WO2019061594A1 - 一种高纯乙氧基喹啉的吸附除杂方法 - Google Patents

一种高纯乙氧基喹啉的吸附除杂方法 Download PDF

Info

Publication number
WO2019061594A1
WO2019061594A1 PCT/CN2017/107027 CN2017107027W WO2019061594A1 WO 2019061594 A1 WO2019061594 A1 WO 2019061594A1 CN 2017107027 W CN2017107027 W CN 2017107027W WO 2019061594 A1 WO2019061594 A1 WO 2019061594A1
Authority
WO
WIPO (PCT)
Prior art keywords
ethoxyquinoline
purity
adsorbing
temperature
removing impurities
Prior art date
Application number
PCT/CN2017/107027
Other languages
English (en)
French (fr)
Inventor
陈捷
褚伟华
丁龙军
宋兴福
孙淑英
金艳
Original Assignee
泰兴瑞泰化工有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 泰兴瑞泰化工有限公司 filed Critical 泰兴瑞泰化工有限公司
Publication of WO2019061594A1 publication Critical patent/WO2019061594A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D215/00Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems
    • C07D215/02Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom
    • C07D215/16Heterocyclic compounds containing quinoline or hydrogenated quinoline ring systems having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen atoms or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D215/20Oxygen atoms

Definitions

  • the invention belongs to the separation and purification of materials in the chemical industry, and relates to a process for adsorbing and removing impurities of high-purity ethoxyquinoline.
  • Ethoxyquinoline is widely used in feed additives due to its excellent oxidation resistance, but it faces the problem of separation of highly biotoxic p-aminophenyl ether in the production process of ethoxyquinoline acetone.
  • concentration of p-aminophenylethyl ether contained in the domestically produced ethoxyquinoline product cannot meet the new international standards, which limits the production of the product to the international market. Therefore, the study of the separation of trace amounts of p-aminophenylethyl ether in ethoxyquinoline is essential for the export of antioxidant products.
  • the separation of p-aminophenylethyl ether in ethoxyquinoline is mainly carried out by distillation.
  • the p-aminophenylether and acetone are subjected to a condensation reaction in the presence of a catalyst to form an ethoxyquinoline.
  • the ethoxyquinoline first needs to be distilled under reduced pressure to remove toluene to obtain a crude product, and then the crude product is purified by distillation under reduced pressure to give a product.
  • the content of p-aminophenylethyl ether in the products obtained by the distillation method is about 4%.
  • the object of the present invention is to provide a method for adsorbing and removing impurities of high-purity ethoxyquinoline, which can reduce the content of p-aminophenylethyl ether in ethoxyquinoline to less than 2.5 ppm, and the yield of ethoxyquinoline exceeds 90%.
  • a method for adsorbing and removing impurities of high-purity ethoxyquinoline characterized in that: crude ethoxyquinoline is filtered to remove particulate matter, and the obtained filtrate is sent to a raw material tank for preheating; the filtrate after preheating controls the flow rate from bottom to top After passing through the constant temperature adsorption column, the qualified product flows into the product tank through the top; the saturated adsorption column is washed by the constant temperature eluent, and then decomposed by the negative pressure high temperature desorption, the desorption liquid is condensed by the cold trap, and the storage tank is collected.
  • the content of p-aminophenylethyl ether in the crude ethoxyquinoline is less than 100 ppm.
  • the preheating temperature of the ethoxyquinoline filtrate is from 30 ° C to 35 ° C.
  • the feed rate of the ethoxyquinoline filtrate into the constant temperature adsorption column is 1–10 BV/h, and the internal temperature of the adsorption column The degree is constant at 40–90 °C.
  • the eluent feed flow rate is 1 - 5 BV / h
  • the temperature is 20 - 30 ° C
  • the washing time is 2 h - 3 h.
  • the vacuum degree of the negative pressure high-temperature desorption regeneration process is 0.1–50 mbar, the temperature is 100–300 ° C, and the desorption is 4 h to 6 h.
  • the adsorbent loaded in the constant temperature adsorption column is activated carbon, macroporous adsorption resin, ion exchange resin, diatomaceous earth, zeolite molecular sieve, polyacrylamide or alumina.
  • the adsorption column eluent is one or more of pentane, acetone, toluene, ammonia water, xylene or cyclohexane.
  • the filtrate obtained is sent to a raw material tank for preheating through a gear pump; and the filtrate is fed by a gear pump to a constant temperature adsorption column by frequency conversion.
  • the filtration precision is 5 ⁇ m, and filtration is carried out by using a hollow polypropylene fiber filter.
  • the above crude ethoxyquinoline is prepared by the acetone method of the company, and the ethoxyquinoline is synthesized by reacting p-aminophenylether and acetone as raw materials in the presence of a catalyst; and then using multi-stage molecular distillation.
  • the crude ethoxyquinoline prepared by the technique.
  • the high-boiling impurities (high-boiling impurities are impurities with a boiling point higher than 300 degrees) in the crude ethoxyquinoline are removed by primary molecular distillation, and the collected light components are used as secondary separation raw materials, and the process conditions are controlled in the following range:
  • the distiller has a heating temperature of 130 to 160 ° C, a condenser temperature of 3 to 10 ° C, a system pressure of 0.1 to 5 mbar, a feed rate of 10 to 50 mL/min, and a wiper speed of 400 to 500 rpm.
  • the p-aminophenylether content was reduced to 200 ppm by secondary molecular distillation, and the collected heavy components were used as the raw materials for the tertiary separation.
  • the process conditions are controlled in the following ranges: the main distiller heating temperature is 100 to 160 ° C, the condenser temperature is 3 to 10 ° C, the system pressure is 0.1 to 10 mbar, the feed rate is 10 to 100 mL/min, and the wiper speed is 300 to 400 rpm.
