设于内端面,连通槽的槽口形成加工预口106,与接块第一端口101相通,如图19所示,加工预口106的截面积大于接块第一端口101的截面积,自上向下,接块第一端口101和加工预口106相接,从而贯通接块10的内、外端面。加工预口106靠近接块第二端口102设置,从连通槽靠近接块第二端口102的位置向内部加工形成引流流道10a的斜通道,引流流道10a的长度相对较短。制冷剂经接块第一端口101-引流流道10a的连通槽-引流流道10a的斜通道-阀芯部件(安装孔105位置)-接块第二端口102。如此设置,加工预口106处的连通槽 也作为制冷剂的流道第二流体通道,加工出的引流流道10a的斜通道长度相对较短,也可以一定程度上减小流阻和压降。
作为其他实施方式,请参考图24-28,图24为本发明所提供冷却集成组件第五实施方式的结构剖视图;图25为图24中去除阀芯组件30后的结构示意图;图26为图25冷却集成组件中接块10的结构示意图;图27为图26的仰视图;图28为图26中接块10的剖视图。
与实施方式2-4的结构基本相同,实施方式5中的安装孔105的孔口也是设于外端面,螺纹孔108设于接块10的侧端面,并且在接块10内部形成连通接块第一端口101和安装孔105的引流流道10a。贯通接块10的内、外端面形成安装孔105和接块第二端口102。
实施方式5中,不设置加工预口,直接以接块第一端口101为加工预口,如图24所示,从接块第一端口101的侧壁,在接块10内部加工出连通接块第一端口101侧壁和安装孔105的引流流道10a,引流流道10a同样是倾斜式的斜通道,以接块10高度方向为上下方向,引流通道10a具有上端口和下端口,上端口与所述接块第一端口101连通,下端口与所述安装孔105连通。此实施方式形成引流流道10a时无需设置加工预口,并且引流流道10a倾斜方向与接块第一端口101、阀芯部件的进口位置相对应,图24中,接块第一端口101位于外端面,处于上方,阀芯部件的进口位置位于安装孔105的底部,处于下方,而引流流道10a也是自上向下倾斜,所以流阻和压降更小。当然,该实施方式中将接块第一端口101作为加工预口,具有相对较高的工艺要求。
实施方式作为其他实施方式,请参考图29-32,图29为本发明所提供冷却集成组件第六实施方式的结构剖视图;图30为图29中去除阀芯组件30后的结构示意图;图31为图30冷却集成组件中接块10的结构示意图;图32为图31中接块10的剖视图。
与实施方式2-5的结构基本相同,实施方式6中的安装孔105的孔口也是设于外端面,螺纹孔108设于接块10的侧端面,并且在接块10内部形成连通接块第一端口101和安装孔105的引流流道10a。贯通接块10的内、外端面形成安装孔105和接块第二端口102。
实施方式6中,设有加工预口106,且加工预口106设于接块10的侧端面,侧端面靠近安装孔105的一侧。如此直接加工出的引流流道10a,贯穿接块10形成安装孔105的壁部,此时的引流流道10a具有第一末端口(图30中右端端口)和第二末端口(图30中左端端口),第一末端口与接块第一端口101连通,第二末端口位于接块10的侧端面,如图所示,引流流道10a横向地垂直连通于接块第一端口101和安装孔105。此种方式加工工艺简单,易于实现,且相较于实施方式2,制冷剂经引流流道10a时的流阻和压降更小。
