WO2019060417A1 - Procédé de compression d'un empilement de piles à combustible à oxyde solide - Google Patents
Procédé de compression d'un empilement de piles à combustible à oxyde solide Download PDFInfo
- Publication number
- WO2019060417A1 WO2019060417A1 PCT/US2018/051754 US2018051754W WO2019060417A1 WO 2019060417 A1 WO2019060417 A1 WO 2019060417A1 US 2018051754 W US2018051754 W US 2018051754W WO 2019060417 A1 WO2019060417 A1 WO 2019060417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- compression plate
- compression
- fuel cell
- cell stack
- rod
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
- H01M8/248—Means for compression of the fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/241—Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
- H01M8/2425—High-temperature cells with solid electrolytes
- H01M8/2432—Grouping of unit cells of planar configuration
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
- H01M4/9025—Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9033—Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9041—Metals or alloys
- H01M4/905—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
- H01M4/9066—Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/023—Porous and characterised by the material
- H01M8/0232—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0271—Sealing or supporting means around electrodes, matrices or membranes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M8/124—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
- H01M8/1246—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
- H01M8/1253—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/24—Grouping of fuel cells, e.g. stacking of fuel cells
- H01M8/2465—Details of groupings of fuel cells
- H01M8/247—Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
- H01M8/2475—Enclosures, casings or containers of fuel cell stacks
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/12—Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
- H01M2008/1293—Fuel cells with solid oxide electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Definitions
- a fuel cell stack that is in contact and below a top compression plate and in contact and above a bottom compression plate, wherein the top compression plate and the bottom compression plates are flat and rigid.
- a top compression device is above the top compression plate, wherein the top compression device applies a downward vertical force onto the top compression plate which applies a downward vertical force onto the fuel cell stack.
- An optional bottom compression device is below the bottom compression plate, wherein the bottom compression device applies an upward vertical force onto the bottom compression plate which applies an upward vertical force onto the fuel cell stack.
- a fuel cell stack is in contact and below a top compression plate and in contact and above a bottom compression plate, wherein the top compression plate and the bottom compression plate are flat and rigid.
- a top compression rod is in contact and above the top compression plate, wherein the top compression rod applies a downward vertical force onto the top compression plate which applies a downward vertical force onto the fuel cell stack.
- a bottom compression rod is in contact and below the bottom compression plate, wherein the bottom compression rod applies an upward vertical force onto the bottom compression plate which applies an upward vertical force onto the fuel cell stack.
- this fuel cell stack there is also at least one alignment rod extending through at least one alignment hole in the top compression plate and extending through at least one alignment hole in the bottom compression plate, wherein the alignment rod does not apply any vertical compressive force onto the fuel cell stack. Additionally, in this fuel cell stack, the top compression plate and the bottom compression plate are enclosed within an insulated compartment and the top compression rod and the bottom compression rod extend outside the insulated compartment.
- Figure 1 depicts a front cross-sectional view of a SOFC stack design.
- Figure 2 depicts an overhead sectional view of a SOFC stack design.
- the top device is a top compression rod and the bottom device is a bottom compression rod.
- the top device is a top compression cable and the bottom device is a bottom compression cable.
- One way to ensure proper alignment of the compression plate(s) with the SOFC stack is to have the alignment holes in a position wherein they are in contact with the fuel cell stack to prevent it from moving; this possibility is shown in Figure 3.
- a top down view of the fuel cell stack (2) and the bottom compression plate (6) are shown where the alignment holes (14a, 14b, 14c and 14d) are right next to the fuel cell stack.
- any alignment rods placed within the alignment holes will be in contact with the fuel cell stack to prevent movement.
- the alignment holes are spaced away from the fuel cell stack that they are not touching the fuel cell stack.
- the top compression rod (308) is connected to a distribution plate (322) that is in contact with spacers (324) capable of exerting pressure onto the top compression plate (304).
- Devices that can be used as either the top compression device or the bottom compression device include pneumatic and hydraulic cylinders (326).
