WO2019061712A1 - 一种彩膜基板、显示屏及终端 - Google Patents

一种彩膜基板、显示屏及终端 Download PDF

Info

Publication number
WO2019061712A1
WO2019061712A1 PCT/CN2017/110275 CN2017110275W WO2019061712A1 WO 2019061712 A1 WO2019061712 A1 WO 2019061712A1 CN 2017110275 W CN2017110275 W CN 2017110275W WO 2019061712 A1 WO2019061712 A1 WO 2019061712A1
Authority
WO
WIPO (PCT)
Prior art keywords
display unit
display
filter substrate
color filter
color
Prior art date
Application number
PCT/CN2017/110275
Other languages
English (en)
French (fr)
Inventor
耿传彬
肖广楠
李文兵
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201780090942.5A priority Critical patent/CN110637252B/zh
Priority to US16/651,668 priority patent/US11073720B2/en
Priority to KR1020207011974A priority patent/KR102409616B1/ko
Priority to CN202210760855.9A priority patent/CN115236892B/zh
Publication of WO2019061712A1 publication Critical patent/WO2019061712A1/zh
Priority to US17/368,552 priority patent/US11686969B2/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133512Light shielding layers, e.g. black matrix
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/302Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements characterised by the form or geometrical disposition of the individual elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2203/00Function characteristic
    • G02F2203/30Gray scale

