WO2019061832A1 - 环状磺酸硅基内酯及其制备方法 - Google Patents

环状磺酸硅基内酯及其制备方法 Download PDF

Info

Publication number
WO2019061832A1
WO2019061832A1 PCT/CN2017/115183 CN2017115183W WO2019061832A1 WO 2019061832 A1 WO2019061832 A1 WO 2019061832A1 CN 2017115183 W CN2017115183 W CN 2017115183W WO 2019061832 A1 WO2019061832 A1 WO 2019061832A1
Authority
WO
WIPO (PCT)
Prior art keywords
sulfonic acid
group
formula
cyclic sulfonic
solvent
Prior art date
Application number
PCT/CN2017/115183
Other languages
English (en)
French (fr)
Inventor
傅人俊
范伟贞
Original Assignee
常熟市常吉化工有限公司
广州天赐高新材料股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 常熟市常吉化工有限公司, 广州天赐高新材料股份有限公司 filed Critical 常熟市常吉化工有限公司
Publication of WO2019061832A1 publication Critical patent/WO2019061832A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0834Compounds having one or more O-Si linkage
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic System
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0801General processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the invention relates to the field of lithium battery electrolyte additives, in particular to a cyclic sulfonic acid silyl lactone for a lithium battery electrolyte additive and a preparation method thereof.
  • a lithium ion secondary battery that has been put into practical use is added with a specific additive to a nonaqueous electrolyte to cause a lithium ion secondary battery containing a nonaqueous electrolyte to be charged while being in a negative electrode.
  • a dense film derived from the above additive is formed on the surface, and the film can continuously suppress the reaction between the nonaqueous solvent and the negative electrode in the nonaqueous electrolytic solution, thereby suppressing a decrease in battery capacity which occurs with the subsequent charge and discharge cycle.
  • the battery expands due to gas generation and can improve the charge and discharge cycle characteristics of the battery.
  • Sulfonic acid lactones such as 1,3-propane sultone and 1,4-butane sultone, have become among many additives. one type.
  • the above-mentioned film still has the following technical problems: 1.
  • the ion conductivity of the film is insufficient, and the characteristics of the battery are lowered; 2.
  • the structure of the film is unstable, and the dissolution and growth of the film are repeated, and the high temperature storage is suppressed.
  • the effect of expansion is not good.
  • the coating film derived from the above additive is formed, and the decrease in the charge/discharge cycle characteristics and the expansion problem at the time of high-temperature storage cannot be sufficiently suppressed.
  • the technical problem to be solved by the present invention is to provide a cyclic sulfonic acid silyl lactone and a preparation method thereof, which can effectively solve the above problems in the use of the battery.
  • silyl lactone includes the following structural formula:
  • R 1 and R 2 are a hydrocarbon group.
  • the hydrocarbyl group is methyl, ethyl, vinyl, n-propyl, phenyl, benzyl or phenethyl.
  • Another technical solution provided by the present invention is to provide a method for preparing a cyclic sulfonic acid silyl lactone, comprising the following steps:
  • X is any one of a halogen, an alkoxy group, a phenoloxy group, an alkenyloxy group, an acyloxy group, an amine group, a hydroxylamine group or an amide group;
  • Y is any one of -O-, -NH- or -NR 3 -, wherein R 3 is a C 1 -C 6 aliphatic hydrocarbon group;
  • M is H, Na, K, Mg, Ca or R 4 R 5 R 6 NH, wherein R 4 , R 5 , R 6 are H, methyl or ethyl;
  • n 1 or 2.
  • the vinyl silane, vinyl disiloxane or disilazane, ethynyl silane, vinyl disiloxane or disilicon nitrogen is from 1.0:0.1 to 10.0.
  • the temperature of the reaction is 10 ⁇ 150 ° C
  • the time is 0.5 ⁇ 48h.
  • the acidification treatment conditions are: a temperature of 10 to 100 ° C, a stirring time of 0.1 to 10 h; and the acid solution has a mass concentration of 1 to 75%.
  • Sulfuric acid, hydrochloric acid or nitric acid are: a temperature of 10 to 100 ° C, a stirring time of 0.1 to 10 h; and the acid solution has a mass concentration of 1 to 75%.
  • the method of dehydrating into a ring is vacuum dehydration into a ring or azeotropic dehydration of a solvent into a ring.
  • the conditions for vacuum dehydration to a ring are: a temperature of 50 to 250 ° C, and a degree of vacuum of -0.1 to 0 MPa.
  • the solvent used for azeotropic dehydration of the atmospheric solvent into a ring is at least one of an aliphatic hydrocarbon, an aromatic hydrocarbon, a halogenated hydrocarbon, an ether, an ester, and a ketone solvent.
  • the aliphatic hydrocarbon solvent is hexane, cyclohexane, heptane or octane;
  • the aromatic hydrocarbon solvent is benzene, toluene or xylene; and the halogenated hydrocarbon
  • the solvent is chlorobenzene or dichloroethane;
  • the ether solvent is diisobutyl ether, diphenyl ether or anisole;
  • the ester solvent is butyl acetate, isoamyl acetate or ethyl butyrate;
  • the ketone solvent is methyl isobutyl ketone.
  • the invention has the beneficial effects that the invention is designed by a special raw material selection and synthesis process, and the cyclic sulfonic acid silyl lactone having different substituents and ring-forming structures is prepared in a pioneering manner, which can effectively reduce the internal resistance of the battery and improve the battery.
  • High and low temperature stability and capacity retention rate; the preparation method has simple process steps and strong implementability, and the obtained product has high purity and chromatographic purity of over 99%, and has broad market prospect.
  • the invention discloses a cyclic sulfonic acid silyl lactone comprising the following structural formula:
  • R 1 and R 2 are a hydrocarbyl group which is a methyl group, an ethyl group, a vinyl group, a n-propyl group, a phenyl group, a benzyl group or a phenethyl group.
  • the preparation method of the above cyclic sulfonic acid silyl lactone comprises the following steps:
  • X is any one of a halogen, an alkoxy group, a phenoloxy group, an alkenyloxy group, an acyloxy group, an amine group, a hydroxylamine group or an amide group;
  • Y is any one of -O-, -NH- or -NR 3 -, wherein R 3 is a C 1 -C 6 aliphatic hydrocarbon group;
  • M is H, Na, K, Mg, Ca or R 4 R 5 R 6 NH, wherein R 4 , R 5 , R 6 are H, methyl or ethyl;
  • n 1 or 2;