  • the aminophenylethyl ether content was reduced to 20 ppm by tertiary molecular distillation, and the collected heavy components were qualified products.
  • the process conditions are controlled in the following ranges: the main distiller heating temperature is 100 to 160 ° C, the condenser temperature is 3 to 10 ° C, the system pressure is 0.1 to 10 mbar, the feed rate is 10 to 100 mL/min, and the wiper speed is 300 to 400 rpm.
  • the ethoxyquinoline having a p-aminophenylethyl ether content of 100 ppm is filtered (filtration precision is 5 ⁇ m, filtered by a hollow polypropylene fiber filter) to remove particulate matter, and the filtrate is sent to a raw material tank of the adsorption device through a gear pump. .
  • the ethoxyquinoline in the raw material tank is preheated (preheating of the jacketed heat exchanger, preheating with 30 degree hot water circulation) to 30 °C, and frequency-conveyed by gear pump, at a flow rate of 1–10 BV/h.
  • the degree is constant at 40–90 ° C, and the qualified product flows out through the top of the adsorption column and flows into the product tank.
  • the saturated adsorption column was passed through a controlled flow rate of 1–5 BV/h at a temperature of 20–30 ° C and the eluent was washed for 2 h. After the end of the washing, the degree of vacuum is controlled to be 0.1–50 mbar, the desorption temperature is 100–300 ° C, and the adsorption column is desorbed for 4 h. Finally, the desorption solution was condensed through a cold trap (the temperature set by the cold trap was -5 degrees), and the storage tank was collected.
  • the adsorbent loaded in the adsorption column is activated carbon, macroporous adsorption resin, ion exchange resin, diatomaceous earth, zeolite molecular sieve, polyacrylamide, and alumina.
  • the activated carbon has an iodine value of ⁇ 1100 mg/g, a strength of ⁇ 97%, a specific gravity of 450-500 g/l, and a water content of ⁇ 5%.
  • the macroporous adsorption resin has a specific surface area of ⁇ 1100 m 2 /g and an average pore diameter of Dry state, water content ⁇ 5%.
  • the ion exchange resin has an ion form of H + , an exchange equivalent of ⁇ 10 mmol/g, and a particle size lower limit of ⁇ 300 ⁇ m.
  • the diatomaceous earth has a specific surface area of ⁇ 100 m 2 /g, a permeability of ⁇ 1 Darcy, and a water content of ⁇ 5%.
  • the zeolite molecular sieve the adsorption amount of n-hexane is 9.5-10.5%, the ratio of silicon to aluminum is ⁇ 25, and the average pore diameter is
  • the alumina specific surface area ⁇ 310 m 2 /g, pore volume ⁇ 0.5 cc / g.
  • the eluent of the adsorption column is pentane, acetone, toluene, aqueous ammonia, xylene or cyclohexane, or a combination thereof.
  • the invention provides a method for adsorbing and removing impurities of high-purity ethoxyquinoline, which can reduce the content of p-aminophenylethyl ether in ethoxyquinoline to less than 2.5 ppm, and the yield of ethoxyquinoline exceeds 90%.
  • FIG. 1 is a schematic diagram of an experimental apparatus for adsorbing and removing impurities of high-purity ethoxyquinoline according to the present invention: V-01 raw material tank, V-02 condensate desorption liquid storage tank, V-03 product tank, P- 01 feed pump, P–02 vacuum pump, X–01 adsorption column, X–02 cold trap, PG01 vacuum gauge, PG02 vacuum gauge, PG03 vacuum gauge, TI01 temperature gauge and TI02 temperature gauge; 1-1# valve, 2-2# ball valve , 3-3# ball valve, 4-4# ball valve, 5-5# valve, 6-6# valve, 7-7# ball valve, 8-8# ball valve, 9-9# ball valve, 10-10# ball valve, 11 -11# ball valve.
  • FIG. 2 is a gas chromatogram of a product obtained by a method for adsorbing and removing impurities of a high-purity ethoxyquinoline of the present invention.
  • the entire adsorption unit impurity removal system includes: raw material tank V–01, condensate storage tank V–02, product tank V–03, feed pump P–01, vacuum pump P–02, adsorption column X –01, cold trap X–02, heating system and monitor table.
  • the adsorption column is filled with activated carbon, macroporous adsorption resin, ion exchange resin, diatomaceous earth, zeolite molecular sieve, polyacrylamide, and alumina.
  • the eluent of the adsorption column is pentane, acetone, toluene, aqueous ammonia, xylene or cyclohexane, or a combination thereof.
  • the vacuum system controls the internal pressure of the adsorption column to be stable at 0.1–50 mbar.
  • the heating system controls the internal temperature of the adsorption column to be stable at 40-90 ° C during adsorption, and the temperature is stable at 100-300 ° C during desorption.
  • the flow rate of the ammonia water is controlled to 5 BV/h, the temperature is 30 ° C, and the washing is performed for 2 hours.
  • the degree of vacuum was controlled to 2 mbar, the desorption temperature was 100 ° C, and desorption was carried out for 4 h.
  • the adsorption tower can be re-adsorbed and the product is 4.75kg.
  • the concentration of p-aminophenylethyl ether in the product was 2.4 ppm by gas chromatography analysis, and the yield was 95%.
  • the flow rate of toluene was controlled to be 5 BV/h, the temperature was 30 ° C, and the washing was carried out for 2 hours. After the end of the washing, the degree of vacuum was controlled to 1 mbar, the desorption temperature was 95 ° C, and desorption was carried out for 4 h.
  • the adsorption tower can be re-adsorbed and the product is 4.50kg.
  • the concentration of p-aminophenylethyl ether in the product was determined by gas chromatography to be 2.0 ppm, and the yield was 90%. .
  • the acetone flow rate was controlled to 5 BV/h, the temperature was 30 ° C, and the washing was carried out for 2 h. After the end of the washing, the degree of vacuum was controlled to 1 mbar, the desorption temperature was 95 ° C, and desorption was carried out for 4 h.
  • the adsorption tower can be re-adsorbed and the product is 4.60kg.
  • the concentration of p-aminophenylethyl ether in the product was 1.6 ppm by gas chromatography analysis, and the yield was 92%.
  • the concentration of p-aminophenylethyl ether in the product was 0.8 ppm by gas chromatography analysis, and the yield was 91%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Treatment Of Liquids With Adsorbents In General (AREA)