由于加工预口106位于接块10的侧端面,加工预口106的位置可以采用堵头10b封堵,实现有效密封,如图30所示。
作为其他实施方式,请参考图33-36,图33为本发明所提供冷却集成组件第七实施方式的结构剖视图;图34为图33中去除阀芯组件30后的结 构示意图;图35为图34冷却集成组件中接块10的结构示意图;图36为图35中接块10的剖视图。
与实施方式6结构基本相同,区别仅在于实施方式7中,加工接块第一端口101时,直接贯通接块10的内、外端面,内端面的贯通口与冷却组件20的底板201配合时密封。相较于实施方式6,制冷剂流经接块第一端口101再进入引流流道10a时,减小流阻和压降,当然,贯通后的内端面位置需要依赖于和底板201的贴合焊接实现密封。
作为其他实施方式,请参考图37-43,图37为本发明所提供冷却集成组件第八实施方式的结构剖视图;图38为图37中去除阀芯组件30后的结构示意图;图39为图37中对应于接块第一端口101、接块第四端口104位置处的横向剖视图;图40为图37冷却集成组件中接块10的结构示意图;图41为图40的透视图;图42为沿图41中接块第一端口101、接块第四端口104轴线所在的面进行剖视的横向剖视图;图43为沿图41中接块第三端口103、接块第二端口102轴向所在的面进行剖视的竖向剖视图。
该实施方式接块10结构与前述实施方式不同,其他结构大体相同,接块10与冷却组件20的连接方式、导通方式也相同,不赘述。
如图41所示,该实施方式中接块第一端口101和接块第四端口104位于接块10的侧端面,接块第二端口102和接块第三端口103还是位于内端面。其中,安装阀芯部件的安装孔105位于接块10的外端面。
图41的透视图以虚线显示出内部的孔道结构,贯通接块10的内外端面形成安装孔105和接块第二端口102,侧面设置的接块第一端口101垂 直连通于安装孔105;从内端面向上延伸的接块第三端口103(并不需要贯通外端面,如图43所示),侧面设置的接块第四端口104垂直连通于接块第三端口103。
制冷剂从接块第一端口101横向进入接块10内部,然后竖向进入安装孔105经阀芯部件节流后进入冷却组件20,换热后由接块第三端口103竖向流入接块10内部,再横向经过接块第四端口104,流出该冷却集成组件。
应知,当该冷却集成组件安装于汽车后,一般设于汽车底部的电池位置,其内端面、外端面呈上下分布,以便于电池贴合。接块第一端口101、接块第四端口104需要连接外接管路,该实施方式中的接块第一端口101和接块第四端口104位于侧端面,则安装或拆卸外接管路时,操作人员仅需从侧面操作即可,不易受到安装空间限制。
可以理解,实施方式8中,安装孔105也并不限于设于外端面,设于侧端面也是可以的,例如设于图41所示的与接块第一端口101相邻的侧端面。当然,安装孔105设于接块10的外端面时,可以直接贯通内、外端面形成安装孔105的同时也形成接块第二端口102,并且制冷剂流动时流阻和压降也相对更小。
以上各实施方式中,以冷却组件10与电池贴合实现冷却为例进行说明,应知,该冷却集成组件并不限于对车辆的电池进行冷却,对于其他需要进行接触式换热的场合也均可以适用。
以上仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (14)

