WO2019061317A1 - 一种放电效果高、安全性高的锂一次电池 - Google Patents

一种放电效果高、安全性高的锂一次电池 Download PDF

Info

Publication number
WO2019061317A1
WO2019061317A1 PCT/CN2017/104440 CN2017104440W WO2019061317A1 WO 2019061317 A1 WO2019061317 A1 WO 2019061317A1 CN 2017104440 W CN2017104440 W CN 2017104440W WO 2019061317 A1 WO2019061317 A1 WO 2019061317A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode sheet
high discharge
primary battery
lithium
positive electrode
Prior art date
Application number
PCT/CN2017/104440
Other languages
English (en)
French (fr)
Inventor
何献文
潘文硕
谢远军
Original Assignee
惠州市惠德瑞锂电科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州市惠德瑞锂电科技股份有限公司 filed Critical 惠州市惠德瑞锂电科技股份有限公司
Priority to US16/651,366 priority Critical patent/US20200274167A1/en
Publication of WO2019061317A1 publication Critical patent/WO2019061317A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/628Inhibitors, e.g. gassing inhibitors, corrosion inhibitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/06Electrodes for primary cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/502Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese for non-aqueous cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/581Chalcogenides or intercalation compounds thereof
    • H01M4/5815Sulfides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/531Electrode connections inside a battery casing
    • H01M50/536Electrode connections inside a battery casing characterised by the method of fixing the leads to the electrodes, e.g. by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers

Definitions

  • the present invention relates to the field of battery technologies, and in particular, to a lithium primary battery with high discharge efficiency and good safety.
  • the lithium primary battery fabricated by the traditional process the reaction interface width corresponding to the positive and negative electrodes, including the entire width of the negative electrode, as the electrochemical reaction continues, the negative metal lithium is continuously consumed, and its thickness becomes smaller and smaller, when the reaction
  • the local area where the negative electrode is in close contact with the positive electrode is excessively consumed by the reaction, forming a portion that is not connected to the negative electrode ear, causing the lithium strip of the negative electrode to be broken, part of the metal lithium cannot continue to participate in the reaction, and the utilization rate of the negative electrode is lowered, and the battery capacity is decreased. Can't play effectively. However, some battery capacity has been fully utilized, but there is also a safety hazard after the battery is over-generated.
  • the present invention provides a lithium primary battery which is excellent in safety, has sufficient lithium-band reaction, and effectively exerts full capacity of the battery.
  • a lithium primary battery with high discharge efficiency and good safety including a positive electrode sheet, a separator, a lithium negative electrode sheet, and a tab disposed on the positive and negative electrode sheets,
  • a reaction suppression zone is disposed on the tail end of the positive electrode tab and away from the tab; the suppression reaction zone is provided with a polymer tape sheet; and a recess for stopping the reaction is provided at the proximal pole of the lithium ribbon negative electrode tab.
  • the polymer tape sheet is any one of a polyimide film, a polyolefin film, a polyester film or a polyfluoro film.
  • An acrylic adhesive layer or a silica gel layer is disposed between the polymer tape sheet and the positive electrode sheet.
  • the width of the polymer tape sheet is 10% to 35% of the width of the positive electrode sheet; and the length of the polymer tape sheet is 10% to 20% of the length of the positive electrode sheet.
  • the depth of the groove accounts for 40% to 90% of the thickness of the entire negative electrode sheet.
  • the width of the groove accounts for 0.1% to 10% of the length of the entire negative electrode sheet.
  • the length of the groove and the negative electrode sheet The width is the same or slightly narrower.
  • the positive electrode sheet is an active material such as manganese dioxide, iron disulfide or the like with a conductive agent or a binder in a solvent such as deionized water. After stirring uniformly in N-methylpyrrolidone NMP or the like, it is coated on a positive electrode current collector, dried, and compacted.
  • the conductive agent is at least one of graphite and carbon black.
  • the binder is at least one of polytetrafluoroethylene, partial polyethylene, hydroxymethyl cellulose CMC, styrene butadiene rubber SBR, and polyacrylate terpolymer latex, wherein the polyacrylate ternary Copolymer latex such as LA132, LA135 glue.
  • the positive electrode sheet is uniformly stirred by an active material such as manganese dioxide, iron disulfide or the like with a conductive agent and a binder in a solvent such as deionized water, N-methylpyrrolidone NMP, etc., and then coated on the positive electrode current collector. Dry and crushed.
  • the tail end of the positive electrode sheet and away from the tab is provided with a reaction suppression region, and the width of the polymer tape sheet is 10% to 35% of the width of the pole piece; the length of the polymer tape sheet is 10% of the length of the positive electrode sheet. ⁇ 20%.
  • the suppression reaction region formed by the polymer tape sheet in this range can satisfy the discharge of the battery sufficiently and effectively prevent the lithium ribbon from being broken. Therefore, the lithium primary battery of the present invention has a high discharge capacity.
  • a recess for stopping the reaction is provided at the proximal pole of the negative electrode of the lithium strip; the reaction recess can ensure that the lithium strip is broken under the conditions of overdischarge and forced discharge after the discharge of the battery, thereby ensuring battery safety, so the present invention
  • the suppression reaction region can ensure that the battery discharge is sufficiently effective, and the reaction recess can ensure that the lithium ion band breaks under the conditions of overdischarge and forced discharge, thereby ensuring battery safety, so the lithium manganese dioxide battery of the invention has high discharge capacity. Excellent safety performance.
