WO2019059694A2 - 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 - Google Patents

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 Download PDF

Info

Publication number
WO2019059694A2
WO2019059694A2 PCT/KR2018/011190 KR2018011190W WO2019059694A2 WO 2019059694 A2 WO2019059694 A2 WO 2019059694A2 KR 2018011190 W KR2018011190 W KR 2018011190W WO 2019059694 A2 WO2019059694 A2 WO 2019059694A2
Authority
WO
WIPO (PCT)
Prior art keywords
additive
secondary battery
formula
carbon atoms
lipf
Prior art date
Application number
PCT/KR2018/011190
Other languages
English (en)
French (fr)
Other versions
WO2019059694A3 (ko
Inventor
유성훈
이철행
김현승
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180112330A external-priority patent/KR102264735B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to US16/606,852 priority Critical patent/US11183711B2/en
Priority to EP18857655.7A priority patent/EP3605710B1/en
Priority to CN201880028357.7A priority patent/CN110612632B/zh
Priority to EP20185671.3A priority patent/EP3742537B1/en
Publication of WO2019059694A2 publication Critical patent/WO2019059694A2/ko
Publication of WO2019059694A3 publication Critical patent/WO2019059694A3/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a nonaqueous electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same.
  • Lithium batteries specifically lithium ion batteries (LIB) are the batteries that can best meet this demand and have been adopted as power sources for many portable devices because of their high energy density and ease of design.
  • LIB lithium ion batteries
  • lithium secondary batteries Recently, the range of use of lithium secondary batteries has expanded from conventional small electronic devices to large electronic devices, automobiles, smart grids, etc., and lithium secondary batteries capable of maintaining excellent performance even in harsh external environments such as high temperature and low temperature environments are required have.
  • the lithium secondary battery is composed of a carbonaceous anode capable of intercalating and deintercalating lithium ions, a cathode made of a lithium-containing oxide or the like, and a non-aqueous electrolyte in which an appropriate amount of lithium salt is dissolved in a mixed carbonate-
  • the lithium ions desorbed from the anode are inserted into the cathode, for example, the carbon particles, and are again desorbed at the time of discharging.
  • the cathode active material is structurally collapsed during charging and discharging, and metal ions are eluted from the surface of the anode.
  • the eluted metal ions are electrodeposited to the negative electrode to deteriorate the negative electrode. This deterioration phenomenon tends to accelerate further when the potential of the positive electrode is increased or when the battery is exposed to a high temperature.
  • a method of adding a protective coating that is, a compound capable of forming an SEI film on the surface of a negative electrode, in a non-aqueous electrolyte has been proposed.
  • the present invention provides a nonaqueous electrolyte solution for a lithium secondary battery, which comprises an additive capable of adsorbing metal ions and capable of forming a stable ion conductive film on the surface of the electrode.
  • the present invention also provides a lithium secondary battery including the nonaqueous electrolyte solution for the lithium secondary battery, wherein the abnormal voltage drop phenomenon is improved.
  • LiDFP &quot lithium difluorophosphate
  • first additive and the second additive are independently contained in an amount of 0.01 wt% to 8.5 wt% based on the total amount of the non-aqueous electrolyte.
  • R 1 to R 3 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, and A is
  • R 4 and R 6 are independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, or -OR 5 ;
  • R 5 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • the substituted alkyl group having 1 to 6 carbon atoms is an alkyl group having 1 to 6 carbon atoms substituted with at least one halogen atom or an alkyl group having 1 to 6 carbon atoms substituted with an alkyl group having 1 to 3 carbon atoms, And is preferably fluorine.
  • the substituted aryl group having 6 to 12 carbon atoms is a phenyl group substituted with at least one halogen atom or a phenyl group substituted with an alkyl group having 1 to 3 carbon atoms, wherein the halogen atom is preferably fluorine.
  • the unsubstituted aryl group having 6 to 12 carbon atoms is a phenyl group.
  • the first additive may be at least one selected from the group consisting of compounds represented by the following general formulas (1a) to (1p).
  • the first additive represented by Formula 1 may be contained in an amount of 0.1 wt% to 7 wt%, specifically 0.1 wt% to 5 wt% based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • the lithium difluorophosphate as the second additive may be contained in an amount of 0.1 wt% to 7 wt%, specifically 0.1 wt% to 5 wt%, based on the total weight of the nonaqueous electrolyte solution for a lithium secondary battery.
  • the nonaqueous electrolyte solution may further contain tetravinylsilane as a third additive.
  • an embodiment of the present invention provides a lithium secondary battery comprising the non-aqueous electrolyte for a lithium secondary battery of the present invention.
  • a film having excellent safety can be formed on the surface of the electrode
  • a nonaqueous electrolytic solution capable of suppressing side effects in the battery due to a positive metal ion or a metal foreign matter that may be contained in the manufacturing process can be produced. Also, by including it, it is possible to manufacture a lithium secondary battery improved in the abnormal voltage drop phenomenon at high temperature storage and improved cycle life characteristics and high temperature storage performance even at high voltage charging.
  • a and “b” in the description of "carbon number a to b” in the specification mean the number of carbon atoms contained in the specific functional group. That is, the functional group may include “ a " to " b " carbon atoms.
  • C 1 -C 5 alkyl is the alkyl group, i.e., -CH 3, -CH 2 CH 3, -CH 2 CH 2 CH 3, -CH 2 containing a carbon atom of 1 to 5 carbon atoms (CH 2 ) CH 3 , -CH (CH 2 ) CH 3, and -CH (CH 2 ) CH 2 CH 3 .
  • aryl group is a functional group obtained by subtracting one hydrogen atom from an aromatic hydrocarbon group, specifically, a phenyl group, a tolyl group, a xylyl group, or a naphthyl group.
  • substituted means that at least one hydrogen bonded to carbon is substituted with an element other than hydrogen, unless otherwise defined, and includes, for example, an alkyl group having 1 to 5 carbon atoms, Or more fluorine atoms.
  • Such a short circuit causes an abnormal voltage drop phenomenon in which the voltage of the battery is lowered, and the overall performance of the secondary battery is deteriorated.
  • the low voltage phenomenon may be caused by metal foreign substances included in the raw material of the lithium battery or incorporated in the manufacturing process.
  • the present invention proposes a method for forming a dendritic layer on a surface of an electrode, comprising the steps of: applying a first additive to a surface of the electrode, A nonaqueous electrolyte solution containing a compound capable of forming a film with improved safety is provided.
  • the present invention provides a lithium secondary battery improved in abnormal voltage drop phenomenon during high temperature storage and improved cycle life characteristics and high temperature storage performance even at high voltage charging by including the nonaqueous electrolyte solution.
  • LiDFP lithium difluorophosphate
  • first additive and the second additive are independently contained in an amount of 0.01 wt% to 8.5 wt% based on the total amount of the non-aqueous electrolyte.
  • R 1 to R 3 are each independently hydrogen or a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms,
  • A is or
  • R 4 and R 6 are independently a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted aryl group having 6 to 12 carbon atoms, or -OR 5 ;
  • R 5 is a substituted or unsubstituted alkyl group having 1 to 6 carbon atoms, a substituted or unsubstituted alkynyl group having 2 to 6 carbon atoms, or a substituted or unsubstituted aryl group having 6 to 12 carbon atoms.
  • the substituted alkyl group having 1 to 6 carbon atoms is an alkyl group having 1 to 6 carbon atoms substituted with at least one halogen atom or an alkyl group having 1 to 6 carbon atoms substituted with an alkyl group having 1 to 3 carbon atoms, And is preferably fluorine.
  • the substituted aryl group having 6 to 12 carbon atoms is a phenyl group substituted with at least one halogen atom or a phenyl group substituted with an alkyl group having 1 to 3 carbon atoms, wherein the halogen atom is preferably fluorine.
  • the unsubstituted aryl group having 6 to 12 carbon atoms is a phenyl group.
  • the lithium salt may be any of those conventionally used in an electrolyte for a lithium secondary battery, and may include, for example, Li + as a cation of the lithium salt , is the anion F -, Cl -, Br - , I -, NO 3 -, N (CN) 2 -, BF 4 -, ClO 4 -, B 10 Cl 10 -, AlO 4 -, AlCl 4 -, PF 6 - , SbF 6 - , AsF 6 - , BF 2 C 2 O 4 - , BC 4 O 8 - , PF 4 C 2 O 4 - , PF 2 C 4 O 8 - , (CF 3 ) 2 PF 4 - (CF 3) 3 PF 3 - , (CF 3) 4 PF 2 -, (CF 3) 5 PF -, (CF 3) 6 P -, CF 3
  • the lithium salt may be LiCl, LiBr, LiI, LiBF 4 , LiClO 4 , LiB 10 Cl 10 , LiAlO 4 , LiAlCl 4 , LiPF 6 , LiSbF 6 , LiAsF 6 , LiCF 3 SO 3 , LiCF 3 CO 2 , LiCH 3 CO 2, LiBETI (lithium bisperfluoroethanesulfonimide , LiN (SO 2 CF 2 CF 3) 2), LiFSI (lithium fluorosulfonyl imide, LiN (SO 2 F) 2), and LiTFSI (lithium (bis) trifluoromethanesulfonimide, LiN (SO 2 CF 3 ) 2 ), or a mixture of two or more thereof.
  • LiBETI lithium bisperfluoroethanesulfonimide , LiN (SO 2 CF 2 CF 3) 2
  • LiFSI lithium fluorosulfonyl imide, LiN (SO 2
  • the lithium salt may include a single substance or a mixture of two or more selected from the group consisting of LiPF 6 , LiBF 4 , LiCH 3 CO 2 , LiCF 3 CO 2 , LiFSI, LiTFSI and LiBETI.
  • the lithium salt does not include LiDFP which is a lithium salt as a second additive.
  • the lithium salt may be appropriately changed within a range that is generally usable, but specifically, it may be contained in the electrolyte in an amount of 0.1M to 3M, specifically 0.8M to 2.5M. If the concentration of the lithium salt is 0.1M or less, the cycle life characteristics and the capacity characteristics of the lithium secondary battery may be deteriorated. If the concentration of the lithium salt exceeds 3M, the film forming effect may be relatively decreased.
  • the organic solvent is not limited as long as it can minimize decomposition due to an oxidation reaction or the like during charging and discharging of the secondary battery and can exhibit desired properties together with additives.
  • an ether solvent, an ester solvent or an amide solvent may be used alone or in combination of two or more.
  • any one selected from the group consisting of dimethyl ether, diethyl ether, dipropyl ether, methyl ethyl ether, methyl propyl ether and ethyl propyl ether, or a mixture of two or more thereof may be used , But is not limited thereto.
  • the ester solvent may include at least one compound selected from the group consisting of a cyclic carbonate compound, a linear carbonate compound, a linear ester compound, and a cyclic ester compound.
  • cyclic carbonate compound examples include ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate , 2,3-pentylene carbonate, vinylene carbonate, and fluoroethylene carbonate (FEC), or a mixture of two or more thereof.
  • EC ethylene carbonate
  • PC propylene carbonate
  • 1,2-butylene carbonate 2,3-butylene carbonate
  • 1,2-pentylene carbonate 2,3-pentylene carbonate
  • vinylene carbonate and fluoroethylene carbonate (FEC)
  • FEC fluoroethylene carbonate
  • linear carbonate compound examples include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, ethyl methyl carbonate (EMC), methyl propyl carbonate and ethyl propyl carbonate , Or a mixture of two or more thereof, but the present invention is not limited thereto.
  • linear ester compound examples include any one selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, and butyl propionate, And mixtures thereof, but the present invention is not limited thereto.
  • cyclic ester compound examples include any one selected from the group consisting of? -Butyrolactone,? -Valerolactone,? -Caprolactone,? -Valerolactone and? -Caprolactone, or two or more Mixtures may be used, but are not limited thereto.
  • the cyclic carbonate compound has a high permittivity as an organic solvent having a high viscosity, so that the lithium salt in the electrolyte is well dissociated. Therefore, when such a cyclic carbonate compound and a low viscosity, low dielectric constant linear carbonate compound such as dimethyl carbonate and diethyl carbonate are mixed and used in an appropriate ratio, an electrolytic solution having a high electric conductivity can be produced.
  • non-aqueous electrolyte according to an embodiment of the present invention may include the compound represented by Formula 1 as the first additive.