  • Acidification treatment adding the substituent-containing sulfonate obtained in the step (1) to an acid solution of sulfuric acid, hydrochloric acid or nitric acid having a concentration of 1 to 75%, or a column of a peracid ion exchange resin, Stirring at a temperature of 10 to 100 ° C for 0.1 to 10 h, complete acidification to obtain a substituted sulfonic acid;
  • the method of dehydrating into a ring is vacuum dehydration into a ring or azeotropic dehydration of a solvent into a ring;
  • the condition of the vacuum dehydration into a ring is: a temperature of 50 to 250 ° C, a degree of vacuum of -0.1 to 0 MPa;
  • the solvent used for azeotropic dehydration of the atmospheric solvent into a ring is at least one of an aliphatic hydrocarbon, an aromatic hydrocarbon, a halogenated hydrocarbon, an ether, an ester, and a ketone solvent; wherein the aliphatic hydrocarbon solvent is hexane or a ring Hexane, heptane or octane; the aromatic hydrocarbon solvent is benzene, toluene or xylene; the halogenated hydrocarbon solvent is chlorobenzene or dichloroethane; the ether solvent is diisobutyl ether, Diphenyl ether or anisole; the ester solvent is butyl acetate, isoamyl acetate or ethyl butyrate; and the ketone solvent is methyl isobutyl ketone.
  • the aliphatic hydrocarbon solvent is hexane or a ring Hexane, heptane or oc
  • the cyclic sulfonic acid silyl lactone prepared by the above method has been tested to have a chromatographic purity of over 99%.
  • the above sulfonic acid-containing methanol solution is distilled off methanol at normal pressure, and then 500 ml of toluene is added, and the mixture is subjected to azeotropic dehydration to a ring reaction for 15 hours at normal pressure, and toluene is distilled off under normal pressure, and then distilled under reduced pressure to collect a residual pressure of 1 kPa or less.
  • the fraction of 120-160 ° C was analyzed by GC-MS to obtain the structural formula.
  • the target product which was subjected to freeze crystallization and multiple recrystallization, gave 32.7 g of a pure product having a chromatographic content of 99.6%.
  • the above sulfonic acid-containing ethanol solution is distilled off at a normal pressure, and then dehydrated and cyclized under reduced pressure, and a fraction having a residual pressure of 1 kPa or less and a feed temperature of 150 to 200 ° C is collected, and analyzed by GC-MS to obtain a structural formula.
  • the desired product was subjected to freeze crystallization and multiple recrystallizations to give 35.6 g of a pure product of 99.4%.
  • the above solution is distilled to 90 ° C under normal pressure, and then distilled under reduced pressure, N,N-dimethylformamide is collected first, and then a fraction having a vacuum residual pressure of 1 kPa or less and a feed temperature of 160 to 220 ° C is collected, and analyzed by GC-MS. Get the structural formula as The target product was recrystallized several times to obtain 55.2 g of a pure product having a chromatographic content of 99.8%.
  • the filtrate is recovered from atmospheric pressure at a normal pressure, and then distilled under reduced pressure. Then, a fraction having a vacuum residual pressure of 2 kPa or less and a feed temperature of 120 to 160 ° C is collected, and analyzed by GC-MS to obtain a structural formula.
  • the desired product by freeze crystallization and multiple recrystallizations, gave 31.8 g of a fine product of a 99.4% yield.
  • the filtrate was subjected to normal pressure recovery of ethyl acetate, and then distilled under reduced pressure. Then, a fraction having a vacuum residual pressure of 1 kPa or less and a feed temperature of 120 to 170 ° C was collected, and analyzed by GC-MS to obtain a structural formula.
  • the desired product was purified by column chromatography to give 28.5 g of product with a purity of 99.6%.
  • the above sulfonic acid-containing ethanol solution is distilled off at a normal pressure, then 500 ml of heptane is added, and the mixture is subjected to azeotropic dehydration to a ring reaction for 24 hours at normal pressure, and then heptane is distilled off at normal pressure, and then subjected to vacuum distillation to analyze by GC-MS. , get the structural formula
  • the target product is subjected to freeze crystallization and multiple recrystallization to obtain a pure product with a chromatographic content of 99.4% to obtain a fine product.
  • the above sulfonic acid-containing methanol solution is distilled off methanol at normal pressure, and then 800 ml of butyl acetate is added, and the mixture is subjected to azeotropic dehydration to a ring reaction for 20 hours at normal pressure, and then butyl acetate is distilled off at normal pressure, followed by vacuum distillation, and GC- MS analysis, the structural formula is
  • the target product was subjected to freeze crystallization and repeated recrystallization to obtain 28.8 g of a pure product having a chromatographic content of 99.1%.
  • the above sulfonic acid-containing methanol solution is distilled off at a normal pressure, and then a fraction having a vacuum residual pressure of 1 kPa or less and a feed temperature of 170 to 250 ° C is collected, and analyzed by GC-MS to obtain a structural formula.
  • the target product was recrystallized several times to obtain 19.4 g of a pure fraction of a chromatographic content of 99.3% to obtain a fine product.
  • the above compound was added to an electrolyte for use in a lithium secondary battery, and relevant performance tests were conducted.
  • the structural formula prepared in the above Example 1 was The compound 1 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is LiPF 6 which accounts for 12.5% of the total mass of the electrolyte
  • the organic solvent comprises a mixture of ethylene carbonate, ethyl methyl carbonate and diethyl carbonate in a mass ratio of 3:5:2, which accounts for electrolysis.
  • the additive is vinylene carbonate and 1,3-propane sultone, respectively accounting for 1.0% and 2.0% of the total mass of the electrolyte; the compound 1 accounts for 3.0 of the total mass of the electrolyte %.
  • a lithium secondary battery electrolyte was prepared in accordance with the above method for use in a lithium secondary battery except that Compound 1 was not added to the lithium secondary battery electrolyte.
  • the structural formula prepared in the above Example 2 is The compound 2 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is lithium hexafluorophosphate, accounting for 8.0% of the total mass of the electrolyte
  • the organic solvent comprises ethylene carbonate and ethyl methyl carbonate in a mass ratio of 1:2, accounting for 86.9% of the total mass of the electrolyte
