WO2019060417A1 - Procédé de compression d'un empilement de piles à combustible à oxyde solide - Google Patents

Procédé de compression d'un empilement de piles à combustible à oxyde solide Download PDF

Info

Publication number
WO2019060417A1
WO2019060417A1 PCT/US2018/051754 US2018051754W WO2019060417A1 WO 2019060417 A1 WO2019060417 A1 WO 2019060417A1 US 2018051754 W US2018051754 W US 2018051754W WO 2019060417 A1 WO2019060417 A1 WO 2019060417A1
Authority
WO
WIPO (PCT)
Prior art keywords
compression plate
compression
fuel cell
cell stack
rod
Prior art date
Application number
PCT/US2018/051754
Other languages
English (en)
Inventor
Mark Jensen
Ying Liu
Original Assignee
Phillips 66 Company
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Phillips 66 Company filed Critical Phillips 66 Company
Priority to CA3075921A priority Critical patent/CA3075921A1/fr
Priority to EP18858994.9A priority patent/EP3685463A4/fr
Priority to JP2020516642A priority patent/JP2021501436A/ja
Priority claimed from US16/135,546 external-priority patent/US20190088974A1/en
Publication of WO2019060417A1 publication Critical patent/WO2019060417A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/248Means for compression of the fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9016Oxides, hydroxides or oxygenated metallic salts
    • H01M4/9025Oxides specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9033Complex oxides, optionally doped, of the type M1MeO3, M1 being an alkaline earth metal or a rare earth, Me being a metal, e.g. perovskites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9041Metals or alloys
    • H01M4/905Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC
    • H01M4/9066Metals or alloys specially used in fuel cell operating at high temperature, e.g. SOFC of metal-ceramic composites or mixtures, e.g. cermets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0202Collectors; Separators, e.g. bipolar separators; Interconnectors
    • H01M8/023Porous and characterised by the material
    • H01M8/0232Metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M8/124Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte
    • H01M8/1246Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides
    • H01M8/1253Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte characterised by the process of manufacturing or by the material of the electrolyte the electrolyte consisting of oxides the electrolyte containing zirconium oxide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • a fuel cell stack that is in contact and below a top compression plate and in contact and above a bottom compression plate, wherein the top compression plate and the bottom compression plates are flat and rigid.
  • a top compression device is above the top compression plate, wherein the top compression device applies a downward vertical force onto the top compression plate which applies a downward vertical force onto the fuel cell stack.
  • An optional bottom compression device is below the bottom compression plate, wherein the bottom compression device applies an upward vertical force onto the bottom compression plate which applies an upward vertical force onto the fuel cell stack.
  • a fuel cell stack is in contact and below a top compression plate and in contact and above a bottom compression plate, wherein the top compression plate and the bottom compression plate are flat and rigid.
  • a top compression rod is in contact and above the top compression plate, wherein the top compression rod applies a downward vertical force onto the top compression plate which applies a downward vertical force onto the fuel cell stack.
  • a bottom compression rod is in contact and below the bottom compression plate, wherein the bottom compression rod applies an upward vertical force onto the bottom compression plate which applies an upward vertical force onto the fuel cell stack.
  • this fuel cell stack there is also at least one alignment rod extending through at least one alignment hole in the top compression plate and extending through at least one alignment hole in the bottom compression plate, wherein the alignment rod does not apply any vertical compressive force onto the fuel cell stack. Additionally, in this fuel cell stack, the top compression plate and the bottom compression plate are enclosed within an insulated compartment and the top compression rod and the bottom compression rod extend outside the insulated compartment.
  • Figure 1 depicts a front cross-sectional view of a SOFC stack design.
  • Figure 2 depicts an overhead sectional view of a SOFC stack design.
  • the top device is a top compression rod and the bottom device is a bottom compression rod.