  • the compound represented by Formula 1 included in the first additive includes (i) a propargyl group having a triple bond, which is known to have metal ion adsorption capability, and (ii) an oxygen atom ,
  • Metal foreign matters such as Fe, Co, Mn, and Ni eluted from the anode at the time of charging and discharging, metallic foreign matters such as Cu eluted from the cathode, metal raw materials mixed in the raw material and metal manufacturing process can be easily adsorbed.
  • the compound represented by the general formula (1) containing the propargyl group can be reduced on the surface of the negative electrode when a predetermined voltage is reached during the charging / discharging process to form a stable ionic conductive film on the surface of the negative electrode, In addition, it is possible to smoothly store and discharge lithium ions from the negative electrode during overcharging or storage at a high temperature, thereby improving the abnormal voltage drop of the secondary battery and improving cycle life characteristics and high temperature storage performance.
  • the compound represented by the formula (1) as the first additive may be at least one selected from the group consisting of compounds represented by the following formulas (1a) to (1p).
  • the compound represented by Formula 1 may be at least one selected from the group consisting of the compounds represented by Chemical Formulas 1a to 1f.
  • the compounds represented by the general formulas (1a) to (1f) since they contain a "-OCO 2 R 4 " group smaller in size than the sulfonate anion contained in the compounds represented by the general formulas (1j-1l) While the reactivity with a carbonate-based organic solvent such as ethylene carbonate is better. Therefore, the compounds represented by the general formulas (1a) to (1f) can form a passive film having higher stability on the electrode surface than the compounds represented by the general formulas (1j) to (1l).
  • a group represented by any one of formulas (1) to (1) which contains an -OSO 2 -OR 5 group bonded with an alkoxide group (-OR 5 ) containing oxygen which is an electron- withdrawing group that attracts electrons to the -OSO 2 -
  • the compound represented by Formula 1 as the first additive is used in an amount of 0.01 to 8.5% by weight, specifically 0.1 to 7% by weight, more specifically 0.1 to 5% by weight, To 0.5% by weight to 3% by weight.
  • the abnormal voltage enhancement improving effect may be insignificant.
  • the content is 0.1% by weight or more, more specifically 0.5% by weight or more, a stabilization effect or a dissolution inhibiting effect can be obtained at the time of forming the SEI film at a maximum suppressing effect on the resistance increase, and the content of the additive is 7% If it is 5% by weight or less, the maximum dissolution inhibiting effect can be obtained within an acceptable resistance increase.
  • a kind of passivation film is formed by an electrochemical oxidative decomposition reaction of an electrolytic solution in a place where a bond of a positive electrode surface of a battery exists at a time of charging and discharging, or at a position where it is activated.
  • This passivation film increases the impedance for insertion of lithium ions into the cathode active material (co-intercalation).
  • Mn, Ni, Fe, and Al foreign matters from the cathode active material by causing a structural disruption such as LiCoO 2 , LiMn 2 O 4 , or LiNiO 2 , or a chemical dissolution reaction by an electrolytic solution in the charge / .
  • a compound containing a propargyl group having metal ion adsorption capability as a non-aqueous electrolyte additive component as a first additive, elution of a positive metal ion and a metal foreign matter that may be included in the manufacturing process can be suppressed , A stable coating film can be formed on the surfaces of the cathode and the anode.
  • the present invention may further include a second additive in the form of a salt such as LiDFP as a second additive component to the non-aqueous electrolyte to further form a coating containing an inorganic component on the surface of the positive electrode and having improved thermal stability .
  • a second additive in the form of a salt such as LiDFP as a second additive component to the non-aqueous electrolyte to further form a coating containing an inorganic component on the surface of the positive electrode and having improved thermal stability .
  • the lithium difluorophosphate as the second additive is added in an amount of 0.01 to 8.5% by weight, specifically 0.1% To 7% by weight, more specifically from 0.1% to 5% by weight, more specifically from 0.5% to 3% by weight.
  • the second additive When the second additive is included in the above range, a coating having a good thermal stability can be formed on the surface of the electrode, thereby improving the output of the secondary battery.
  • the content of the second additive is less than 0.01% by weight, the effect of forming the SEI film may be insignificant.
  • the second additive is contained in an amount of 0.01 wt% or more, more specifically 0.1 wt% or more, the surface of the electrode can be stabilized by the process of forming the SEI film in the lithium ion battery, Characteristics and capacity characteristics can be improved.
  • the content of the second additive is 7% by weight or less, preferably 5% by weight or less, side reactions due to excessive additives can be suppressed.
  • the non-aqueous electrolyte solution for a lithium secondary battery according to an embodiment of the present invention may further comprise tetravinylsilane as a third additive, and may be combined with the compound represented by the formula (1) It is possible to form a harder film in two or three.
  • the third additive may be contained in an amount of 0.01 to 5 wt.%, Specifically 0.01 to 3 wt.%, More specifically 0.1 to 3 wt.%, Based on the total weight of the nonaqueous electrolyte solution.
  • the third additive When the third additive is included in the above range, it is possible to manufacture a secondary battery with improved performance. For example, when the third additive is contained in an amount of 0.01 wt% or more, the durability of the SEI film is improved at a line that suppresses the increase in resistance as much as possible. If the content of the third additive is less than 5 wt% There is an effect of long-term maintenance and repair of the membrane.
  • the nonaqueous electrolytic solution of the present invention can form a more stable ionic conductive film on the surface of the electrode, if necessary, in order to further improve low-temperature high-rate discharge characteristics, high temperature stability, overcharge prevention, swelling improvement effect at high temperature storage And an additive for forming the SEI film.
  • the additive additive includes at least one additive for forming at least one SEI film selected from the group consisting of a sulfone compound, a halogen-substituted carbonate compound, a nitrile compound, a cyclic sulfite compound, and a cyclic carbonate compound As shown in FIG.
  • the sul- tonic compound may be selected from the group consisting of 1,3-propane sultone (PS), 1,4-butane sul- thone, ethene sul- thone, 1,3-propene sul- thone (PRS), 1,4- 3-propenesultone, and the like.
  • the sulfonate compound may be contained in an amount of 0.3 wt% to 5 wt%, specifically 1 wt% to 5 wt% based on the total weight of the nonaqueous electrolyte solution. If the content of the sulfonate compound in the nonaqueous electrolyte exceeds 5 wt%, a thick film of excess additive may be formed, resulting in increased resistance and deterioration of output.
  • the halogen-substituted carbonate compound is fluoroethylene carbonate (FEC), and may be contained in an amount of 5 wt% or less based on the total weight of the non-aqueous electrolyte. If the content of the halogen-substituted carbonate compound exceeds 5% by weight, the cell swelling performance may deteriorate.
  • FEC fluoroethylene carbonate
  • the nitrile compound may be at least one selected from the group consisting of succinonitrile (NA), adiponitrile (Adn), acetonitrile, propionitrile, butyronitrile, valeronitrile, caprylonitrile, heptanenitrile, cyclopentanecarbonitrile, Fluorobenzonitrile, difluorobenzonitrile, trifluorobenzonitrile, phenylacetonitrile, 2-fluorophenylacetonitrile, and 4-fluorophenylacetonitrile. And at least one compound selected from the group consisting of
  • the nitrile compound may be 5 wt% to 8 wt%, specifically 6 wt% to 8 wt% based on the total weight of the nonaqueous electrolyte solution. If the total content of the nitrile compound in the nonaqueous electrolyte exceeds 8 wt%, resistance increases due to an increase in the film formed on the surface of the electrode, and battery performance may be deteriorated.
  • cyclic sulfite-based compound examples include ethylene sulfite, methyl ethylene sulfite, ethyl ethylene sulfite, 4,5-dimethylethylene sulfite, 4,5-diethyl ethylene sulfite, - dimethylpropylene sulfite, 4,5-diethylpropylene sulfite, 4,6-dimethylpropylene sulfite, 4,6-diethylpropylene sulfite and 1,3-butylene glycol sulfite. Based on the total weight of the nonaqueous electrolyte solution. If the content of the cyclic sulfite-based compound exceeds 5% by weight, a thick film of excess additive may be formed, resulting in increased resistance and deterioration of output.
  • the cyclic carbonate-based compound may be vinylene carbonate (VC) or vinylethylene carbonate.
  • the cyclic carbonate-based compound may be contained in an amount of 3 wt% or less based on the total weight of the non-aqueous electrolyte. If the content of the cyclic carbonate compound in the non-aqueous electrolyte exceeds 3% by weight, the cell swelling inhibition performance may deteriorate.
  • an embodiment of the present invention provides a lithium secondary battery comprising the electrolyte solution of the present invention.
  • the lithium secondary battery of the present invention can be manufactured by injecting the non-aqueous electrolyte of the present invention into an electrode structure comprising a cathode, a cathode, and a separator interposed between the anode and the cathode.
  • the positive electrode, negative electrode, and separator forming the electrode structure may be those conventionally used in the production of the lithium secondary battery.
  • the positive electrode may be manufactured by forming a positive electrode mixture layer on the positive electrode current collector.
  • the positive electrode mixture layer may be formed by coating a positive electrode slurry containing a positive electrode active material, a binder, a conductive material and a solvent on a positive electrode collector, followed by drying and rolling.
  • the positive electrode collector is not particularly limited as long as it has electrical conductivity without causing chemical change in the battery.
  • the positive electrode collector may be formed of a metal such as carbon, stainless steel, aluminum, nickel, titanium, sintered carbon, , Nickel, titanium, silver, or the like may be used.
  • the cathode active material is a compound capable of reversibly intercalating and deintercalating lithium, and may specifically include a lithium composite metal oxide including lithium and at least one metal such as cobalt, manganese, nickel, or aluminum have. More specifically, the lithium composite metal oxide may be at least one selected from the group consisting of lithium-manganese-based oxides (for example, LiMnO 2 and LiMn 2 O 4 ), lithium-cobalt oxides (for example, LiCoO 2 ), lithium- (for example, LiNiO 2 and the like), lithium-nickel-manganese-based oxide (for example, LiNi 1-Y Mn Y O 2 (where, 0 ⁇ Y ⁇ 1), LiMn 2-z Ni z O 4 ( here, 0 ⁇ Z ⁇ 2) and the like), lithium-nickel-cobalt oxide (e.
  • LiMnO 2 and LiMn 2 O 4 lithium-cobalt oxides
  • LiCoO 2 lithium-
  • lithium-manganese-cobalt oxide e. g., (in which LiCo 1-Y2 Mn Y2 O 2 , 0 ⁇ Y2 ⁇ 1), LiMn 2-z1 Co z1 O 4 ( here, 0 ⁇ z1 ⁇ 2) and the like
  • the lithium composite metal oxide may be LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li (Ni 1/3 Mn 1/3 Co 1 / 3 ) O 2 , Li (Ni 0.6 Mn 0.2 Co 0.2 ) O 2 , Li (Ni 0.5 Mn 0.3 Co 0.2 ) O 2, Li (Ni 0.7 Mn 0.15 Co 0.15) O 2 and Li (Ni 0.8 Mn 0.1 Co 0.1 ) O 2 ), or lithium nickel cobalt aluminum oxide (e.g., Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.) and the like.
  • lithium nickel cobalt aluminum oxide e.g., Li (Ni 0.8 Co 0.15 Al 0.05 ) O 2, etc.
  • the cathode active material may be contained in an amount of 40% by weight to 90% by weight, specifically 40% by weight to 75% by weight, based on the total weight of the solid content in the cathode slurry.
  • the binder is a component that assists in bonding of the active material to the conductive material and bonding to the current collector, and is usually added in an amount of 1 to 30 wt% based on the total weight of the solid content in the positive electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene (Ethylene-propylene-diene terpolymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine rubber, various copolymers and the like.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM tetrafluoroethylene
  • EPDM tetrafluoroethylene
  • EPDM sulfonated EPDM
  • the conductive material is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the positive electrode slurry.
  • Such a conductive material is not particularly limited as long as it has electrical conductivity without causing a chemical change in the battery, and includes, for example, graphite; Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fiber and metal fiber
  • Metal powders such as carbon fluoride, aluminum, and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include an organic solvent such as N-methyl-2-pyrrolidone (NMP), and may be used in an amount that provides a preferable viscosity when the positive electrode active material and optionally a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the solid content in the slurry containing the cathode active material, and optionally the binder and the conductive material may be 10 wt% to 70 wt%, preferably 20 wt% to 60 wt%.