Definitions

  • the embodiments of the present invention relate to the field of display technologies, and in particular, to a color film substrate, a display screen, and a terminal.
  • each pixel unit arranged in the array in the display screen 11 is rectangular, when the pixel points at the apex of the display screen 11 are processed into an arc shape, the detailed display of the rounded corner 12 is as shown in FIG. It can be seen that the edge of the rounded corner 12 is obviously sawtooth, which not only affects the user experience, but also reduces the display quality.
  • the embodiment of the present application provides a color film substrate, a display screen, and a terminal, which can improve the sawtooth display effect and improve the display quality when the edge of the display screen is curved.
  • an embodiment of the present application provides a color filter substrate, wherein a display unit in the color filter substrate has a one-to-one correspondence with a pixel unit in a display screen, wherein the display screen includes at least one corner region, and the a plurality of display units corresponding to the corner regions include a strip-shaped region composed of K (K ⁇ 2) display units, the strip-shaped region being in a zigzag shape away from a target boundary line at a center of the color filter substrate;
  • the first display unit and the second display unit are further away from the target boundary line than the first display unit, and the light transmittance of the first display unit is smaller than that of the second display unit.
  • the transmittance of the first display unit is greater than zero.
  • the transmittance of the display unit corresponding to the corner area of the display screen can be adjusted, and the jagged fillet can be processed from dark to bright, which visually makes the original
  • the stiff, jagged arc becomes softer for a smoother rounded corner.
  • the first display unit and the second display unit belong to the same column or the same row of the K display units. That is to say, the light transmittance of the display unit in each column (or each row) in the strip region can be gradually increased along the target boundary line, thereby achieving a gentle transition of the zigzag target boundary line.
  • the strip region includes Q transition layers disposed along the target boundary line, Q ⁇ 2, wherein the display unit in the first transition layer is the first display unit, and the second The display unit in the transition layer is the second display unit, and the first transition layer is closer to the target boundary line than the second transition layer, that is, the gray scale value of the display unit along the target boundary line in the strip region is from 0 smooth transition to 255 layer by layer.
  • each of the Q transition layers has the same thickness, thereby improving the uniformity in the change of the light transmittance, so that the display effect of the strip region is smoother.
  • each of the display layers in any one of the Q transition layers has the same light transmittance, and then the Q light transmittances corresponding to the Q transition layers respectively may be
  • the distribution of the arithmetic progression is such that the jagged target boundary line exhibits a smoother transition when displayed.
  • the strip-shaped region further includes a third display unit, the third display unit being further away from the target boundary line than the second display unit; wherein the light of the third display unit The transmittance is greater than the light transmittance of the second display unit.
  • the number of display units of any value in the light transmittance (0, 1) in any two columns of display units is equal or unequal; and/or The number of display units of any value in the light transmittance (0, 1) in any two rows of display units is equal or unequal. That is to say, the degree of change in light transmittance of the display unit in the direction of each row (or each column) in the strip region may be unevenly set.
  • an area ratio of a black matrix and a color blocking block in the first display unit is larger than an area ratio of a black matrix and a color blocking block in the second display unit along a light emitting direction of the color filter substrate.
  • the area ratio of the black matrix and the color block in the display unit is larger, the light transmittance of the display unit is smaller. That is, when the color filter substrate is produced, the change in the light transmittance of the display unit can be realized by changing the size of the display area in each display unit.
  • the black matrix is disposed in the same layer as the color block; or the black matrix is disposed on the color block.
  • the area of the color block of each color in each display unit is equal to avoid the occurrence of abnormal color of the color block of each color, resulting in abnormal color of the display color after the color mixing.
  • the color block and the black matrix of each display unit in each row display unit are symmetrically arranged along the x-axis; and/or each column display unit
  • the color block and the black matrix of the display unit are symmetrically arranged along the y axis, thereby improving the uniformity of color in the display process of the subsequent display unit.
  • an embodiment of the present application provides a display panel, including an array substrate, a color filter substrate, and a liquid crystal layer encapsulated between the array substrate and the color filter substrate, wherein the color filter substrate is the color described in any one of the above Membrane substrate.
  • an embodiment of the present application provides a terminal, including: a processor, a memory, and the display screen; wherein the memory and the display screen are respectively coupled to a processor, where the memory is used to store one or more computer programs.
  • the above processor is for executing the one or more computer programs.
  • the names of the components in the above display screen are not limited to the device itself, and in actual implementation, these components may appear under other names. As long as the functions of the various components are similar to the embodiments of the present application, they are within the scope of the claims and their equivalents.
  • FIG. 1 is a schematic diagram 1 of a scene displayed by a round corner in the prior art
  • FIG. 2 is a schematic diagram 2 of a scene displayed by a round corner in the prior art
  • FIG. 3 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • 4A is a schematic structural diagram 1 of a display screen according to an embodiment of the present application.
  • 4B is a schematic structural diagram 2 of a display screen according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram 1 of an application scenario of a rounded corner display according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram 2 of an application scenario of a rounded corner display according to an embodiment of the present application.
  • FIG. 7A is a schematic diagram 3 of an application scenario of a rounded corner display according to an embodiment of the present application.
  • FIG. 7B is a schematic diagram 4 of an application scenario of a rounded corner display according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram 5 of an application scenario of a rounded corner display according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram 6 of an application scenario of a rounded corner display according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram 7 of an application scenario of a rounded corner display according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram 8 of an application scenario of a rounded corner display according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic diagram 9 of an application scenario of a rounded corner display according to an embodiment of the present application.
  • FIG. 13 is a schematic flow chart of a method for fabricating a color filter substrate according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram 1 of a color filter substrate according to an embodiment of the present application.
  • 15 is a schematic structural view 2 of a color filter substrate according to an embodiment of the present application.
  • 16 is a schematic structural view 3 of a color filter substrate according to an embodiment of the present application.
  • FIG. 17 is a schematic structural diagram 4 of a color filter substrate according to an embodiment of the present application.
  • FIG. 18 is a schematic structural diagram 5 of a color filter substrate according to an embodiment of the present application.
  • FIG. 19 is a schematic structural diagram 6 of a color filter substrate according to an embodiment of the present application.
  • FIG. 20 is a schematic structural diagram 7 of a color filter substrate according to an embodiment of the present application.
  • FIG. 21 is a schematic diagram of an application scenario of a rounded corner display according to an embodiment of the present application.
  • FIG. 22 is a schematic diagram 11 of an application scenario of a rounded corner display according to an embodiment of the present application.
  • FIG. 23 is a schematic diagram 12 of an application scenario of a rounded corner display according to an embodiment of the present application.
  • first and second are used for descriptive purposes only, and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated. Thus, features defining “first” and “second” may include one or more of the features either explicitly or implicitly. In the description of the embodiments of the present application, “multiple” means two or more unless otherwise stated.
  • a display method provided by an embodiment of the present application can be applied to a mobile phone, a wearable device, an augmented reality (AR), a virtual reality (VR) device, a tablet computer, a notebook computer, a super mobile personal computer (
  • An ultra-mobile personal computer (UMPC), a netbook, a personal digital assistant (PDA), or the like, is provided on any terminal having a display screen.
  • the specific form of the terminal is not limited.
  • the terminal in the embodiment of the present application may be the mobile phone 100.
  • the embodiment will be specifically described below by taking the mobile phone 100 as an example. It should be understood that the illustrated mobile phone 100 is only one example of the above terminal, and the mobile phone 100 may have more or fewer components than those shown in the figure, two or more components may be combined, or Has a different component configuration.
  • the mobile phone 100 may specifically include: a processor 101, a radio frequency (RF) circuit 102, a memory 103, a touch screen 104, a Bluetooth device 105, one or more sensors 106, and a wireless fidelity (wireless fidelity, Wi-Fi) device 107, positioning device 108, audio circuit 109, peripheral interface 110, and power system 111 and the like. These components can communicate over one or more communication buses or signal lines (not shown in Figure 3). Those skilled in the art can understand the hardware shown in FIG. The structure does not constitute a limitation to the handset, and the handset 100 may include more or fewer components than illustrated, or some components may be combined, or different components may be arranged.
  • RF radio frequency
  • the processor 101 is a control center of the mobile phone 100, and connects various parts of the mobile phone 100 by using various interfaces and lines, and executes the mobile phone 100 by running or executing an application stored in the memory 103 and calling data stored in the memory 103.
  • the processor 101 may include one or more processing units; for example, the processor 101 may be a Kirin 960 chip manufactured by Huawei Technologies Co., Ltd.
  • the processor 101 may further include a fingerprint verification chip for verifying the collected fingerprint.
  • the radio frequency circuit 102 can be used to receive and transmit wireless signals during transmission or reception of information or calls.
  • the radio frequency circuit 102 can process the downlink data of the base station and then process it to the processor 101; in addition, transmit the data related to the uplink to the base station.
  • radio frequency circuits include, but are not limited to, an antenna, at least one amplifier, a transceiver, a coupler, a low noise amplifier, a duplexer, and the like.
  • the radio frequency circuit 102 can also communicate with other devices through wireless communication.
  • the wireless communication can use any communication standard or protocol, including but not limited to global mobile communication systems, general packet radio services, code division multiple access, wideband code division multiple access, long term evolution, email, short message service, and the like.
  • the memory 103 is used to store applications and data, and the processor 101 executes various functions and data processing of the mobile phone 100 by running applications and data stored in the memory 103.
  • the memory 103 mainly includes a storage program area and a storage data area, wherein the storage program area can store an operating system, an application required for at least one function (such as a sound playing function, an image playing function, etc.); the storage data area can be stored according to the use of the mobile phone. Data created at 100 o'clock (such as audio data, phone book, etc.).
  • the memory 103 may include a high speed random access memory (RAM), and may also include a nonvolatile memory such as a magnetic disk storage device, a flash memory device, or other volatile solid state storage device.
  • the memory 103 can store various operating systems, for example, developed by Apple. Operating system, developed by Google Inc. Operating system, etc.
  • the above memory 103 may be independent and connected to the processor 101 via the above communication bus; the memory 103 may also be integrated with the processor 101.
  • the touch screen 104 may specifically include a touch panel 104-1 and a display screen 104-2.
  • the touch panel 104-1 can collect touch events on or near the user of the mobile phone 100 (for example, the user uses any suitable object such as a finger, a stylus, or the like on the touch panel 104-1 or on the touchpad 104.
  • the operation near -1), and the collected touch information is sent to other devices (for example, processor 101).
  • the touch event of the user in the vicinity of the touch panel 104-1 may be referred to as a hovering touch; the hovering touch may mean that the user does not need to directly touch the touchpad in order to select, move or drag a target (eg, an icon, etc.) And only the user is located near the terminal in order to perform the desired function.
  • the touch panel 104-1 can be implemented in various types such as resistive, capacitive, infrared, and surface acoustic waves.
  • a display screen (also referred to as display) 104-2 can be used to display information entered by the user or information provided to the user as well as various menus of the handset 100.
  • the display 104-2 can be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
  • the touchpad 104-1 can be overlaid on the display screen 104-2. When the touchpad 104-1 detects a touch event on or near it, the touchpad 104-1 transmits to the processor 101 to determine the type of touch event. Processor 101 can then provide a corresponding visual output on display 104-2 depending on the type of touch event.
  • the touchpad 104-1 and the display 104-2 are implemented as two separate components to implement the input and output functions of the handset 100, in some embodiments, the touchpad 104- 1 is integrated with the display screen 104-2 to implement the input and output functions of the mobile phone 100.
  • FIG. 4A is a schematic diagram showing the internal structure of a display screen 104-2 provided in the embodiment of the present application.
  • an LCD liquid crystal display
  • the display screen 104-2 mainly includes a backlight 41, a thin film transistor substrate 42, a color filter substrate 43 and The liquid crystal molecule layer 44 is encapsulated between the array substrate 42 and the color filter substrate 43.
  • the array substrate 42 includes a plurality of rectangular array units divided by the gate lines 421 and the data lines 422 which are disposed at intersections. Under the interaction of the gate lines 421 and the data lines 422 on the array substrate 42, Each of the array units may form an electric field to change the deflection angle and/or the deflection direction of the liquid crystal in the liquid crystal molecular layer 44 corresponding to each array unit, thereby finally realizing the screen display of the entire display screen 104-2.
  • the color filter substrate 43 is a coloring key component of the display screen 104-2.
  • the light emitted by the backlight 41 passes through the array substrate 42 and the liquid crystal molecular layer 44, passes through the color filter substrate 43, and the light emitted by the backlight 41 is colored. .
  • the color filter substrate 43 is generally formed by first forming a grid of black matrix (BM) 431 on the substrate, and each grid and an array unit on the array substrate 42.
  • the color blocking blocks 432 of red (R), green (G), and blue (B) colors are sequentially arranged in the respective grids defined by the black matrix 431, so that the black matrix 431 can prevent adjacent
  • the color block 432 between the grids has a light leakage phenomenon.
  • the color film substrate 43 may be divided into a plurality of display units arranged in an array, and the display units are in one-to-one correspondence with the respective pixel units in the display screen 104-2.
  • a region formed by the color block 432 of three primary colors of red, green, and blue and the black matrix 431 around it in FIG. 4 can be used as a display unit, and the display unit is matched in the liquid crystal molecular layer 44 and the array substrate 42. It can be used as a minimum unit (ie, a pixel unit) that can display colors separately.
  • a pixel unit may include a red sub-pixel unit, a green sub-pixel unit, and a blue sub-pixel unit, or alternatively, in one pixel unit, in addition to a red sub-pixel unit, a green sub-pixel unit, and a blue sub-pixel unit, It is also possible to include sub-pixel units of non-three primary colors such as white sub-pixel units.
  • the black matrix 431 and the color block 432 can be arranged according to a certain arrangement rule.
  • FIG. 4B it is a schematic top view of a display screen 104-2 provided in the embodiment of the present application.
  • the display screen 104-2 typically includes four corner regions 45, each corner region 45 corresponding to one vertex of the display screen 104-2.
  • the sawtooth rounded display effect in the corner area 45 can be improved, thereby achieving a sawtooth shape on the hardware.
  • a smooth transition of the fillet For convenience of description, in the subsequent embodiments and the drawings, a color film substrate and a display screen provided by the embodiments of the present application are illustrated by taking the corner region 45 located in the lower left corner of FIG. 4B as an example.
  • the above-mentioned touch screen 104 is formed by stacking a plurality of layers of materials. In the embodiment of the present application, only the touch panel (layer) and the display screen (layer) are shown, and other layers are not allowed in the embodiment of the present application. Recorded.
  • the touch panel 104-1 may be disposed on the front surface of the mobile phone 100 in the form of a full-board
  • the display screen 104-2 may also be disposed on the front surface of the mobile phone 100 in the form of a full-board, so that the front of the mobile phone can be borderless. Structure.
  • the mobile phone 100 can also include a Bluetooth device 105 for enabling data exchange between the handset 100 and other short-range terminals (eg, mobile phones, smart watches, etc.).
  • the Bluetooth device in the embodiment of the present application may be an integrated circuit or a Bluetooth chip or the like.
  • the handset 100 can also include at least one sensor 106, such as a fingerprint acquisition device 112, a light sensor, a motion sensor, and other sensors.
  • the fingerprint collection device 112 can be configured on the back of the handset 100 (eg, below the rear camera) or on the front side of the handset 100 (eg, below the touch screen 104).
  • the fingerprint collection device 112 can be configured in the touch screen 104 to implement the fingerprint recognition function, that is, the fingerprint collection device 112 can be integrated with the touch screen 104 to implement the fingerprint recognition function of the mobile phone 100;
  • the light sensor can include an ambient light sensor and a proximity sensor.
  • the ambient light sensor can adjust the brightness of the display of the touch screen 104 according to the brightness of the ambient light, and the proximity sensor can turn off the power of the display when the mobile phone 100 moves to the ear.
  • the accelerometer sensor can detect the magnitude of acceleration in all directions (usually three axes). When it is stationary, it can detect the magnitude and direction of gravity. It can be used to identify the gesture of the mobile phone (such as horizontal and vertical screen switching, related Game, magnetometer attitude calibration), vibration recognition related functions (such as pedometer, tapping), etc.
  • the mobile phone 100 can also be configured with gyroscopes, barometers, hygrometers, thermometers, infrared sensors and other sensors, here Let me repeat.
  • the Wi-Fi device 107 is configured to provide the mobile phone 100 with network access complying with the Wi-Fi related standard protocol, and the mobile phone 100 can access the Wi-Fi access point through the Wi-Fi device 107, thereby helping the user to send and receive emails, Browsing web pages and accessing streaming media, etc., it provides users with wireless broadband Internet access.
  • the Wi-Fi device 107 can also function as a Wi-Fi wireless access point, and can provide Wi-Fi network access to other terminals.
  • the positioning device 108 is configured to provide a geographic location for the mobile phone 100. It can be understood that the positioning device 108 can be specifically a receiver of a positioning system such as a global positioning system (GPS) or a Beidou satellite navigation system, and a Russian GLONASS. After receiving the geographical location transmitted by the positioning system, the positioning device 108 sends the information to the processor 101 for processing, or sends it to the memory 103 for storage. In still other embodiments, the positioning device 108 may also be an assisted global positioning system (AGPS) receiver, and the AGPS system assists the positioning device 108 in performing ranging and positioning services by acting as an auxiliary server.
  • AGPS assisted global positioning system
  • the secondary location server provides location assistance over a wireless communication network in communication with a location device 108, such as a GPS receiver, of the handset 100.
  • the positioning device 108 can also be a Wi-Fi access point based positioning technology. Since each Wi-Fi access point has a globally unique media access control (MAC) address, the terminal can scan and collect the surrounding Wi-Fi access points when Wi-Fi is turned on. Broadcast signals, so the MAC address broadcasted by the Wi-Fi access point can be obtained; the terminal sends the data (such as the MAC address) capable of indicating the Wi-Fi access point to the location server through the wireless communication network, and is retrieved by the location server. The geographic location of each Wi-Fi access point, combined with the strength of the Wi-Fi broadcast signal, calculate the geographic location of the terminal and send it to The positioning device 108 of the terminal.
  • MAC media access control
  • the audio circuit 109, the speaker 113, and the microphone 114 can provide an audio interface between the user and the handset 100.
  • the audio circuit 109 can transmit the converted electrical data of the received audio data to the speaker 113 for conversion to the sound signal output by the speaker 113; on the other hand, the microphone 114 converts the collected sound signal into an electrical signal by the audio circuit 109. After receiving, it is converted into audio data, and then the audio data is output to the RF circuit 102 for transmission to, for example, another mobile phone, or the audio data is output to the memory 103 for further processing.
  • the peripheral interface 110 is used to provide various interfaces for external input/output devices (such as a keyboard, a mouse, an external display, an external memory, a subscriber identity module card, etc.). For example, it is connected to the mouse through a universal serial bus (USB) interface, and is connected with a subscriber identification module (SIM) card provided by the telecommunication operator through a metal contact on the card slot of the subscriber identification module. . Peripheral interface 110 can be used to couple the external input/output peripherals described above to processor 101 and memory 103.
  • USB universal serial bus
  • SIM subscriber identification module
  • the mobile phone 100 may further include a power supply device 111 (such as a battery and a power management chip) that supplies power to the various components.
  • the battery may be logically connected to the processor 101 through the power management chip to manage charging, discharging, and power management through the power supply device 111. And other functions.
  • the mobile phone 100 may further include a camera (front camera and/or rear camera), a flash, a micro projection device, a near field communication (NFC) device, and the like, and details are not described herein.
  • a camera front camera and/or rear camera
  • a flash a flash
  • micro projection device a micro projection device
  • NFC near field communication
  • the smooth target arc 501 is rendered in black and white, wherein the target arc 501 divides each of the displayed display units into two parts.
  • display unit A in FIG. 5 is divided into a first portion 511 near display screen 104-2 and a second portion 512 away from display screen 104-2.
  • the pixel unit may remain in the display 104-2; otherwise, the display may be on the display The pixel unit is removed in 104-2.
  • a rounded black and white rendering of the target arc 501 after black and white rendering can be obtained, wherein the black rectangular block in FIG. 5 is a display not displayed in the display 104-2. Units (these display units that are not displayed may remain in the display 104-2, or may be eliminated when the display screen 104-2 is made, i.e., not included in the display 104-2).
  • the target arc 501 has been rendered as the unsmooth first arc 502.
  • the first arc 502 after the black and white rendering has a significant zigzag display effect.
  • the grayscale rendering of the rounded black and white renderings obtained after the above black and white rendering can be continued.
  • the unsmooth first circular arc 502 is adjusted to display the effect.
  • the smooth second arc 503, at this time, the second arc 503 after the gray scale rendering is distributed in a strip shape along the first arc 502, forming a strip-shaped region composed of K (K ⁇ 2) display units.