Abstract

一种高纯乙氧基喹啉的吸附除杂方法,设计用于确保产品乙氧基喹啉与杂质对氨基苯乙醚有效分离的吸附装置,得到高纯、高附加值产品乙氧基喹啉。首先采用固定床分离杂质对氨基苯乙醚,当吸附剂吸附饱和后,通过洗脱液洗涤、真空高温解吸重生吸附剂,完成整个吸附–解吸周期。该方法可以有效分离乙氧基喹啉和对氨基苯乙醚,使产品乙氧基喹啉纯度大幅提高,确保产品中对氨基苯乙醚浓度小于2.5ppm。该方法在乙氧基喹啉生产及分离提纯领域具有广阔的应用前景。

Description

一种高纯乙氧基喹啉的吸附除杂方法 技术领域
本发明属于化工领域物料分离和提纯,涉及一种高纯乙氧基喹啉的吸附除杂工艺。
背景技术
乙氧基喹啉因其优良的抗氧化性而被广泛应用于饲料添加剂,但在乙氧基喹啉丙酮法生产过程中面临着产品中高生物毒性对氨基苯乙醚的分离问题。目前国内生产的乙氧基喹啉产品中所含对氨基苯乙醚浓度不能满足国际新标准,限制了该产品生产企业走向国际市场。因此,研究乙氧基喹啉中微量对氨基苯乙醚的分离技术对于抗氧化剂产品出口创汇至关重要。
目前乙氧基喹啉中对氨基苯乙醚的分离主要采用蒸馏法。对氨基苯乙醚与丙酮在催化剂存在的条件下,进行缩合反应生成乙氧基喹啉。由于需要甲苯带出反应中产生的水,所以乙氧基喹啉首先需要减压蒸馏去除甲苯得到粗品,随后粗品由减压分馏精制得到产品。但是目前蒸馏法得到的产品中对氨基苯乙醚的含量约为4%,随着国际新标准的出台,如何利用先进的分离技术得到高纯乙氧基喹啉对于国内生产厂家至关重要。
发明内容
本发明的目的为提供一种高纯乙氧基喹啉的吸附除杂方法,能够将乙氧基喹啉中对氨基苯乙醚的含量降低至2.5ppm以下,乙氧基喹啉收率超过90%。
本发明采用以下技术方案:
一种高纯乙氧基喹啉的吸附除杂方法,其特征在于:将乙氧基喹啉粗品进行过滤除去颗粒物,所得滤液送入原料罐中预热;预热后的滤液控制流速自下而上经过恒温吸附柱,合格产品经顶部自流进入产品罐;将饱和的吸附柱通过恒温洗脱液洗涤,随后负压高温解吸再生,脱附液通过冷阱冷凝,储罐收集。
所述乙氧基喹啉粗品中对氨基苯乙醚的含量低于100ppm。
进一步,所述乙氧基喹啉滤液预热温度为30℃~35℃。
进一步,乙氧基喹啉滤液进入恒温吸附柱的进料流速为1–10BV/h,吸附柱内部温 度恒定于40–90℃。
根据本发明所述高纯乙氧基喹啉的吸附除杂方法,所述的洗脱液进料流速为1–5BV/h,温度为20–30℃,洗涤时间2h~3h。
根据本发明所述高纯乙氧基喹啉的吸附除杂方法,所述的负压高温解吸再生过程真空度为0.1–50mbar,温度为100–300℃,解吸4h~6h。
进一步,所述恒温吸附柱中装填的吸附剂为活性炭、大孔吸附树脂、离子交换树脂、硅藻土、沸石分子筛、聚丙烯酰胺或氧化铝。
进一步,所述的吸附柱洗脱液为戊烷、丙酮、甲苯、氨水、二甲苯或环己烷中的一种或一种以上。
根据本发明所述高纯乙氧基喹啉的吸附除杂方法,所得滤液通过齿轮泵送入原料罐中预热;通过齿轮泵变频输送滤液至恒温吸附柱。
根据本发明所述高纯乙氧基喹啉的吸附除杂方法,过滤精度为5微米,采用中空聚丙烯纤维滤芯过滤。