  • the additive is vinylene carbonate, which accounts for 0.1% of the total mass of the electrolyte
  • the compound 2 accounts for 5.0% of the total mass of the electrolyte.
  • a lithium secondary battery electrolyte was prepared in accordance with the above method for use in a lithium secondary battery except that Compound 2 was not added to the lithium secondary battery electrolyte.
  • the structural formula prepared in the above Example 3 was The compound 3 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is LiPF 6 which accounts for 12.5% of the total mass of the electrolyte
  • the organic solvent comprises ethylene carbonate and ethyl methyl carbonate in a mass ratio of 1:3, accounting for 83.0% of the total mass of the electrolyte
  • the additives were vinylene carbonate and fluoroethylene carbonate, respectively accounting for 0.5% and 3.0% of the total mass of the electrolyte
  • the compound 3 was 1.0% of the total mass of the electrolyte.
  • a lithium secondary battery electrolyte was prepared in accordance with the above method for use in a lithium secondary battery except that Compound 3 was not added to the lithium secondary battery electrolyte.
  • the structural formula prepared in the above Example 4 was The compound 4 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is lithium hexafluorophosphate, accounting for 15.0% of the total mass of the electrolyte
  • the organic solvent comprises ethylene carbonate and diethyl carbonate in a mass ratio of 1:2, accounting for 87.0% of the total mass of the electrolyte
  • It is ethylene carbonate ethylene carbonate and fluoroethylene carbonate, respectively accounting for 0.5% and 5.0% of the total mass of the electrolyte
  • the compound 4 accounts for 2.5% of the total mass of the electrolyte.
  • a lithium secondary battery electrolyte was prepared according to the above method and used for a lithium secondary battery except that the compound 4 was not added to the lithium secondary battery electrolyte.
  • the structural formula prepared in the above Example 5 was The compound 5 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is LiPF 6 which accounts for 12.5% of the total mass of the electrolyte
  • the organic solvent comprises ethylene carbonate, propylene carbonate and diethyl carbonate in a mass ratio of 4:1:5, which accounts for the total mass of the electrolyte. 84.0%
  • the additive is vinylene carbonate and 1,3-propane sultone, respectively accounting for 0.5% and 2.0% of the total mass of the electrolyte
  • the compound 5 is 1.0% of the total mass of the electrolyte.
  • a lithium secondary battery electrolyte was prepared according to the above method and used for a lithium secondary battery except that the compound 5 was not added to the lithium secondary battery electrolyte.
  • the structural formula prepared in the above Example 6 was The compound 6 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is lithium hexafluorophosphate, accounting for 18.0% of the total mass of the electrolyte
  • the organic solvent comprises ethylene carbonate and ethyl methyl carbonate in a mass ratio of 1:2, accounting for 86.9% of the total mass of the electrolyte
  • Ethylene carbonate and fluoroethylene carbonate account for 1.0% and 3.0%, respectively, of the total mass of the electrolyte
  • the compound 6 accounts for 0.5% of the total mass of the electrolyte.
  • a lithium secondary battery electrolyte was prepared according to the above method and used for a lithium secondary battery except that the compound 6 was not added to the lithium secondary battery electrolyte.
  • the structural formula prepared in the above Example 7 was The compound 7 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is LiPF 6 which accounts for 12.5% of the total mass of the electrolyte
  • the organic solvent comprises a mixture of ethylene carbonate, ethyl methyl carbonate and diethyl carbonate in a mass ratio of 3:5:2, which accounts for electrolysis.
  • the additive is fluoroethylene carbonate and 1,3-propane sultone, respectively accounting for 3.0% and 1.0% of the total mass of the electrolyte; the compound 7 accounts for the total mass of the electrolyte 1.5%.
  • a lithium secondary battery electrolyte was prepared in accordance with the above method for use in a lithium secondary battery except that the compound 7 was not added to the lithium secondary battery electrolyte.
  • the structural formula prepared in the above Example 8 was The compound 8 is added to an electrolyte salt, an organic solvent, and an additive to prepare a lithium secondary battery electrolyte for use in a lithium secondary battery.
  • the electrolyte salt is a lithium salt of bisfluorosulfonimide, which accounts for 15.0% of the total mass of the electrolyte; and the organic solvent includes ethylene carbonate, ethyl methyl carbonate and carbonic acid at a mass ratio of 3:5:2.
  • a lithium secondary battery electrolyte was prepared according to the above method and used for a lithium secondary battery except that the compound 8 was not added to the lithium secondary battery electrolyte.
  • the normal temperature and high temperature cycle performance test is as follows: charging and discharging the lithium ion battery at a rate of 1 C at room temperature 25 ° C and 55 ° C, and recording the capacity of the first discharge.
  • the lithium ion battery was subjected to a cyclic charge and discharge test in the above manner, and the discharge capacity at the 500th cycle was taken.
  • Capacity retention rate (%) after 500 cycles of lithium ion battery [discharge capacity of the 500th cycle / The discharge capacity of one cycle] ⁇ 100%.
  • the battery expansion rate is calculated as follows:
  • T is the thickness of the battery after the high temperature cycle
  • T 0 is the thickness of the battery before the high temperature cycle. See Table 1 for the results of the lithium ion battery test.
  • the cyclic sulfonic acid silicone ester additive has obvious influence on the cycle capacity retention rate and high temperature cycle of the lithium battery, and the invention adopts the cyclic sulfonic acid silyl ester compound as the electrolyte additive, which has outstanding advantages, mainly It is expressed in the normal temperature and high temperature cycle capacity retention rate of the battery and the battery expansion rate after the high temperature cycle.
  • Test Examples 1 to 8 were significantly superior to the comparative examples, and thus the battery prepared by adding the cyclic sulfonic acid silyl ester of the present invention to the electrolytic solution has extremely high safety performance and durability.