  • the first arc 502 in a zigzag shape is a target boundary line on the side of the strip-shaped region away from the display screen 104-2.
  • the strip region includes two boundary lines, two In contrast to the boundary line, one boundary line is away from the center of the display 104-2 and the other boundary line is near the center of the display 104-2.
  • the target boundary line is a boundary line away from the center of the display screen 104-2.
  • the gray scale value of the first display unit are smaller than the gray scale values of the second display unit.
  • the grayscale rendering of the rounded black and white renderings may be performed using a preset grayscale rendering algorithm or image processing software (for example, Photoshop) to adjust the contours of the rounded black and white renderings (ie, the first The brightness of the display unit in the vicinity of the arc 502) is changed, and the second arc 503 having a smooth display effect is obtained, thereby realizing the visual effect of the brightness gradation.
  • the gray scale rendering performs a dark to bright gradation treatment on the sawtooth first arc 502, so that the originally stiff jagged first arc 502 becomes softer, thereby achieving a smoother circle. Corner effect.
  • the grayscale value of one display unit can be used to reflect the brightness of the display unit (for example, a pixel unit or a sub-pixel unit).
  • the brightness change between the brightest and the darkest may be divided into several levels. Taking an 8-bit display screen as an example, the brightness and darkness may be divided into 0-255, a total of 256 (ie, the 8th power of 8) a brightness level, that is, the gray level value can be adjusted from 0-255, wherein the gray level is 0, the brightness is the darkest, and the black color is displayed.
  • the gray level value is 255, the brightness is the brightest, and the white color is white.
  • FIG. 7A it is a grayscale distribution diagram of the grayscale rendering diagram after grayscale rendering in FIG. It can be seen that in the target direction along the first circular arc 502 (ie, the boundary line with the grayscale value of 0 in FIG. 7A) to the center of the circle, the display unit within a certain range is more distant from the first circular arc 502. The smaller the grayscale value obtained by the near display unit after rendering, the larger the grayscale value obtained by the display unit farther from the first arc 502 is rendered.
  • the target direction of the first circular arc 502 to the center of the first circular arc 502 may specifically include a direction toward the center of the first circular arc 502 at any point on the first circular arc 502.
  • the display unit along each column ie, the y-axis of the Cartesian coordinate system
  • the display unit along each line ie, the x-axis of the Cartesian coordinate system
  • the direction can be regarded as the direction in which the first circular arc 502 diffuses toward its center.
  • each display unit after grayscale rendering transitions from 0 to 255, wherein the display unit is further away from the first arc 502.
  • the larger the gray scale value obtained after rendering the smaller the gray scale value obtained by the display unit closer to the first arc 502 after rendering.
  • the number of display units in the open interval of (0, 255) may be equal. Can not wait.
  • the display unit in row 1 transitions from 0 to 220 in the above target direction, and then transitions from 220 to 255, at which time the display unit of the grayscale value in (0, 255) has only one (ie 220);
  • the (0, 255) open interval does not include the two endpoints 0 and 255.
  • Q (Q ⁇ 1) transition layers composed of display units may be disposed in a strip region along a first arc 502 (ie, a boundary line of a black rectangular block in FIG. 6) as a target boundary line.
  • a first arc 502 ie, a boundary line of a black rectangular block in FIG. 6
  • the transition layer 1 closest to the first arc 502 and the transition layer farthest from the first arc 502 are included in the direction in which the first arc 502 diffuses toward the center of the circle. 3, and a transition layer 2 between the transition layer 1 and the transition layer 3.
  • the grayscale value of each display unit in the transition layer 1 may be set to the grayscale value of each display unit in the transition layer 2 ⁇ the grayscale value of each display unit in the transition layer 3.
  • the grayscale value of the display unit of each row (or each column) gradually increases in the direction away from the first circular arc 502 along the x-axis (or y-axis). That is, the first arc 502 is gray-scale rendered in each row (or column) of pixel units of the display screen, so that the first arc 502 becomes softer, thereby achieving a smoother rounded effect.
  • 0-255 grayscale values may be divided into N (N>1) grayscale levels, for example, 0-255 grayscale values are divided into 63, 127, 191 according to the principle of 4 equal divisions. 255 has a total of four grayscale levels, and 63, 127, and 191 are sequentially set to the grayscale values of the respective display units in the transition layer 1-transition layer 3 in the order of grayscale levels from small to large.
  • each of the transition layers 1 closest to the first arc 502 may be in the direction in which the first arc 502 is diffused toward the center of the circle 502.
  • the gray scale value of the display unit is set to 63
  • the gray scale value of each display unit in the transition layer 2 at the periphery of the transition layer 1 is set to 127
  • the gray scale of each display unit in the transition layer 3 farthest from the first arc 502 is set.
  • the value is set to 191, and the gray scale values of the remaining display units on the periphery of the transition layer 3 are both 255, and a smooth second arc is obtained, which is gradually transitioned from the grayscale value of 0 to the grayscale value of 255 along the first circular arc 502. 503.
  • the gray scale values of the display elements in the transition layer 1 - transition layer 3 can be sequentially distributed in the order of equal numbers.
  • the light transmittance of each layer in the transition layer 1 - transition layer 3 is also in the arithmetic progression.
  • the distribution or approximation of the arithmetic sequence distribution allows the first arc 502 to exhibit a smoother transition in grayscale rendering.
  • the grayscale value of the display unit in the transition layer 1 to the transition layer 3 may also be approximately equal to the distribution of the arithmetic progression.
  • the grayscale values corresponding to the display units in the transition layer 1 to the transition layer 3 may include However, it is not limited to any one of the following: 63, 127, 190; 63, 128, 190; 63, 128, 191; 64, 127, 191; 64, 127, 190; 64, 128, 191, and the like.
  • the gray scale value of each display unit in the transition layer may be set to a median between 0 and 255, that is, 127, and the transition layer is far away.
  • the gray scale value of the display unit on the center side of the first arc 502 is 0, and the gray scale value of the display unit on the side of the transition layer near the center of the first arc 502 is 255.
  • 0, 127, and 255 are also approximately equal to the distribution of the arithmetic progression.
  • the grayscale value of the transition layer can also be set to other values closer to 127 such as 128 or 126.
  • the thickness D1 of the transition layer 1 and the thickness D2 of the transition layer 2 and the thickness D3 of the transition layer 3 may be equal, thereby improving the uniformity of the grayscale rendering, so that the grayscale rendering is performed.
  • the second arc 503 is smoother.
  • the thickness of each transition layer may refer to the number of display units included in the transition layer along the x-axis (or y-axis) direction.
  • the thickness of the transition layer is the number of display units included in the transition layer along the x-axis direction. In other locations of the transition layer, the thickness of the transition layer is the number of display units included in the transition layer along the y-axis direction. As shown in FIG. 8, the thickness of each transition layer in the transition layer 1-transition layer 3 is the thickness of one display unit.
  • the rounded corners of the display screen 104-2 can be made according to the grayscale renderings obtained after the grayscale rendering, thereby obtaining a rounded corner with a smoother display effect and improving the sawtooth display effect.
  • the light transmittance is the ratio of the radiant energy projected and transmitted through the object to the total radiant energy projected onto the object during the process in which the incident light flux exits from the illuminated surface or the medium incident surface to the other side.
  • the gray scale value of each pixel unit in the gray scale distribution map shown in FIG. 7A (or FIG. 9) can be converted into a corresponding light transmittance.
  • the light transmittance distribution map of the target rounded corner shown in FIG. 10 as an example, it can be seen that after black-and-white rendering and gray-scale rendering, the light transmittance of each display unit near the sawtooth first circular arc 502 is higher.
  • the light transmittance of each of the display units that are small and away from the serrated first circular arc 502 is large to achieve a smooth rounded corner display effect.
  • the light transmittance of the corresponding display unit can be modified according to the light transmittance distribution map shown in FIG. 10, thereby eliminating the rounded corners of the display screen 104-2.
  • the effect of sawtooth is the effect of sawtooth.
  • the light transmittance of the display unit can be adjusted by adjusting the size of the display area in each display unit in the color filter substrate.
  • the black matrix in the display unit is opaque, and the color block in the display unit can transmit light, then the display unit can be adjusted by changing the size ratio of the color block and the black matrix in the display unit. Light transmission rate.
  • the size ratio of the color block and the black matrix in the display unit can be set to 0:1, that is, all the black cells in the display unit are filled;
  • the ratio of the color block to the black matrix in the display unit can be set to 1:1, that is, half of the area of the display unit is used to fill the black matrix, and the area of the other half is used for the fill color.
  • the size ratio of the color block and the black matrix in the display unit can be set to 1:0, that is, all the filled color block in the display unit.
  • the black matrix 431 having different sizes in each display unit refers to a black matrix remaining except the black matrix disposed between the display units for preventing light leakage between pixels.
  • the black matrix 431 is not filled in the display unit, but the display unit and the adjacent display unit can still be formed according to the existing pixel structure.
  • the light transmittance of each display unit in the light transmittance distribution map shown in FIG. 10 can be used to create a size ratio of the color block 432 and the black matrix 431 in the corresponding display unit.
  • Color film substrate As shown in FIG. 12, in the obtained color filter substrate, the area of the color block 432 in the display unit gradually increases along the direction in which the edge of the zigzag rounded corner is diffused toward the center of the circle, and the size of the black matrix 431 is gradually decreased. The display area in the display unit in the direction is gradually increased.
  • each row or each along the jagged rounded edge The gray scale value of a column of display units is changed from 0 to 255, that is, the larger the gray scale value of the display unit is from the edge of the zigzag rounded corner, the closer the gray scale of the display unit is to the edge of the zigzag rounded corner The smaller the value.
  • each display unit in the color film substrate corresponding to the corner area of the display screen 104-2 is light that is rendered in gray scale.
  • the transmittance is produced. Therefore, when the display 104-2 is displayed, the corner area can be rendered by the grayscale rendering as shown in FIG. 6.
  • the grayscale is jagged after rendering. The rounded corners are transitioned through the display unit with varying grayscale values in the strip region, visually making the original stiff jagged fillet softer, thereby improving the jagged display effect and improving the display quality of the display.
  • the above-mentioned corner area refers to a certain size area in the display screen 104-2 which is set with an edge of the display screen 104-2 as an edge.
  • the display unit in the corner area can be used for display; when the vertex of the display screen 104-2 is in a right angle form, the above-mentioned corner area refers to a certain size area of the display screen 104-2 which can display the rounded effect. At this time, some display units in the corner area are not displayed.
  • a color film substrate corresponding to a corner region of a display screen is taken as an example.
  • a black matrix is formed on the base substrate according to the light transmittance of each display unit obtained after the target arc gray scale processing.
  • the black matrix 1202 can be formed on the base substrate 1201 by coating, etching, developing, and exposing, etc., using the existing mask (MASK) process.
  • the difference is that when the black matrix 1202 is fabricated, the black matrix 1202 in different display units has different areas along the light-emitting direction of the display screen.
  • the mask 1203 can be made according to the light transmittance distribution map of the target arc shown in FIG. 10.
  • the mask 1203 includes the transmission region 121 and a plurality of occlusion regions. 122.
  • Each occlusion area 122 corresponds to one display unit. When the light transmittance of the display unit is high, the area size of the corresponding occlusion area 122 is smaller. When the light transmittance of the display unit is low, The larger the area of the corresponding occlusion area 122 is.
  • the black matrix material 1401 after the black matrix material 1401 is coated on the base substrate 1201, the black matrix material 1401 can be exposed through the mask 1203, and the exposed portion of the black matrix material 1401 undergoes a photochemical reaction. It can be dissolved in the etching solution during the etching process, and then a black matrix 1202 can be obtained after the development process, and the area of the black matrix 1202 in each display unit and the light transmission of each display unit in FIG. The rate map corresponds.
  • the specific shape and position of the black matrix 1202 in each display unit are not limited in the embodiment of the present application. As shown in FIG. 17 , the black matrix 1202 in the display unit may be symmetrically or asymmetrically distributed in the display unit. The embodiment does not impose any limitation on this.
  • the color resist block 1601 may be filled in the gap formed by the black matrix 1202 by the MASK process to form a color filter substrate as shown in FIG.
  • the blocking block 1601 may be at least one of a red color resistance, a blue color resistance, a green color resistance, and a white color resistance.
  • a display unit may include a red color resist 1701, a blue color resist 1702, and a green color. Resisting 1703 the color blocks of the three primary colors, optionally, the size of the three color block blocks filled in the black matrix 1202 is equal, thereby avoiding the display color after the three primary colors are mixed due to the different sizes of the three primary colors. An abnormal phenomenon.
  • the color block and the black matrix in each display unit can be symmetrically disposed along the x-axis of each row (and/or the y-axis of each row), then, when each row The color block and the black matrix in the display unit are symmetrically arranged along the x-axis, and when the color block and the black matrix in each column display unit are symmetrically arranged along the y-axis, the color block in each display unit is located in the display unit. Center, this can improve the uniformity of color in the display process of subsequent display units.
  • the black matrix 1202 may be formed into a T-shape. At this time, the black matrix 1202 may block part of the color block 1601, but the area ratio of the black matrix 1202 and the color block 1601 in the light-emitting direction is still Corresponding to the light transmittance distribution map of the target arc shown in FIG.
  • the color filter substrate can be presented as shown in FIG.
  • the smoother rounded corner display effect is not limited. Therefore, the specific arrangement form of the black matrix and the color block in each display unit of the color filter substrate is not limited in the embodiment of the present application.
  • the display area of each display unit at the jagged rounded edge can be changed, thereby
  • the gray-scale rendering effect on the jagged rounded corners on the hardware can greatly improve the sawtooth display effect of the rounded display without increasing the power consumption of the terminal, and achieve a smooth transition of the zigzag rounded corners.
  • the display unit filled with the black matrix is removed, and a filleted color film substrate is obtained.
  • the color film substrate shown in FIG. 12 can also be filled with black.
  • the display unit of the matrix 1202 is removed to obtain a filleted color filter substrate.
  • the display unit that is completely filled with the black matrix 1202 does not have a display function
  • the color film substrate in the right angle form formed in the step 1102 can be directly formed into a display screen.
  • the appearance of the display screen is a right angle shape
  • the display units of the jagged rounded edges in the color filter substrate are adjusted according to the gray scale rendering result, the display screen can still be displayed in the actual display. Smooth rounded corners show the effect.
  • a color filter substrate as shown in FIG. 12 can be produced, and each display unit in the color filter substrate has a one-to-one correspondence with pixel units in any corner region of the display screen.
  • the formed color film substrate also includes a strip-shaped region composed of K (K ⁇ 2) display units, and the strip-shaped region is sawtooth away from the target boundary line at the center of the color filter substrate. shape.
  • the first display unit For any two display units in the above-mentioned strip-shaped region in the color filter substrate, for example, a first display unit close to the target boundary line and a second display unit that is farther from the target boundary line than the first display unit, the first display unit
  • the light transmittance is smaller than the light transmittance of the second display unit (the light transmittance of the first display unit is greater than 0), that is, the gradation of the jagged fillet is performed from dark to bright, which visually makes The original hard jagged arc becomes Softer for a smoother fillet effect.
  • first display unit and the second display unit may be any two display units located in the same column or the same row in the strip-shaped region. That is to say, the light transmittance of the display unit in each column (or each row) in the strip region can be gradually increased by using the target boundary line as a starting point, thereby achieving a gentle transition of the zigzag target boundary line.
  • the strip region may include Q (Q ⁇ 2) transition layers disposed along the target boundary line.
  • Q Q ⁇ 2 transition layers
  • a transition layer close to the zigzag target boundary line for example, The display unit in the first transition layer is the first display unit having a small light transmittance, and the display unit is the second transition layer of the first transition layer away from the zigzag target boundary line.
  • the second display unit having a large light transmittance.
  • the thickness of each of the above-mentioned Q transition layers can be equal, thereby improving the uniformity in the process of changing the light transmittance, so that the display effect of the strip-shaped region is smoother.
  • each of the display layers in any one of the Q transition layers has the same light transmittance.
  • the Q transition layers respectively correspond to Q light transmittances, and the Q light transmittances may be
  • the distribution of the arithmetic progression is such that the jagged target boundary line exhibits a smoother transition when displayed.
  • the number of display units whose gray scale values change within (0, 255) in any two columns (or any two rows) during grayscale rendering may be equal or unequal, Therefore, in the color film substrate produced by the gray scale rendering result, the number of display units in which the light transmittance changes in (0, 1) in any two columns (or any two rows) may be equal or different. .
  • the (0,1) open interval does not include the two endpoints 0 and 1.
  • the first display unit and the second display unit are included in the strip-shaped area of the color filter substrate as an example.
  • the strip-shaped area may further include a third display unit (the third display)
  • the unit is further away from the zigzag target boundary line than the second display unit; then, in order to make the zigzag target boundary line smoother during display, the light transmittance of the third display unit may be set to be larger than the above
  • the light transmittance of the second display unit that is, the light transmittance of the third display unit > the light transmittance of the second display unit > the light transmittance of the first display unit.
  • the light transmittance of the display unit is determined by the ratio of the area of the black matrix and the color block in the display unit.
  • the area ratio of the black matrix and the color block in the second display unit is larger than the area ratio of the black matrix and the color block in the third display unit along the light emitting direction of the color filter substrate.
  • the black matrix and the color block may be disposed in the same layer.
  • the black matrix may be overlaid on the color block.
  • the area of the color block of each color in each display unit is equal.
  • the color block and the black matrix of each display unit in each row display unit may be symmetric along the x-axis.
  • the color block and the black matrix of each display unit in each row of display cells may be symmetric along the y axis.
  • the color block is symmetrical along the x-axis or the y-axis as a whole.
  • FIG. 19 when the color block and the black matrix of each display unit in each column display unit are symmetric along the x-axis, and the color block and the black matrix in each column display unit are symmetrically arranged along the y-axis, each The color block in the display unit is located at the center of the display unit.
  • the terminal can also implement the rounded corner display effect of the display screen 104-2 at the software level by means of the top layer.
  • the display screen 104-2 of the terminal is a right angle
  • the target fillet can be rendered in black and white according to the size of the display 104-2 and the rounded effect required by the display 104-2.
  • Grayscale rendering yields a grayscale distribution as shown in Figure 7A ( Figure 7A is a fillet of display 104-2).
  • the terminal can set the grayscale value of each display unit in the display screen 104-2 according to the grayscale distribution map shown in FIG. 7A to obtain the target layer 1901.
  • the formed target layer 1901 is as shown in FIG. 6, along the target rounded corner (ie, the boundary line with the grayscale value of 0 in FIG. 7A) is diffused toward the center of the circle, and the display unit farther from the target rounded corner is The larger the grayscale value obtained after rendering, the smaller the grayscale value obtained by the display unit closer to the target fillet is, the visual effect of the brightness gradient at the round corner is obtained, and a smoother rounded effect is obtained.
  • the terminal can save the formed target layer 1901 to the memory, and display the target layer 1901 on the uppermost layer of the current display interface when displaying each display interface, that is, the target layer 1901 is displayed on the top, thereby displaying Each of the rounded areas of the screen 104-2 exhibits a smoother rounded display.
  • the terminal can follow the round on the display 104-2.
  • the size of the corner, grayscale rendering of the target fillet, and different from Figure 7, the grayscale map obtained at this time does not include the display unit with grayscale value of 0.
  • the terminal can still set the grayscale value of each display unit in the display 104-2 according to the grayscale map after the grayscale rendering, obtain the target layer 1901, and display the target layer 1901 on the current display interface. Medium to achieve a smoother fillet effect.
  • the user can also turn on or off the option 2101 of the rounded display effect in the setting interface, and when the user turns on the rounded display effect, the display 104-2 can be further adjusted to perform rounded corner display.
  • the radius of the fillet is equal to the rounding parameter, so that the terminal can generate the corresponding target layer according to the method shown in FIG. 22 or FIG. 23 according to the user-defined rounded parameter, and display the display on the display 104-2. Customized rounded corners are displayed in the interface.
  • an embodiment of the present invention further provides a terminal, where the display screen of the terminal includes the color filter substrate provided in the foregoing embodiment.
  • the terminal may specifically be: a liquid crystal panel, an electronic paper, a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, a navigation device, and the like, or any product or component having a display function.
  • the terminal is a mobile phone, the specific hardware structure can be seen in the mobile phone 100 shown in FIG. 3.
  • the above terminal and the like include hardware structures and/or software modules corresponding to each function.
  • the embodiments of the present application can be implemented in a combination of hardware or hardware and computer software in combination with the elements and algorithm steps of the various examples described in the embodiments disclosed herein. Whether a function is implemented in hardware or computer software to drive hardware depends on the specific application and design constraints of the solution. Professionals can use different methods to implement the described functions for each specific application, but this implementation should not be considered super The scope of the embodiments of the present application.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, digital subscriber line (DSL), or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (eg, a floppy disk, a hard disk, a magnetic tape), an optical medium (eg, a DVD), or a semiconductor medium (such as a solid state disk (SSD)).