上述乙氧基喹啉粗品为本公司通过丙酮法制备,以对氨基苯乙醚与丙酮为原料,在催化剂存在的条件下,进行缩合反应,合成的乙氧基喹啉;再采用多级分子蒸馏技术制取的乙氧基喹啉粗品。通过一级分子蒸馏脱除乙氧基喹啉粗品中高沸点杂质(高沸点杂质是沸点高于300度的杂质),收集的轻组分作为二级分离的原料,工艺条件控制于如下范围:主蒸馏器加热温度130~160℃、冷凝器温度3~10℃、系统压强0.1~5mbar、进料速率10~50mL/min和刮膜器转速400~500rpm。通过二级分子蒸馏将对氨基苯乙醚含量降低至200ppm,收集的重组分作为三级分离的原料。工艺条件控制于如下范围:主蒸馏器加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。通过三级分子蒸馏将氨基苯乙醚含量降低至20ppm,收集的重组分即为合格的产品。工艺条件控制于如下范围:主蒸馏器加热温度100~160℃、冷凝器温度3~10℃、系统压强0.1~10mbar、进料速率10~100mL/min和刮膜器转速300~400rpm。
本发明方法为将对氨基苯乙醚含量为100ppm的乙氧基喹啉进行过滤(过滤精度为5微米,采用中空聚丙烯纤维滤芯过滤)除去颗粒物,滤液通过齿轮泵送入吸附装置的原料罐中。
将原料罐中的乙氧基喹啉预热(夹套换热器预热,用30度的热水循环预热)至30℃,通过齿轮泵变频输送,以1–10BV/h的流速自下而上经过吸附柱,同时控制吸附过程温 度恒定于40–90℃,合格产品经吸附柱顶部流出,自流进入产品罐。
将饱和的吸附柱通过控制流速为1–5BV/h,温度为20–30℃,洗脱液洗涤2h。洗涤结束后,通过控制真空度为0.1–50mbar,解吸温度为100–300℃,吸附柱解吸4h。最后将脱附液通过冷阱(冷阱设定的温度为–5度)冷凝,储罐收集。
所述的吸附柱中装填的吸附剂是活性炭、大孔吸附树脂、离子交换树脂、硅藻土、沸石分子筛、聚丙烯酰胺、氧化铝。
所述活性炭:碘值≥1100mg/g,强度≥97%,比重450—500g/l,含水量≤5%。
所述大孔吸附树脂:比表面积≥1100m2/g,平均孔径为
Figure PCTCN2017107027-appb-000001
干态,含水量≤5%。
所述离子交换树脂:离子形态为H+,交换当量≥10mmol/g,粒径下限≤300μm。
所述硅藻土:比表面积≥100m2/g,渗透率≥1Darcy,含水量≤5%。
所述沸石分子筛:正己烷吸附量9.5-10.5%,硅铝比≥25,平均孔径为
Figure PCTCN2017107027-appb-000002
所述氧化铝:比表面积≥310m2/g,孔容≥0.5cc/g。
所述的吸附柱的洗脱液是戊烷、丙酮、甲苯、氨水、二甲苯或环己烷,或其组合物。
本发明有益技术效果:
本发明提供一种高纯乙氧基喹啉的吸附除杂方法,能够将乙氧基喹啉中对氨基苯乙醚的含量降低至2.5ppm以下,乙氧基喹啉收率超过90%。
附图说明
图1为本发明提供高纯乙氧基喹啉的吸附除杂方法中实验装置示意图:V–01原料罐、V–02冷凝脱附液储罐、V–03产品罐、P–01进料泵、P–02真空泵、X–01吸附柱、X–02冷阱、PG01真空表、PG02真空表、PG03真空表、TI01测温仪表和TI02测温仪表;1-1#阀门、2-2#球阀、3-3#球阀、4-4#球阀、5-5#阀门、6-6#阀门、7-7#球阀、8-8#球阀、9-9#球阀、10-10#球阀、11-11#球阀。
图2为本发明一种高纯乙氧基喹啉的吸附除杂方法所得产品的气相色谱图。
具体实施方式
以下用实施例对本发明作更详细的描述。这些实施例仅仅是对本发明最佳实施方式的描述,并不对本发明的范围有任何限制。
如图1所示,整个吸附装置除杂系统中包括:原料罐V–01、冷凝液储罐V–02、产品罐V–03、进料泵P–01、真空泵P–02、吸附柱X–01、冷阱X–02、加热系统和监测仪 表。