  • the top device is a top compression cable and the bottom device is a bottom compression cable.
  • One way to ensure proper alignment of the compression plate(s) with the SOFC stack is to have the alignment holes in a position wherein they are in contact with the fuel cell stack to prevent it from moving; this possibility is shown in Figure 3.
  • a top down view of the fuel cell stack (2) and the bottom compression plate (6) are shown where the alignment holes (14a, 14b, 14c and 14d) are right next to the fuel cell stack.
  • any alignment rods placed within the alignment holes will be in contact with the fuel cell stack to prevent movement.
  • the alignment holes are spaced away from the fuel cell stack that they are not touching the fuel cell stack.
  • the top compression rod (308) is connected to a distribution plate (322) that is in contact with spacers (324) capable of exerting pressure onto the top compression plate (304).
  • Devices that can be used as either the top compression device or the bottom compression device include pneumatic and hydraulic cylinders (326).
  • the top compression device is placed outside the insulating structure to ensure that the top compression device is not subject to the extreme temperatures required by the fuel cell stack during operation. It is envisioned that this pressure for the top compression device and the optional bottom compression device is controlled to ensure that a proper seal for the fuel cell stack is maintained and that the strength of the fuel cell stack is not exceeded. It is also envisioned that the pressure for the top compression device or the optional bottom compression device will not vary with time as thermal expansion/contraction or different forms of degradation may change the fuel cell stack dimensions.
  • a novel SOFC stack compression method can be done with a top compression cable and/or bottom compression cable similarly to Figure 6.
  • the pulley can be either inside or outside the insulating structure
  • the amount of pressure needed to seal the fuel cell stack without destroying the fuel cell stack will range from about 2 psi to 1,500 psi.
  • This pressure is the pressure measured on the fuel cell stack and individual stack components such as seals may have a higher effective pressure due to reduced areas for transmitting the pressure in the stacking direction.
  • the pressure can range from about 80 psi to 1,000 psi, or 5 psi to 200 psi, or 2 psi to 15 psi.
  • the compression rods are made of the same materials as the top and bottom compression plates.
  • electrolyte materials for the SOFCs can be any conventionally known electrolyte materials.
  • electrolyte materials can include doped zirconia electrolyte materials, doped ceria materials or doped lanthanum gallate materials.
  • dopants for the doped zirconia electrolyte materials can include: CaO, MgO, Y2O3, SC2O3, Sm 2 0 3 and Yb 2 0 3 .
  • the electrolyte material is an yttria-stabilized zirconia, (Zr0 2 )o.92(Y 2 0 3 )o.o8.
  • cathode materials include: Pro.sSro.sFeOs-e; Sro.9Ceo.iFeo.8Nio.203-5; Sro.8Ceo.iFeo.7Coo.303-5; LaNio.6Feo.403-5; Pro.8Sn Coo.2Feo.803-5; Pro.7Sro.3Coo.2Mno.803-5; Pro.8Sro.2Fe03-5; Pro.6Sro.4Coo.8Feo.203-5; Pro.4Sro.6Coo.8Feo.203-5; Pro.7Sro.3Coo.9Cuo.i03-5; Bao.5Sro.5Coo.8Feo.203-5; Smo.5Sro.5Co03-5; and LaNio.6Feo.403-5.
  • the cathode material is a mixture of gadolinium-doped ceria (Ceo.9Gdo.1O2) and lanthanum strontium cobalt ferrite (Lao.6Sro.4Coo.2Feo.8O3) or a mixture of gadolinium -doped ceria (Ceo.9Gdo.1O2) and samarium strontium cobaltite (Smo.sSro.sCoOs).
  • Each SOFC stack comprised two fuel cells.
  • Each fuel cell of both the first solid oxide fuel cell stack and the second solid oxide fuel cell stack had an anode comprising 50 wt.% Ni - 50 wt.% (Zr02)o.92(Y203)o.o8, a cathode comprising 50 wt.% Lao.6Sro.4Coo.2Feo.8O3 - 50 wt.% Ceo.9Gdo.1O2 and an electrolyte comprising (Zr02)o.92(Y203)o.o8.
  • Both the first solid oxide fuel cell short stack and the second solid oxide fuel cell short stack were operated at 700°C on hydrogen fuel with a current density of 200 mA/cm 2 .
  • the first solid oxide fuel cell stack had a constant pressure of 30 psi exerted upon it while the second solid oxide fuel cell stack was held together using 6 steel bolts at the edges to achieve an effective pressure of 30 psi at ambient temperature.
  • the first solid oxide fuel cell stack could sustain an average cell voltage greater than 0.8 V for over 1000 hours while the second solid oxide fuel cell stack showed a high degradation rate and was only able to sustain its operating voltage for less than 50 hours.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Composite Materials (AREA)
  • Fuel Cell (AREA)
  • Inert Electrodes (AREA)