Abstract

一种环状磺酸硅基内酯及其制备方法,所述环状磺酸硅基内酯的结构式为:(A)或(B);所述制备方法包括如下步骤:(1)加成反应;(2)酸化处理;(3)成环反应。通过特殊的原料选择及合成工艺设计,制备得到具有不同取代基和成环结构的环状磺酸硅基内酯,能够有效降低电池内阻,提高电池的高低温稳定性和容量保持率;其制备方法工艺步骤简单,可实施性强,所得产物纯度高,色谱纯度达到99%以上,具有广阔的市场前景。

Description

环状磺酸硅基内酯及其制备方法 技术领域
本发明涉及锂电池电解液添加剂领域,特别是涉及一种锂电池电解液添加剂用环状磺酸硅基内酯及其制备方法。
背景技术
近年来,随着电池向高电压化、高容量和高能量密度的方向发展,人们对电池的安全性能和充放电循环特性降低以及电池高温储存时产生气体等问题的关注度逐渐提高。
现有技术中也提出了解决上述问题的技术。例如,对于已经实用化的锂离子二次电池,为了解决上述问题,采用向其非水电解液中加入特定的添加剂,使含有非水电解液的锂离子二次电池在进行充电时,在负极表面会形成源于上述添加剂的致密的覆膜,该覆膜能够持续抑制非水电解液中的非水性溶剂和负极的反应,从而抑制伴随着随后的充放电循环进行而发生的电池容量降低和气体产生引起的电池膨胀,并可以改善电池的充放电循环特性,磺酸内酯,比如1,3-丙烷磺酸内酯、1,4-丁烷磺酸内酯,已经成为众多添加剂中的一类。
然而,上述覆膜仍存在如下技术问题:1、覆膜的离子传导性不充分,使电池的特性降低;2、覆膜的结构不稳定,反复进行覆膜的溶解和成长,对抑制高温储藏时膨胀的效果不佳。另外,电池充电结束时仅形成来自于上述添加剂的覆膜并不能充分地抑制充放电循环特性的降低和高温储藏时的膨胀问题。
发明内容
本发明主要解决的技术问题是提供一种环状磺酸硅基内酯及其制备方法,能够有效解决电池在使用过程中存在的上述问题。
为解决上述技术问题,本发明采用的一个技术方案是:提供一种环状磺酸 硅基内酯,包括如下结构式:
Figure PCTCN2017115183-appb-000001
式中:
—R1和R2为烃基。
在本发明一个较佳实施例中,所述烃基为甲基、乙基、乙烯基、正丙基、苯基、苯甲基或苯乙基。
为解决上述技术问题,本发明提供的另一个技术方案是提供一种环状磺酸硅基内酯的制备方法,包括如下步骤:
(1)加成反应:将通式(Ⅰ)的乙烯基硅烷、通式(Ⅱ)的乙烯基二硅氧烷或二硅氮烷、通式(Ⅲ)的乙炔基硅烷、通式(Ⅳ)的乙炔基二硅氧烷或二硅氮烷中的任意一种与通式M(HSO3)n表示的亚硫酸氢盐或亚硫酸按一定的摩尔比进行加成反应,控制反应的温度和时间,得到含取代基的磺酸盐或磺酸;
(2)酸化处理:将步骤(1)中得到的含取代基的磺酸盐加入到酸液中搅拌酸化处理或用酸性离子交换树脂柱进行酸化处理,得到含取代基的磺酸;
(3)成环反应:将步骤(1)或(2)中得到的含取代基的磺酸进行脱水成环,得到所述环状磺酸硅基内酯;
其中,所述通式(Ⅰ)的乙烯基硅烷的结构式为:
Figure PCTCN2017115183-appb-000002
所述通式(Ⅱ)的乙烯基二硅氧烷或二硅氮烷的结构式为:
Figure PCTCN2017115183-appb-000003
所述通式(Ⅲ)的乙炔基硅烷的结构式为:
Figure PCTCN2017115183-appb-000004
所述通式(Ⅳ)的乙炔基二硅氧烷或二硅氮烷的结构式为:
Figure PCTCN2017115183-appb-000005
上述通式中,X为卤素、烷氧基、酚氧基、烯氧基、酰氧基、胺基、羟胺基或酰胺基中的任意一种;
Y为-O-、-NH-或-NR3-中的任意一种,其中,R3为C1~C6的脂肪烃基;
M为H、Na、K、Mg、Ca或R4R5R6NH,其中,R4、R5、R6为H、甲基或乙基;
n为1或2。
在本发明一个较佳实施例中,所述步骤(1)中,所述乙烯基硅烷、乙烯基二硅氧烷或二硅氮烷、乙炔基硅烷、乙烯基二硅氧烷或二硅氮烷中的乙烯基或乙炔基,与通式M(HSO3)n中的HSO3 的摩尔比为1.0:0.1~10.0。
在本发明一个较佳实施例中,所述步骤(1)中,所述反应的温度为10~ 150℃,时间为0.5~48h。
在本发明一个较佳实施例中,所述步骤(2)中,所述酸化处理的条件为:温度10~100℃,搅拌时间0.1~10h;所述酸液为质量浓度为1~75%的硫酸、盐酸或硝酸。
在本发明一个较佳实施例中,所述步骤(3)中,所述脱水成环的方法为真空脱水成环或常压溶剂共沸脱水成环。
在本发明一个较佳实施例中,所述真空脱水成环的条件为:温度50~250℃,真空度-0.1~0MPa。
在本发明一个较佳实施例中,所述常压溶剂共沸脱水成环所用的溶剂为脂肪烃、芳香烃、卤代烃、醚、酯和酮类溶剂中的至少一种。
在本发明一个较佳实施例中,所述脂肪烃类溶剂为己烷、环己烷、庚烷或辛烷;所述芳香烃类溶剂为苯、甲苯或二甲苯;所述卤代烃类溶剂为氯苯或二氯乙烷;所述醚类溶剂为二异丁醚、二苯醚或苯甲醚;所述酯类溶剂为乙酸丁酯、乙酸异戊酯或丁酸乙酯;所述酮类溶剂为甲基异丁基酮。
本发明的有益效果是:本发明通过特殊的原料选择及合成工艺设计,开创性制备得到具有不同取代基和成环结构的环状磺酸硅基内酯,能够有效降低电池内阻,提高电池的高低温稳定性和容量保持率;其制备方法工艺步骤简单,可实施性强,所得产物纯度高,色谱纯度达到99%以上,具有广阔的市场前景。
具体实施方式
下面对本发明的较佳实施例进行详细阐述,以使本发明的优点和特征能更易于被本领域技术人员理解,从而对本发明的保护范围做出更为清楚明确的界定。
本发明实施例包括:
本发明揭示了一种环状磺酸硅基内酯,包括如下结构式:
Figure PCTCN2017115183-appb-000006
式中:R1和R2为烃基,该烃基为甲基、乙基、乙烯基、正丙基、苯基、苯甲基或苯乙基。
上述环状磺酸硅基内酯的制备方法,包括如下步骤:
(1)加成反应:将通式(Ⅰ)的乙烯基硅烷、通式(Ⅱ)的乙烯基二硅氧烷或二硅氮烷、通式(Ⅲ)的乙炔基硅烷和通式(Ⅳ)的乙烯基二硅氧烷或二硅氮烷中的乙烯基或乙炔基,与通式M(HSO3)n中的HSO3 按摩尔比为1.0:0.1~10.0的比例进行加成反应;
在10~150℃的温度下加成反应0.5~48h,得到含取代基的磺酸盐或磺酸;
所述通式(Ⅰ)的乙烯基硅烷的结构式为:
Figure PCTCN2017115183-appb-000007
所述通式(Ⅱ)的乙烯基二硅氧烷或二硅氮烷的结构式为:
Figure PCTCN2017115183-appb-000008
所述通式(Ⅲ)的乙炔基硅烷的结构式为:
Figure PCTCN2017115183-appb-000009
所述通式(Ⅳ)的乙炔基二硅氧烷或二硅氮烷的结构式为:
Figure PCTCN2017115183-appb-000010
上述通式中,X为卤素、烷氧基、酚氧基、烯氧基、酰氧基、胺基、羟胺基或酰胺基中的任意一种;
Y为-O-、-NH-或-NR3-中的任意一种,其中,R3为C1~C6的脂肪烃基;
M为H、Na、K、Mg、Ca或R4R5R6NH,其中,R4、R5、R6为H、甲基或乙基;
n为1或2;
上述反应的通式为:
Figure PCTCN2017115183-appb-000011
Figure PCTCN2017115183-appb-000012
(2)酸化处理:将步骤(1)中得到的含取代基的磺酸盐加入到质量浓度为1~75%的硫酸、盐酸或硝酸的酸液中,或过酸性离子交换树脂柱,在温度为10~100℃的条件下搅拌0.1~10h,完成酸化处理,得到含取代基的磺酸;
Figure PCTCN2017115183-appb-000013
(3)成环反应:将步骤(1)或(2)中得到的含取代基的磺酸进行脱水成环,得到所述环状磺酸硅基内酯;
Figure PCTCN2017115183-appb-000014
其中,所述脱水成环的方法为真空脱水成环或常压溶剂共沸脱水成环;
所述真空脱水成环的条件为:温度50~250℃,真空度-0.1~0MPa;
所述常压溶剂共沸脱水成环所用的溶剂为脂肪烃、芳香烃、卤代烃、醚、酯和酮类溶剂中的至少一种;其中,所述脂肪烃类溶剂为己烷、环己烷、庚烷或辛烷;所述芳香烃类溶剂为苯、甲苯或二甲苯;所述卤代烃类溶剂为氯苯或二氯乙烷;所述醚类溶剂为二异丁醚、二苯醚或苯甲醚;所述酯类溶剂为乙酸丁酯、乙酸异戊酯或丁酸乙酯;所述酮类溶剂为甲基异丁基酮。
上述方法制备的环状磺酸硅基内酯,经测试,其色谱纯度高达99%以上。
实施例1
向反应瓶中加入500ml甲醇、1mol亚硫酸氢钠,室温滴加1mol二甲基乙烯基甲氧基硅烷,搅拌反应5小时,再升温至回流反应24小时,冷却到0℃,加入1mol质量百分比为31%盐酸搅拌1小时,保持0℃左右抽滤,得到含取代基的磺酸的甲醇溶液;
将上述含磺酸的甲醇溶液常压蒸除甲醇,然后,加入500ml甲苯,常压共沸脱水成环反应15小时,先常压蒸除甲苯,然后减压蒸馏,收集残压1kPa以 下、料温120~160℃的馏分,经GC-MS分析,得到结构式为
Figure PCTCN2017115183-appb-000015
的目标产物,经冷冻结晶和多次重结晶,得到32.7g色谱含量99.6%的纯品。
实施例2
向反应瓶中加入500ml乙醇、1.5mol亚硫酸氢钾和0.5mol 1,3-二甲基-1,3-二乙基-1,3-二乙烯基二硅氧烷,65℃下搅拌反应12小时,然后加入0.75mol质量百分比浓度为67%的硫酸,搅拌2小时,室温抽滤,得到含取代基的磺酸的乙醇溶液;
将上述含磺酸的乙醇溶液常压蒸除乙醇,然后减压脱水环化,收集残压1kPa以下、料温150~200℃的馏分,经GC-MS分析,得到结构式为
Figure PCTCN2017115183-appb-000016
的目标产物,经冷冻结晶和多次重结晶,得到35.6g色谱含量99.4%的纯品。
实施例3
向反应瓶中加入500ml N,N-二甲基甲酰胺、2mol亚硫酸氢铵和0.5mol N,N-二(甲基苯基乙烯基硅基)乙胺,80℃下搅拌反应40小时,冷却到室温,然后加入230g交换容量大于5mmol/g的氢型强酸性离子交换树脂,浸泡72小时,过滤除去离子交换树脂,得到含取代基的磺酸的溶液;
将上述溶液常压蒸馏至90℃,然后减压蒸馏,先收集N,N-二甲基甲酰胺,然后收集真空残压1kPa以下、料温160~220℃的馏分,经GC-MS分析,得到结构式为
Figure PCTCN2017115183-appb-000017
的目标产物,经多次重结晶,得到55.2g色谱含量99.8%的纯品。
实施例4
向反应瓶中加入500ml乙醇、1.3mol三乙胺基亚硫酸盐和1mol二甲基乙炔基乙氧基硅烷,50℃下搅拌反应20小时,冷却到0℃,然后加入0.65mol质量百分比浓度为75%的硫酸,搅拌反应3小时,抽滤得到含取代基的磺酸的滤液;
将上述滤液常压回收乙醇,再减压蒸馏,然后收集真空残压2kPa以下、料温120~160℃的馏分,经GC-MS分析,得到结构式为
Figure PCTCN2017115183-appb-000018
的目标产物,经冷冻结晶和多次重结晶,得到31.8g色谱含量99.4%的精品产物。
实施例5
向反应瓶中加入500ml乙酸乙酯、0.9mol三乙胺基亚硫酸盐和0.5mol甲基乙烯基乙炔基乙酰氧基硅烷,20℃下搅拌反应48小时,然后加入0.9mol质量百分比浓度为45%的硝酸,搅拌反应4小时,抽滤得到含取代基的磺酸的滤液;
将上述滤液常压回收乙酸乙酯,再减压蒸馏,然后收集真空残压1kPa以下、料温120~170℃的馏分,经GC-MS分析,得到结构式为
Figure PCTCN2017115183-appb-000019
的目标产物,柱层析得到28.5g色谱纯度为99.6%的产物。
实施例6
向反应瓶中加入500ml乙醇、0.8mol亚硫酸氢钾和1mol甲基正丙基乙烯基甲氧基硅烷,升温至回流反应1小时,冷却到20℃,然后加入0.8mol质量百分比为31%的盐酸,搅拌反应0.1小时,0℃左右抽滤,得到含取代基的磺酸的乙醇溶液;
将上述含磺酸的乙醇溶液常压蒸除乙醇,然后加入500ml庚烷,常压共沸脱水成环反应24小时,先常压蒸除庚烷,然后减压精馏,经GC-MS分析,得到 结构式为
Figure PCTCN2017115183-appb-000020
的目标产物,经冷冻结晶和多次重结晶,得到色谱含量99.4%的纯品精馏得到精品产物。
实施例7
向反应瓶中加入500ml甲醇、1mol亚硫酸氢钙和1mol二乙基乙炔基乙氧基硅烷,升温至回流反应28小时,冷却到20℃,加入1mol质量百分比为40%的硫酸,搅拌反应2小时,抽滤,得到含取代基的磺酸的甲醇溶液;