  1. 一种冷却集成组件,其特征在于,包括冷却组件、阀组件,所述冷却组件具有第一接口、第二接口,所述阀组件和所述冷却组件固定设置;所述阀组件包括接块和阀芯组件,所述接块具有安装孔,所述阀芯组件的至少部分位于所述安装孔;
    所述阀组件包括第一流体通道,所述第一流体通道的一端为所述接块第一端口,所述第一流体通道的另一端为所述接块第二端口,所述接块第二端口位于所述接块的内端面,所述内端面朝向所述冷却组件,所述第一接口和所述接块第二端口导通,所述第一流体通道的通道流通面积为零及零以上,且所述第一流体通道的通道流通面积能够在零与所述第一流体通道的额定流通面积范围内变化;所述冷却组件包括底板和流道板,所述底板与所述流道板配合设置,所述冷却组件包括第二流体通道,所述第二流体通道位于所述底板与所述流道板之间,所述第二流体通道连通所述第一接口与所述第二接口。
  2. 如权利要求1所述的冷却集成组件,其特征在于,所述流道板设置有凸起和凹槽,该凸起朝着背离所述底板的方向凸伸,所述凹槽与所述凸起相对,所述凹槽位于所述流道板面向所述底板的一侧,所述第二流体通道位于所述流道板形成所述凹槽的壁部与所述底板之间;所述底板与所述接块固定设置,且所述底板包括平板部,所述平板部设置于所述底板与所述接块固定的侧部;所述底板的厚度为0.8-2.5mm,所述流道板的厚度为0.8-2.5mm。
  3. 如权利要求2所述的冷却集成组件,其特征在于,所述流道板包括 主体部,所述凹槽连续延伸设置,所述主体部与所述底板密封设置,所述凹槽包括第一末端部和第二末端部,所述第一末端部的位置与所述第一接口相对,所述第二末端部的位置与所述第二接口相对;
    所述接块还包括相互连通的接块第三端口、接块第四端口;所述阀组件还包括第三流体通道,所述第三流体通道的一端为所述接块第三端口,所述第三流体通道的另一端为所述接块第四端口,所述接块第一端口与所述接块第四端口位于所述接块的同一端面;
    所述阀芯组件包括阀针与节流孔,所述节流孔为所述第一流体通道的一部分,所述阀针与所述阀芯组件形成所述节流孔的壁部之间留有间隙,所述节流孔的流通面积为零以上;或者所述阀针伸入所述节流孔,所述节流孔的流通面积为零。
  4. 如权利要求3所述的冷却集成组件,其特征在于,所述接块第一端口和所述接块第四端口位于所述接块的外端面,与所述内端面相对;所述安装孔的孔口设于所述接块的侧端面,所述安装孔能够连通所述接块第一端口和所述接块第二端口。
  5. 如权利要求3所述的冷却集成组件,其特征在于,所述接块第一端口和所述接块第四端口位于所述接块的侧端面;所述安装孔的孔口位于所述接块的外端面,与所述内端面相对;或者所述接块第一端口、所述接块第四端口、所述安装孔的孔口位于所述接块的侧端面,且所述安装孔的孔口和所述接块第一端口、接块第四端口位于不同的侧端面。
  6. 如权利要求3所述的冷却集成组件,其特征在于,所述安装孔的孔口与所述接块第一端口、所述接块第四端口均位于所述接块的外端面,与 所述内端面相对;所述接块内部设有引流流道,所述引流流道连通所述接块第一端口和所述安装孔。
  7. 如权利要求6所述的冷却集成组件,其特征在于,所述安装孔的孔口当量直径大于所述引流流道的通道截面当量直径,所述引流流道为斜通道,以所述接块的高度方向为上下方向,所述引流通道具有上端口和下端口,所述上端口与所述安装孔连通,所述下端口与所述接块第一端口连通;或者所述上端口与所述接块第一端口连通,所述下端口与所述安装孔连通;或者所述引流流道贯穿所述接块的一个侧壁部,所述侧壁部为形成所述安装孔的侧壁部,所述引流流道具有第一末端口和第二末端口,所述第一末端口与所述接块第一端口连通,所述第二末端口位于所述侧壁部的端面。