- the top compression device is placed outside the insulating structure to ensure that the top compression device is not subject to the extreme temperatures required by the fuel cell stack during operation. It is envisioned that this pressure for the top compression device and the optional bottom compression device is controlled to ensure that a proper seal for the fuel cell stack is maintained and that the strength of the fuel cell stack is not exceeded. It is also envisioned that the pressure for the top compression device or the optional bottom compression device will not vary with time as thermal expansion/contraction or different forms of degradation may change the fuel cell stack dimensions.
- a novel SOFC stack compression method can be done with a top compression cable and/or bottom compression cable similarly to Figure 6.
- the pulley can be either inside or outside the insulating structure
- the amount of pressure needed to seal the fuel cell stack without destroying the fuel cell stack will range from about 2 psi to 1,500 psi.
- This pressure is the pressure measured on the fuel cell stack and individual stack components such as seals may have a higher effective pressure due to reduced areas for transmitting the pressure in the stacking direction.
- the pressure can range from about 80 psi to 1,000 psi, or 5 psi to 200 psi, or 2 psi to 15 psi.
- the compression rods are made of the same materials as the top and bottom compression plates.
- electrolyte materials for the SOFCs can be any conventionally known electrolyte materials.
- electrolyte materials can include doped zirconia electrolyte materials, doped ceria materials or doped lanthanum gallate materials.
- dopants for the doped zirconia electrolyte materials can include: CaO, MgO, Y2O3, SC2O3, Sm 2 0 3 and Yb 2 0 3 .
- the electrolyte material is an yttria-stabilized zirconia, (Zr0 2 )o.92(Y 2 0 3 )o.o8.
- cathode materials include: Pro.sSro.sFeOs-e; Sro.9Ceo.iFeo.8Nio.203-5; Sro.8Ceo.iFeo.7Coo.303-5; LaNio.6Feo.403-5; Pro.8Sn Coo.2Feo.803-5; Pro.7Sro.3Coo.2Mno.803-5; Pro.8Sro.2Fe03-5; Pro.6Sro.4Coo.8Feo.203-5; Pro.4Sro.6Coo.8Feo.203-5; Pro.7Sro.3Coo.9Cuo.i03-5; Bao.5Sro.5Coo.8Feo.203-5; Smo.5Sro.5Co03-5; and LaNio.6Feo.403-5.
- the cathode material is a mixture of gadolinium-doped ceria (Ceo.9Gdo.1O2) and lanthanum strontium cobalt ferrite (Lao.6Sro.4Coo.2Feo.8O3) or a mixture of gadolinium -doped ceria (Ceo.9Gdo.1O2) and samarium strontium cobaltite (Smo.sSro.sCoOs).
- Each SOFC stack comprised two fuel cells.
- Each fuel cell of both the first solid oxide fuel cell stack and the second solid oxide fuel cell stack had an anode comprising 50 wt.% Ni - 50 wt.% (Zr02)o.92(Y203)o.o8, a cathode comprising 50 wt.% Lao.6Sro.4Coo.2Feo.8O3 - 50 wt.% Ceo.9Gdo.1O2 and an electrolyte comprising (Zr02)o.92(Y203)o.o8.
- Both the first solid oxide fuel cell short stack and the second solid oxide fuel cell short stack were operated at 700°C on hydrogen fuel with a current density of 200 mA/cm 2 .
- the first solid oxide fuel cell stack had a constant pressure of 30 psi exerted upon it while the second solid oxide fuel cell stack was held together using 6 steel bolts at the edges to achieve an effective pressure of 30 psi at ambient temperature.