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Controls And Circuits For Display Device (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种彩膜基板(43)、显示屏(104-2)及终端,涉及显示技术领域,可在显示屏(104-2)边缘做弧度化处理时改善锯齿状的显示效果,提高显示质量。彩膜基板(43)中的显示单元与显示屏(104-2)中的像素单元一一对应,与显示屏(104-2)的边角区域对应的多个显示单元中包括由K个显示单元组成的带状区域,带状区域远离彩膜基板(43)中心的目标边界线呈锯齿状,K≥2;在带状区域内,靠近目标边界线的第一显示单元的光通过率,小于远离目标边界线的第二显示单元的光透过率,第一显示单元的光透过率大于0。

Description

一种彩膜基板、显示屏及终端
本申请要求于2017年09月28日提交中国专利局、申请号为201710902737.6、发明名称为“一种显示屏和终端”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及显示技术领域,尤其涉及一种彩膜基板、显示屏及终端。
背景技术
如图1所示,为了增加手机等终端中显示区域的面积,以提高手机的屏占比,许多手机厂商都将显示屏11的边角作了弧度化处理,使得显示屏11内显示区域的四个顶点形成了更柔和的圆角12显示效果。
然而,由于显示屏11内阵列排布的各个像素单元都是矩形的,因此,将显示屏11顶点处的像素点处理成圆弧状时,上述圆角12的细节显示图如图2所示,可以看出圆角12的边缘呈明显的锯齿现象,不仅影响用户的使用体验,同时降低了显示质量。
发明内容
本申请的实施例提供一种彩膜基板、显示屏及终端,可在显示屏边缘做弧度化处理时改善锯齿状的显示效果,提高显示质量。
为达到上述目的,本申请的实施例采用如下技术方案:
第一方面,本申请的实施例提供一种彩膜基板,该彩膜基板中的显示单元与显示屏中的像素单元一一对应,其中,该显示屏中包括至少一个边角区域,与该边角区域对应的多个显示单元中包括由K(K≥2)个显示单元组成的带状区域,该带状区域远离彩膜基板中心的目标边界线呈锯齿状;以上述带状区域内的第一显示单元和第二显示单元为例,与第一显示单元相比,该第二显示单元更远离目标边界线,并且,第一显示单元的光透过率小于第二显示单元的光透过率,该第一显示单元的光透过率大于0。
也就是说,在制作彩膜基板时,可通过调整与显示屏的边角区域对应的显示单元的透过率,对锯齿状的圆角做了从暗到明渐变处理,在视觉上使得原本生硬的锯齿状的圆弧变得更加柔和,从而实现更为平滑的圆角效果。
在一种可能的设计方法中,该第一显示单元和该第二显示单元属于该K个显示单元中的同一列或同一行。也就是说,可沿着目标边界线,将带状区域中每一列(或每一行)中的显示单元的光透过率逐步增大,实现锯齿状目标边界线的柔和过渡。
在一种可能的设计方法中,该带状区域包括沿着该目标边界线设置的Q个过渡层,Q≥2,其中,第一过渡层中的显示单元为上述第一显示单元,第二过渡层中的显示单元为上述第二显示单元,相比于第二过渡层,该第一过渡层更靠近该目标边界线,即带状区域中沿着目标边界线显示单元的灰阶值从0逐层地平滑过渡为255。
在一种可能的设计方法中,该Q个过渡层中每一个过渡层的厚度相等,从而提高光透过率变化过程中的均一性,使得带状区域的显示效果更加平滑。
在一种可能的设计方法中,上述Q个过渡层中任意一个过渡层内的各个显示单元具有相同的光透过率,那么,与该Q个过渡层分别对应的Q个光透过率可呈等差数列分布,可使锯齿状的目标边界线在在显示时呈现更平滑的过渡。
在一种可能的设计方法中,该带状区域内还包括第三显示单元,该第三显示单元相比于该第二显示单元更加远离该目标边界线;其中,该第三显示单元的光透过率大于该第二显示单元的光透过率。
在一种可能的设计方法中,在该带状区域中,任意两列显示单元中光透过率为(0,1)中任意取值的显示单元的个数相等或不等;和/或;任意两行显示单元中光透过率为(0,1)中任意取值的显示单元的个数相等或不等。也就是说,带状区域中显示单元沿每一行(或每一列)方向上光透过率的变化程度可以是不均匀设置的。
在一种可能的设计方法中,沿该彩膜基板的出光方向,该第一显示单元内黑矩阵与色阻块的面积比值,大于该第二显示单元内黑矩阵与色阻块的面积比值,当显示单元内黑矩阵与色阻块的面积比值越大时,该显示单元的光透过率越小。即在制作彩膜基板时,可通过改变每个显示单元中显示面积的大小实现该显示单元光透过率的变化。
在一种可能的设计方法中,该黑矩阵与该色阻块同层设置;或者,该黑矩阵覆盖在该色阻块上设置。
在一种可能的设计方法中,每个显示单元内各个颜色的色阻块的面积相等,以避免出现因各个颜色的色阻块面积大小不同,造成各个颜色混色后出现显示色彩异常的现象。
在一种可能的设计方法中,在该带状区域中,每一行显示单元中每个显示单元的色阻块和黑矩阵均沿x轴对称设置;和/或,每一列显示单元中每个显示单元的色阻块和黑矩阵均沿y轴对称设置,从而提高后续显示单元显示过程中色彩的均一性。
第二方面,本申请的实施例提供一种显示屏,包括阵列基板、彩膜基板以及封装在阵列基板和彩膜基板之间的液晶层,该彩膜基板为上述任一项所述的彩膜基板。
第三方面,本申请的实施例提供一种终端,包括:处理器、存储器以及上述显示屏;其中,上述存储器和显示屏分别与处理器耦接,上述存储器用于存储一个或多个计算机程序;上述处理器用于执行这一个或多个计算机程序。
本申请的实施例中,上述显示屏内各部件的名字对设备本身不构成限定,在实际实现中,这些部件可以以其他名称出现。只要各个部件的功能和本申请的实施例类似,即属于本申请权利要求及其等同技术的范围之内。
另外,第二方面至第三方面中任一种设计方式所带来的技术效果可参见上述第一方面中不同设计方法所带来的技术效果,此处不再赘述。
附图说明
图1为现有技术中圆角显示的场景示意图一;
图2为现有技术中圆角显示的场景示意图二;
图3为本申请实施例提供的一种终端的结构示意图;
图4A为本申请实施例提供的一种显示屏的结构示意图一;
图4B为本申请实施例提供的一种显示屏的结构示意图二;
图5为本申请实施例提供的一种圆角显示的应用场景示意图一;
图6为本申请实施例提供的一种圆角显示的应用场景示意图二;
图7A为本申请实施例提供的一种圆角显示的应用场景示意图三;
图7B为本申请实施例提供的一种圆角显示的应用场景示意图四;
图8为本申请实施例提供的一种圆角显示的应用场景示意图五;
图9为本申请实施例提供的一种圆角显示的应用场景示意图六;
图10为本申请实施例提供的一种圆角显示的应用场景示意图七;
图11为本申请实施例提供的一种圆角显示的应用场景示意图八;
图12为本申请实施例提供的一种圆角显示的应用场景示意图九;
图13为本申请实施例提供的一种彩膜基板的制作方法的流程示意图;
图14为本申请实施例提供的一种彩膜基板的结构示意图一;
图15为本申请实施例提供的一种彩膜基板的结构示意图二;
图16为本申请实施例提供的一种彩膜基板的结构示意图三;
图17为本申请实施例提供的一种彩膜基板的结构示意图四;
图18为本申请实施例提供的一种彩膜基板的结构示意图五;
图19为本申请实施例提供的一种彩膜基板的结构示意图六;
图20为本申请实施例提供的一种彩膜基板的结构示意图七;
图21为本申请实施例提供的一种圆角显示的应用场景示意图十;
图22为本申请实施例提供的一种圆角显示的应用场景示意图十一;
图23为本申请实施例提供的一种圆角显示的应用场景示意图十二。
具体实施方式
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
本申请实施例提供的一种显示方法,可应用于手机、可穿戴设备、增强现实(augmented reality,AR)\虚拟现实(virtual reality,VR)设备、平板电脑、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等具有显示屏的任意终端上,当然,在以下实施例中,对该终端的具体形式不作任何限制。
如图3所示,本申请实施例中的终端可以为手机100。下面以手机100为例对实施例进行具体说明。应该理解的是,图示手机100仅是上述终端的一个范例,并且手机100可以具有比图中所示出的更多的或者更少的部件,可以组合两个或更多的部件,或者可以具有不同的部件配置。
如图3所示,手机100具体可以包括:处理器101、射频(radio frequency,RF)电路102、存储器103、触摸屏104、蓝牙装置105、一个或多个传感器106、无线保真(wireless fidelity,Wi-Fi)装置107、定位装置108、音频电路109、外设接口110以及电源系统111等部件。这些部件可通过一根或多根通信总线或信号线(图3中未示出)进行通信。本领域技术人员可以理解,图3中示出的硬件 结构并不构成对手机的限定,手机100可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图3对手机100的各个部件进行具体的介绍:
处理器101是手机100的控制中心,利用各种接口和线路连接手机100的各个部分,通过运行或执行存储在存储器103内的应用程序,以及调用存储在存储器103内的数据,执行手机100的各种功能和处理数据。在一些实施例中,处理器101可包括一个或多个处理单元;举例来说,处理器101可以是华为技术有限公司制造的麒麟960芯片。在本申请一些实施例中,上述处理器101还可以包括指纹验证芯片,用于对采集到的指纹进行验证。
射频电路102可用于在收发信息或通话过程中,无线信号的接收和发送。特别地,射频电路102可以将基站的下行数据接收后,给处理器101处理;另外,将涉及上行的数据发送给基站。通常,射频电路包括但不限于天线、至少一个放大器、收发信机、耦合器、低噪声放大器、双工器等。此外,射频电路102还可以通过无线通信和其他设备通信。所述无线通信可以使用任一通信标准或协议,包括但不限于全球移动通讯系统、通用分组无线服务、码分多址、宽带码分多址、长期演进、电子邮件、短消息服务等。
存储器103用于存储应用程序以及数据,处理器101通过运行存储在存储器103的应用程序以及数据,执行手机100的各种功能以及数据处理。存储器103主要包括存储程序区以及存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需的应用程序(比如声音播放功能、图像播放功能等);存储数据区可以存储根据使用手机100时所创建的数据(比如音频数据、电话本等)。此外,存储器103可以包括高速随机存取存储器(ramdom access memory,RAM),还可以包括非易失存储器,例如磁盘存储器件、闪存器件或其他易失性固态存储器件等。存储器103可以存储各种操作系统,例如,苹果公司所开发的
Figure PCTCN2017110275-appb-000001
操作系统,谷歌公司所开发的
Figure PCTCN2017110275-appb-000002
操作系统等。上述存储器103可以是独立的,通过上述通信总线与处理器101相连接;存储器103也可以和处理器101集成在一起。
触摸屏104具体可以包括触控板104-1和显示屏104-2。
其中,触控板104-1可采集手机100的用户在其上或附近的触摸事件(比如用户使用手指、触控笔等任何适合的物体在触控板104-1上或在触控板104-1附近的操作),并将采集到的触摸信息发送给其他器件(例如处理器101)。其中,用户在触控板104-1附近的触摸事件可以称之为悬浮触控;悬浮触控可以是指,用户无需为了选择、移动或拖动目标(例如图标等)而直接接触触控板,而只需用户位于终端附近以便执行所想要的功能。此外,可以采用电阻式、电容式、红外线以及表面声波等多种类型来实现触控板104-1。
显示屏(也称为显示器)104-2可用于显示由用户输入的信息或提供给用户的信息以及手机100的各种菜单。可以采用液晶显示屏、有机发光二极管等形式来配置显示屏104-2。触控板104-1可以覆盖在显示屏104-2之上,当触控板104-1检测到在其上或附近的触摸事件后,传送给处理器101以确定触摸事件的类型, 随后处理器101可以根据触摸事件的类型在显示屏104-2上提供相应的视觉输出。虽然在图3中,触控板104-1与显示屏104-2是作为两个独立的部件来实现手机100的输入和输出功能,但是在某些实施例中,可以将触控板104-1与显示屏104-2集成而实现手机100的输入和输出功能。
示例性的,参见图4A所示,为本申请实施例中提供的一种显示屏104-2的内部结构示意图。以LCD(liquid crystal display,液晶显示器)作为上述显示屏104-2举例,显示屏104-2主要包括背光源41、阵列基板(thin film transistor substrate)42、彩膜基板(color filter substrate)43以及封装在阵列基板42和彩膜基板43之间的液晶分子层44。
通常,仍图4A所示,阵列基板42上包括由交叉设置的栅线421和数据线422划分出的多个矩形阵列单元,在阵列基板42上栅线421和数据线422的相互作用下,各个阵列单元可形成电场,以改变每个阵列单元对应的液晶分子层44中液晶的偏转角度和/或偏转方向,最终实现整个显示屏104-2的画面显示。
彩膜基板43是显示屏104-2的彩色化关键组件,背光源41发出的光线通过阵列基板42以及液晶分子层44后经过彩膜基板43,将背光源41发射的光线呈现出彩色的画面。
仍如图4A所示,彩膜基板43的制作一般是先在衬底基板上形成网格排布的黑矩阵(black matrix,BM)431,每一个网格与阵列基板42上的一个阵列单元对应,后续分别将红(R)、绿(G)、蓝(B)等颜色的色阻块432依序排列在黑矩阵431所限定的各个网格内,这样,黑矩阵431可防止相邻网格之间的色阻块432发生漏光现象。
在本申请实施例中,可将上述彩膜基板43划分为阵列排布的多个显示单元,且这些显示单元与显示屏104-2中的各个像素单元是一一对应的。例如,可将图4中由红、绿、蓝三种基色的色阻块432及其周围的黑矩阵431形成的区域作为一个显示单元,该显示单元在液晶分子层44以及阵列基板42的配合下可作为一个能单独显示颜色的最小单位(即一个像素单元)。