所述的吸附柱中装填的是活性炭、大孔吸附树脂、离子交换树脂、硅藻土、沸石分子筛、聚丙烯酰胺、氧化铝。
所述的吸附柱的洗脱液是戊烷、丙酮、甲苯、氨水、二甲苯或环己烷,或其组合物。
所述的真空系统控制吸附柱内部压强稳定于0.1–50mbar。
所述的加热系统控制吸附时吸附柱内部温度稳定于40–90℃,解吸时温度稳定于100–300℃。
实施例1
(1)将对氨基苯乙醚含量为100ppm的乙氧基喹啉预处理,保证原油中无固体物质再进行吸附作业;
(2)将原料罐中5kg的乙氧基喹啉通过夹套换热器预热至30℃,通过齿轮泵以5BV/h的流速自下而上经过填充氧化铝吸附柱,同时控制吸附过程温度恒定于90℃,合格产品经吸附柱顶部流出进入产品罐;
(3)待吸附填料饱和后,通过控制氨水流速为5BV/h,温度为30℃,洗涤2h。洗涤结束后,通过控制真空度为2mbar,解吸温度为100℃,解吸4h。吸附塔可以重新进行吸附工作,产品为4.75kg。
通过气相色谱分析,产品中对氨基苯乙醚的浓度为2.4ppm,收率为95%。
实施例2
(1)将对氨基苯乙醚含量为100ppm的乙氧基喹啉预处理,保证原油中无固体物质再进行吸附作业;
(2)将原料罐中5kg的乙氧基喹啉通过夹套换热器预热至30℃,通过齿轮泵以3BV/h的流速自下而上经过填充大孔吸附树脂吸附柱,同时控制吸附过程温度恒定于80℃,合格产品经吸附柱顶部流出进入产品罐;
(3)待吸附填料饱和后,通过控制甲苯流速为5BV/h,温度为30℃,洗涤2h。洗涤结束后,通过控制真空度为1mbar,解吸温度为95℃,解吸4h。吸附塔可以重新进行吸附工作,产品为4.50kg。
通过气相色谱分析,产品中对氨基苯乙醚的浓度为2.0ppm,收率为90%。。
实施例3
(1)将对氨基苯乙醚含量为100ppm的乙氧基喹啉预处理,保证原油中无固体物质 再进行吸附作业;
(2)将原料罐中5kg的乙氧基喹啉通过夹套换热器预热至30℃,通过齿轮泵以5BV/h的流速自下而上经过填充沸石分子筛吸附柱,同时控制吸附过程温度恒定于90℃,合格产品经吸附柱顶部流出进入产品罐;
(3)待吸附填料饱和后,通过控制丙酮流速为5BV/h,温度为30℃,洗涤2h。洗涤结束后,通过控制真空度为1mbar,解吸温度为95℃,解吸4h。吸附塔可以重新进行吸附工作,产品为4.60kg。
通过气相色谱分析,产品中对氨基苯乙醚的浓度为1.6ppm,收率为92%。
实施例4
(1)将对氨基苯乙醚含量为100ppm的乙氧基喹啉预处理,保证原油中无固体物质再进行吸附作业;
(2)将原料罐中5kg的乙氧基喹啉通过夹套换热器预热至30℃,通过齿轮泵以5BV/h的流速自下而上经过填充离子交换树脂吸附柱,同时控制吸附过程温度恒定于90℃,合格产品经吸附柱顶部流出进入产品罐;
(3)待吸附填料饱和后,通过控制戊烷流速为5BV/h,温度为30℃,洗涤2h。洗涤结束后,通过控制真空度为1mbar,解吸温度为95℃,解吸4h。吸附塔可以重新进行吸附工作,产品为4.55kg。
通过气相色谱分析,产品中对氨基苯乙醚的浓度为0.8ppm,收率为91%。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员,在不脱离本发明构思的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围内。