  • the negative electrode may be manufactured by forming a negative electrode mixture layer on the negative electrode collector.
  • the negative electrode material mixture layer may be formed by coating a negative electrode current collector with a slurry containing a negative electrode active material, a binder, a conductive material, a solvent, and the like, followed by drying and rolling.
  • the negative electrode collector generally has a thickness of 3 to 500 mu m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical change in the battery.
  • Examples of the negative electrode current collector include copper, stainless steel, aluminum, nickel, titanium, sintered carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver or the like, aluminum-cadmium alloy, or the like can be used.
  • fine unevenness can be formed on the surface to enhance the bonding force of the negative electrode active material, and it can be used in various forms such as films, sheets, foils, nets, porous bodies, foams and nonwoven fabrics.
  • the negative electrode active material may include a lithium-containing titanium composite oxide (LTO); Carbon-based materials such as graphitized carbon and graphite carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1 ), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me 'y O z (Me: Mn, Fe, Pb, Ge; Me' : Metal complex oxides such as Al, B, P, Si, Group 1, Group 2, Group 3 elements of the periodic table, Halogen, 0 ⁇ x < Lithium metal; Lithium alloy; Silicon-based alloys; Tin alloy; SnO, SnO 2, PbO, PbO 2, Pb 2 O 3, Pb 3 O 4, Sb 2 O 3, Sb 2 O 4, Sb 2 O 5, GeO, GeO 2, Bi 2 O 3, Bi 2 O 4, And Bi 2 O 5 ; And conductive polymers such as polyacetylene, or a mixture of two or more thereof.
  • LTO lithium-containing titanium composite oxide
  • Carbon-based materials such
  • the negative active material may be contained in an amount of 80% by weight to 99% by weight based on the total weight of the solid content in the negative electrode slurry.
  • the binder is a component that assists in bonding between the conductive material, the active material and the current collector, and is usually added in an amount of 1 to 30% by weight based on the total weight of the solid content in the negative electrode slurry.
  • binders include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethylcellulose (CMC), starch, hydroxypropylcellulose, regenerated cellulose, polyvinylpyrrolidone, tetrafluoroethylene
  • PVDF polyvinylidene fluoride
  • CMC carboxymethylcellulose
  • EPDM ethylene-propylene-diene terpolymer
  • EPDM ethylene-propylene-diene terpolymer
  • sulfonated EPDM styrene-butadiene rubber
  • fluorine rubber various copolymers thereof.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material and may be added in an amount of 1 to 20 wt% based on the total weight of the solid content in the negative electrode slurry.
  • a conductive material is not particularly limited as long as it has electrical conductivity without causing chemical changes in the battery, for example, graphite such as natural graphite or artificial graphite; Carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fiber and metal fiber; Metal powders such as carbon fluoride, aluminum, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives and the like can be used.
  • the solvent may include water or an organic solvent such as NMP, alcohol, etc., and may be used in an amount in which the negative electrode active material and, optionally, a binder, a conductive material, and the like are contained in a desired viscosity.
  • the slurry containing the negative electrode active material and, optionally, the binder and the conductive material may be contained in such a manner that the solid concentration of the slurry is 50% by weight to 75% by weight, preferably 50% by weight to 65% by weight.
  • the separation membrane blocks the internal short circuit of both electrodes and impregnates the electrolyte.
  • the separation membrane composition is prepared by mixing a polymer resin, a filler and a solvent, and then the separation membrane composition is directly coated on the electrode and dried Or may be formed by casting and drying the separation membrane composition on a support, and then laminating the separation membrane film peeled off from the support on the electrode.
  • the separator may be a porous polymer film commonly used, such as a porous polymer film made of a polyolefin-based polymer such as an ethylene homopolymer, a propylene homopolymer, an ethylene / butene copolymer, an ethylene / hexene copolymer, and an ethylene / methacrylate copolymer
  • the polymer film may be used alone or as a laminate thereof, or may be a nonwoven fabric made of a conventional porous nonwoven fabric, for example, glass fiber of high melting point, polyethylene terephthalate fiber or the like, but is not limited thereto.
  • the pore diameter of the porous separation membrane is generally 0.01 to 50 ⁇ , and the porosity may be 5 to 95%.
  • the thickness of the porous separation membrane may be generally in the range of 5 to 300 mu m.
  • the external shape of the lithium secondary battery of the present invention is not particularly limited, but may be a cylindrical shape, a square shape, a pouch shape, a coin shape, or the like using a can.
  • LiCoO 2 LiCoO 2
  • carbon black as a conductive material
  • PVDF polyvinylidene fluoride
  • NMP wt% Pyrrolidone
  • Natural graphite as a negative active material, PVDF as a binder, and carbon black as a conductive material were added to NMP as a solvent at a ratio of 95: 2: 3 (wt%) to prepare a negative electrode active material slurry (solid concentration: 60 wt%).
  • the negative electrode active material slurry was coated on a negative electrode current collector (Cu thin film) having a thickness of 90 ⁇ , dried, and rolled to produce a negative electrode.
  • a positive electrode and a negative electrode prepared by the above-described method were laminated together with a polyethylene porous film to prepare an electrode assembly.
  • the electrode assembly was placed in a battery case, the nonaqueous electrolyte was injected, and the battery was sealed to prepare a lithium secondary battery (battery capacity: 5.5 mAh) .
  • Fe particles having a size of 280 mu m to 330 mu m were placed between the anode and the separator.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of the formula (1b) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of the formula (1c) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound of the formula (1d) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound of the formula (1e) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound of the formula (1f) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound of the formula (1g) was added instead of the compound of the formula (1a) in the preparation of the nonaqueous electrolytic solution.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of the formula (1h) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of formula (I) was added instead of the compound of formula (Ia) in the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound of the formula (1j) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of the formula (1k) was added instead of the compound of the formula (1a).
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of the formula (1) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of formula (1m) was added instead of the compound of formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery comprising the same were prepared in the same manner as in Example 1, except that the compound of the formula (1n) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of Formula (Io) was added instead of the compound of Formula (1a) in the preparation of the nonaqueous electrolyte.
  • a nonaqueous electrolytic solution and a secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of the formula (1p) was added instead of the compound of the formula (1a) during the preparation of the nonaqueous electrolyte.
  • a first additive compound 1g and a second additive of the formula (1a) to 97.8g 1 g of LiDFP and 0.2 g of tetravinylsilane as a third additive were added to prepare a nonaqueous electrolyte of the present invention.
  • a non-aqueous electrolyte and a lithium secondary battery including the same were prepared in the same manner as in Example 1, except that the first and second additives were not included in the preparation of the non-aqueous electrolyte in Example 1.
  • a lithium secondary battery including the non-aqueous electrolyte was prepared in the same manner as in Example 1.
  • EC ethylene carbonate
  • EMC ethyl methyl carbonate
  • a lithium secondary battery including the non-aqueous electrolyte was prepared in the same manner as in Example 1.
  • a nonaqueous electrolytic solution and a lithium secondary battery including the nonaqueous electrolytic solution were prepared in the same manner as in Example 1, except that the compound of Formula 2 was used instead of the first additive in the preparation of the nonaqueous electrolyte.
  • Example Lithium salt Amount of organic solvent added (g) The first additive Addition amount (g) of the second additive Addition amount of the third additive (g) Chargeable discharge index (possible / manufactured) The Addition amount (g)
  • Example 1 1.0M LiPF 6 98 1a One One - 8/8
  • Example 2 1.0M LiPF 6 98 1b One One - 7/8
  • Example 3 1.0M LiPF 6 98 1c One One - 7/8
  • Example 4 1.0M LiPF 6 98 1d One One - 7/8
  • Example 5 1.0M LiPF 6 98 1e One One - 6/8
  • Example 6 1.0M LiPF 6 98 1f One One - 7/8
  • Example 7 1.0M LiPF 6 98 1g One One - 6/8
  • Example 8 1.0M LiPF 6 98 1h One One - 6/8
  • Example 9 1.0M LiPF 6 98 1i One One - 7/8
  • Example 10 1.0M LiPF 6 98 1j One One -
  • the first additive forms a complex with the metal foreign object to form a metal complex with the metal foreign material to remove the eluted metal
  • LiDFP as the second additive increases the inorganic component on the film to improve the thermal stability. It can be seen that more than 60% of the produced batteries can be charged and discharged.
  • the secondary battery of Comparative Example 4 having the non-aqueous electrolyte containing the compound of Formula 2 as the first additive does not include the additive that can not adsorb the metal (Fe) foreign matter, It can be seen that there is one possible cell.
  • the secondary batteries prepared in Examples 1 to 20 and the secondary batteries prepared in Comparative Examples 1 and 7 were charged at a constant current / constant voltage of 4.2 V at a rate of 0.8 C, stored at 45 ° C for 6 days, And the average value thereof is shown in Table 2 below.
  • Example Lithium salt Amount of organic solvent added (g) The first additive Addition of the second additive (g) Addition of the third additive (g) High Temperature Storage Voltage (V) The Addition amount (g)
  • Example 1 1.0M LiPF 6 98 1a One One - 4.13
  • Example 2 1.0M LiPF 6 98 1b One One - 4.08
  • Example 3 1.0M LiPF 6 98 1c One One - 4.07
  • Example 4 1.0M LiPF 6 98 1d One One - 4.08
  • Example 5 1.0M LiPF 6 98 1e One One - 4.05
  • Example 6 1.0M LiPF 6 98 1f One One - 4.08
  • Example 7 1.0M LiPF 6 98 1g One One - 4.06
  • Example 8 1.0M LiPF 6 98 1h One One - 4.04
  • Example 9 1.0M LiPF 6 98 1i One One - 4.05
  • Example 10 1.0M LiPF 6 98 1j One One - 4.06
  • the first additive compound forms a complex with a metal foreign object to remove the eluted metal and form a film on the surface of the anode And LiDFP as the second additive increases the inorganic component on the film to improve the thermal stability.
  • the low voltage is prevented even after the high temperature storage, and the voltage of about 3.85 V or more is maintained.
  • the secondary battery of Comparative Example 4 having the non-aqueous electrolyte containing the compound of Formula 2 instead of the compound of Formula 1 as the first additive does not contain an additive that can not adsorb metal (Fe) foreign matter. Therefore, It can be seen that the voltage is significantly heated to 2.24 V, respectively.
  • the storage voltage after the high temperature was 4.03 V, which is smaller than that of the secondary batteries of Examples 1 to 20 .
  • Each of the secondary batteries prepared in Examples 1 to 20 and Comparative Examples 1 to 7 was charged at a constant current / constant voltage of 4.35 V at 0.8 C rate and charged at 0.05 C cut off and discharged at 0.5 C 3.0 V Initial discharge capacity). Subsequently, the cells were charged at a constant current / voltage of 4.35V at 0.8C rate and charged at 0.05C cut off, and stored at 60 DEG C for 2 weeks. Thereafter, the battery was discharged at 0.5C 3.0V at room temperature to measure the discharge amount (residual discharge amount). The discharging amount was measured by 0.8C rate, 4.35V charging at constant current / constant voltage, 0.05C cut off charging, and 0.5C 3.0V discharging. The remaining discharge amount and the recovery discharge amount are shown as% relative to the initial discharge amount, and are shown in Table 3 below.
  • Example Lithium salt Amount of organic solvent added (g) The first additive Addition amount (g) of the second additive Addition amount of the third additive (g) Remaining Discharge (%) Recovery discharge (%) Cycle capacity retention (%) The Addition amount (g)
  • Example 1 1.0M LiPF 6 98 1a One One - 88 94 86
  • Example 2 1.0M LiPF 6 98 1b One One - 86 92 83
  • Example 3 1.0M LiPF 6 98 1c One One - 85 90 83
  • Example 4 1.0M LiPF 6 98 1d One One - 85 88 82
  • Example 5 1.0M LiPF 6 98 1e One One - 83 90 80
  • Example 6 1.0M LiPF 6 98 1f One One - 84 90 82
  • Example 7 1.0M LiPF 6 98 1g One One - 83 89 80
  • Example 8 1.0M LiPF 6 98 1h One One - 83 86 81
  • Example 9 1.0M LiPF
  • the residual discharge amount was about 78% or more at the time of high temperature storage, 86% or more, and the cycle capacity retention ratio is about 79% or more.