需要说明的是,本申请实施例中对上述显示单元以及像素单元的具体结构不做限定。例如,一个像素单元中可以包括红色子像素单元、绿色子像素单元以及蓝色子像素单元,又或者,一个像素单元中除了红色子像素单元、绿色子像素单元以及蓝色子像素单元之外,还可以包括白色子像素单元等非三基色的子像素单元。在每个像素单元对应的显示单元中,黑矩阵431和色阻块432都可以按照一定的排布规则排列。
另外,如图4B所示,为本申请实施例中提供的一种显示屏104-2的俯视结构示意图。对于矩形的显示屏104-2,显示屏104-2中一般包括4个边角区域45,每个边角区域45对应于显示屏104-2的一个顶点。在本申请实施例中,通过调整任意边角区域45所对应的各个显示单元的光透过率,可改善该边角区域45内锯齿状的圆角显示效果,从而在硬件上实现对锯齿状圆角的平滑过渡。为方便描述,后续实施例及附图中均以图4B中位于左下角的边角区域45为例,阐述本申请实施例提供的一种彩膜基板及显示屏。
可以理解的是,上述触摸屏104是由多层的材料堆叠而成,本申请实施例中只展示出了触控板(层)和显示屏(层),其他层在本申请实施例中不予记载。 另外,触控板104-1可以以全面板的形式配置在手机100的正面,显示屏104-2也可以以全面板的形式配置在手机100的正面,这样在手机的正面就能够实现无边框的结构。
手机100还可以包括蓝牙装置105,用于实现手机100与其他短距离的终端(例如手机、智能手表等)之间的数据交换。本申请实施例中的蓝牙装置可以是集成电路或者蓝牙芯片等。
手机100还可以包括至少一种传感器106,比如指纹采集器件112、光传感器、运动传感器以及其他传感器。具体地,可以在手机100的背面(例如后置摄像头的下方)配置指纹采集器件112,或者在手机100的正面(例如触摸屏104的下方)配置指纹采集器件112。又例如,可以在触摸屏104中配置指纹采集器件112来实现指纹识别功能,即指纹采集器件112可以与触摸屏104集成在一起来实现手机100的指纹识别功能;光传感器可包括环境光传感器及接近传感器,其中,环境光传感器可根据环境光线的明暗来调节触摸屏104的显示器的亮度,接近传感器可在手机100移动到耳边时,关闭显示器的电源。作为运动传感器的一种,加速计传感器可检测各个方向上(一般为三轴)加速度的大小,静止时可检测出重力的大小及方向,可用于识别手机姿态的应用(比如横竖屏切换、相关游戏、磁力计姿态校准)、振动识别相关功能(比如计步器、敲击)等;至于手机100还可配置的陀螺仪、气压计、湿度计、温度计、红外线传感器等其他传感器,在此不再赘述。
Wi-Fi装置107,用于为手机100提供遵循Wi-Fi相关标准协议的网络接入,手机100可以通过Wi-Fi装置107接入到Wi-Fi接入点,进而帮助用户收发电子邮件、浏览网页和访问流媒体等,它为用户提供了无线的宽带互联网访问。在其他一些实施例中,该Wi-Fi装置107也可以作为Wi-Fi无线接入点,可以为其他终端提供Wi-Fi网络接入。
定位装置108,用于为手机100提供地理位置。可以理解的是,该定位装置108具体可以是全球定位系统(global positioning system,GPS)或北斗卫星导航系统、俄罗斯GLONASS等定位系统的接收器。定位装置108在接收到上述定位系统发送的地理位置后,将该信息发送给处理器101进行处理,或者发送给存储器103进行保存。在另外的一些实施例中,该定位装置108还可以是辅助全球卫星定位系统(assisted global positioning system,AGPS)的接收器,AGPS系统通过作为辅助服务器来协助定位装置108完成测距和定位服务,在这种情况下,辅助定位服务器通过无线通信网络与终端例如手机100的定位装置108(即GPS接收器)通信而提供定位协助。在另外的一些实施例中,该定位装置108也可以是基于Wi-Fi接入点的定位技术。由于每一个Wi-Fi接入点都有一个全球唯一的媒体介入控制(media access control,MAC)地址,终端在开启Wi-Fi的情况下即可扫描并收集周围的Wi-Fi接入点的广播信号,因此可以获取到Wi-Fi接入点广播出来的MAC地址;终端将这些能够标示Wi-Fi接入点的数据(例如MAC地址)通过无线通信网络发送给位置服务器,由位置服务器检索出每一个Wi-Fi接入点的地理位置,并结合Wi-Fi广播信号的强弱程度,计算出该终端的地理位置并发送到 该终端的定位装置108中。
音频电路109、扬声器113、麦克风114可提供用户与手机100之间的音频接口。音频电路109可将接收到的音频数据转换后的电信号,传输到扬声器113,由扬声器113转换为声音信号输出;另一方面,麦克风114将收集的声音信号转换为电信号,由音频电路109接收后转换为音频数据,再将音频数据输出至RF电路102以发送给比如另一手机,或者将音频数据输出至存储器103以便进一步处理。
外设接口110,用于为外部的输入/输出设备(例如键盘、鼠标、外接显示器、外部存储器、用户识别模块卡等)提供各种接口。例如通过通用串行总线(universal serial bus,USB)接口与鼠标连接,通过用户识别模块卡卡槽上的金属触点与电信运营商提供的用户识别模块卡(subscriber identification module,SIM)卡进行连接。外设接口110可以被用来将上述外部的输入/输出外围设备耦接到处理器101和存储器103。
手机100还可以包括给各个部件供电的电源装置111(比如电池和电源管理芯片),电池可以通过电源管理芯片与处理器101逻辑相连,从而通过电源装置111实现管理充电、放电、以及功耗管理等功能。
尽管图3未示出,手机100还可以包括摄像头(前置摄像头和/或后置摄像头)、闪光灯、微型投影装置、近场通信(near field communication,NFC)装置等,在此不再赘述。
在本申请实施例中,当显示屏104-2的顶点需要呈现圆角显示效果时,为了改善圆角边缘的锯齿状显示效果,可在制作显示屏104-2的彩膜基板43之前,首先按照显示屏104-2需要的圆角效果绘制一定尺寸的圆角黑白渲染图。
以显示屏104-2需要的圆角效果为半径为26个显示单元大小的1/4目标圆弧举例,如图5所示,对平滑的目标圆弧501进行黑白渲染,其中,目标圆弧501会将经过的各个显示单元分割成两部分,例如图5中的显示单元A被分割为靠近显示屏104-2的第一部分511以及远离显示屏104-2的第二部分512。
当靠近显示屏104-2的这一部分(例如上述第一部分511)的面积大于一个完整的显示单元面积的一半时,可在显示屏104-2中保留这个像素单元;否则,则可在显示屏104-2中去除该像素单元。
那么,仍如图5所示,根据上述规则可以得到目标圆弧501经过黑白渲染后的圆角黑白渲染图,其中,图5中黑色的矩形块为显示屏104-2中不进行显示的显示单元(这些不进行显示的显示单元可以保留在显示屏104-2中,也可以在制作显示屏104-2时祛除,即不包括在显示屏104-2中)。此时目标圆弧501已经被渲染为不平滑的第一圆弧502,显然,黑白渲染后的第一圆弧502呈现明显的锯齿状显示效果。
为了改善圆角边缘的锯齿状显示效果,可继续对上述黑白渲染后得到的圆角黑白渲染图进行灰阶渲染,如图6所示,将不平滑的第一圆弧502调整为显示效果较为平滑的第二圆弧503,此时,灰阶渲染后的第二圆弧503沿第一圆弧502呈带状分布,形成K(K≥2)个显示单元组成的带状区域。此时,呈锯齿状的第一圆弧502为该带状区域中远离显示屏104-2一侧的目标边界线。该带状区域包括两条边界线,这两条 边界线相比,一条边界线远离显示屏104-2的中心,另一条边界线靠近显示屏104-2的中心。所述目标边界线为远离显示屏104-2的中心的边界线。
对于带状区域内的任意两个显示单元,例如,靠近目标边界线的第一显示单元和相比于第一显示单元远离目标边界线的第二显示单元,第一显示单元的灰阶值(gray scale values)小于第二显示单元的灰阶值。
仍如图6所示,可使用预设的灰阶渲染算法或图像处理软件(例如Photoshop)对上述圆角黑白渲染图进行灰阶渲染,以调整上述圆角黑白渲染图中轮廓(即第一圆弧502)附近显示单元的亮度变化,得到显示效果较为平滑的第二圆弧503,实现亮度渐变的视觉效果。可以看出,灰阶渲染时对锯齿状的第一圆弧502做了从暗到明渐变处理,使得原本生硬的锯齿状的第一圆弧502变得更加柔和,从而实现更为平滑的圆角效果。
其中,一个显示单元的灰阶值可用于反映该显示单元(例如,像素单元或子像素单元)的明暗。具体的,可以将最亮与最暗之间的亮度变化划分为若干等级,以8比特位(bit)的显示屏为例,可将明暗划分0-255,共256(即2的8次方)个亮度层次,即灰阶值可从0-255之间调整,其中,灰阶值为0时亮度最暗,此时呈现黑色,当灰阶值为255时亮度最亮,此时呈现白色。
那么,在进行上述灰阶渲染时,实质是按照一定的灰阶渲染规则沿着第一圆弧502将灰阶值从0过渡为255。如图7A所示,为图6中经过灰阶渲染后的灰阶渲染图的灰阶分布图。可以看出,在沿着第一圆弧502(即图7A中灰阶值为0的边界线)向其圆心扩散的目标方向上,在一定范围内的显示单元,距离第一圆弧502越近的显示单元经渲染后得到的灰阶值越小,距离第一圆弧502越远的显示单元经渲染后得到的灰阶值越大。
其中,如图7B所示,沿第一圆弧502向其圆心扩散的目标方向具体可包括第一圆弧502上任意一点朝向第一圆弧502圆心的方向。其中,沿每一列显示单元(即直角坐标系的y轴)指向第一圆弧502圆心的方向,或者,沿每一行显示单元(即直角坐标系的x轴)指向第一圆弧502圆心的方向均可视为第一圆弧502向其圆心扩散的方向。
示例性的,仍如图7A所示,任意一列(或任意一行)显示单元中,经过灰阶渲染后的各个显示单元由0过渡至255,其中,距离第一圆弧502越远的显示单元经渲染后得到的灰阶值越大,距离第一圆弧502越近的显示单元经渲染后得到的灰阶值越小。
另外,任意两列或两行显示单元(例如图7A中的行1和行2)中,灰阶值的取值在(0,255)这个开区间内的显示单元的个数可以相等,也可以不等。例如,行1中的显示单元沿上述目标方向从0过渡至220,然后从220过渡至255,此时灰阶值在(0,255)中的显示单元只有一个(即220);而行2中的显示单元沿上述目标方向从0过渡至63,然后从63过渡至151,又从151过渡至220,最后从220过渡至255,此时灰阶值在(0,255)中的显示单元包括6个(其中包括4个灰阶值为63的显示单元,1个灰阶值为151的显示单元以及1个灰阶值为220的显示单元)。其中,(0,255)开区间内不包括0和255这两个端点。
可选的,可在沿以第一圆弧502(即图6中黑色矩形块的边界线)为目标边界线的带状区域内设置Q(Q≥1)个由显示单元组成的过渡层。如图8所示,以Q=3为例,沿第一圆弧502向其圆心扩散的方向上包括距离第一圆弧502最近的过渡层1、距离第一圆弧502最远的过渡层3,以及在过渡层1和过渡层3之间的过渡层2。那么,在进行上述灰阶渲染时,可设置过渡层1内各个显示单元的灰阶值<过渡层2内各个显示单元的灰阶值<过渡层3内各个显示单元的灰阶值。
此时,仍如图8所示,在沿x轴(或y轴)远离第一圆弧502的方向上,每一行(或每一列)显示单元的灰阶值逐渐增加。即在显示屏的每一行(或每一列)像素单元中均对第一圆弧502作了灰阶渲染,使得第一圆弧502变得更加柔和,从而实现更为平滑的圆角效果。
示例性的,可以将0-255个灰阶值划分为N(N>1)个灰阶等级,例如,按照4等分的原则将0-255个灰阶值划分为63、127、191以及255共4个灰阶等级,按照灰阶等级从小到大的顺序,将63、127、191依次设置为上述过渡层1-过渡层3内各个显示单元的灰阶值。
那么,在对第一圆弧502进行灰阶渲染时,如图9所示,可沿着第一圆弧502向其圆心扩散的方向,将距离第一圆弧502最近的过渡层1内各个显示单元的灰阶值设置为63,将过渡层1外围的过渡层2内各个显示单元的灰阶值设置为127,将第一圆弧502最远的过渡层3内各个显示单元的灰阶值设置为191,过渡层3外围的其余各个显示单元的灰阶值均为255,得到沿第一圆弧502从灰阶值为0逐步过渡为灰阶值为255的平滑的第二圆弧503。
也就是说,过渡层1-过渡层3中显示单元的灰阶值可以依次呈等差数列分布,此时,过渡层1-过渡层3中每一层的光透过率也呈等差数列分布或近似等差数列分布,可使第一圆弧502在灰阶渲染时呈现更平滑的过渡。在具体实现过程中,过渡层1-过渡层3中显示单元的灰阶值也可以约等于等差数列分布,例如:过渡层1-过渡层3内各显示单元分别对应的灰阶值可以包括但不限于以下任意一组:63、127、190;63、128、190;63、128、191;64、127、191;64、127、190;64、128、191等。
当第一圆弧502外围仅设置一层过渡层时,可将该过渡层内各个显示单元的灰阶值设置为0-255之间的中位数,即127,此时,该过渡层远离第一圆弧502圆心一侧的显示单元的灰阶值为0,该过渡层靠近第一圆弧502圆心一侧的显示单元的灰阶值为255。显然,0、127以及255也约等于等差数列分布。当然,该过渡层的灰阶值也可以被设置为128或126等其它与127比较接近的数值。
另外,如图8所示,可设置上述过渡层1的厚度D1、过渡层2的厚度D2以及过渡层3的厚度D3均相等,从而提高灰阶渲染的均一性,使得灰阶渲染后的第二圆弧503更加平滑。其中,每一个过渡层的厚度可以是指沿x轴(或y轴)方向上该过渡层包括的显示单元的个数。
需要说明的是,由于过渡层呈阶梯状,所以对于一个过渡层而言,在该过渡层的某些位置,该过渡层的厚度为沿x轴方向上该过渡层包括的显示单元的个数,在该过渡层的另一些位置,该过渡层的厚度为沿y轴方向上该过渡层包括的显示单元的个数。如图8所示,过渡层1-过渡层3中每个过渡层的厚度均为1个显示单元的厚度。
在本申请实施例中,可根据上述灰阶渲染后得到的灰阶渲染图制作显示屏104-2的圆角,从而得到显示效果更为平滑的圆角,改善锯齿状的显示效果。
仍以图7A所示的灰阶分布图举例,当一个显示单元的灰阶值越小时,说明该显示单元的光透过率越低,相反,当一个显示单元的灰阶值越大时,说明该显示单元的光透过率越大。
其中,光透过率(transmittance)是指在入射光通量自被照面或介质入射面至另外一面离开的过程中,投射并透过物体的辐射能与投射到物体上的总辐射能之比,是评估终端的显示质量的重要指标之一。