Claims (10)

  1. 一种高纯乙氧基喹啉的吸附除杂方法,其特征在于:将乙氧基喹啉粗品进行过滤除去颗粒物,所得滤液送入原料罐中预热;预热后的滤液控制流速自下而上经过恒温吸附柱,合格产品经顶部自流进入产品罐;将饱和的吸附柱通过恒温洗脱液洗涤,随后负压高温解吸再生,脱附液通过冷阱冷凝,储罐收集。
  2. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:乙氧基喹啉粗品中对氨基苯乙醚的含量低于100ppm。
  3. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:所述乙氧基喹啉滤液预热温度为30℃~35℃。
  4. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:乙氧基喹啉滤液进入恒温吸附柱的进料流速为1–10BV/h,吸附柱内部温度恒定于40–90℃。
  5. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:所述的洗脱液进料流速为1–5BV/h,温度为20–30℃,洗涤时间2h~3h。
  6. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:所述的负压高温解吸再生过程真空度为0.1–50mbar,温度为100–300℃,解吸4h~6h。
  7. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:所述恒温吸附柱中装填的吸附剂为活性炭、大孔吸附树脂、离子交换树脂、硅藻土、沸石分子筛、聚丙烯酰胺或氧化铝。
  8. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:所述的吸附柱洗脱液为戊烷、丙酮、甲苯、氨水、二甲苯或环己烷中的一种或一种以上。
  9. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:所得滤液通过齿轮泵送入原料罐中预热;通过齿轮泵变频输送滤液至恒温吸附柱。
  10. 根据权利要求1所述高纯乙氧基喹啉的吸附除杂方法,其特征在于:过滤精度为5微米,采用中空聚丙烯纤维滤芯过滤。
PCT/CN2017/107027 2017-09-27 2017-10-20 一种高纯乙氧基喹啉的吸附除杂方法 WO2019061594A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710891404.8A CN109553575B (zh) 2017-09-27 2017-09-27 一种高纯乙氧基喹啉的吸附除杂方法
CN201710891404.8 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019061594A1 true WO2019061594A1 (zh) 2019-04-04