  • the secondary battery of Comparative Example 1 having the non-aqueous electrolyte containing no first and second additives had a residual discharge amount of about 71%, a recovered discharge amount of about 82%, and a cycle capacity retention rate It is confirmed that the performance is reduced to about 63% compared to the secondary batteries of Examples 1 to 20.
  • the secondary battery of Comparative Example 4 having the nonaqueous electrolyte containing the compound of Formula 2 as the first additive instead of the compound of Formula 1 does not contain an additive that can not adsorb metal (Fe) foreign matter,
  • the residual discharge amount is 66%
  • the recovered discharge amount is 77%
  • the cycle capacity retention ratio is 69%, which is significantly higher than that of the secondary batteries of Examples 1 to 20.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

본 발명은 리튬 이차전지용 비수전해액 및 리튬 이차전지에 관한 것으로, 구체적으로 금속 이온 흡착 성능을 가지며, 전극 표면 상에 안정한 이온전도성 피막을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수전해액, 및 이를 포함함으로써 비정상적 전압 강하 현상이 개선된 리튬 이차전지에 관한 것이다.

Description

리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
관련 출원(들)과의 상호 인용
본 출원은 2017년 09월 21일자 한국 특허 출원 제2017-0121950호 및 2018년 09월 19일자 한국 특허 출원 제2018-0112330호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지에 관한 것이다.
정보 통신 산업의 발전에 따라 전자 기기가 소형화, 경량화, 박형화 및 휴대화됨에 따라, 이러한 전자 기기의 전원으로 사용되는 전지의 고에너지 밀도화에 대한 요구가 높아지고 있다.
리튬 전지, 구체적으로 리튬 이온 전지(lithium ion battery: LIB)는 이러한 요구를 가장 잘 충족시킬 수 있는 전지로서, 에너지 밀도가 높고 설계가 용이하여 많은 휴대용 기기의 전원으로 채택되어 왔다.
최근 리튬 이차전지의 사용 범위가 종래 소형 전자 기기에서 대형 전자 기기, 자동차, 스마트 그리드 등으로 확대되면서 상온에서뿐만 아니라 고온이나 저온 환경 등 보다 가혹한 외부 환경에서도 우수한 성능을 유지할 수 있는 리튬 이차전지가 요구되고 있다.
현재 적용되고 있는 리튬 이차전지는 리튬이온을 흡장 및 방출할 수 있는 카본계 음극과, 리튬 함유 산화물 등으로 된 양극과, 혼합 카보네이트계 유기용매에 리튬염이 적당량 용해된 비수전해액으로 구성되며, 충전에 의해 양극으로부터 탈리된 리튬 이온이 음극, 예컨대 카본 입자 내에 삽입되고 방전시 다시 탈리되는 현상이 반복되면서 에너지를 전달하여 충방전이 가능하게 된다.
한편, 리튬 이차전지는 충방전이 진행되는 동안 양극활물질이 구조적으로 붕괴되어 양극 표면으로부터 금속이온이 용출된다. 용출된 금속이온은 음극에 전착(electrodeposition)되어 음극을 열화시킨다. 이러한 열화 현상은 양극의 전위가 높아지거나, 전지가 고온에 노출되는 경우 더욱 가속화되는 경향을 보인다.
이러한 문제를 해결하기 위해, 비수전해액 내에 보호 피막, 즉 음극 표면에 SEI 막을 형성할 수 있는 화합물들을 첨가하는 방법이 제안되었다.
하지만, 전해액 첨가제에 의하여 다른 부작용이 발생하면서, 이차전지의 제반 성능이 감소되는 경우가 발생할 수 있다.
이에, 부작용을 최소화하면서, 전지의 성능 및 안정성은 향상시킬 수 있는 첨가제를 함유한 비수전해액에 대한 개발이 지속적으로 요구되고 있다.
선행기술문헌
일본 특허공개공보 제2007-066864호
상기와 같은 문제점을 해결하기 위하여, 본 발명은 금속 이온 흡착 성능을 가지며, 전극 표면 상에 안정한 이온전도성 피막을 형성할 수 있는 첨가제를 포함하는 리튬 이차전지용 비수전해액을 제공하고자 한다.
또한, 본 발명은 상기 리튬 이차전지용 비수전해액을 포함함으로써 비정상적 전압 강하 현상이 개선된 리튬 이차전지를 제공하고자 한다.
상기의 목적을 달성하기 위하여 본 발명의 일 실시예에서,
리튬염;
유기용매;
제1 첨가제로 하기 화학식 1로 표시되는 화합물; 및
제2 첨가제로 리튬 디플루오로 포스페이트(Lithium difluorophosphate: LiPO2F2, 이하 "LiDFP"라 칭함);를 포함하며,
상기 제1 첨가제 및 제2 첨가제는 각각 독립적으로 비수전해액 전체 함량을 기준으로 0.01 중량% 내지 8.5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액을 제공할 수 있다.
(화학식 1)
Figure PCTKR2018011190-appb-I000001
상기 화학식 1에서,
R1 내지 R3은 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고, A는
Figure PCTKR2018011190-appb-I000002
또는
Figure PCTKR2018011190-appb-I000003
이며,
상기 R4 및 R6는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 6 내지 12의 아릴기, 또는 -O-R5이고;
상기 R5는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 2 내지 6의 알키닐기, 또는 치환 또는 비치환된 탄소수 6 내지 12의 아릴기이다.
구체적으로, 상기 치환된 탄소수 1 내지 6의 알킬기는 적어도 하나 이상의 할로겐 원소로 치환된 탄소수 1 내지 6의 알킬기 또는 탄소수 1 내지 3의 알킬기로 치환된 탄소수 1 내지 6의 알킬기이고, 이때 상기 할로겐 원소는 바람직하게는 불소이다.
또한, 상기 치환된 탄소수 6 내지 12의 아릴기는 적어도 하나 이상의 할로겐 원소로 치환된 페닐기 또는 탄소수 1 내지 3의 알킬기로 치환된 페닐기이고, 이때 상기 할로겐 원소는 바람직하게는 불소이다. 상기 비치환된 탄소수 6 내지 12의 아릴기는 페닐기이다.
또한, 상기 제1 첨가제인 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1p로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
(화학식 1a)
Figure PCTKR2018011190-appb-I000004
(화학식 1b)
Figure PCTKR2018011190-appb-I000005
(화학식 1c)
Figure PCTKR2018011190-appb-I000006
(화학식 1d)
Figure PCTKR2018011190-appb-I000007
(화학식 1e)
Figure PCTKR2018011190-appb-I000008
(화학식 1f)
Figure PCTKR2018011190-appb-I000009
(화학식 1g)
Figure PCTKR2018011190-appb-I000010
(화학식 1h)
Figure PCTKR2018011190-appb-I000011
(화학식 1i)
Figure PCTKR2018011190-appb-I000012
(화학식 1j)
Figure PCTKR2018011190-appb-I000013
(화학식 1k)
Figure PCTKR2018011190-appb-I000014
(화학식 1l)
Figure PCTKR2018011190-appb-I000015
(화학식 1m)
Figure PCTKR2018011190-appb-I000016
(화학식 1n)
Figure PCTKR2018011190-appb-I000017
(화학식 1o)
Figure PCTKR2018011190-appb-I000018
(화학식 1p)
Figure PCTKR2018011190-appb-I000019
상기 제1 첨가제인 화학식 1로 표시되는 화합물은 상기 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 7 중량%, 구체적으로 0.1 중량% 내지 5 중량%로 포함될 수 있다.
상기 제2 첨가제인 상기 리튬 디플루오로 포스페이트는 리튬 이차전지용 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 7 중량%, 구체적으로 0.1 중량% 내지 5 중량%로 포함될 수 있다.
상기 비수전해액은 제3 첨가제로 테트라비닐실란(tetravinylsilane)을 추가로 포함할 수 있다.
또한, 본 발명의 일 실시예에서는 본 발명의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지를 제공한다.
본 발명에 따르면, 제1 첨가제로 금속 이온 흡착 성능을 가지는 프로파질(propargyl)기를 함유하는 화합물과 LiDFP와 같은 염 형태의 제2 첨가제를 포함함으로써, 전극 표면에 안전성이 우수한 피막을 형성할 수 있고 양극 금속 이온이나 제조 공정상 포함될 수 있는 금속 이물질에 의한 전지 내부의 부작용을 억제할 수 있는 비수전해액을 제조할 수 있다. 또한, 이를 포함함으로써 고온 저장 시 비정상적 전압 강하 현상 개선 효과와, 고전압 충전에서도 사이클 수명 특성 및 고온 저장 성능이 개선된 리튬 이차전지를 제조할 수 있다.
이하, 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
한편, 본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
또한, 본 발명을 설명하기에 앞서, 명세서 내에서 "탄소수 a 내지 b"의 기재에 있어서, "a" 및 "b"는 구체적인 작용기에 포함되는 탄소 원자의 개수를 의미한다. 즉, 상기 작용기는 "a" 내지 "b" 개의 탄소원자를 포함할 수 있다. 예를 들어, "탄소수 1 내지 5의 알킬기"는 탄소수 1 내지 5의 탄소 원자를 포함하는 알킬기, 즉 -CH3, -CH2CH3, -CH2CH2CH3, -CH2(CH2)CH3, -CH(CH2)CH3 및 -CH(CH2)CH2CH3 등을 의미한다.
또한, 본 명세서에서, 상기 "아릴기"라는 용어는 방향족 탄화수소기에서 수소 원자 하나를 뺀 작용기로서, 구체적으로 페닐기, 톨릴기, 크실린기, 또는 나프틸기 등이 있다.
또한, 본 명세서에서, "치환"이란 별도의 정의가 없는 한, 탄소에 결합된 적어도 하나 이상의 수소가 수소 이외의 원소로 치환된 것을 의미하며, 예를 들면, 탄소수 1 내지 5의 알킬기 또는 적어도 하나 이상의 불소 원소로 치환된 것을 의미한다.
또한, 본 명세서에서, "%"는 명시적인 다른 표시가 없는 한 중량%를 의미한다.
일반적으로 이차전지에 대하여 과충전이 발생하게 되면 양극으로부터 리튬이온이 과량으로 방출되면서 양극활물질의 구조가 불안정한 상태가 된다. 그 영향으로, 양극 활물질로부터 산소가 방출되고, 방출된 산소는 전해액의 분해 반응을 야기한다. 이러한 양극활물질의 구조적 붕괴 및 전해액과의 부반응에 의해 양극 활물질로부터 Co, Mn, Ni 등의 금속 이물의 용출이 증가하고, 이렇게 용출된 금속 이물들은 음극으로 이동하여 음극 표면에 덴드라이트(dendrite)를 석출시켜 양극과 음극 사이에 미세한 단락을 발생시킨다. 이러한 단락에 의해 전지의 전압이 저하되는 비정상적인 전압 강하 현상이 발생하면서 이차전지의 제반 성능이 저하된다. 이때, 상기 저전압 현상은 리튬 전지의 원료 물질에 포함되어 있거나 제조 공정상 혼입되는 금속 이물들에 의해서도 발생될 수 있다.
본 발명에서는 이러한 문제점들을 개선하기 위하여, 제1 첨가제로 금속 이온을 흡착하여 용출된 금속 이물이 음극 표면에서 덴드라이트로 성장하지 못하도록 패시베이션(passivation) 역할을 하는 화합물과 제2 첨가제로 전극 표면에 열적 안전성이 향상된 피막을 형성할 수 있는 화합물을 포함하는 비수전해액을 제공한다.
또한, 본 발명에서는 상기 비수전해액을 포함함으로써, 고온 저장 시 비정상적 전압 강하 현상 개선 효과와, 고전압 충전에서도 사이클 수명 특성 및 고온 저장 성능이 개선된 리튬 이차전지를 제공한다.
비수전해액
구체적으로, 본 발명의 일 실시예에서는
리튬염;
유기용매;
제1 첨가제로 하기 화학식 1로 표시되는 화합물; 및
제2 첨가제로 리튬 디플루오로 포스페이트(LiDFP);를 포함하며,
상기 제1 첨가제 및 제2 첨가제는 각각 독립적으로 비수전해액 전체 함량을 기준으로 0.01 중량% 내지 8.5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액을 제공할 수 있다.