将上述含磺酸的甲醇溶液常压蒸除甲醇,然后加入800ml乙酸丁酯,常压共沸脱水成环反应20小时,先常压蒸除乙酸丁酯,然后减压精馏,经GC-MS分析,得到结构式为
Figure PCTCN2017115183-appb-000021
的目标产物,经冷冻结晶和多次重结晶,得到28.8g色谱含量99.1%的纯品。
实施例8
向反应瓶中加入500ml甲醇、1mol亚硫酸氢镁和1mol乙基苯甲基乙烯基乙氧基硅烷,升温至回流反应48小时,冷却到20℃,然后加入2mol质量百分比为1%的硝酸,80℃下搅拌4小时,0℃抽滤,得到含取代基的磺酸的甲醇溶液;
将上述含磺酸的甲醇溶液常压蒸除甲醇,然后收集真空残压1kPa以下、料温170~250℃的馏分,经GC-MS分析,得到结构式为
Figure PCTCN2017115183-appb-000022
的目标产物,经多次重结晶,得到19.4g色谱含量99.3%的纯品精馏得到精品产物。
将上述化合物加入电解液中,用于锂二次电池,并进行相关的性能测试。
测试例1
将上述实施例1制备的结构式为
Figure PCTCN2017115183-appb-000023
的化合物1加入电解质盐、有机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所述电解质盐为占电解液总质量12.5%的LiPF6;所述有机溶剂包括质量比为3:5:2的碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯的混合物,占电解液总质量的81.5%;所述添加剂为碳酸亚乙烯酯和1,3-丙烷磺酸内酯,分别占电解液总质量的1.0%和2.0%;所述化合物1占电解液总质量的3.0%。
对比例1
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物1。
测试例2
将上述实施例2制备的结构式为
Figure PCTCN2017115183-appb-000024
的化合物2加入电解质盐、有机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所述电解质盐为六氟磷酸锂,占电解液总质量的8.0%;所述有机溶剂包括质量比为1:2的碳酸乙烯酯和碳酸甲乙酯,占电解液总质量的86.9%;所述添加剂为碳酸亚乙烯酯,占电解液总质量的0.1%;所述化合物2占电解液总质量的5.0%。
对比例2
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物2。
测试例3
将上述实施例3制备的结构式为
Figure PCTCN2017115183-appb-000025
的化合物3加入电解质盐、有 机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所述电解质盐为占电解液总质量12.5%的LiPF6;所述有机溶剂包括质量比为1:3的碳酸乙烯酯和碳酸甲乙酯,占电解液总质量的83.0%;所述添加剂为碳酸亚乙烯酯和氟代碳酸乙烯酯,分别占电解液总质量的0.5%和3.0%;所述化合物3占电解液总质量的1.0%。
对比例3
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物3。
测试例4
将上述实施例4制备的结构式为
Figure PCTCN2017115183-appb-000026
的化合物4加入电解质盐、有机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所述电解质盐为六氟磷酸锂,占电解液总质量的15.0%;所述有机溶剂包括质量比1:2的碳酸乙烯酯和碳酸二乙酯,占电解液总质量的87.0%;所述添加剂为碳酸乙烯亚乙酯和氟代碳酸乙烯酯,分别占电解液总质量的0.5%和5.0%;所述化合物4占电解液总质量的2.5%。
对比例4
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物4。
测试例5
将上述实施例5制备的结构式为
Figure PCTCN2017115183-appb-000027
的化合物5加入电解质盐、有机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所述 电解质盐为占电解液总质量12.5%的LiPF6;所述有机溶剂包括质量比为4:1:5的碳酸乙烯酯、碳酸丙烯酯和碳酸二乙酯,占电解液总质量的84.0%;所述添加剂为碳酸亚乙烯酯和1,3-丙烷磺酸内酯,分别占电解液总质量的0.5%和2.0%;所述化合物5占电解液总质量的1.0%。
对比例5
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物5。
测试例6
将上述实施例6制备的结构式为
Figure PCTCN2017115183-appb-000028
的化合物6加入电解质盐、有机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所述电解质盐为六氟磷酸锂,占电解液总质量的18.0%;所述有机溶剂包括质量比为1:2的碳酸乙烯酯和碳酸甲乙酯,占电解液总质量的86.9%;添加剂为碳酸乙烯亚乙酯和氟代碳酸乙烯酯,分别占电解液总质量的1.0%和3.0%;所述化合物6占电解液总质量的0.5%。
对比例6
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物6。
测试例7
将上述实施例7制备的结构式为
Figure PCTCN2017115183-appb-000029
的化合物7加入电解质盐、有机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所 述电解质盐为占电解液总质量12.5%的LiPF6;所述有机溶剂包括质量比为3:5:2的碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯的混合物,占电解液总质量的81.5%;所述添加剂为氟代碳酸乙烯酯和1,3-丙烷磺酸内酯,分别占电解液总质量的3.0%和1.0%;所述化合物7占电解液总质量的1.5%。
对比例7
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物7。