  • Example 1 is a structural diagram of a positive electrode sheet in the prior art, as in Comparative Example 1;
  • FIG. 2 is a schematic structural view showing the relative positions of the positive electrode sheets (polymerized tape sheets) and the lithium negative electrode sheets (plus grooves) after the development of the first, second, and third embodiments of the present invention
  • FIG. 3 is a schematic structural view of a relative position of a positive electrode sheet (polymerized tape sheet) and a lithium strip negative electrode sheet of Comparative Example 2;
  • 1 positive electrode 1 positive electrode, 2 lithium negative electrode, 3 pole, 4 polymer tape, 5 concave groove.
  • the positive electrode tab 1 shown in Fig. 1 was formed.
  • a tab 2 and a suppression reaction region are provided on the positive electrode.
  • the polymer tape sheet is provided on the suppression reaction region as a polyimide film 4.
  • the polyimide film has a length and width of 35 mm X 6 mm, and the positive electrode sheet has a length and width of 240 mm X 25 mm.
  • An acrylic adhesive layer or a silica gel layer is disposed between the polyimide tape sheet and the positive electrode sheet.
  • a groove 5 for stopping the reaction is formed on the negative electrode sheet as shown in FIG.
  • the length of the groove for stopping the reaction is 25 mm, and the depth of the groove 5 is 40% to 90% of the thickness of the entire negative electrode sheet.
  • the width of the groove 5 accounts for 0.1% to 10% of the length of the entire negative electrode sheet.
  • the positive electrode sheet 1 was prepared in the same manner as in Example 1 to form a suppression reaction zone on the positive electrode as shown in Fig. 2, and the polyolefin-based film 3 was provided on the inhibition reaction zone.
  • the length and width of the polyolefin film are 25 mm X 4 mm, and the length and width of the positive film are 240 mm X 25 mm.
  • a groove 5 for stopping the reaction is formed on the negative electrode sheet as shown in FIG.
  • the length of the groove for stopping the reaction is 25 mm, and the depth of the groove 5 is 40% to 90% of the thickness of the entire negative electrode sheet.
  • the width of the groove 5 accounts for 0.1% to 10% of the length of the entire negative electrode sheet.
  • a positive electrode sheet 1 was prepared as described in Example 1, and a suppression reaction zone was formed on the positive electrode at the position shown in Fig. 2, and a polypropylene film 3 was provided on the inhibition reaction zone.
  • the length and width of the polypropylene film are 35 mm X 8 mm, and the length and width of the positive electrode sheet are 240 mm X 25 mm.
  • a groove 5 for stopping the reaction is formed on the negative electrode sheet as shown in FIG.
  • the length of the groove for stopping the reaction is 25 mm, and the depth of the groove 5 is 40% to 90% of the thickness of the entire negative electrode sheet.
  • the width of the groove 5 accounts for 0.1% to 10% of the length of the entire negative electrode sheet.
  • a positive electrode sheet was prepared as described in Example 1, and the positive electrode sheet had no inhibition reaction region, as shown in FIG.
  • a positive electrode sheet was prepared as described in Example 1, and the positive electrode sheet had a groove for suppressing the reaction region, and the negative electrode had no reaction to terminate the reaction, as shown in FIG.
  • the positive electrode sheet and the negative electrode sheet formed in the first, second, and third embodiments and the comparative examples 1 and 2 were assembled into a single lithium manganese battery.
  • the experimental results of the implementation and comparative examples are shown in Tables 1 and 2 below:
  • the invention provides a suppression reaction zone on the positive electrode sheet 1, wherein the suppression reaction zone is provided with a polymer tape sheet 4; the phenomenon that the lithium battery strip is broken at the late stage of lithium primary battery discharge can be effectively prevented, thereby improving the lithium primary battery. Discharge capacity.
  • a groove 5 for stopping the reaction is provided at the proximal electrode 3 of the lithium strip negative electrode tab 2. Suspension of the reaction groove 5 ensures that the lithium tape is broken under overdischarge and forced discharge conditions after the discharge of the battery, thereby ensuring battery safety.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本发明涉及电池技术领域,尤其涉及放电效率高、安全性好的锂一次电池。它包括的正极片、隔膜、锂带负极片以及设置在正负极片上的极耳,在正极片上且远离极耳的尾端上设有抑制反应区域;所述的抑制反应区域上设有聚合物胶带片;在锂带负极片的近极耳处设有中止反应的凹槽。本发明该的抑制反应区域能确保电池放电充分有效,中止反应凹槽能确保电池在过放电和强制放电条件下锂带断裂,从而确保电池安全性,所以本发明的锂一次电池放电容量高、安全性能优异。