(화학식 1)
Figure PCTKR2018011190-appb-I000020
상기 화학식 1에서,
R1 내지 R3은 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고,
A는
Figure PCTKR2018011190-appb-I000021
또는
Figure PCTKR2018011190-appb-I000022
이며
상기 R4 및 R6는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 6 내지 12의 아릴기, 또는 -O-R5이고;
상기 R5는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 2 내지 6의 알키닐기, 또는 치환 또는 비치환된 탄소수 6 내지 12의 아릴기이다.
구체적으로, 상기 치환된 탄소수 1 내지 6의 알킬기는 적어도 하나 이상의 할로겐 원소로 치환된 탄소수 1 내지 6의 알킬기 또는 탄소수 1 내지 3의 알킬기로 치환된 탄소수 1 내지 6의 알킬기이고, 이때 상기 할로겐 원소는 바람직하게는 불소이다.
또한, 상기 치환된 탄소수 6 내지 12의 아릴기는 적어도 하나 이상의 할로겐 원소로 치환된 페닐기 또는 탄소수 1 내지 3의 알킬기로 치환된 페닐기이고, 이때 상기 할로겐 원소는 바람직하게는 불소이다. 상기 비치환된 탄소수 6 내지 12의 아릴기는 페닐기이다.
(1) 리튬염
먼저, 본 발명의 일 실시예에 따른 이차전지용 비수전해액에 있어서, 상기 리튬염은 리튬 이차전지용 전해액에 통상적으로 사용되는 것들이 제한 없이 사용될 수 있으며, 예를 들어 상기 리튬염의 양이온으로 Li+를 포함하고, 음이온으로는 F-, Cl-, Br-, I-, NO3 -, N(CN)2 -, BF4 -, ClO4 -, B10Cl10 -, AlO4 -, AlCl4 -, PF6 -, SbF6 -, AsF6 -, BF2C2O4 -, BC4O8 -, PF4C2O4 -, PF2C4O8 -, (CF3)2PF4 -, (CF3)3PF3 -, (CF3)4PF2 -, (CF3)5PF-, (CF3)6P-, CF3SO3 -, C4F9SO3 -, CF3CF2SO3 -, (CF3SO2)2N-, (FSO2)2N-, CF3CF2(CF3)2CO-, (CF3SO2)2CH-, (SF5)3C-, (CF3SO2)3C-, CF3(CF2)7SO3 -, CF3CO2 -, CH3CO2 -, SCN- 및 (CF3CF2SO2)2N-로 이루어진 군으로부터 선택된 적어도 어느 하나를 들 수 있다. 구체적으로, 상기 리튬염은 LiCl, LiBr, LiI, LiBF4, LiClO4, LiB10Cl10, LiAlO4, LiAlCl4, LiPF6, LiSbF6, LiAsF6, LiCF3SO3, LiCF3CO2, LiCH3CO2, LiBETI (lithium bisperfluoroethanesulfonimide, LiN(SO2CF2CF3)2), LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), 및 LiTFSI (lithium (bis)trifluoromethanesulfonimide, LiN(SO2CF3)2)로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 더욱이, 구체적으로 리튬염은 LiPF6, LiBF4, LiCH3CO2, LiCF3CO2, LiFSI, LiTFSI 및 LiBETI 으로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수 있다. 다만, 상기 리튬염은 제2 첨가제로서의 리튬염인 LiDFP는 포함하지 않는다.
상기 리튬염은 통상적으로 사용 가능한 범위 내에서 적절히 변경할 수 있으나, 구체적으로 전해액 내에 0.1M 내지 3M, 구체적으로 0.8M 내지 2.5M로 포함될 수 있다. 만약, 상기 리튬염의 농도가 0.1M 이하이면, 리튬 이차전지의 사이클 수명 특성 및 용량 특성이 저하될 수 있고, 상기 리튬염의 농도가 3M을 초과하는 경우 피막 형성 효과가 상대적으로 감소할 수 있다.
(2) 유기용매
상기 유기용매는 이차전지의 충방전 과정에서 산화 반응 등에 의한 분해가 최소화될 수 있고, 첨가제와 함께 목적하는 특성을 발휘할 수 있는 것이라면 제한이 없다. 예를 들면 에테르계 용매, 에스테르계 용매, 또는 아미드계 용매 등을 각각 단독으로 또는 2종 이상 혼합하여 사용할 수 있다.
상기 유기용매 중 에테르계 용매로는 디메틸에테르, 디에틸에테르, 디프로필 에테르, 메틸에틸에테르, 메틸프로필 에테르 및 에틸프로필 에테르로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
또한, 상기 에스테르계 용매는 환형 카보네이트 화합물, 선형 카보네이트 화합물, 선형 에스테르 화합물, 및 환형 에스테르 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 포함할 수 있다.
이중 상기 환형 카보네이트 화합물의 구체적인 예로는 에틸렌 카보네이트(ethylene carbonate, EC), 프로필렌 카보네이트(propylene carbonate, PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌카보네이트, 2,3-펜틸렌 카보네이트, 비닐렌 카보네이트 및 플루오로에틸렌 카보네이트(FEC)로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물이 있다.
또한, 상기 선형 카보네이트 화합물의 구체적인 예로는 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 선형 에스테르 화합물은 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트, 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물 등이 대표적으로 사용될 수 있으나, 이에 한정되는 것은 아니다.
상기 환형 에스테르 화합물은 그 구체적인 예로 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤, ε-카프로락톤과 같은 이루어진 군으로부터 선택되는 어느 하나 또는 이들 중 2종 이상의 혼합물을 사용할 수 있으나, 이에 한정되는 것은 아니다.
특히, 상기 에스테르계 용매 중에서 환형 카보네이트계 화합물은 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킨다. 따라서, 이러한 환형 카보네이트계 화합물과 디메틸 카보네이트 및 디에틸 카보네이트와 같은 저점도, 저유전율 선형 카보네이트계 화합물 등을 적당한 비율로 혼합하여 사용하는 경우, 높은 전기 전도율을 갖는 전해액을 제조할 수 있다.
(3) 제1 첨가제
또한, 본 발명의 일 실시예에 따른 비수전해액은 제1 첨가제로 상기 화학식 1로 표시되는 화합물을 포함할 수 있다.
즉, 상기 제1 첨가제로 포함되는 상기 화학식 1로 표시되는 화합물은 구조 내에 (i) 금속 이온 흡착 성능을 가지고 있는 것으로 알려진 삼중 결합을 갖는 프로파질기와 (ii) 산소 원자를 함께 포함하고 있기 때문에, 충방전 시 양극으로부터 용출된 Fe, Co, Mn, Ni 등의 금속 이물, 또는 음극으로부터 용출된 Cu 등의 금속 이물, 또는 원재료나 제조 공정 시 혼입된 금속 이물과 용이하게 흡착할 수 있다. 그 결과 용출된 금속 이물이 음극에서 덴드라이트로 성장하는 것을 억제할 수 있으므로, 용출된 금속 이물에 의한 고온 저장 시 비정상적 전압 강하 현상을 개선할 수 있다.
더욱이, 상기 프로파질기를 함유하는 화학식 1로 표시되는 화합물은 충방전 과정에서 소정 전압에 이르면 음극 표면에서 환원되어 음극 표면에 안정한 이온전도성 피막을 형성할 수 있으므로, 추가적인 전해액 분해 반응을 억제할 수 있고, 나아가 과충전시 또는 고온 저장 시에서도 음극으로부터 리튬 이온의 흡장 및 방출을 원활하게 하여 이차전지의 비정상적 전압 강하 현상을 개선할 수 있고, 사이클 수명 특성 및 고온 저장 성능을 향상시킬 수 있다.
한편, 상기 제1 첨가제로 포함되는 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1p로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
(화학식 1a)
Figure PCTKR2018011190-appb-I000023
(화학식 1b)
Figure PCTKR2018011190-appb-I000024
(화학식 1c)
Figure PCTKR2018011190-appb-I000025
(화학식 1d)
Figure PCTKR2018011190-appb-I000026
(화학식 1e)
Figure PCTKR2018011190-appb-I000027
(화학식 1f)
Figure PCTKR2018011190-appb-I000028
(화학식 1g)
Figure PCTKR2018011190-appb-I000029
(화학식 1h)
Figure PCTKR2018011190-appb-I000030
(화학식 1i)
Figure PCTKR2018011190-appb-I000031
(화학식 1j)
Figure PCTKR2018011190-appb-I000032
(화학식 1k)
Figure PCTKR2018011190-appb-I000033
(화학식 1l)
Figure PCTKR2018011190-appb-I000034
(화학식 1m)
Figure PCTKR2018011190-appb-I000035
(화학식 1n)
Figure PCTKR2018011190-appb-I000036
(화학식 1o)
Figure PCTKR2018011190-appb-I000037
(화학식 1p)
Figure PCTKR2018011190-appb-I000038
더욱 구체적으로, 상기 화학식 1로 표시되는 화합물은 상기 화학식 1a 내지 화학식 1f로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나일 수 있다.
즉, 화학식 1a 내지 1f로 표시되는 화합물의 경우, 화학식 1j 내지 1l로 표시되는 화합물에 함유된 설포네이트 음이온 (sulfonate anion) 보다 크기가 작은 "-OCO2R4"기를 함유하기 때문에, 음이온의 공격성이 커지면서 카보네이트계 유기용매, 예컨대 에틸렌 카보네이트와의 반응성이 보다 우수하다. 따라서, 화학식 1a 내지 1f로 표시되는 화합물은 화학식 1j 내지 1l로 표시되는 화합물 보다 전극 표면에 안정성이 보다 높은 부동태 피막을 형성할 수 있다.
또한, '-OSO2-' 기에 전자를 당기는 작용기(electron-withdrawing group)인 산소를 함유한 알콕사이드기(-OR5)가 결합된 -OSO2-OR5기를 함유한 화학식 1m 내지 화학식 1p로 표시되는 화합물의 경우 환원 분해가 보다 용이하기 때문에, 'OSO2’기에 산소를 함유하지 않은 비편재화(delocalization)된 음전하를 주는 작용기인‘R6'가 직접적으로 결합되어 있는 화학식 1j 내지 1l로 표시되는 화합물보다, 안정성이 높은 피막을 형성할 수 있다.
한편, 상기 제1 첨가제인 화학식 1로 표시되는 화합물은 비수전해액 전체 함량을 기준으로 0.01 내지 8.5 중량%, 구체적으로 0.1 중량% 내지 7 중량%, 보다 구체적으로 0.1 중량% 내지 5 중량%, 더욱 구체적으로 0.5 중량% 내지 3 중량%의 범위로 포함될 수 있다.
상기 화학식 1로 표시되는 화합물이 상기 범위로 포함되는 경우, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다. 예컨대, 상기 제1 첨가제의 함량이 0.01 중량% 미만이면 비정상적 전압 강화 개선 효과가 미미할 수 있다. 구체적으로 0.1 중량% 이상, 더욱 구체적으로 0.5 중량% 이상이면 저항 증가를 최대한 억제하는 선에서 SEI 막 형성 시에 안정화 효과나 용출 억제 효과를 얻을 수 있고, 첨가제의 함량이 7 중량% 이하, 바람직하게 5 중량% 이하이면 수용할 수 있는 저항 증가 내에서 최대의 용출 억제 효과를 얻을 수 있다.
통상적으로 리튬 이차전지는 충방전 시에 전지의 양극 표면의 결합이 존재하는 곳이나, 활성화되는 위치에 전해액의 전기화학적 산화 분해 반응에 의한 일종의 부동태 막이 형성된다. 이 부동태 막은 양극활물질로의 리튬이온의 삽입(co-intercalation)에 대한 임피던스를 증가시킨다. 또한, 충방전 반복 과정에서 양극활물질인 LiCoO2, LiMn2O4, 또는 LiNiO2 등의 구조적 붕괴 내지는 전해액에 의한 화학적 용해 반응을 발생시켜 양극활물질로부터 Co, Mn, Ni, Fe, 및 Al 이물을 용출시킨다. 상기 반응들은 양극 자체의 성능 저하로 이어짐은 물론, 용출된 금속 이물들이 음극 표면에서 석출되어 전착되는 현상을 야기한다. 또한, 음극에 전착된 금속 이물은 일반적으로 전해액에 대해 큰 반응성을 보이면서, 리튬 이온의 이동성을 저하시키기 때문에, 리튬 양의 감소로 인하여 충방전 진행에 따른 비가역 반응이 증가되고, 결과적으로 전지의 용량 및 충방전 효율 저하를 초래한다.