Abstract

L'invention concerne un empilement de piles à combustible qui est en contact et en dessous d'une plaque de compression supérieure et en contact et au-dessus d'une plaque de compression inférieure. La plaque de compression supérieure et la plaque de compression inférieure sont plates et rigides. Un dispositif de compression supérieur est au-dessus de la plaque de compression supérieure, le dispositif de compression supérieur appliquant une force verticale vers le bas sur la plaque de compression supérieure qui applique une force verticale vers le bas sur l'empilement de piles à combustible. Un dispositif de compression inférieur facultatif est en dessous de la plaque de compression inférieure, le dispositif de compression inférieur appliquant une force verticale vers le haut sur la plaque de compression inférieure qui applique une force verticale vers le haut sur l'empilement de piles à combustible.
PCT/US2018/051754 2017-09-19 2018-09-19 Procédé de compression d'un empilement de piles à combustible à oxyde solide WO2019060417A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CA3075921A CA3075921A1 (fr) 2017-09-19 2018-09-19 Procede de compression d'un empilement de piles a combustible a oxyde solide
EP18858994.9A EP3685463A4 (fr) 2017-09-19 2018-09-19 Procédé de compression d'un empilement de piles à combustible à oxyde solide
JP2020516642A JP2021501436A (ja) 2017-09-19 2018-09-19 固体酸化物形燃料電池スタックの圧縮方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201762560362P 2017-09-19 2017-09-19
US62/560,362 2017-09-19
US16/135,546 US20190088974A1 (en) 2017-09-19 2018-09-19 Method for compressing a solid oxide fuel cell stack
US16/135,546 2018-09-19

Publications (1)

Publication Number Publication Date
WO2019060417A1 true WO2019060417A1 (fr) 2019-03-28

Family

ID=65720721

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/US2018/051754 WO2019060417A1 (fr) 2017-09-19 2018-09-19 Procédé de compression d'un empilement de piles à combustible à oxyde solide
PCT/US2018/051743 WO2019060410A1 (fr) 2017-09-19 2018-09-19 Conception d'empilement de pile à combustible à oxyde solide

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/US2018/051743 WO2019060410A1 (fr) 2017-09-19 2018-09-19 Conception d'empilement de pile à combustible à oxyde solide

Country Status (5)

Country Link
US (1) US10727521B2 (fr)
EP (2) EP3685464A4 (fr)
JP (2) JP2020534659A (fr)
CA (2) CA3075919A1 (fr)
WO (2) WO2019060417A1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112968198B (zh) * 2021-02-25 2022-05-27 福州大学 一种高温固体氧化物电化学反应装置

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110722A1 (en) * 2001-02-15 2002-08-15 Asia Pacific Fuel Cell Technologies, Inc. Fuel cell with uniform compression device
WO2005045981A1 (fr) 2003-11-07 2005-05-19 Nissan Motor Co., Ltd. Empilement de piles a combustible et procede pour fixer ledit empilement
US20070248855A1 (en) 2004-08-02 2007-10-25 Staxera Gmbh Fuel-Cell Stack Comprising a Tensioning Device
US20070269702A1 (en) 2006-03-30 2007-11-22 Nissan Motor Co., Ltd. Fuel cell stack structure and fuel cell stack structure manufacturing method
US20080014489A1 (en) 2006-07-14 2008-01-17 Jens Ulrik Nielsen Compression assembly, solid oxide fuel cell stack, a process for compression of the solid oxide fuel cell stack and its use
US20080107954A1 (en) 2006-11-03 2008-05-08 Samsung Sdi Co., Ltd Fuel Cell Stack
US20090029232A1 (en) * 2007-07-23 2009-01-29 Petty Dale W Fuel cell cover plate tie-down
US20110086292A1 (en) * 2009-10-14 2011-04-14 Hyundai Motor Company Joining device for fuel cell stack and fuel cell stack provided with the same
WO2013102387A1 (fr) * 2012-01-04 2013-07-11 Cui Ji Mécanisme de pression destiné à assembler une batterie à flux rebox
US20160013508A1 (en) * 2014-07-09 2016-01-14 GM Global Technology Operations LLC Fuel cell stack and assembly method of same
US20170092977A1 (en) * 2015-09-25 2017-03-30 Hyundai Motor Company Fuel cell stack assembly device and control method