Description

一种放电效果高、安全性高的锂一次电池 技术领域
本发明涉及电池技术领域,尤其涉及一种放电效率高、安全性好的锂一次电池。
背景技术
传统工艺制作而成的锂一次电池,正负极相对应的反应界面宽度,包括负极的整个宽度,随着电化学反应的不断进行,负极金属锂不断消耗,其厚度越来越小,当反应进行到后期时,负极与正极紧密接触的局部区域,因反应消耗过多,形成与负极耳不相连的部分,导致负极锂带断裂、部分金属锂不能继续参与反应,负极利用率下降,电池容量不能有效发挥。但是又存在有些电池容量有效充分发挥了,但是在电池过发电后也会存在安全陷患。
发明内容
针对上述技术问题,本发明提供了一种安全性好,锂带反应充分,电池容量有效充分发挥的锂一次电池。
为了解决上述技术问题,本发明提供的具体方案如下:一种放电效率高、安全性好的锂一次电池,包括的正极片、隔膜、锂带负极片以及设置在正负极片上的极耳,在正极片上且远离极耳的尾端上设有抑制反应区域;所述的抑制反应区域上设有聚合物胶带片;在锂带负极片的近极耳处设有中止反应的凹槽。
进一步:在上述放电效率高、安全性好的锂一次电池中,所述的聚合物胶带片是聚酰亚胺类胶片、聚烯烃类胶片、聚酯类胶片或聚氟类胶片中的任一种。所述的聚合物胶带片与正极片之间设有亚克力胶层或硅胶层。所述聚合物胶带片宽度占正极片宽度的10﹪~35﹪;所述聚合物胶带片长度占正极片长度的10﹪~20﹪。
所述的凹槽的深度占整个负极片厚度的40%~90%。所述的凹槽的宽度占整个负极片长度的0.1%~10%。所述的凹槽的长度与负极片 的宽度相同或略窄。
再进一步:在上述放电效率高、安全性好的锂一次电池中,所述的正极片是将活性物质如二氧化锰、二硫化铁等与导电剂、粘结剂在溶剂如去离子水、N-甲基吡咯烷酮NMP等中搅拌均匀后,涂覆在正极集流体上,经干燥、碾压而成。所述的导电剂是石墨、炭黑中的至少一种。所述的粘结剂是聚四氟乙烯、偏聚乙烯、羟甲基纤维素CMC、丁苯橡胶SBR、聚丙烯酸酯类三元共聚物乳胶中的至少一种,其中聚丙烯酸酯类三元共聚物乳胶如LA132、LA135胶。
通过在正极片上设置抑制反应区域,防止锂一次电池放电后期、与正极片对应的负极锂带出现断裂现象。正极片由活性物质如二氧化锰、二硫化铁等与导电剂、粘结剂在溶剂如去离子水、N-甲基吡咯烷酮NMP等中搅拌均匀后后,涂覆在正极集流体上,经干燥、碾压而成。本发明的在正极片上且远离极耳的尾端设有抑制反应区域,且聚合物胶带片宽度占极片宽度的10﹪~35﹪;所述聚合物胶带片长度占正极片长度的10﹪~20﹪。由这个范围内的聚合物胶带片形成的抑制反应区域既能满足电池放电充分有效,又能有效防止锂带断裂,所以本发明的锂一次电池放电容量高。在锂带负极片的近极耳处设有中止反应的凹槽;中止反应凹槽能确保电池放电结束后,在过放电和强制放电条件下锂带断裂,从而确保电池安全性,所以本发明该的抑制反应区域能确保电池放电充分有效,中止反应凹槽能确保电池在过放电和强制放电条件下锂带断裂,从而确保电池安全性,所以本发明的锂二氧化锰电池放电容量高、安全性能优异。
附图说明
图1为现有技术中的正极片结构图,如对比例1;
图2为本发明实施例1、2、3正极片(加聚合物胶带片)和锂带负极片(加凹槽)展开后相对位置的结构示意图;
图3为对比例2正极片(加聚合物胶带片)和锂带负极片展开后相对位置的结构示意图;
其中,1正极片、2锂带负极片、3极耳、4聚合物胶带片、5凹 槽。
具体实施方式
为了使本领域的技术人员更好的理解本发明的技术方案,下面结合附图对本发明的技术方案做进一步的阐述。
实施例1
称取1843g热处理过的电解二氧化锰,37g石墨,120g导电炭黑,72g聚四氟乙烯溶液,在去离子水中搅拌均匀后,涂覆在0.3毫米的铝网上,经干燥碾压,裁切并焊接极耳后形成如图1所示的正极片1。在正极上设有极耳2和抑制反应区域,如图2,所述的抑制反应区域上设有聚合物胶带片是聚酰亚胺类胶片4。聚酰亚胺类胶片的长度和宽度为35mm X 6mm,正极片长度和宽度为240mm X 25mm。所述的聚酰亚胺胶带片与正极片之间设有亚克力胶层或硅胶层。如图2在负极片上形成中止反应的凹槽5。中止反应的凹槽长度是25mm,所述的凹槽5的深度占整个负极片厚度的40%~90%。所述的凹槽5的宽度占整个负极片长度的0.1%~10%。
实施例2
按实施例1所述方法制备正极片1,按图2所示位置在正极上形成一抑制反应区域,所述的抑制反应区域上设有聚烯烃类胶片3。聚烯烃类胶片的长度和宽度为25mm X 4mm,正极片长度和宽度为240mm X 25mm。如图2在负极片上形成中止反应的凹槽5。中止反应的凹槽长度是25mm,所述的凹槽5的深度占整个负极片厚度的40%~90%。所述的凹槽5的宽度占整个负极片长度的0.1%~10%。
实施例3
按实施例1所述方法制备正极片1,按图2所示位置在正极上形成一抑制反应区域,所述的抑制反应区域上设有聚丙烯胶片3。聚丙烯胶片的长度和宽度为35mm X 8mm,正极片长度和宽度为240mm X25mm。如图2在负极片上形成中止反应的凹槽5。中止反应的凹槽长度是25mm,所述的凹槽5的深度占整个负极片厚度的40%~90%。所述的凹槽5的宽度占整个负极片长度的0.1%~10%。
对比例1
按实施例1所述方法制备正极片,正极片无抑制反应区域,如图1。
对比例2
按实施例1所述方法制备正极片,正极片有抑制反应区域,负极无中止反应的凹槽,如图3。
将实施方式1、2、3和对比例1、2形成的正极片、负极片,组装成一次锂锰电池。实施方式与对比例的实验结果如下表1和表2:
表1:CR17345圆柱锂锰电池容量对比
Figure PCTCN2017104440-appb-000001
表2:CR17345圆柱锂锰电池安全性对比
Figure PCTCN2017104440-appb-000002
Figure PCTCN2017104440-appb-000003
本发明通过在正极片1上设置抑制反应区域,所述的抑制反应区域上设有聚合物胶带片4;可有效的防止锂一次电池放电后期负极锂带断裂的现象,从而提高锂一次电池的放电容量。在锂带负极片2的近极耳3处设有中止反应的凹槽5。中止反应凹槽5能确保电池放电结束后,在过放电和强制放电条件下锂带断裂,从而确保电池安全性,
在上述实施例1、2、3中,将正极材料换为二硫化铁,效果相同。
以上所述为本发明较佳的实现方式,在不脱离本发明构思情况下,进行任何显而易见的变形和替换,均属于本发明的保护范围。