  8. 如权利要求7所述的冷却集成组件,其特征在于,所述引流流道包括斜通道和连通槽,所述斜通道的一端与所述安装孔连通,所述斜通道的另一端与所述连通槽连通,所述连通槽开设于所述接块内端面。
  9. 如权利要求6所述的冷却集成组件,其特征在于,所述外端面局部为斜面,所述安装孔的孔口位于所述斜面,所述安装孔的孔口当量直径大于所述引流流道的通道截面当量直径。
  10. 如权利要求1-9中任一项所述的冷却集成组件,其特征在于,所述冷却集成组件包括固定件,所述接块设置有第一固定孔,所述冷却组件设置有第二固定孔,所述第一固定孔与所述第二固定孔相对应,所述固定件的其中一个末端直径大于所述第一固定孔、第二固定孔,所述固定件的大部分伸入所述第一固定孔、所述第二固定孔,且所述固定件与所述第一固定孔、所述第二固定孔螺纹配合,所述固定件的所述末端未伸入所述第 一固定孔、所述第二固定孔,所述固定件的所述末端与所述冷却组件的底部相抵。
  11. 如权利要求1-9中任一项所述的冷却集成组件,其特征在于,所述冷却集成组件包括固定板和固定件,所述固定板包括至少两个侧部,其中一个侧部与所述接块相抵,另一个侧部与所述冷却组件相抵,所述固定板的两个侧部各设置有通孔,所述接块设置有通孔,所述固定板的通孔与所述接块的通孔对应设置,且所述固定件插入所述固定板的通孔与所述接块的通孔,且所述固定件与所述固定板的通孔、所述接块的通孔螺纹配合;或者所述冷却集成组件包括两个固定板和固定件,其中一个固定板的一个侧部与所述接块相抵,另一个固定板的一个侧部与所述冷却组件相抵。
  12. 如权利要求1-9中任一项所述的冷却集成组件,其特征在于,所述接块与所述冷却组件焊接固定。
  13. 如权利要求1-9中任一项所述的冷却集成组件,其特征在于,所述接块与所述冷却组件焊接固定,所述冷却组件包括底板和流道板,所述底板包括有凸起,所述凸起朝着所述接块方向凸伸,所述接块的内端面设置有凹槽,所述接块的所述凹槽与所述凸起焊接固定,或者所述接块包括有凸起,所述凸起朝着所述底板凸伸,所述底板设置有凹槽,所述凸起与所述底板的所述凹槽焊接固定。
  14. 一种电池组件,其特征在于,包括电池模块和根据权利要求1-13中任一项所述的冷却集成组件,所述冷却集成组件包括冷却组件,所述冷却组件包括底板和流道板,所述底板与所述流道板配合固定,所述底板包括平板部,所述平板部位于所述底板相对背离所述流道板的一侧,所述电池模块的至少部分与所述平板部接触设置或通过导热元件接触设置。
PCT/CN2018/106128 2017-09-30 2018-09-18 冷却集成组件和电池组件 WO2019062590A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/624,827 US11476514B2 (en) 2017-09-30 2018-09-18 Integrated cooling assembly and battery assembly
PL18860173.6T PL3690360T3 (pl) 2017-09-30 2018-09-18 Zintegrowany zespół chłodzenia i zespół akumulatora
EP18860173.6A EP3690360B1 (en) 2017-09-30 2018-09-18 Integrated cooling assembly and battery assembly