Family

ID=65864040

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107027 WO2019061594A1 (zh) 2017-09-27 2017-10-20 一种高纯乙氧基喹啉的吸附除杂方法

Country Status (2)

Country Link
CN (1) CN109553575B (zh)
WO (1) WO2019061594A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829292A (en) * 1971-04-26 1974-08-13 H Monroy Apparatus for the production of 1,2-dihydroquinolines
US6350759B1 (en) * 1998-10-23 2002-02-26 Adir Et Compagnie Dihydro- and tetrahydro-quinoline compounds
CN101823998A (zh) * 2010-05-05 2010-09-08 江苏利田科技有限公司 一种反应器耦合模拟移动床乙氧基喹啉清洁生产工艺
CN102285918A (zh) * 2011-07-29 2011-12-21 上海福达精细化工有限公司 一种乙氧基喹啉的生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3829292A (en) * 1971-04-26 1974-08-13 H Monroy Apparatus for the production of 1,2-dihydroquinolines
US6350759B1 (en) * 1998-10-23 2002-02-26 Adir Et Compagnie Dihydro- and tetrahydro-quinoline compounds
CN101823998A (zh) * 2010-05-05 2010-09-08 江苏利田科技有限公司 一种反应器耦合模拟移动床乙氧基喹啉清洁生产工艺
CN102285918A (zh) * 2011-07-29 2011-12-21 上海福达精细化工有限公司 一种乙氧基喹啉的生产方法

Also Published As

Publication number Publication date
CN109553575B (zh) 2022-06-03
CN109553575A (zh) 2019-04-02

Similar Documents

Publication Publication Date Title
CN101570468B (zh) 农残级色谱乙醇的制备方法
CN102060663A (zh) 色谱纯异丙醇的制备方法
CN102040455A (zh) 一种色谱纯有机溶剂环己烷的纯化方法
CN102093160B (zh) 色谱纯三氯甲烷的制备方法
CN104072388A (zh) 一种梯度级高纯乙腈的制备方法
CN109279611B (zh) 一种去除氯硅烷中杂质的方法及装置
CN113321184B (zh) 一种高纯电子级氯气纯化生产装置及其工艺
CN108976144A (zh) 一种生物医药产dmf废液提纯的方法
CN102060674B (zh) 一种高纯有机溶剂乙醚的纯化方法
CN102040583A (zh) 高纯液相色谱级1,4二氧六环的制备方法
CN102070393A (zh) 一种高效液相色谱级环己烷的制备方法
WO2019061594A1 (zh) 一种高纯乙氧基喹啉的吸附除杂方法
US1936078A (en) Process of purifying hydrochloric acid gas
CN102060650A (zh) 色谱级甲苯的纯化方法
CN104923026B (zh) 多晶硅尾气回收方法及装置
CN116747546A (zh) 硅氧烷类化合物的纯化装置及纯化方法
CN110668919A (zh) 一种色谱纯甲醇的纯化方法
CN102432428A (zh) 一种色谱纯有机溶剂叔丁醇的纯化方法
CN102516112B (zh) 一种色谱级n,n二甲基甲酰胺的制备方法
CN102924225B (zh) 一种选择吸附分离混合二氯甲苯的方法
CN113956179B (zh) 一种乙腈精制方法及其应用
CN110713429B (zh) 一种色谱纯正己烷的纯化方法
CN102417435A (zh) 一种色谱级有机溶剂1,2-二氯乙烷的纯化方法
CN104744212B (zh) 梯度洗脱溶剂甲醇的提纯方法
CN103641887B (zh) 采用d301大孔树脂分离纯化丙谷二肽的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927338

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927338

Country of ref document: EP

Kind code of ref document: A1