Claims (10)

  1. 一种放电效率高、安全性好的锂一次电池,包括的正极片(1)、隔膜、锂带负极片(2)以及设置在正负极片上的极耳(3),其特征在于:在正极片(1)上且远离极耳的尾端上设有抑制反应区域;所述的抑制反应区域上设有聚合物胶带片(4);
    在锂带负极片(2)的近极耳(3)处设有中止反应的凹槽(5)。
  2. 根据权利要求1所述放电效率高、安全性好的锂一次电池,其特征在于:所述的聚合物胶带片(4)是聚酰亚胺类胶片、聚烯烃类胶片、聚酯类胶片或聚氟类胶片中的任一种。
  3. 根据权利要求2所述放电效率高、安全性好的锂一次电池,其特征在于:所述的聚合物胶带片(4)与正极片(1)之间设有亚克力胶层或硅胶层。
  4. 根据权利要求3所述放电效率高、安全性好的锂一次电池,其特征在于:所述聚合物胶带片(4)宽度占正极片宽度的10﹪~35﹪;所述聚合物胶带片长度占正极片长度的10﹪~20﹪。
  5. 根据权利要求1所述放电效率高、安全性好的锂一次电池,其特征在于:所述的凹槽(5)的深度占整个负极片厚度的40%~90%。
  6. 根据权利要求5所述放电效率高、安全性好的锂一次电池,其特征在于:所述的凹槽(5)的宽度占整个负极片长度的0.1%~10%。
  7. 根据权利要求6所述放电效率高、安全性好的锂一次电池,其特征在于:所述的凹槽(5)的长度与负极片的宽度相同或略窄。
  8. 根据权利要求1所述的放电效率高、安全性好的锂一次电池,其特征在于:所述的正极片是将活性物质如二氧化锰、二硫化铁等与导电剂、粘结剂在溶剂如去离子水、N-甲基吡咯烷酮NMP等中搅拌均匀后,涂覆在正极集流体上,经干燥、碾压而成。
  9. 根据权利要求8所述的放电效率高、安全性好的锂一次电池,其特征在于:所述的导电剂是石墨、炭黑中的至少一种。
  10. 根据权利要求9所述的放电效率高、安全性好的锂二氧化锰电池,其特征在于:所述的粘结剂是聚四氟乙烯、偏聚乙烯、羟甲基 纤维素CMC、丁苯橡胶SBR、聚丙烯酸酯类三元共聚物乳胶中的至少一种。
PCT/CN2017/104440 2017-09-27 2017-09-29 一种放电效果高、安全性高的锂一次电池 WO2019061317A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/651,366 US20200274167A1 (en) 2017-09-27 2017-09-29 Lithium primary battery having high discharge effect and good safety

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710890291.XA CN107785533A (zh) 2017-09-27 2017-09-27 一种放电效果高、安全性高的锂一次电池
CN201710890291.X 2017-09-27

Publications (1)

Publication Number Publication Date
WO2019061317A1 true WO2019061317A1 (zh) 2019-04-04

Family

ID=61434133

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104440 WO2019061317A1 (zh) 2017-09-27 2017-09-29 一种放电效果高、安全性高的锂一次电池

Country Status (3)