종래에는 전해액 내에 첨가제를 포함하여 전지 내부에 존재하는 금속 이물의 용출을 억제하는 방법이 제안되었다. 하지만, 이러한 첨가제에 의한 억제 반응은 언제까지 지속 될지 알 수 없고, 더욱이 시간이 지나면서 억제 효과가 저감되어 더 이상 금속 이물 용출을 억제할 수 없는 상태가 되면 저전압 현상이 발생되는 문제가 있다.
이에, 본 발명에서는 비수전해액 첨가제 성분으로 금속 이온 흡착 성능을 가지는 프로파질기를 포함하는 화합물을 제1 첨가제로 포함함으로써, 양극 금속 이온이나 제조 공정상 포함될 수 있는 금속 이물의 용출을 억제할 수 있고, 음극 및 양극 표면 상에 안정한 피막을 형성할 수 있다.
(4) 제2 첨가제
한편, 상기 화학식 1로 표시되는 화합물에 의해 양극 표면에 형성된 유기 피막은 열적으로 불안정하다는 문제가 야기된다. 이에, 본 발명에서는 이러한 단점을 개선하기 위하여, 비수전해액에 제2 첨가제 성분으로 LiDFP와 같은 염 형태의 제2 첨가제를 더 혼용함으로써, 양극 표면에 무기 성분이 함유되어 열적 안정성이 향상된 피막을 형성할 수 있다.
이때, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 제2 첨가제인 상기 리튬 디플루오로 포스페이트는 비수전해액 전체 중량을 기준으로 0.01 중량% 내지 8.5 중량%, 구체적으로 0.1 중량% 내지 7 중량%, 보다 구체적으로 0.1 중량% 내지 5 중량%, 더욱 구체적으로 0.5 중량% 내지 3 중량%로 포함될 수 있다.
상기 제2 첨가제가 상기 범위로 포함되는 경우, 전극 표면에 열적 안정성이 우수한 피막을 형성하여 이차전지의 출력 향상을 구현할 수 있다.
만약, 상기 제2 첨가제 함량이 0.01 중량% 미만이면 SEI 피막 형성 효과가 미미할 수 있다. 구체적으로, 상기 제2 첨가제가 0.01 중량% 이상, 보다 구체적으로 0.1 중량% 이상으로 포함되는 경우, 리튬 이온 전지에서 SEI 피막을 형성하는 과정 등으로 전극 표면을 안정화시킬 수 있고, 고온 저장 후, 사이클 특성 및 용량 특성 등을 개선할 수 있다. 또한, 제2 첨가제의 함량이 7 중량% 이하, 바람직하게 5 중량% 이하로 포함되면, 과량의 첨가제에 의한 부반응을 억제할 수 있다.
(5) 제3 첨가제
또한, 본 발명의 일 실시예에 따른 리튬 이차전지용 비수전해액은 제3 첨가제로 테트라비닐실란(tetravinylsilane)을 추가로 포함함으로써, 상기 제1 첨가제인 화학식 1로 표시되는 화합물과 함께 결합하여 음극 표면에 2중 또는 3중의 보다 견고한 피막을 형성할 수 있게 된다.
이때, 상기 제3 첨가제는 비수 전해액 전체 중량을 기준으로 0.01 중량% 내지 5 중량%, 구체적으로 0.01 중량% 내지 3 중량%, 더욱 구체적으로 0.1 중량% 내지 3 중량%로 포함될 수 있다.
상기 제3 첨가제가 상기 범위로 포함되는 경우, 제반 성능이 더욱 향상된 이차전지를 제조할 수 있다. 예컨대, 상기 제3 첨가제가 0.01 중량% 이상으로 포함되는 경우 저항 증가를 최대한 억제하는 선에서 SEI 막의 내구성을 향상시키는 효과가 있고, 5 중량% 이하로 포함되는 경우 수용할 수 있는 저항 증가 내에서 SEI 막의 장기 유지 및 보수의 효과가 있다.
(6) SEI막 형성용 제4 첨가제
또한, 본 발명의 비수전해액은 필요에 따라서 저온 고율방전 특성, 고온 안정성, 과충전 방지, 고온 저장 시 팽윤 개선 효과 등을 더욱 향상시키기 위하여, 필요에 따라 전극 표면에 보다 안정한 이온전도성 피막을 형성할 수 있는 SEI막 형성용 첨가제를 더 포함할 수도 있다.
구체적으로, 상기 부가적 첨가제는 그 대표적인 예로 설톤계 화합물, 할로겐 치환된 카보네이트계 화합물, 니트릴계 화합물, 환형 설파이트계 화합물, 및 환형 카보네이트계 화합물로 이루어진 군으로부터 선택된 적어도 하나 이상의 SEI막 형성용 첨가제를 더 포함할 수 있다.
상기 설톤계 화합물은 1,3-프로판 설톤(PS), 1,4-부탄 설톤, 에텐설톤, 1,3-프로펜 설톤(PRS), 1,4-부텐 설톤, 및 1-메틸-1,3-프로펜 설톤으로 이루어진 군으로부터 선택된 적어도 하나 이상의 화합물을 들 수 있다. 상기 설톤계 화합물은 비수전해액 전체 중량을 기준으로 0.3중량% 내지 5중량%, 구체적으로 1 중량% 내지 5 중량%로 포함될 수 있다. 상기 비수전해액 중에 설톤계 화합물의 함량이 5중량%를 초과하는 경우, 과량의 첨가제의 의한 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있다.
또한, 상기 할로겐 치환된 카보네이트계 화합물은 플루오로에틸렌 카보네이트(FEC))를 들 수 있으며, 비수전해액 전체 중량을 기준으로 5중량% 이하로 포함할 수 있다. 상기 할로겐 치환된 카보네이트계 화합물의 함량이 5중량%를 초과하는 경우, 셀 팽윤 성능이 열화될 수 있다.
또한, 상기 니트릴계 화합물은 숙시노니트릴(NA), 아디포니트릴(Adn), 아세토니트릴, 프로피오니트릴, 부티로니트릴, 발레로니트릴, 카프릴로니트릴, 헵탄니트릴, 싸이클로펜탄 카보니트릴, 싸이클로헥산 카보니트릴, 2-플루오로벤조니트릴, 4-플루오로벤조니트릴, 다이플루오로벤조니트릴, 트리플루오로벤조니트릴, 페닐아세토니트릴, 2-플루오로페닐아세토니트릴, 및 4-플루오로페닐아세토니트릴로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 들 수 있다.
상기 니트릴계 화합물은 비수전해액 전체 중량을 기준으로 5중량% 내지 8중량%, 구체적으로 6중량% 내지 8중량%일 수 있다. 상기 비수전해액 중에 니트릴계 화합물의 전체 함량이 8중량%를 초과하는 경우, 전극 표면에 형성되는 피막 증가로 저항이 커져, 전지 성능이 열화될 수 있다.
또한, 상기 환형 설파이트계 화합물로는 에틸렌 설파이트, 메틸 에틸렌 설파이트, 에틸 에틸렌 설파이트, 4,5-디메틸 에틸렌 설파이트, 4,5-디에틸 에틸렌 설파이트, 프로필렌 설파이트, 4,5-디메틸 프로필렌 설파이트, 4,5-디에틸 프로필렌설파이트, 4,6-디메틸 프로필렌 설파이트, 4,6-디에틸 프로필렌 설파이트, 1,3-부틸렌 글리콜 설파이트 등을 들 수 있으며, 비수전해액 전체 중량을 기준으로 5중량% 이하로 포함할 수 있다. 상기 환형 설파이트계 화합물의 함량이 5중량%를 초과하는 경우, 과량의 첨가제의 의한 두꺼운 피막이 형성되어 저항 증가와 출력 열화가 발생할 수 있다.
상기 환형 카보네이트계 화합물은 비닐렌카보네이트(VC) 또는 비닐에틸렌 카보네이트를 들 수 있으며, 비수전해액 전체 중량을 기준으로 3중량% 이하로 포함할 수 있다. 상기 비수전해액 중에 환형 카보네이트계 화합물의 함량이 3중량%를 초과하는 경우, 셀 팽윤 억제 성능이 열화될 수 있다.
이차전지
또한, 본 발명의 일 실시예에서는 본 발명의 전해액을 포함하는 리튬 이차전지를 제공한다.
한편, 본 발명의 리튬 이차전지는 양극, 음극 및 양극과 음극 사이에 개재된 분리막으로 이루어진 전극 구조체에 본 발명의 비수전해액을 주입하여 제조할 수 있다.
이때, 상기 전극 구조체를 이루는 양극, 음극 및 분리막은 리튬 이차전지 제조 시에 통상적으로 사용되던 것들이 모두 사용될 수 있다.
(1) 양극
먼저, 상기 양극은 양극 집전체 상에 양극 합제층을 형성하여 제조할 수 있다. 상기 양극 합제층은 양극활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 슬러리를 양극 집전체 상에 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-YMnYO2(여기에서, 0<Y<1), LiMn2-zNizO4(여기에서, 0<Z<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y1CoY1O2(여기에서, 0<Y1<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y2MnY2O2(여기에서, 0<Y2<1), LiMn2-z1Coz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(NipCoqMnr1)O2(여기에서, 0<p<1, 0<q<1, 0<r1<1, p+q+r1=1) 또는 Li(Nip1Coq1Mnr2)O4(여기에서, 0<p1<2, 0<q1<2, 0<r2<2, p1+q1+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip2Coq2Mnr3MS2)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p2, q2, r3 및 s2는 각각 독립적인 원소들의 원자분율로서, 0<p2<1, 0<q2<1, 0<r3<1, 0<s2<1, p2+q2+r3+s2=1이다)) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물 (예를 들면 Li(Ni1/3Mn1/3Co1/3)O2, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 및 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, Li(Ni0.8Co0.15Al0.05)O2 등) 등일 수 있다.
상기 양극 활물질은 양극 슬러리 중 고형분의 전체 중량을 기준으로 40 중량% 내지 90 중량%, 구체적으로 40 중량% 내지 75 중량%로 포함될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 통상적으로 양극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다.
이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 양극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 10 중량% 내지 70 중량%, 바람직하게 20 중량% 내지 60 중량%가 되도록 포함될 수 있다.
(2) 음극
또한, 상기 음극은 음극 집전체 상에 음극 합제층을 형성하여 제조할 수 있다. 상기 음극 합제층은 음극 집전체 상에 음극활물질, 바인더, 도전재 및 용매 등을 포함하는 슬러리를 코팅한 후, 건조 및 압연하여 형성할 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
또한, 상기 음극활물질은 리튬 함유 티타늄 복합 산화물(LTO); 난흑연화 탄소, 흑연계 탄소 등의 탄소계 물질; LixFe2O3(0≤x≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0<x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합 산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4, 및 Bi2O5 등의 금속 산화물; 및 폴리아세틸렌 등의 도전성 고분자로 이루어진 군으로부터 선택된 단일물 또는 2종 이상의 혼합물을 포함할 수도 있다.
상기 음극 활물질은 음극 슬러리 중 고형분의 전체 중량을 기준으로 80 중량% 내지 99중량%로 포함될 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 통상적으로 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 30 중량%로 첨가된다. 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 테르폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 음극 슬러리 중 고형분의 전체 중량을 기준으로 1 내지 20 중량%로 첨가될 수 있다. 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP, 알코올 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다. 예를 들면, 음극 활물질, 및 선택적으로 바인더 및 도전재를 포함하는 슬러리 중의 고형분 농도가 50 중량% 내지 75 중량%, 바람직하게 50 중량% 내지 65 중량%가 되도록 포함될 수 있다.
또한, 상기 분리막은 양 전극의 내부 단락을 차단하고 전해질을 함침하는 역할을 하는 것으로, 고분자 수지, 충진제 및 용매를 혼합하여 분리막 조성물을 제조한 다음, 상기 분리막 조성물을 전극 상부에 직접 코팅 및 건조하여 분리막 필름을 형성하거나, 상기 분리막 조성물을 지지체 상에 캐스팅 및 건조된 후, 상기 지지체로부터 박리된 분리막 필름을 전극 상부에 라미네이션하여 형성할 수 있다.