- the first solid oxide fuel cell stack could sustain an average cell voltage greater than 0.8 V for over 1000 hours while the second solid oxide fuel cell stack showed a high degradation rate and was only able to sustain its operating voltage for less than 50 hours.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Materials Engineering (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA3075921A CA3075921A1 (fr) | 2017-09-19 | 2018-09-19 | Procede de compression d'un empilement de piles a combustible a oxyde solide |
EP18858994.9A EP3685463A4 (fr) | 2017-09-19 | 2018-09-19 | Procédé de compression d'un empilement de piles à combustible à oxyde solide |
JP2020516642A JP2021501436A (ja) | 2017-09-19 | 2018-09-19 | 固体酸化物形燃料電池スタックの圧縮方法 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762560362P | 2017-09-19 | 2017-09-19 | |
US62/560,362 | 2017-09-19 | ||
US16/135,546 US20190088974A1 (en) | 2017-09-19 | 2018-09-19 | Method for compressing a solid oxide fuel cell stack |
US16/135,546 | 2018-09-19 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019060417A1 true WO2019060417A1 (fr) | 2019-03-28 |
Family
ID=65720721
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/051754 WO2019060417A1 (fr) | 2017-09-19 | 2018-09-19 | Procédé de compression d'un empilement de piles à combustible à oxyde solide |
PCT/US2018/051743 WO2019060410A1 (fr) | 2017-09-19 | 2018-09-19 | Conception d'empilement de pile à combustible à oxyde solide |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/US2018/051743 WO2019060410A1 (fr) | 2017-09-19 | 2018-09-19 | Conception d'empilement de pile à combustible à oxyde solide |
Country Status (5)
Country | Link |
---|---|
US (1) | US10727521B2 (fr) |
EP (2) | EP3685464A4 (fr) |
JP (2) | JP2020534659A (fr) |
CA (2) | CA3075919A1 (fr) |
WO (2) | WO2019060417A1 (fr) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112968198B (zh) * | 2021-02-25 | 2022-05-27 | 福州大学 | 一种高温固体氧化物电化学反应装置 |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020110722A1 (en) * | 2001-02-15 | 2002-08-15 | Asia Pacific Fuel Cell Technologies, Inc. | Fuel cell with uniform compression device |
WO2005045981A1 (fr) | 2003-11-07 | 2005-05-19 | Nissan Motor Co., Ltd. | Empilement de piles a combustible et procede pour fixer ledit empilement |
US20070248855A1 (en) | 2004-08-02 | 2007-10-25 | Staxera Gmbh | Fuel-Cell Stack Comprising a Tensioning Device |
US20070269702A1 (en) | 2006-03-30 | 2007-11-22 | Nissan Motor Co., Ltd. | Fuel cell stack structure and fuel cell stack structure manufacturing method |
US20080014489A1 (en) | 2006-07-14 | 2008-01-17 | Jens Ulrik Nielsen | Compression assembly, solid oxide fuel cell stack, a process for compression of the solid oxide fuel cell stack and its use |
US20080107954A1 (en) | 2006-11-03 | 2008-05-08 | Samsung Sdi Co., Ltd | Fuel Cell Stack |
US20090029232A1 (en) * | 2007-07-23 | 2009-01-29 | Petty Dale W | Fuel cell cover plate tie-down |
US20110086292A1 (en) * | 2009-10-14 | 2011-04-14 | Hyundai Motor Company | Joining device for fuel cell stack and fuel cell stack provided with the same |
WO2013102387A1 (fr) * | 2012-01-04 | 2013-07-11 | Cui Ji | Mécanisme de pression destiné à assembler une batterie à flux rebox |
US20160013508A1 (en) * | 2014-07-09 | 2016-01-14 | GM Global Technology Operations LLC | Fuel cell stack and assembly method of same |
US20170092977A1 (en) * | 2015-09-25 | 2017-03-30 | Hyundai Motor Company | Fuel cell stack assembly device and control method |