Country Link
US (1) US20200274167A1 (zh)
CN (1) CN107785533A (zh)
WO (1) WO2019061317A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109346668B (zh) * 2018-10-29 2020-12-11 广州鹏辉能源科技股份有限公司 锂一次电池负极结构及锂一次电池
CN111816841B (zh) * 2020-07-23 2021-06-22 珠海冠宇电池股份有限公司 一种正极片及锂离子电池
CN116759537B (zh) * 2023-08-14 2023-11-10 天津中能锂业有限公司 一种锂电池负极及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832372A (ja) * 1981-08-20 1983-02-25 Matsushita Electric Ind Co Ltd 電池
JPH01260758A (ja) * 1988-04-08 1989-10-18 Fuji Elelctrochem Co Ltd リチウム電池
CN101290987A (zh) * 2008-06-05 2008-10-22 天津中能锂业有限公司 扣式锂电池负极及其加工方法和包含该负极的扣式锂电池
CN101894936A (zh) * 2010-07-01 2010-11-24 广州市鹏辉电池有限公司 提高锂二硫化铁电池放电容量方法及电池极片
CN102110824A (zh) * 2011-01-28 2011-06-29 福建南平南孚电池有限公司 一种锂-二硫化铁电池
CN102122725A (zh) * 2011-01-28 2011-07-13 福建南平南孚电池有限公司 一种锂-二硫化铁电池

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5832372A (ja) * 1981-08-20 1983-02-25 Matsushita Electric Ind Co Ltd 電池
JPH01260758A (ja) * 1988-04-08 1989-10-18 Fuji Elelctrochem Co Ltd リチウム電池
CN101290987A (zh) * 2008-06-05 2008-10-22 天津中能锂业有限公司 扣式锂电池负极及其加工方法和包含该负极的扣式锂电池
CN101894936A (zh) * 2010-07-01 2010-11-24 广州市鹏辉电池有限公司 提高锂二硫化铁电池放电容量方法及电池极片
CN102110824A (zh) * 2011-01-28 2011-06-29 福建南平南孚电池有限公司 一种锂-二硫化铁电池
CN102122725A (zh) * 2011-01-28 2011-07-13 福建南平南孚电池有限公司 一种锂-二硫化铁电池

Also Published As

Publication number Publication date
CN107785533A (zh) 2018-03-09
US20200274167A1 (en) 2020-08-27

Similar Documents

Publication Publication Date Title
WO2019061316A1 (zh) 一种放电效率高的锂一次电池
JP4461659B2 (ja) リチウムイオン二次電池電極用バインダー組成物、およびその利用
US11127982B2 (en) Electrode assembly and battery with sectioned active layers
WO2017063219A1 (zh) 一种锂离子电池复合极片及其制备方法以及一种锂离子电池
WO2022037092A1 (zh) 一种集流体、极片和电池
CN205303580U (zh) 一种锂离子电池极片及含有该极片的锂离子电池
WO2019061317A1 (zh) 一种放电效果高、安全性高的锂一次电池
JP5260851B2 (ja) リチウムイオン二次電池
CN110676458A (zh) 一种放电效率高的锂一次电池
JPWO2019230296A1 (ja) 非水電解質二次電池
CN216250793U (zh) 一种正极片和锂离子电池
WO2022199210A1 (zh) 极片及电化学装置和电子装置
JP2019192339A (ja) 二次電池用セパレータ、これを含む二次電池用積層体および捲回体、ならびに非水二次電池
WO2024087906A1 (zh) 一种电芯及电池
JP4242997B2 (ja) 非水電解質電池
JP4543442B2 (ja) ポリマー粒子、ポリマー分散組成物、電池電極用スラリー、電極及び電池
WO2024055686A1 (zh) 极片和电池
CN219778914U (zh) 电芯结构、锂电池和电子设备
KR102531615B1 (ko) 수계 바인더를 이용한 그래핀 분리막 개질 방법 및 그 그래핀 분리막과 이를 포함하는 전기화학소자
WO2020119431A1 (zh) 一种锂离子电池
JP2005327630A (ja) リチウム電池電極用バインダ樹脂組成物、リチウム電池用電極及びリチウム電池
CN211088395U (zh) 一种放电效率高的锂一次电池
CN113728474A (zh) 电化学装置及电子装置
JP2005251481A (ja) 非水電解質二次電池の製造方法及び非水電解質二次電池用電極板乾燥装置
JP2836260B2 (ja) シート状極板の製造方法と非水電解液電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927411

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927411

Country of ref document: EP

Kind code of ref document: A1