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0754713B2 (ja) * 1989-05-02 1995-06-07 株式会社日立製作所 燃料電池の締付装置、焼成装置及び焼成運転方法
AUPO897897A0 (en) * 1997-09-05 1997-09-25 Ceramic Fuel Cells Limited An interconnect device for a fuel cell assembly
US7122257B2 (en) 2002-06-10 2006-10-17 Hewlett-Packard Development Company, Lp. Fuel cell reactant supply
JP2005142049A (ja) * 2003-11-07 2005-06-02 Nissan Motor Co Ltd 燃料電池スタック
US20050255368A1 (en) * 2004-05-12 2005-11-17 Ultracell Corporation, A California Corporation High surface area micro fuel cell architecture
JP2007059180A (ja) * 2005-08-24 2007-03-08 Equos Research Co Ltd 燃料電池システム
US7858261B2 (en) * 2006-05-02 2010-12-28 Lilliputian Systems, Inc. Systems and methods for stacking fuel cells
US9437880B2 (en) * 2006-08-04 2016-09-06 Delphi Technologies, Inc. Method of manufacturing a fuel cell stack having an electrically conductive interconnect
JP2008159448A (ja) * 2006-12-25 2008-07-10 Shinko Electric Ind Co Ltd 固体酸化物型燃料電池発電装置
JP2008269986A (ja) 2007-04-20 2008-11-06 Shinko Electric Ind Co Ltd 燃料電池
JP5336159B2 (ja) * 2008-12-09 2013-11-06 日本電信電話株式会社 平板型固体酸化物形燃料電池モジュールおよびその動作方法
JP2010282740A (ja) * 2009-06-02 2010-12-16 Nippon Telegr & Teleph Corp <Ntt> 平板型固体酸化物形燃料電池モジュール
US20130189592A1 (en) * 2010-09-09 2013-07-25 Farshid ROUMI Part solid, part fluid and flow electrochemical cells including metal-air and li-air battery systems
EP2614547B1 (fr) * 2010-09-09 2020-07-08 California Institute of Technology Réseau d'électrodes tridimensionel et son procédé de fabrication
JP2012124020A (ja) * 2010-12-08 2012-06-28 Honda Motor Co Ltd 固体電解質燃料電池
WO2013053374A1 (fr) * 2011-10-14 2013-04-18 Topsoe Fuel Cell A/S Ensemble bloc
US9029040B2 (en) * 2012-04-17 2015-05-12 Intelligent Energy Limited Fuel cell stack and compression system therefor
GB201411205D0 (en) * 2014-06-24 2014-08-06 Adelan Ltd And Meadowcroft Antony Solid oxide fuel cells
US11094958B2 (en) * 2015-09-28 2021-08-17 Cummins Enterprise Llc Fuel cell module and method of operating such module

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020110722A1 (en) * 2001-02-15 2002-08-15 Asia Pacific Fuel Cell Technologies, Inc. Fuel cell with uniform compression device
WO2005045981A1 (fr) 2003-11-07 2005-05-19 Nissan Motor Co., Ltd. Empilement de piles a combustible et procede pour fixer ledit empilement
US20070248855A1 (en) 2004-08-02 2007-10-25 Staxera Gmbh Fuel-Cell Stack Comprising a Tensioning Device
US20070269702A1 (en) 2006-03-30 2007-11-22 Nissan Motor Co., Ltd. Fuel cell stack structure and fuel cell stack structure manufacturing method
US20080014489A1 (en) 2006-07-14 2008-01-17 Jens Ulrik Nielsen Compression assembly, solid oxide fuel cell stack, a process for compression of the solid oxide fuel cell stack and its use
US20080107954A1 (en) 2006-11-03 2008-05-08 Samsung Sdi Co., Ltd Fuel Cell Stack
US20090029232A1 (en) * 2007-07-23 2009-01-29 Petty Dale W Fuel cell cover plate tie-down
US20110086292A1 (en) * 2009-10-14 2011-04-14 Hyundai Motor Company Joining device for fuel cell stack and fuel cell stack provided with the same
WO2013102387A1 (fr) * 2012-01-04 2013-07-11 Cui Ji Mécanisme de pression destiné à assembler une batterie à flux rebox
US20160013508A1 (en) * 2014-07-09 2016-01-14 GM Global Technology Operations LLC Fuel cell stack and assembly method of same
US20170092977A1 (en) * 2015-09-25 2017-03-30 Hyundai Motor Company Fuel cell stack assembly device and control method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3685463A4