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710923232.8 2017-09-30
CN201710923232.8A CN109599621A (zh) 2017-09-30 2017-09-30 冷却板集成组件和电池组件

Publications (1)

Publication Number Publication Date
WO2019062590A1 true WO2019062590A1 (zh) 2019-04-04

Family

ID=65900647

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/106128 WO2019062590A1 (zh) 2017-09-30 2018-09-18 冷却集成组件和电池组件

Country Status (5)

Country Link
US (1) US11476514B2 (zh)
EP (1) EP3690360B1 (zh)
CN (1) CN109599621A (zh)
PL (1) PL3690360T3 (zh)
WO (1) WO2019062590A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407330B2 (en) 2018-05-30 2022-08-09 Dana Canada Corporation Thermal management systems and heat exchangers for battery thermal modulation
US12036892B2 (en) 2022-05-26 2024-07-16 Dana Canada Corporation Thermal management systems and heat exchangers for battery thermal modulation

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110405474A (zh) * 2019-08-26 2019-11-05 宁波江丰电子材料股份有限公司 冷却盘体中水道的表面处理方法及冷却盘体的制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672555A (zh) * 2008-09-11 2010-03-17 浙江三花汽车控制系统有限公司 热力膨胀阀及其所应用的车用空气调节器
CN202915775U (zh) * 2012-11-03 2013-05-01 浙江三花汽车零部件有限公司 一种板式换热器
CN103712383A (zh) * 2012-09-29 2014-04-09 杭州三花研究院有限公司 换热器与膨胀阀的集成组件及其制造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2790073B1 (fr) 1999-02-24 2001-06-08 Mer Joseph Marie Le Echangeur thermique a plaques, a vanne integree
JP5334420B2 (ja) * 2008-01-16 2013-11-06 三洋電機株式会社 バッテリシステム
DE102011084660B4 (de) * 2011-10-18 2018-02-15 Bayerische Motoren Werke Aktiengesellschaft Vorrichtung zur Spannungsversorgung
DE102012005871A1 (de) * 2012-03-23 2013-09-26 Valeo Klimasysteme Gmbh Kühlvorrichtung für eine Fahrzeugbatterie sowie Fahrzeugbatterie mit Kühlvorrichtung
US9627724B2 (en) * 2014-12-04 2017-04-18 Lg Chem, Ltd. Battery pack having a cooling plate assembly
WO2017012495A1 (zh) 2015-07-17 2017-01-26 杭州三花研究院有限公司 热交换装置
EP3157092B1 (en) * 2015-10-14 2020-01-01 Samsung SDI Co., Ltd. Battery module including a cooling plate with embedded cooling tubes
CN106918165B (zh) * 2015-12-25 2020-06-16 浙江三花汽车零部件有限公司 一种换热装置
CN205373470U (zh) * 2016-03-03 2016-07-06 杭州三花研究院有限公司 一种换热装置
CN205748088U (zh) 2016-05-20 2016-11-30 杭州三花研究院有限公司 换热装置
CN205940233U (zh) * 2016-06-08 2017-02-08 杭州三花研究院有限公司 一种换热装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101672555A (zh) * 2008-09-11 2010-03-17 浙江三花汽车控制系统有限公司 热力膨胀阀及其所应用的车用空气调节器
CN103712383A (zh) * 2012-09-29 2014-04-09 杭州三花研究院有限公司 换热器与膨胀阀的集成组件及其制造方法
CN202915775U (zh) * 2012-11-03 2013-05-01 浙江三花汽车零部件有限公司 一种板式换热器

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3690360A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11407330B2 (en) 2018-05-30 2022-08-09 Dana Canada Corporation Thermal management systems and heat exchangers for battery thermal modulation
US12036892B2 (en) 2022-05-26 2024-07-16 Dana Canada Corporation Thermal management systems and heat exchangers for battery thermal modulation

Also Published As

Publication number Publication date
EP3690360A4 (en) 2021-07-14
CN109599621A (zh) 2019-04-09
US20200119414A1 (en) 2020-04-16
EP3690360B1 (en) 2023-07-12
EP3690360A1 (en) 2020-08-05
US11476514B2 (en) 2022-10-18
PL3690360T3 (pl) 2024-01-03

Similar Documents

Publication Publication Date Title
US9618283B2 (en) Heat exchanger housing connection
CN110459830B (zh) 热交换装置
WO2017012495A1 (zh) 热交换装置
CN111811153B (zh) 热管理组件及热管理系统
WO2019062590A1 (zh) 冷却集成组件和电池组件
WO2021042781A1 (zh) 双面水冷散热器
CN110459832B (zh) 热交换装置
CN208186924U (zh) 一种流体控制组件
AU2022424949A1 (en) Cooling device for motor controller, motor controller, and vehicle
WO2022007563A1 (zh) 一种承压能力强的芯片冷却器
CN210298360U (zh) 一种层叠式散热器
CN113968116A (zh) 热管理组件
CN109526182B (zh) 液冷式双侧冷却器
CN215644828U (zh) 电池包
CN211400950U (zh) 一种内置温控阀的冷却器
CN217099684U (zh) 动力电池无线充电模块的冷却装置、无线充电模块及车辆
CN112992814A (zh) 冷却装置
CN220553492U (zh) 冷却板及电池结构
CN214313188U (zh) 功率半导体模块
EP4258417B1 (en) Liquid cooling system, battery casing and battery pack
US20240237312A1 (en) Cooling apparatus of motor controller, motor controller, and vehicle
CN218764093U (zh) 流体控制组件及制冷系统
CN218351536U (zh) 一种电池包冷却结构及电池包
US20240030827A1 (en) Power conversion device and method for manufacturing power conversion device
JP7385011B2 (ja) 熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18860173

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2018860173

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018860173

Country of ref document: EP

Effective date: 20200430