例如,当灰阶值为0时,其对应的显示单元最暗,即完全不透光,此时可设置该显示单元的光透过率为:0/255=0;当灰阶值为255时,其对应的显示单元最亮,即完全透光,此时可设置该显示单元的光透过率为:255/255=1;当灰阶值为127时,其对应的显示单元亮度适中,此时可设置该显示单元的光透过率为:127/255≈0.5。
这样一来,将图7A(或图9)所示的灰阶分布图中每个像素单元的灰阶值可转换为对应的光透过率。以图10所示的目标圆角的光透过率分布图为例,可以看出,经过黑白渲染和灰阶渲染后,靠近锯齿状第一圆弧502的各个显示单元的光透过率较小,而远离锯齿状第一圆弧502的各个显示单元的光透过率较大,以实现平滑的圆角显示效果。
那么,在制作显示屏104-2的目标圆角时,可按照图10所示的光透过率分布图修改对应显示单元的光透过率,从而消除显示屏104-2各个圆角处的锯齿现象效果。
示例性的,可以通过调整彩膜基板内每个显示单元中显示面积的大小来调整该显示单元的光透过率。其中,显示单元内的黑矩阵不透光,而显示单元内的色阻块可透过光线,那么,可以通过改变显示单元内色阻块与黑矩阵这二者的大小比例,调整该显示单元的光透过率。
如图11所示,当显示单元的光透过率为0时,可设置该显示单元中色阻块与黑矩阵的大小比例为0:1,即显示单元中全部填充黑矩阵;当显示单元的光透过率为0.5时,可设置该显示单元中色阻块与黑矩阵的大小比例为1:1,即显示单元中一半的面积用于填充黑矩阵,另一半的面积用于填充色阻块;当显示单元的光透过率为1时,可设置该显示单元中色阻块与黑矩阵的大小比例为1:0,即显示单元中全部填充色阻块。
需要说明的是,本申请实施例中每个显示单元内大小不同的黑矩阵431,是指忽略显示单元之间设置的用于防止像素间发生漏光现象的黑矩阵之外剩余的黑矩阵。仍如图11所示,当显示单元的光透过率为1时,该显示单元内没有填充黑矩阵431,但该显示单元与相邻的显示单元之间仍可按照现有的像素结构形成用于防止像素间发生漏光现象的网格状黑矩阵。
那么,在制作彩膜基板时可按照图10所示的光透过率分布图中每个显示单元的光透过率,制作相应显示单元中色阻块432与黑矩阵431的大小比例,得到彩膜基板。如图12所示,在得到的彩膜基板中,沿着锯齿状圆角的边缘向其圆心扩散的方向,显示单元中色阻块432的面积逐渐增大,黑矩阵431的大小逐渐减小,使得该方向上显示单元中的显示面积逐渐增大。这样,在显示过程中,沿锯齿状圆角边缘每一行或每 一列显示单元的灰阶值由0过渡至255,即距离该锯齿状圆角的边缘越远的显示单元的灰阶值越大,距离该锯齿状圆角的边缘越近的显示单元的灰阶值越小。
也就是说,在使用上述彩膜基板制作得到的显示屏104-2中,显示屏104-2的边角区域所对应的彩膜基板中的各个显示单元,均是按照灰阶渲染后的光透过率制作的,因此,显示屏104-2在进行显示时,其边角区域可呈现如图6所示的经灰阶渲染后的显示效果,此时,灰阶渲染后呈锯齿状的圆角通过带状区域内灰阶值变化的显示单元进行过渡,在视觉上使得原本生硬的锯齿状的圆角变得更加柔和,从而改善锯齿状的显示效果,提高显示屏的显示质量。
其中,当显示屏104-2的顶点是圆角形态时,上述边角区域是指显示屏104-2内以显示屏104-2的某一个圆角为边缘设置的一定大小的区域,此时,该边角区域中的显示单元均可用于显示;当显示屏104-2的顶点是直角形态时,上述边角区域是指显示屏104-2中可显示圆角效果的一定大小的区域,此时,该边角区域中有部分显示单元不进行显示。
以下,将结合具体实施例详细阐述本申请实施例提供的一种彩膜基板的制作方法,如图13所示,以制作与显示屏的一个边角区域对应的彩膜基板为例,该方法包括:
1101、按照对目标圆弧灰阶处理后得到的各个显示单元的光透过率,在衬底基板上形成黑矩阵。
如图14所示,仍可沿用现有的掩膜(MASK)工艺在衬底基板1201上通过涂覆、刻蚀、显影以及曝光等手段制作黑矩阵1202。但不同的是,在制作黑矩阵1202时,不同显示单元内黑矩阵1202沿显示屏出光方向的面积不同。
具体的,可按照图10所示的目标圆弧的光透过率分布图制作掩膜版1203,示例性的,如图15所示,掩膜版1203包括透过区域121以及多个遮挡区域122,每一个遮挡区域122对应于一个显示单元,当该显示单元的光透过率较高时,对应的遮挡区域122的面积大小越小,当该显示单元的光透过率较低时,对应的遮挡区域122的面积大小越大。
这样,如图16所示,在衬底基板1201上涂覆黑矩阵材料1401后,可通过上述掩膜版1203对黑矩阵材料1401进行曝光,黑矩阵材料1401中接收曝光的部分发生光化学反应,可在刻蚀过程中溶解于刻蚀液,后经显影工艺后可得到网格状的黑矩阵1202,且每一个显示单元内黑矩阵1202的面积与图10中每一个显示单元的光透过率分布图对应。
当然,本申请实施例中不限定每个显示单元内黑矩阵1202的具体形状和位置,如图17所示,显示单元中的黑矩阵1202可以对称或不对称的分布在显示单元内,本申请实施例对此不作任何限制。
1102、在形成有上述黑矩阵的衬底基板上形成色阻块。
如图18所示,在衬底基板1201上形成上述黑矩阵1202后,也可沿用MASK工艺在黑矩阵1202形成的空隙中填充色阻块1601,形成如图12所示的彩膜基板。该阻块1601可以是红色色阻、蓝色色阻、绿色色阻以及白色色阻中的至少一个。
如图19所示,一个显示单元中可包括红色色阻1701、蓝色色阻1702以及绿色色 阻1703这三原色的色阻块,可选的,可设置黑矩阵1202中填充的这三种色阻块的面积大小相等,从而避免出现因三基色面积大小不同,造成三基色混色后出现显示色彩异常的现象。
可选的,仍如图19所示,还可以设置各个显示单元中的色阻块和黑矩阵均沿每一行的x轴(和/或每一行的y轴)对称设置,那么,当每一行显示单元中的色阻块和黑矩阵沿x轴对称设置,且每一列显示单元中的色阻块和黑矩阵沿y轴对称设置时,每个显示单元中的色阻块位于该显示单元的中心,这样可以提高后续显示单元显示过程中色彩的均一性。
又或者,如图20所示,还可以将黑矩阵1202制作成T字形,此时黑矩阵1202可以遮挡部分色阻块1601,但黑矩阵1202与色阻块1601在出光方向上的面积比值仍然与图10所示的目标圆弧的光透过率分布图对应。
也就是说,当显示单元内黑矩阵1202与色阻块1601在出光方向上的面积比值,与灰阶处理后该显示单元的光透过率对应时,彩膜基板均可呈现图6所示的较为平滑的圆角显示效果,因此,本申请实施例中对彩膜基板的每个显示单元内黑矩阵与色阻块的具体设置形式不做限定。
通过步骤1101-1102制作得到的彩膜基板中,通过改变彩膜基板各个边角区域中黑矩阵与色阻块的面积比例,可改变呈锯齿状圆角边缘处各个显示单元的显示面积,从而在硬件上实现对锯齿状圆角的灰阶渲染效果,在不增加终端功耗的同时可极大改善圆角显示屏的锯齿状显示效果,实现锯齿状圆角的平滑过渡。
1103(可选)、将全部填充黑矩阵的显示单元祛除,得到圆角化的彩膜基板。
制作好的彩膜基板后续和阵列基板对盒后形成显示屏,如果后续需要将显示屏以圆角的形状安装至手机模组时,还可以将图12所示的彩膜基板中全部填充黑矩阵1202的显示单元祛除,得到圆角化的彩膜基板。
当然,由于全部填充了黑矩阵1202的显示单元本身也不具备显示功能,因此,也可以直接将步骤1102中形成的直角形态的彩膜基板制作成显示屏。此时,显示屏的外观虽然为直角形态,但由于对彩膜基板中锯齿状圆角边缘的各个显示单元按照灰阶渲染结果调整了显示面积,因此,显示屏在实际显示中仍可呈现较为平滑的圆角显示效果。
通过上述步骤1101-1103,可制作得到如图12所示的彩膜基板,该彩膜基板中的每个显示单元与显示屏任意边角区域中的像素单元一一对应。
并且,在制作上述彩膜基板时,由于每个显示单元中黑矩阵与色阻块的大小都是根据如图6所示经过灰阶渲染后得到的每个显示单元的光透过率确定的,因此,与图6类似的,制作出的彩膜基板中同样包括由K(K≥2)个显示单元组成的带状区域,且该带状区域远离彩膜基板中心的目标边界线呈锯齿状。
对于彩膜基板中上述带状区域内的任意两个显示单元,例如,靠近目标边界线的第一显示单元和相比于第一显示单元远离目标边界线的第二显示单元,第一显示单元的光透过率小于第二显示单元的光透过率(第一显示单元的光透过率大于0),即对锯齿状的圆角做了从暗到明的渐变处理,在视觉上使得原本生硬的锯齿状的圆弧变得 更加柔和,从而实现更为平滑的圆角效果。
进一步地,上述第一显示单元和第二显示单元可以是位于上述带状区域内同一列或同一行中的任意两个显示单元。也就是说,可以目标边界线为起点,将带状区域中每一列(或每一行)中的显示单元的光透过率逐步增大,实现锯齿状目标边界线的柔和过渡。
可选的,上述带状区域中可包括沿着上述目标边界线设置的Q(Q≥2)个过渡层,此时,与图8类似的,靠近上述锯齿状目标边界线的过渡层(例如第一过渡层)中的显示单元即为上述光透过率较小的第一显示单元,而相比于第一过渡层远离上述锯齿状目标边界线的第二过渡层,其显示单元即为上述光透过率较大的第二显示单元。这样,在带状区域中沿着上述目标边界线每层显示单元的光透过率可从0逐层地平滑过渡为1。
其中,上述Q个过渡层中每一个过渡层的厚度可相等,从而提高光透过率变化过程中的均一性,使得带状区域的显示效果更加平滑。
另外,上述Q个过渡层中任意一个过渡层内的各个显示单元具有相同的光透过率,此时,上述Q个过渡层分别对应Q个光透过率,这Q个光透过率可呈等差数列分布,可使锯齿状的目标边界线在在显示时呈现更平滑的过渡。
需要说明的是,如图7A所示,由于在灰阶渲染时任意两列(或任意两行)中灰阶值在(0,255)内变化的显示单元的个数可相等或不等,因此,根据该灰阶渲染结果制作出的彩膜基板中,任意两列(或任意两行)中光透过率在(0,1)内变化的显示单元的个数也可相等或不等。其中,(0,1)这个开区间内不包括0和1这两个端点。
以上实施例中均以彩膜基板的带状区域中包含第一显示单元和第二显示单元为例进行说明,可以理解的是,上述带状区域内还可以包括第三显示单元(第三显示单元相比于第二显示单元更加远离上述锯齿状的目标边界线);那么,为了使得上述锯齿状的目标边界线在显示时更为平滑,可设置第三显示单元的光透过率大于上述第二显示单元的光透过率,即:第三显示单元的光透过率>第二显示单元的光透过率>第一显示单元的光透过率。
其中,显示单元的光透过率由该显示单元内黑矩阵与色阻块的面积比值决定。一个显示单元内黑矩阵与色阻块的面积比值越大,则该显示单元的光透过率越小。由此,沿所述彩膜基板的出光方向,所述第一显示单元内黑矩阵与色阻块的面积比值,大于所述第二显示单元内黑矩阵与色阻块的面积比值。沿所述彩膜基板的出光方向,所述第二显示单元内黑矩阵与色阻块的面积比值,大于所述第三显示单元内黑矩阵与色阻块的面积比值。
如图18所示,所述黑矩阵与所述色阻块可以同层设置。或者,如图20所示,所述黑矩阵可以覆盖在所述色阻块上。
如图19所示,可选的,每个显示单元内各个颜色的色阻块的面积相等。
可选的,在所述带状区域中,每一行显示单元中每个显示单元的色阻块和黑矩阵可以沿x轴对称。或者,在所述带状区域中,每一行显示单元中每个显示单元的色阻块和黑矩阵可以沿y轴对称。其中,所述的色阻块作为一个整体沿x轴或y轴对称。 如图19所示,当每一列显示单元中每个显示单元的色阻块和黑矩阵沿x轴对称,且每一列显示单元中的色阻块和黑矩阵沿y轴对称设置时,每个显示单元中的色阻块位于该显示单元的中心。
在本申请的一些实施例中,基于图7A所示的灰阶分布图,终端还可以通过置顶图层的方式在软件层面实现显示屏104-2的圆角显示效果。
示例性的,如图21所示,终端的显示屏104-2是直角的,可按照显示屏104-2的尺寸以及显示屏104-2需要的圆角效果,对目标圆角进行黑白渲染和灰阶渲染,得到图7A所示的灰阶分布图(图7A为显示屏104-2的一个圆角)。进而,终端可按照图7A所示的灰阶分布图设置显示屏104-2内每一个显示单元的灰阶值,得到目标图层1901。
其中,形成的目标图层1901如图6所示,沿着目标圆角(即图7A中灰阶值为0的边界线)向其圆心扩散的方向,距离目标圆角越远的显示单元经渲染后得到的灰阶值越大,距离目标圆角越近的显示单元经渲染后得到的灰阶值越小,实现圆角处亮度渐变的视觉效果,得到更为平滑的圆角效果。
那么,终端可将形成的目标图层1901保存至存储器中,在显示每一个显示界面时都将目标图层1901显示在当前显示界面的最上层,即置顶显示该目标图层1901,从而在显示屏104-2的各圆角区域呈现出较为平滑圆角显示效果。
又或者,如图22所示,如果终端的显示屏104-2本身就是圆角的,为了改善圆角边缘的锯齿状显示效果,与图21类似的,终端可按照显示屏104-2上圆角的尺寸,对目标圆角进行灰阶渲染,与图7不同的是,此时得到的灰阶分布图中不包括灰阶值为0的显示单元。进而,终端仍可按照灰阶渲染后的灰阶分布图设置显示屏104-2内每一个显示单元的灰阶值,得到目标图层1901,并将目标图层1901置顶显示在当前的显示界面中,实现更为平滑的圆角效果。
另外,如图23所示,用户还可以在设置界面中开启或关闭圆角显示效果的选项2101,并且,当用户开启圆角显示效果时,可以进一步调整显示屏104-2进行圆角显示时圆角的半径等圆角参数,这样,终端可以根据用户自定义的圆角参数,按照图22或图23所示的方法生成相应的目标图层,并置顶显示在显示屏104-2的显示界面中,实现定制化的圆角显示效果。
进一步地,本发明实施例还提供了一种终端,该终端的显示屏中包括上述实施例中提供的彩膜基板。其中,所述终端具体可以为:液晶面板、电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。例如,当上述终端为手机时,其具体硬件结构可参见图3所示的手机100。
可以理解的是,上述终端等为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超 出本申请实施例的范围。
在上述实施例中,可以全部或部分的通过软件,硬件,固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式出现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。该可用介质可以是磁性介质,(例如,软盘,硬盘、磁带)、光介质(例如,DVD)或者半导体介质(例如固态硬盘Solid State Disk(SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何在本申请揭露的技术范围内的变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (14)