Family Cites Families (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0754713B2 (ja) * | 1989-05-02 | 1995-06-07 | 株式会社日立製作所 | 燃料電池の締付装置、焼成装置及び焼成運転方法 |
AUPO897897A0 (en) * | 1997-09-05 | 1997-09-25 | Ceramic Fuel Cells Limited | An interconnect device for a fuel cell assembly |
US7122257B2 (en) | 2002-06-10 | 2006-10-17 | Hewlett-Packard Development Company, Lp. | Fuel cell reactant supply |
JP2005142049A (ja) * | 2003-11-07 | 2005-06-02 | Nissan Motor Co Ltd | 燃料電池スタック |
US20050255368A1 (en) * | 2004-05-12 | 2005-11-17 | Ultracell Corporation, A California Corporation | High surface area micro fuel cell architecture |
JP2007059180A (ja) * | 2005-08-24 | 2007-03-08 | Equos Research Co Ltd | 燃料電池システム |
US7858261B2 (en) * | 2006-05-02 | 2010-12-28 | Lilliputian Systems, Inc. | Systems and methods for stacking fuel cells |
US9437880B2 (en) * | 2006-08-04 | 2016-09-06 | Delphi Technologies, Inc. | Method of manufacturing a fuel cell stack having an electrically conductive interconnect |
JP2008159448A (ja) * | 2006-12-25 | 2008-07-10 | Shinko Electric Ind Co Ltd | 固体酸化物型燃料電池発電装置 |
JP2008269986A (ja) | 2007-04-20 | 2008-11-06 | Shinko Electric Ind Co Ltd | 燃料電池 |
JP5336159B2 (ja) * | 2008-12-09 | 2013-11-06 | 日本電信電話株式会社 | 平板型固体酸化物形燃料電池モジュールおよびその動作方法 |
JP2010282740A (ja) * | 2009-06-02 | 2010-12-16 | Nippon Telegr & Teleph Corp <Ntt> | 平板型固体酸化物形燃料電池モジュール |
US20130189592A1 (en) * | 2010-09-09 | 2013-07-25 | Farshid ROUMI | Part solid, part fluid and flow electrochemical cells including metal-air and li-air battery systems |
EP2614547B1 (fr) * | 2010-09-09 | 2020-07-08 | California Institute of Technology | Réseau d'électrodes tridimensionel et son procédé de fabrication |
JP2012124020A (ja) * | 2010-12-08 | 2012-06-28 | Honda Motor Co Ltd | 固体電解質燃料電池 |
WO2013053374A1 (fr) * | 2011-10-14 | 2013-04-18 | Topsoe Fuel Cell A/S | Ensemble bloc |
US9029040B2 (en) * | 2012-04-17 | 2015-05-12 | Intelligent Energy Limited | Fuel cell stack and compression system therefor |
GB201411205D0 (en) * | 2014-06-24 | 2014-08-06 | Adelan Ltd And Meadowcroft Antony | Solid oxide fuel cells |
US11094958B2 (en) * | 2015-09-28 | 2021-08-17 | Cummins Enterprise Llc | Fuel cell module and method of operating such module |
-
2018
- 2018-09-19 JP JP2020516680A patent/JP2020534659A/ja active Pending
- 2018-09-19 CA CA3075919A patent/CA3075919A1/fr active Pending
- 2018-09-19 EP EP18857566.6A patent/EP3685464A4/fr active Pending
- 2018-09-19 JP JP2020516642A patent/JP2021501436A/ja active Pending
- 2018-09-19 EP EP18858994.9A patent/EP3685463A4/fr not_active Withdrawn
- 2018-09-19 WO PCT/US2018/051754 patent/WO2019060417A1/fr unknown
- 2018-09-19 CA CA3075921A patent/CA3075921A1/fr not_active Abandoned
- 2018-09-19 US US16/135,523 patent/US10727521B2/en active Active
- 2018-09-19 WO PCT/US2018/051743 patent/WO2019060410A1/fr unknown
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020110722A1 (en) * | 2001-02-15 | 2002-08-15 | Asia Pacific Fuel Cell Technologies, Inc. | Fuel cell with uniform compression device |
WO2005045981A1 (fr) | 2003-11-07 | 2005-05-19 | Nissan Motor Co., Ltd. | Empilement de piles a combustible et procede pour fixer ledit empilement |
US20070248855A1 (en) | 2004-08-02 | 2007-10-25 | Staxera Gmbh | Fuel-Cell Stack Comprising a Tensioning Device |
US20070269702A1 (en) | 2006-03-30 | 2007-11-22 | Nissan Motor Co., Ltd. | Fuel cell stack structure and fuel cell stack structure manufacturing method |
US20080014489A1 (en) | 2006-07-14 | 2008-01-17 | Jens Ulrik Nielsen | Compression assembly, solid oxide fuel cell stack, a process for compression of the solid oxide fuel cell stack and its use |