测试例8
将上述实施例8制备的结构式为
Figure PCTCN2017115183-appb-000030
的化合物8加入电解质盐、有机溶剂和添加剂中,制备成锂二次电池电解液,用于锂二次电池。其中,所述电解质盐为双氟磺酰亚胺锂盐,占电解液总质量的15.0%;所述有机溶剂包括质量比为3:5:2的碳酸乙烯酯、碳酸甲乙酯和碳酸二乙酯的混合物,占电解液总质量的81.5%;所述添加剂为碳酸亚乙烯酯和1,3-丙烷磺酸内酯,分别占电解液总质量的1.0%和2.0%;所述化合物8占电解液总质量的1.0%。
对比例8
依照上述方法制备锂二次电池电解液,用于锂二次电池,只是在锂二次电池电解液中不添加化合物8。
将上述对所有测试例1~8和所有对比例1~8所得电池进行如下实验:
常温和高温循环性能测试,具体方法为:在室温25℃和55℃下,以1C倍率对锂离子电池进行充放电,记录第一次放电的容量。将锂离子电池按上述方式进行循环充放电测试,取第500次循环的放电容量。
锂离子电池500次循环后的容量保持率(%)=[第500次循环的放电容量/第 一次循环的放电容量]×100%。
电池的测试结果如表1所示。
高温循环后电池膨胀率计算方式为下式:
Figure PCTCN2017115183-appb-000031
其中,T为高温循环后的电池厚度,T0为高温循环前的电池厚度。锂离子电池测试部分结果参见表1。
表1实施例和对比例的测试结果:
Figure PCTCN2017115183-appb-000032
通过以上数据可以明显看出,环状磺酸硅基酯添加剂对锂电池循环容量保持率和高温循环影响明显,本发明采用环状磺酸硅基酯化合物作为电解液添加剂具有突出的优势,主要表现在电池的常温高温循环容量保持率和高温循环后电池膨胀率。测试例1~8明显优于其对比例,因此本发明的环状磺酸硅基酯添加到电解液中制备的电池具有极高的安全性能和耐用性能。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种环状磺酸硅基内酯,其特征在于,包括如下结构式:
    A:
    Figure PCTCN2017115183-appb-100001
    B:
    Figure PCTCN2017115183-appb-100002
    式中:
    —R1和R2为烃基。
  2. 根据权利要求1所述的环状磺酸硅基内酯,其特征在于,所述烃基为甲基、乙基、乙烯基、正丙基、苯基、苯甲基或苯乙基。
  3. 一种如权利要求1或2所述的环状磺酸硅基内酯的制备方法,其特征在于,包括如下步骤:
    (1)加成反应:将通式(Ⅰ)的乙烯基硅烷、通式(Ⅱ)的乙烯基二硅氧烷或二硅氮烷、通式(Ⅲ)的乙炔基硅烷、通式(Ⅳ)的乙炔基二硅氧烷或二硅氮烷中的任意一种与通式M(HSO3)n表示的亚硫酸氢盐或亚硫酸按一定的摩尔比进行加成反应,控制反应的温度和时间,得到含取代基的磺酸盐或磺酸;
    (2)酸化处理:将步骤(1)中得到的含取代基的磺酸盐加入到酸液中搅拌酸化处理或用酸性离子交换树脂柱进行酸化处理,得到含取代基的磺酸;
    (3)成环反应:将步骤(1)或(2)中得到的含取代基的磺酸进行脱水成环,得到所述环状磺酸硅基内酯;
    其中,所述通式(Ⅰ)的乙烯基硅烷的结构式为:
    Figure PCTCN2017115183-appb-100003
    所述通式(Ⅱ)的乙烯基二硅氧烷或二硅氮烷的结构式为:
    Figure PCTCN2017115183-appb-100004
    所述通式(Ⅲ)的乙炔基硅烷的结构式为:
    Figure PCTCN2017115183-appb-100005
    所述通式(Ⅳ)的乙炔基二硅氧烷或二硅氮烷的结构式为:
    Figure PCTCN2017115183-appb-100006
    上述通式中,X为卤素、烷氧基、酚氧基、烯氧基、酰氧基、胺基、羟胺基或酰胺基中的任意一种;
    Y为-O-、-NH-或-NR3-中的任意一种,其中,R3为C1~C6的脂肪烃基;
    M为H、Na、K、Mg、Ca或R4R5R6NH,其中,R4、R5、R6为H、甲基或乙基;
    n为1或2。
  4. 根据权利要求3所述的环状磺酸硅基内酯的制备方法,其特征在于,所述步骤(1)中,所述乙烯基硅烷、乙烯基二硅氧烷或二硅氮烷、乙炔基硅烷、乙烯基二硅氧烷或二硅氮烷中的乙烯基或乙炔基,与通式M(HSO3)n中的HSO3 的摩尔比为1.0:0.1~10.0。
  5. 根据权利要求3所述的环状磺酸硅基内酯的制备方法,其特征在于,所述步骤(1)中,所述反应的温度为10~150℃,时间为0.5~48h。
  6. 根据权利要求3所述的环状磺酸硅基内酯的制备方法,其特征在于,所述步骤(2)中,所述酸液为质量浓度为1~75%的硫酸、盐酸或硝酸;所述酸化处理的条件为:温度10~100℃,搅拌时间0.1~10h。
  7. 根据权利要求3所述的环状磺酸硅基内酯的制备方法,其特征在于,所述步骤(3)中,所述脱水成环的方法为真空脱水成环或常压溶剂共沸脱水成环。
  8. 根据权利要求7所述的环状磺酸硅基内酯的制备方法,其特征在于,所述真空脱水成环的条件为:温度50~250℃,真空度-0.1~0MPa。
  9. 根据权利要求7所述的环状磺酸硅基内酯的制备方法,其特征在于,所述常压溶剂共沸脱水成环所用的溶剂为脂肪烃、芳香烃、卤代烃、醚、酯和酮类溶剂中的至少一种。
  10. 根据权利要求9所述的环状磺酸硅基内酯的制备方法,其特征在于,所述脂肪烃类溶剂为己烷、环己烷、庚烷或辛烷;所述芳香烃类溶剂为苯、甲苯或二甲苯;所述卤代烃类溶剂为氯苯或二氯乙烷;所述醚类溶剂为二异丁醚、二苯醚或苯甲醚;所述酯类溶剂为乙酸丁酯、乙酸异戊酯或丁酸乙酯;所述酮类溶剂为甲基异丁基酮。
PCT/CN2017/115183 2017-09-26 2017-12-08 环状磺酸硅基内酯及其制备方法 WO2019061832A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710883389.2 2017-09-26
CN201710883389.2A CN107722048A (zh) 2017-09-26 2017-09-26 环状磺酸硅基内酯及其制备方法