  1. 一种彩膜基板,所述彩膜基板中的显示单元与显示屏中的像素单元一一对应,其特征在于,所述显示屏中包括至少一个边角区域,与所述边角区域对应的多个显示单元中包括由K个显示单元组成的带状区域,所述带状区域远离所述彩膜基板中心的目标边界线呈锯齿状,K≥2;
    所述带状区域包括第一显示单元和第二显示单元,与所述第一显示单元相比,所述第二显示单元更远离所述目标边界线,所述第一显示单元的光透过率小于所述第二显示单元的光透过率,所述第一显示单元的光透过率大于0。
  2. 根据权利要求1所述的彩膜基板,其特征在于,所述第一显示单元和所述第二显示单元属于所述K个显示单元中的同一列或同一行。
  3. 根据权利要求1或2所述的彩膜基板,其特征在于,所述带状区域包括沿着所述目标边界线设置的Q个过渡层,Q≥2,
    其中,第一过渡层中的显示单元为所述第一显示单元,第二过渡层中的显示单元为所述第二显示单元,相比于所述第二过渡层,所述第一过渡层更靠近所述目标边界线,所述第一过渡层和所述第二过渡层为所述Q个过渡层中的任意两个。
  4. 根据权利要求3所述的彩膜基板,其特征在于,所述Q个过渡层中每一个过渡层的厚度相等。
  5. 根据权利要求3或4所述的彩膜基板,其特征在于,所述Q个过渡层中任意一个所述过渡层内的各个显示单元具有相同的光透过率。
  6. 根据权利要求5所述的彩膜基板,其特征在于,与所述Q个过渡层分别对应的Q个光透过率呈等差数列分布。
  7. 根据权利要求1-5中任一项所述的彩膜基板,其特征在于,所述带状区域内还包括第三显示单元,所述第三显示单元相比于所述第二显示单元更加远离所述目标边界线;其中,所述第三显示单元的光透过率大于所述第二显示单元的光透过率。
  8. 根据权利要求1-7中任一项所述的彩膜基板,其特征在于,在所述带状区域中,
    任意两列显示单元中光透过率为(0,1)中任意取值的显示单元的个数相等或不等;和/或;
    任意两行显示单元中光透过率为(0,1)中任意取值的显示单元的个数相等或不等。
  9. 根据权利要求1-8中任一项所述的彩膜基板,其特征在于,沿所述彩膜基板的出光方向,所述第一显示单元内黑矩阵与色阻块的面积比值,大于所述第二显示单元内黑矩阵与色阻块的面积比值;
    其中,当显示单元内黑矩阵与色阻块的面积比值越大时,光透过率越小。
  10. 根据权利要求9所述的彩膜基板,其特征在于,所述黑矩阵与所述色阻块同层设置;或者,所述黑矩阵覆盖在所述色阻块上设置。
  11. 根据权利要求9或10所述的彩膜基板,其特征在于,每个显示单元内各个颜色的色阻块的面积相等。
  12. 根据权利要求9-11中任一项所述的彩膜基板,其特征在于,在所述带状区域中,
    每一行显示单元中每个显示单元的色阻块和黑矩阵均沿x轴对称设置;和/或,
    每一列显示单元中每个显示单元的色阻块和黑矩阵均沿y轴对称设置。
  13. 一种显示屏,所述显示屏包括阵列基板、彩膜基板以及封装在所述阵列基板和所述彩膜基板之间的液晶层,其特征在于,所述彩膜基板为权利要求1-12中任一项所述的彩膜基板。
  14. 一种终端,其特征在于,所述终端包括:处理器、存储器以及权利要求13所述的显示屏;
    其中,所述存储器和所述显示屏分别与所述处理器耦接;
    所述存储器用于存储一个或多个计算机程序;
    所述处理器用于执行所述一个或多个计算机程序。
PCT/CN2017/110275 2017-09-28 2017-11-09 一种彩膜基板、显示屏及终端 WO2019061712A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201780090942.5A CN110637252B (zh) 2017-09-28 2017-11-09 一种彩膜基板、显示屏及终端
US16/651,668 US11073720B2 (en) 2017-09-28 2017-11-09 Color filter substrate, display, and terminal
KR1020207011974A KR102409616B1 (ko) 2017-09-28 2017-11-09 컬러 필터 기판, 디스플레이, 및 단말기
CN202210760855.9A CN115236892B (zh) 2017-09-28 2017-11-09 一种彩膜基板、显示屏及终端
US17/368,552 US11686969B2 (en) 2017-09-28 2021-07-06 Color filter substrate, display, and terminal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710902737 2017-09-28
CN201710902737.6 2017-09-28