Also Published As

Publication number Publication date
JP2021501436A (ja) 2021-01-14
EP3685464A4 (fr) 2021-08-11
US20190088975A1 (en) 2019-03-21
WO2019060410A1 (fr) 2019-03-28
CA3075921A1 (fr) 2019-03-28
EP3685463A4 (fr) 2021-06-09
US10727521B2 (en) 2020-07-28
CA3075919A1 (fr) 2019-03-28
JP2020534659A (ja) 2020-11-26
EP3685464A1 (fr) 2020-07-29
EP3685463A1 (fr) 2020-07-29

Similar Documents

Publication Publication Date Title
US20060216575A1 (en) Perovskite materials with combined Pr, La, Sr, &#34;A&#34; site doping for improved cathode durability
US20090186250A1 (en) Bilayer interconnects for solid oxide fuel cells
US20190088974A1 (en) Method for compressing a solid oxide fuel cell stack
US20130224627A1 (en) Scandium-doped bzcy electrolytes
KR20200019623A (ko) 고체 전해질 부재, 고체 산화물형 연료 전지, 수 전해 장치, 수소 펌프 및 고체 전해질 부재의 제조 방법
WO2019060417A1 (fr) Procédé de compression d&#39;un empilement de piles à combustible à oxyde solide
JP2020129433A (ja) 固体電解質部材、固体酸化物型燃料電池、水電解装置、水素ポンプ及び固体電解質部材の製造方法
KR101842319B1 (ko) 고체 산화물 연료 전지 및 이의 제조방법
KR20160089884A (ko) 산화물 입자, 이를 포함하는 공기극 및 이를 포함하는 연료 전지
KR20190044234A (ko) 이중 도핑을 통해 고온안정성이 강화된 어븀-안정화 산화비스무트 (esb)계 전해질
EP3883030A1 (fr) Cellule électrochimique, pile de cellules électrochimiques et électrolyte pour cellule électrochimique
JP2016103409A (ja) 固体酸化物形燃料電池
EP3152794A1 (fr) Pile à combustible ayant une anode tubulaire plate
JP5117834B2 (ja) 固体酸化物形燃料電池
EP3874552A1 (fr) Piles à combustible thermoélectriquement améliorées
KR102026502B1 (ko) 고체산화물 연료전지, 이를 포함하는 전지모듈 및 고체산화물 연료전지의 제조방법
WO2019060406A1 (fr) Piles à combustible à oxyde solide comprenant un électrolyte calibré en épaisseur
KR101940712B1 (ko) 고체 산화물 연료 전지 및 이의 제조방법
JP2014007127A (ja) 固体酸化物形燃料電池用単セルの製造方法、固体酸化物形燃料電池用単セルおよび固体酸化物形燃料電池
KR101289202B1 (ko) 금속 지지체형 고체 산화물 연료 전지 스택
EP4012071A1 (fr) Cellule d&#39;électrolyseur à oxyde solide comprenant une électrode côté air tolérante à l&#39;électrolyse
KR20150010165A (ko) 멀티셀 구조를 가지는 평판형 고체산화물 연료전지 및 이의 제조 방법
JP6273306B2 (ja) セラミックセル構造
EP3764448A1 (fr) Élément composite de couche d&#39;électrolyte-anode et structure de cellule
KR20150010156A (ko) 멀티셀 구조를 가지는 평판형 고체산화물 연료전지 및 이의 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858994

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3075921

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2020516642

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018858994

Country of ref document: EP

Effective date: 20200420