상기 분리막은 통상적으로 사용되는 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이때, 상기 다공성 분리막의 기공 직경은 일반적으로 0.01㎛ 내지 50㎛이고, 기공도는 5 내지 95%일 수 있다. 또한 상기 다공성 분리막의 두께는 일반적으로 5㎛ 내지 300㎛ 범위일 수 있다.
본 발명의 리튬 이차전지의 외형은 특별한 제한이 없으나, 캔을 사용한 원통형, 각형, 파우치(pouch)형 또는 코인(coin)형 등이 될 수 있다.
이하, 본 발명을 구체적으로 설명하기 위해 실시예를 들어 상세하게 설명하기로 한다. 그러나 본 발명에 따른 실시예는 여러 가지 다른 형태로 변형될 수 있으며, 본 발명의 범위가 아래에서 상술하는 실시예에 한정되는 것으로 해석되어서는 안 된다. 본 발명의 실시예는 당업계에서 평균적인 지식을 가진 자에게 본 발명을 보다 완전하게 설명하기 위해서 제공되는 것이다.
실시예
실시예 1
(비수전해액 제조)
1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 98g에 제1 첨가제인 화학식 1a의 화합물 1g과 제2 첨가제인 LiDFP 1g을 첨가하여 본 발명의 비수전해액을 제조하였다.
(양극 제조)
양극 활물질 입자로 리튬 코발트 복합산화물 (LiCoO2), 도전재로 카본 블랙 및 바인더로 폴리비닐리덴플로라이드 (PVDF)를 90:5:5 (wt%)의 비율로 용제인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리 (고형분 농도 50 중량%)를 제조하였다. 상기 양극 활물질 슬러리를 두께가 100㎛인 양극 집전체 (Al 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
(음극 제조)
음극 활물질로 천연 흑연, 바인더로 PVDF, 도전재로 카본 블랙을 95 : 2 : 3 (wt%)의 비율로 용제인 NMP에 첨가하여 음극 활물질 슬러리(고형분 농도 60 중량%)를 제조하였다. 상기 음극 활물질 슬러리를 두께가 90㎛인 음극 집전체 (Cu 박막)에 도포하고, 건조하고 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
(이차전지 제조)
전술한 방법으로 제조한 양극과 음극을 폴리에틸렌 다공성 필름과 함께 적층하여 전극조립체를 제조한 다음, 이를 전지 케이스에 넣고 상기 비수전해액을 주액하고, 밀봉하여 리튬 이차전지(전지용량 5.5 mAh)를 제조하였다. 이때, 상기 양극과 분리막 사이에 280㎛ 내지 330 ㎛ 사이즈의 Fe 입자를 위치시켜 제조하였다.
실시예 2.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1b의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 3.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1c의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 4.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1d의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 5.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1e의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 6.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1f의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 7.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1g의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 8.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1h의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 9.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1i의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 10.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1j의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 11.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1k의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 12.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1l의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 13.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1m의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 14.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1n의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 15.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1o의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 16.
비수전해액 제조 시에, 화학식 1a의 화합물 대신에 화학식 1p의 화합물을 첨가하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 이차전지를 각각 제조하였다.
실시예 17.
비수전해액 제조 시에, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 97.8g에 제1 첨가제인 화학식 1a의 화합물 1g과 제2 첨가제인 LiDFP 1g 및 제3 첨가제인 테트라비닐실란 0.2g을 첨가하여 본 발명의 비수전해액을 제조하였다.
이어서, 상기 실시예 1과 마찬가지의 방법으로 상기 비수전해액을 포함하는 이차전지를 제조하였다.
실시예 18.
비수전해액 제조 시에, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 97.8g에 제1 첨가제인 화학식 1k의 화합물 1g과 제2 첨가제인 LiDFP 1g 및 제3 첨가제인 테트라비닐실란 0.2g을 첨가하여 본 발명의 비수전해액을 제조하였다.
이어서, 상기 실시예 1과 마찬가지의 방법으로 상기 비수전해액을 포함하는 이차전지를 제조하였다.
실시예 19.
비수전해액 제조 시에, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 86g에 제1 첨가제인 화학식 1a의 화합물 7g과 제2 첨가제인 LiDFP 7g을 첨가하여 본 발명의 비수전해액을 제조하였다.
이어서, 상기 실시예 1과 마찬가지의 방법으로 상기 비수전해액을 포함하는 이차전지를 제조하였다.
실시예 20.
비수전해액 제조 시에, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 90g에 제1 첨가제인 화학식 1a의 화합물 5g과 제2 첨가제인 LiDFP 5g을 첨가하여 본 발명의 비수전해액을 제조하였다.
이어서, 상기 실시예 1과 마찬가지의 방법으로 상기 비수전해액을 포함하는 이차전지를 제조하였다.
비교예 1
상기 실시예 1에서 비수전해액 제조 시에 제1 및 제2 첨가제를 포함하지 않는 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
비교예 2.
비수전해액 제조 시에, 제2 첨가제를 포함하지 않고, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 99g에 제1 첨가제인 화학식 1a의 화합물 1g을 포함하는 비수전해액을 제조하였다.
상기 실시예 1과 동일한 방법으로 상기 비수전해액을 포함하는 리튬 이차전지를 제조하였다.
비교예 3.
비수전해액 제조 시에, 제1 첨가제를 포함하지 않고, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 99g에 제2 첨가제 1g을 포함하는 비수전해액을 제조하였다.
상기 실시예 1과 동일한 방법으로 상기 비수전해액을 포함하는 리튬 이차전지를 제조하였다.
비교예 4
비수전해액 제조 시에 제1 첨가제 대신 하기 화학식 2의 화합물을 포함하는 것을 제외하고는, 상기 실시예 1과 마찬가지의 방법으로 비수전해액 및 이를 포함하는 리튬 이차전지를 제조하였다.
[화학식 2]
Figure PCTKR2018011190-appb-I000039
비교예 5
비수전해액 제조 시에, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 80g에 제1 첨가제인 화학식 1a의 화합물 13g과 제2 첨가제인 LiDFP 7g을 첨가하여 비수전해액을 제조하였다.
이어서, 상기 실시예 1과 마찬가지의 방법으로 상기 비수전해액을 포함하는 이차전지를 제조하였다.
비교예 6
비수전해액 제조 시에, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 80g에 제1 첨가제인 화학식 1a의 화합물 7g과 제2 첨가제인 LiDFP 13g을 첨가하여 비수전해액을 제조하였다.
이어서, 상기 실시예 1과 마찬가지의 방법으로 상기 비수전해액을 포함하는 이차전지를 제조하였다.
비교예 7.
비수전해액 제조 시에, 1.0M LiPF6가 용해된 유기용매 (에틸렌 카보네이트(EC):에틸메틸카보네이트(EMC)=30:70 부피비) 80g에 제1 첨가제인 화학식 1a의 화합물 10g과 제2 첨가제인 LiDFP 10g을 첨가하여 비수전해액을 제조하였다.
이어서, 상기 실시예 1과 마찬가지의 방법으로 상기 비수전해액을 포함하는 이차전지를 제조하였다.
실험예
실험예 1.
상기 실시예 1 내지 20에서 제조된 리튬 이차전지와 비교예 1 내지 7에서 이차전지를 각각 8개씩 제조한 다음, 각각의 이차전지를 25℃에서 0.1C 정전류로 4.2V가 될 때까지 충전하고, 이후 4.2V의 정전압으로 충전하여 충전 전류가 0.275 mA가 되면 충전을 종료하였다. 이후, 10 분간 방치한 다음 0.5C 정전류로 3.0V가 될 때까지 방전하였다. 각각의 실시예 및 비교예에서 제조된 8개의 이차전지 중 충방전이 가능한 이차전지의 개수를 확인하여, 하기 표 1에 기재하였다.
실시예 리튬염 유기용매첨가량(g) 제1 첨가제 제2 첨가제첨가량(g) 제3 첨가제첨가량(g) 충방전 가능한 전지수(가능/제조)
화학식 첨가량(g)
실시예 1 1.0M LiPF6 98 1a 1 1 - 8/8
실시예 2 1.0M LiPF6 98 1b 1 1 - 7/8
실시예 3 1.0M LiPF6 98 1c 1 1 - 7/8
실시예 4 1.0M LiPF6 98 1d 1 1 - 7/8
실시예 5 1.0M LiPF6 98 1e 1 1 - 6/8
실시예 6 1.0M LiPF6 98 1f 1 1 - 7/8
실시예 7 1.0M LiPF6 98 1g 1 1 - 6/8
실시예 8 1.0M LiPF6 98 1h 1 1 - 6/8
실시예 9 1.0M LiPF6 98 1i 1 1 - 7/8
실시예 10 1.0M LiPF6 98 1j 1 1 - 6/8
실시예 11 1.0M LiPF6 98 1k 1 1 - 6/8
실시예 12 1.0M LiPF6 98 1l 1 1 - 6/8
실시예 13 1.0M LiPF6 98 1m 1 1 - 7/8
실시예 14 1.0M LiPF6 98 1n 1 1 - 7/8
실시예 15 1.0M LiPF6 98 1o 1 1 - 7/8
실시예 16 1.0M LiPF6 98 1p 1 1 - 6/8
실시예 17 1.0M LiPF6 97.8 1a 1 1 0.2 8/8
실시예 18 1.0M LiPF6 97.8 1k 1 1 0.2 7/8
실시예 19 1.0M LiPF6 86 1a 7 7 - 8/8
실시예 20 1.0M LiPF6 90 1a 5 5 - 8/8
비교예 1 1.0M LiPF6 100 - - - - 1/8
비교예 2 1.0M LiPF6 99 1a 1 - - 7/8
비교예 3 1.0M LiPF6 99 - - 1 - 2/8
비교예 4 1.0M LiPF6 98 2 1 1 - 1/8
비교예 5 1.0M LiPF6 80 1a 13 7 - 8/8
비교예 6 1.0M LiPF6 80 1a 7 13 - 8/8
비교예 7 1.0M LiPF6 80 1a 10 10 - 8/8
상기 표 1을 참고하면, 실시예 1 내지 20의 이차전지는 제1 첨가제가 금속 이물과 착물을 형성하여 용출된 금속을 금속 이물과 착물을 형성하여 용출된 금속을 제거하는 동시에 양극 표면에 피막을 형성하고, 제2 첨가제인 LiDFP가 피막 상에 무기 성분을 증가시켜 열적 안정성을 향상시킴으로써, 제조된 전지 중 60% 이상이 충방전이 가능한 것을 알 수 있다.
반면에, 제1 첨가제 및 제2 첨가제를 모두 포함하지 않는 비수전해액을 구비한 비교예 1의 이차전지의 경우, 충방전이 가능한 셀이 1개이고, 제2 첨가제만을 포함하는 비수전해액을 구비한 비교예 3의 이차전지의 경우 충방전이 가능한 셀이 2개인 것을 알 수 있다.
또한, 제1 첨가제로 화학식 1의 화합물 대신 화학식 2의 화합물을 포함하는 비수전해액을 구비한 비교예 4의 이차전지는 금속 (Fe) 이물을 흡착할 수 없는 첨가제를 포함하지 않기 때문에, 충방전이 가능한 셀이 1개인 것을 알 수 있다.
한편, 제1 첨가제만을 포함하는 비수전해액을 구비한 비교예 2의 이차전지와, 제1 첨가제 및/또는 제2 첨가제를 과량으로 포함하는 비수전해액을 구비한 비교예 5 내지 7의 이차전지의 경우, 제조된 전지 중 80% 이상이 충방전이 가능한 것을 알 수 있다.
실험예 2.
상기 실시예 1 내지 20에서 제조한 이차전지와, 비교예 1 및 7에서 제조한 이차전지를 각각 0.8C rate로 4.2V까지 정전류/정전압 조건 충전하고 45℃에서 6일간 저장한 다음, 45℃에서의 전압을 측정하고 그 평균값을 하기 표 2에 기재하였다.