US20080107954A1 (en) | 2006-11-03 | 2008-05-08 | Samsung Sdi Co., Ltd | Fuel Cell Stack |
US20090029232A1 (en) * | 2007-07-23 | 2009-01-29 | Petty Dale W | Fuel cell cover plate tie-down |
US20110086292A1 (en) * | 2009-10-14 | 2011-04-14 | Hyundai Motor Company | Joining device for fuel cell stack and fuel cell stack provided with the same |
WO2013102387A1 (fr) * | 2012-01-04 | 2013-07-11 | Cui Ji | Mécanisme de pression destiné à assembler une batterie à flux rebox |
US20160013508A1 (en) * | 2014-07-09 | 2016-01-14 | GM Global Technology Operations LLC | Fuel cell stack and assembly method of same |
US20170092977A1 (en) * | 2015-09-25 | 2017-03-30 | Hyundai Motor Company | Fuel cell stack assembly device and control method |
Non-Patent Citations (1)
Title |
---|
See also references of EP3685463A4 |
Also Published As
Publication number | Publication date |
---|---|
JP2021501436A (ja) | 2021-01-14 |
EP3685464A4 (fr) | 2021-08-11 |
US20190088975A1 (en) | 2019-03-21 |
WO2019060410A1 (fr) | 2019-03-28 |
CA3075921A1 (fr) | 2019-03-28 |
EP3685463A4 (fr) | 2021-06-09 |
US10727521B2 (en) | 2020-07-28 |
CA3075919A1 (fr) | 2019-03-28 |
JP2020534659A (ja) | 2020-11-26 |
EP3685464A1 (fr) | 2020-07-29 |
EP3685463A1 (fr) | 2020-07-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20060216575A1 (en) | Perovskite materials with combined Pr, La, Sr, "A" site doping for improved cathode durability | |
US20090186250A1 (en) | Bilayer interconnects for solid oxide fuel cells | |
US20190088974A1 (en) | Method for compressing a solid oxide fuel cell stack | |
US20130224627A1 (en) | Scandium-doped bzcy electrolytes | |
KR20200019623A (ko) | 고체 전해질 부재, 고체 산화물형 연료 전지, 수 전해 장치, 수소 펌프 및 고체 전해질 부재의 제조 방법 | |
WO2019060417A1 (fr) | Procédé de compression d'un empilement de piles à combustible à oxyde solide | |
JP2020129433A (ja) | 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法 | |
KR101842319B1 (ko) | 고체 산화물 연료 전지 및 이의 제조방법 | |
KR20160089884A (ko) | 산화물 입자, 이를 포함하는 공기극 및 이를 포함하는 연료 전지 | |
KR20190044234A (ko) | 이중 도핑을 통해 고온안정성이 강화된 어븀-안정화 산화비스무트 (esb)계 전해질 | |
EP3883030A1 (fr) | Cellule électrochimique, pile de cellules électrochimiques et électrolyte pour cellule électrochimique | |
JP2016103409A (ja) | 固体酸化物形燃料電池 | |
EP3152794A1 (fr) | Pile à combustible ayant une anode tubulaire plate | |
JP5117834B2 (ja) | 固体酸化物形燃料電池 | |
EP3874552A1 (fr) | Piles à combustible thermoélectriquement améliorées | |
KR102026502B1 (ko) | 고체산화물 연료전지, 이를 포함하는 전지모듈 및 고체산화물 연료전지의 제조방법 | |
WO2019060406A1 (fr) | Piles à combustible à oxyde solide comprenant un électrolyte calibré en épaisseur | |
KR101940712B1 (ko) | 고체 산화물 연료 전지 및 이의 제조방법 | |
JP2014007127A (ja) | 固体酸化物形燃料電池用単セルの製造方法、固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池 | |
KR101289202B1 (ko) | 금속 지지체형 고체 산화물 연료 전지 스택 | |
EP4012071A1 (fr) | Cellule d'électrolyseur à oxyde solide comprenant une électrode côté air tolérante à l'électrolyse | |
KR20150010165A (ko) | 멀티셀 구조를 가지는 평판형 고체산화물 연료전지 및 이의 제조 방법 | |
JP6273306B2 (ja) | セラミックセル構造 | |
EP3764448A1 (fr) | Élément composite de couche d'électrolyte-anode et structure de cellule | |
KR20150010156A (ko) | 멀티셀 구조를 가지는 평판형 고체산화물 연료전지 및 이의 제조방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18858994 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 3075921 Country of ref document: CA |
|
ENP | Entry into the national phase |
Ref document number: 2020516642 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018858994 Country of ref document: EP Effective date: 20200420 |