Publications (1)

Publication Number Publication Date
WO2019061832A1 true WO2019061832A1 (zh) 2019-04-04

Family

ID=61207319

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/115183 WO2019061832A1 (zh) 2017-09-26 2017-12-08 环状磺酸硅基内酯及其制备方法

Country Status (2)

Country Link
CN (1) CN107722048A (zh)
WO (1) WO2019061832A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112054238B (zh) * 2020-09-11 2021-10-22 山东海科新源材料科技股份有限公司 含硅氧链段的环状硫酸酯类添加剂、包合其的电解液及锂离子电池
CN112018446B (zh) * 2020-09-27 2022-07-01 珠海冠宇电池股份有限公司 一种适用于硅碳体系锂离子电池的电解液
CN113381073B (zh) * 2021-07-27 2022-03-01 中节能万润股份有限公司 一种磺酸硅酯类非水电解液添加剂及其应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207433A (ja) * 2006-01-30 2007-08-16 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2009054286A (ja) * 2007-08-23 2009-03-12 Sony Corp 電解液および電池

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007207433A (ja) * 2006-01-30 2007-08-16 Adeka Corp 非水電解液及び該電解液を用いた非水電解液二次電池
JP2009054286A (ja) * 2007-08-23 2009-03-12 Sony Corp 電解液および電池

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
BRADDOCK, D. C.: "A general synthesis of five, six and seven-membered sila-sultones via dehydrative cyclisation", TETRAHEDRON, vol. 61, 14 June 2005 (2005-06-14), pages 30, XP027861169, ISSN: 0040-4020 *

Also Published As

Publication number Publication date
CN107722048A (zh) 2018-02-23

Similar Documents

Publication Publication Date Title
WO2019061832A1 (zh) 环状磺酸硅基内酯及其制备方法
WO2018196146A1 (zh) 锂离子电池非水电解液和锂离子电池
WO2019024408A1 (zh) 锂离子电池非水电解液及锂离子电池
CN109326824B (zh) 锂离子电池非水电解液及锂离子电池
WO2019061831A1 (zh) 环状二磺酸硅基酯及其制备方法
WO2017031871A1 (zh) 1,3,6-己烷三腈的制备方法
WO2018040763A1 (zh) 一种添加剂,其制备方法及含有所述添加剂的锂离子电池
TW201605098A (zh) 非水電解液二次電池、非水電解液及化合物
CN105917516B (zh) 非水电解液及非水电解液二次电池
WO2019051996A1 (zh) 含环状二磺酸硅基酯的锂二次电池电解液和锂二次电池
CN111393403B (zh) 一种碳酸亚乙烯酯的制备方法
WO2018196426A1 (zh) 一种非水电解液及二次电池
WO2021088222A1 (zh) 咪唑类添加剂的合成方法
CN113851711B (zh) 电池电解液及其中苯磺酸酯化合物的制备方法
JPWO2017038796A1 (ja) 電解質組成物、二次電池、及び二次電池の使用方法
JP6740424B1 (ja) 所定比率混合による高純度リチウム塩の調製方法及びその応用
TW201620192A (zh) 非水電解液及非水電解液二次電池
US20230387462A1 (en) Cyclic sulfonate additive for electrolyte of lithium-ion battery (lib) and preparation method and use thereof
CN110759884B (zh) 一种氟代碳酸乙烯酯与碳酸亚乙烯酯的联产方法
WO2018196142A1 (zh) 锂离子电池非水电解液和锂离子电池
WO2018196139A1 (zh) 锂离子电池非水电解液和锂离子电池
CN111349058A (zh) 1,4-双(甲基磺酰基)哌嗪的合成方法
WO2019095245A1 (zh) 一种二磺酸亚甲酯化合物的合成方法
WO2020119808A1 (zh) 电解液、电池及装置
CN109503653B (zh) 一种三(三烃基硅基)磷酸酯的合成方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927470

Country of ref document: EP

Kind code of ref document: A1