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/651,668 A-371-Of-International US11073720B2 (en) 2017-09-28 2017-11-09 Color filter substrate, display, and terminal
US17/368,552 Continuation US11686969B2 (en) 2017-09-28 2021-07-06 Color filter substrate, display, and terminal

Publications (1)

Publication Number Publication Date
WO2019061712A1 true WO2019061712A1 (zh) 2019-04-04

Family

ID=65900468

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/110275 WO2019061712A1 (zh) 2017-09-28 2017-11-09 一种彩膜基板、显示屏及终端

Country Status (4)

Country Link
US (2) US11073720B2 (zh)
KR (1) KR102409616B1 (zh)
CN (2) CN115236892B (zh)
WO (1) WO2019061712A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115346484A (zh) * 2022-08-24 2022-11-15 福州京东方光电科技有限公司 显示面板及显示装置

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310322B (zh) * 2020-10-30 2022-11-08 湖北长江新型显示产业创新中心有限公司 一种显示面板和显示装置
CN113997868B (zh) 2021-11-15 2023-07-04 武汉华星光电技术有限公司 车载显示装置
WO2023225841A1 (zh) * 2022-05-24 2023-11-30 京东方科技集团股份有限公司 显示面板、显示装置和虚拟现实设备
CN116400917A (zh) * 2023-03-20 2023-07-07 惠州市德赛西威汽车电子股份有限公司 显示屏圆角显示方法、装置、设备、汽车智能座舱及车辆

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185815A (zh) * 2015-10-09 2015-12-23 信利(惠州)智能显示有限公司 Oled显示装置及电子设备
CN105511152A (zh) * 2016-02-02 2016-04-20 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
US20160120005A1 (en) * 2014-10-27 2016-04-28 Innolux Corporation Display panel
CN105911744A (zh) * 2016-06-29 2016-08-31 上海天马微电子有限公司 显示面板与显示装置
CN107103893A (zh) * 2017-06-30 2017-08-29 上海天马有机发光显示技术有限公司 一种改善圆形显示屏边缘显示效果的方法
CN107577078A (zh) * 2017-09-19 2018-01-12 厦门天马微电子有限公司 一种显示面板及显示装置

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06214235A (ja) * 1993-01-14 1994-08-05 Toshiba Corp 液晶表示装置
JP2002355403A (ja) * 2001-05-31 2002-12-10 Heiwa Corp 画像表示制御方法及び遊技機における図柄表示制御方法
TWI285870B (en) * 2003-08-27 2007-08-21 Chi Mei Optoelectronics Corp Liquid crystal display and driving method
CN101849255B (zh) * 2007-10-31 2012-11-28 夏普株式会社 显示面板和显示装置
JP2009259721A (ja) * 2008-04-21 2009-11-05 Hitachi Displays Ltd 有機el表示装置
JP5112961B2 (ja) * 2008-06-11 2013-01-09 三菱電機株式会社 表示装置
KR20100021903A (ko) * 2008-08-18 2010-02-26 삼성전자주식회사 메뉴 네비게이션 방법, 메뉴 네비게이션 기능을 갖는 장치 및 유저 인터페이스와 저장 매체
JP5532481B2 (ja) * 2009-05-13 2014-06-25 Nltテクノロジー株式会社 カラー画像表示方式、カラーフィルタ基板、カラー画素アレイ基板、画像表示装置及び電子機器
CN101782697A (zh) * 2009-12-29 2010-07-21 信利半导体有限公司 一种彩色滤光片及液晶显示器
CN102541445A (zh) * 2011-12-08 2012-07-04 华为技术有限公司 交互方法及交互设备
US9349342B2 (en) * 2012-03-05 2016-05-24 Beijing Lenovo Software Ltd. Display method and electronic device
CN104322050B (zh) * 2012-05-22 2020-04-28 株式会社尼康 电子相机、图像显示装置和记录介质
US20160291376A1 (en) * 2015-03-30 2016-10-06 Innolux Corporation Display device
KR102400506B1 (ko) * 2015-10-30 2022-05-23 엘지디스플레이 주식회사 이형 표시장치
CN106875328B (zh) 2015-12-11 2020-05-12 北京新媒传信科技有限公司 图像处理方法和装置
CN108475489B (zh) * 2015-12-22 2021-08-03 夏普株式会社 显示装置
CN205318057U (zh) * 2016-01-19 2016-06-15 成都京东方光电科技有限公司 一种显示面板、显示装置
JP2017142368A (ja) * 2016-02-10 2017-08-17 パナソニックIpマネジメント株式会社 表示装置及び表示方法
CN106707606B (zh) * 2017-03-14 2019-10-22 上海天马微电子有限公司 异形显示面板及显示装置
CN106873224A (zh) * 2017-04-25 2017-06-20 武汉华星光电技术有限公司 一种显示面板及显示装置
CN107516473B (zh) * 2017-09-19 2019-09-24 厦门天马微电子有限公司 异形显示面板和显示装置
CN107463024B (zh) * 2017-09-25 2020-12-22 京东方科技集团股份有限公司 显示基板及其制造方法、显示面板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160120005A1 (en) * 2014-10-27 2016-04-28 Innolux Corporation Display panel
CN105185815A (zh) * 2015-10-09 2015-12-23 信利(惠州)智能显示有限公司 Oled显示装置及电子设备
CN105511152A (zh) * 2016-02-02 2016-04-20 京东方科技集团股份有限公司 显示基板、显示面板和显示装置
CN105911744A (zh) * 2016-06-29 2016-08-31 上海天马微电子有限公司 显示面板与显示装置
CN107103893A (zh) * 2017-06-30 2017-08-29 上海天马有机发光显示技术有限公司 一种改善圆形显示屏边缘显示效果的方法
CN107577078A (zh) * 2017-09-19 2018-01-12 厦门天马微电子有限公司 一种显示面板及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115346484A (zh) * 2022-08-24 2022-11-15 福州京东方光电科技有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN110637252A (zh) 2019-12-31
US20200264472A1 (en) 2020-08-20
CN110637252B (zh) 2022-07-08
US11073720B2 (en) 2021-07-27
KR102409616B1 (ko) 2022-06-15
CN115236892A (zh) 2022-10-25
US20210333621A1 (en) 2021-10-28
CN115236892B (zh) 2024-06-11
KR20200051038A (ko) 2020-05-12
US11686969B2 (en) 2023-06-27

Similar Documents

Publication Publication Date Title
US11686969B2 (en) Color filter substrate, display, and terminal
US10269160B2 (en) Method and apparatus for processing image
US10671258B2 (en) Electronic device having hole area and method of controlling hole area thereof
AU2018414730B2 (en) Application window display method and terminal
US11288779B2 (en) Method and device for image correction and storage medium
US10747050B2 (en) Display screen and mobile terminal
US20200374382A1 (en) Display Method and Terminal
CN110944374B (zh) 通信模式的选择方法、装置、电子设备及介质
US20200320919A1 (en) Display Method, Display Device, and Electronic Device
CN111833243B (zh) 一种数据展示方法、移动终端和存储介质
CN208076869U (zh) 显示屏及移动终端
CN110308578A (zh) 显示屏及移动终端
US11783517B2 (en) Image processing method and terminal device, and system
CN113093431A (zh) 电子装置、显示模组及其显示面板
CN112181230A (zh) 一种数据展示方法、装置以及电子设备
CN208079155U (zh) 显示屏及移动终端
CN115798417A (zh) 背光亮度的确定方法、装置、设备及计算机可读存储介质
CN112308767B (zh) 一种数据展示方法、装置、存储介质以及电子设备
CN112068348A (zh) 一种彩色滤光片基板制备方法及显示面板
CN111381397A (zh) 一种显示屏及终端
CN112308766A (zh) 一种图像数据展示方法、装置、电子设备及存储介质
CN110311998A (zh) 显示屏及移动终端
CN115116406B (zh) 一种反射屏模组前光亮点补偿方法、设备、系统及介质
CN112306344B (zh) 一种数据处理方法及移动终端
CN112184801A (zh) 一种用于鱼眼摄像头的数据展示方法和移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927609

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207011974

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 17927609

Country of ref document: EP

Kind code of ref document: A1