실시예 리튬염 유기용매첨가량(g) 제1 첨가제 제2 첨가제첨가(g) 제3 첨가제첨가(g) 고온 저장 후 전압 (V)
화학식 첨가량(g)
실시예 1 1.0M LiPF6 98 1a 1 1 - 4.13
실시예 2 1.0M LiPF6 98 1b 1 1 - 4.08
실시예 3 1.0M LiPF6 98 1c 1 1 - 4.07
실시예 4 1.0M LiPF6 98 1d 1 1 - 4.08
실시예 5 1.0M LiPF6 98 1e 1 1 - 4.05
실시예 6 1.0M LiPF6 98 1f 1 1 - 4.08
실시예 7 1.0M LiPF6 98 1g 1 1 - 4.06
실시예 8 1.0M LiPF6 98 1h 1 1 - 4.04
실시예 9 1.0M LiPF6 98 1i 1 1 - 4.05
실시예 10 1.0M LiPF6 98 1j 1 1 - 4.06
실시예 11 1.0M LiPF6 98 1k 1 1 - 4.06
실시예 12 1.0M LiPF6 98 1l 1 1 - 4.08
실시예 13 1.0M LiPF6 98 1m 1 1 - 4.10
실시예 14 1.0M LiPF6 98 1n 1 1 - 4.07
실시예 15 1.0M LiPF6 98 1o 1 1 - 4.08
실시예 16 1.0M LiPF6 98 1p 1 1 - 4.05
실시예 17 1.0M LiPF6 97.8 1a 1 1 0.2 4.10
실시예 18 1.0M LiPF6 97.8 1k 1 1 0.2 4.08
실시예 19 1.0M LiPF6 86 1a 7 7 - 3.85
실시예 20 1.0M LiPF6 90 1a 5 5 - 3.96
비교예 1 1.0M LiPF6 100 - - - - 2.55
비교예 2 1.0M LiPF6 99 1a 1 - - 4.03
비교예 3 1.0M LiPF6 99 - - 1 - 2.63
비교예 4 1.0M LiPF6 98 2 1 1 - 2.24
비교예 5 1.0M LiPF6 80 1a 13 7 - 3.83
비교예 6 1.0M LiPF6 80 1a 7 13 - 3.78
비교예 7 1.0M LiPF6 80 1a 10 10 - 3.72
상기 표 2를 살펴보면, 제1 및 제2 첨가제를 모두 포함하는 실시예 1 내지 20의 이차전지는 제1 첨가제 화합물이 금속 이물과 착물을 형성하여 용출된 금속을 제거하는 동시에 양극 표면에 피막을 형성하고, 제2 첨가제인 LiDFP가 피막 상에 무기 성분을 증가시켜 열적 안정성을 향상시킴으로써 고온 저장 후에도 저전압이 방지되어 약 3.85V 이상의 전압을 유지하는 것을 알 수 있다.
반면에, 제1 첨가제 및 제2 첨가제를 모두 포함하지 않는 비수전해액을 구비한 비교예 1의 이차전지 및 제2 첨가제만을 포함하는 비수전해액을 구비한 비교예 3의 이차전지의 경우, 고온 저장 후 전압이 각각 2.55V 및 2.63V로 현저히 열위한 것을 알 수 있다.
또한, 제1 첨가제로 화학식 1의 화합물 대신 화학식 2의 화합물을 포함하는 비수전해액을 구비한 비교예 4의 이차전지는 금속 (Fe) 이물을 흡착할 수 없는 첨가제를 포함하지 않기 때문에, 고온 저장 후 전압이 각각 2.24V로 현저히 열위한 것을 알 수 있다.
한편, 제1 첨가제 및/또는 제2 첨가제를 과량으로 포함하는 비수전해액을 구비한 비교예 5 내지 7의 이차전지의 경우, 이차전지 내에서의 첨가제의 부반응 및 저항 증가로 인하여 고온 저장 후 전압이 각각 3.83V, 3.78V 및 3.72V로 실시예 1 내지 20의 이차전지 대비 열위한 것을 알 수 있다.
한편, 저전압 개선에 효과적인 제1 첨가제만을 포함하는 비수전해액을 구비한 비교예 2의 이차전지의 경우, 고온 후 저장 전압은 4.03V로, 실시예 1 내지 20의 이차전지 대비 소량 감소한 것을 알 수 있다.
실험예 3.
상기 실시예 1 내지 20 및 비교예 1 내지 7에서 제조된 각각의 이차전지를 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 0.5C 3.0V로 방전하였다(초기방전 용량). 이어서 0.8C rate로 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 60℃에서 2주간 보관하였다. 이후 상온에서 0.5C 3.0V로 방전하여 그 방전량을 측정하였다(잔존 방전량). 다시 0.8C rate, 4.35V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전, 0.5C 3.0V 방전하여 방전량을 측정하였다(회복 방전량). 잔존 방전량과 회복 방전량을 초기 방전량 대비 %로 나타내어 하기 표 3에 기재하였다.
이후 상온에서 0.5C 3.0V로 방전하는 것을 한 cycle로 하여 100회 cycle 실시 후의 용량을 1회 cycle 용량에 대비 %로 나타내어 하기 표 3에 기재하였다.
실시예 리튬염 유기용매첨가량(g) 제1 첨가제 제2 첨가제첨가량(g) 제3 첨가제첨가량(g) 잔존 방전량(%) 회복 방전량(%) 사이클 용량 보유율(%)
화학식 첨가량(g)
실시예 1 1.0M LiPF6 98 1a 1 1 - 88 94 86
실시예 2 1.0M LiPF6 98 1b 1 1 - 86 92 83
실시예 3 1.0M LiPF6 98 1c 1 1 - 85 90 83
실시예 4 1.0M LiPF6 98 1d 1 1 - 85 88 82
실시예 5 1.0M LiPF6 98 1e 1 1 - 83 90 80
실시예 6 1.0M LiPF6 98 1f 1 1 - 84 90 82
실시예 7 1.0M LiPF6 98 1g 1 1 - 83 89 80
실시예 8 1.0M LiPF6 98 1h 1 1 - 83 86 81
실시예 9 1.0M LiPF6 98 1i 1 1 - 80 88 81
실시예 10 1.0M LiPF6 98 1j 1 1 - 81 88 83
실시예 11 1.0M LiPF6 98 1k 1 1 - 80 89 83
실시예 12 1.0M LiPF6 98 1l 1 1 - 78 90 80
실시예 13 1.0M LiPF6 98 1m 1 1 - 83 94 83
실시예 14 1.0M LiPF6 98 1n 1 1 - 84 90 82
실시예 15 1.0M LiPF6 98 1o 1 1 - 80 90 81
실시예 16 1.0M LiPF6 98 1p 1 1 - 83 88 79
실시예 17 1.0M LiPF6 97.8 1a 1 1 0.2 88 95 90
실시예 18 1.0M LiPF6 97.8 1k 1 1 0.2 84 92 88
실시예 19 1.0M LiPF6 86 1a 7 7 - 78 88 82
실시예 20 1.0M LiPF6 90 1a 5 5 - 80 90 85
비교예 1 1.0M LiPF6 100 - - - - 71 82 63
비교예 2 1.0M LiPF6 99 1a 1 - - 86 92 76
비교예 3 1.0M LiPF6 99 - - 1 - 83 90 74
비교예 4 1.0M LiPF6 98 2 1 1 - 66 77 69
비교예 5 1.0M LiPF6 80 1a 13 7 - 76 87 77
비교예 6 1.0M LiPF6 80 1a 7 13 - 80 85 75
비교예 7 1.0M LiPF6 80 1a 10 10 - 73 77 67
상기 표 3에 나타낸 바와 같이, 제1 및 제2 첨가제를 모두 포함하는 비수전해액을 구비한 실시예 1 내지 20의 이차전지의 경우, 고온 저장 시에 잔존 방전량이 약 78% 이상, 회복 방전량이 약 86% 이상이고, 사이클 용량 보유율이 약 79% 이상으로 모두 우수한 것을 알 수 있다.
반면에, 제1 및 제2 첨가제를 포함하지 않는 비수전해액을 구비한 비교예 1의 이차전지는 고온 저장 시 잔존 방전량은 약 71%이고, 회복 방전량은 약 82% 이며, 사이클 용량 보유율은 약 63%로 제반 성능이 실시예 1 내지 20의 이차전지 대비 저하되는 것을 확인할 수 있다.
또한, 비수전해액 첨가제로 제1 첨가제인 화학식 1a의 화합물만을 포함하는 비수전해액을 구비한 비교예 2의 이차전지의 경우, 고온 저장 시 잔존 방전량은 약 86%이고, 회복 방전량은 약 92% 이며, 사이클 용량 보유율은 약 73%로서 실시예 1의 이차전지 대비 크게 저하된 것을 알 수 있다.
또한, 비수전해액 첨가제로 제2 첨가제만을 포함하는 비수전해액을 구비한 비교예 3의 이차전지의 경우, 금속 (Fe) 이물을 흡착할 수 없는 첨가제를 포함하지 않기 때문에, 사이클 용량 보유율이 약 74%로서 실시예 1 내지 20의 이차전지 대비 저하된 것을 알 수 있다.
또한, 제1 첨가제로 화학식 1의 화합물 대신 화학식 2의 화합물을 포함하는 비수전해액을 구비한 비교예 4의 이차전지는 금속 (Fe) 이물을 흡착할 수 없는 첨가제를 포함하지 않기 때문에, 고온 저장 시 잔존 방전량은 66%이고, 회복 방전량은 77% 이며, 사이클 용량 보유율은 69%로서 실시예 1 내지 20의 이차전지 대비 현저히 열위한 것을 알 수 있다.
한편, 제1 첨가제 및/또는 제2 첨가제를 과량으로 포함하는 비수전해액을 구비한 비교예 5 내지 7의 이차전지의 경우, 이차전지 내에서의 첨가제의 부반응 및 저항 증가로 인하여 고온 저장 시 잔존 방전량은 각각 76%, 80% 및 73%이고, 회복 방전량은 각각 87%, 85% 및 77%이며, 사이클 용량 보유율 또한 각각 77%, 75% 및 67%로서 실시예 1 내지 20의 이차전지 대비 현저히 저하된 것을 알 수 있다.

Claims (12)

  1. 리튬염;
    유기용매;
    제1 첨가제로 하기 화학식 1로 표시되는 화합물; 및
    제2 첨가제인 리튬 디플루오로 포스페이트;를 포함하며,
    상기 제1 첨가제 및 제2 첨가제는 각각 독립적으로 비수전해액 전체 함량을 기준으로 0.01 중량% 내지 8.5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액:
    (화학식 1)
    Figure PCTKR2018011190-appb-I000040
    상기 화학식 1에서,
    R1 내지 R3은 각각 독립적으로 수소 또는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기이고,
    A는
    Figure PCTKR2018011190-appb-I000041
    또는
    Figure PCTKR2018011190-appb-I000042
    이며,
    상기 R4 및 R6는 각각 독립적으로 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 6 내지 12의 아릴기, 또는 -O-R5이고;
    상기 R5는 치환 또는 비치환된 탄소수 1 내지 6의 알킬기, 치환 또는 비치환된 탄소수 2 내지 6의 알키닐기, 또는 치환 또는 비치환된 탄소수 6 내지 12의 아릴기이다.
  2. 청구항 1에 있어서,
    상기 치환된 탄소수 1 내지 6의 알킬기는 적어도 하나 이상의 할로겐 원소로 치환된 탄소수 1 내지 6의 알킬기 또는 탄소수 1 내지 3의 알킬기로 치환된 탄소수 1 내지 6의 알킬기인 것인 리튬 이차전지용 비수전해액.
  3. 청구항 2에 있어서,
    상기 할로겐 원소는 불소인 것인 리튬 이차전지용 비수전해액.
  4. 청구항 1에 있어서,
    상기 치환된 탄소수 6 내지 12의 아릴기는 적어도 하나 이상의 할로겐 원소로 치환된 페닐기 또는 탄소수 1 내지 3의 알킬기로 치환된 페닐기이고,
    상기 비치환된 탄소수 6 내지 12의 아릴기는 페닐기인 것인 리튬 이차전지용 비수전해액.
  5. 청구항 4에 있어서,
    상기 할로겐 원소는 불소인 것인 리튬 이차전지용 비수전해액.
  6. 청구항 1에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1a 내지 화학식 1p로 표시되는 화합물들로 이루어진 군으로부터 선택되는 적어도 어느 하나인 것인 리튬 이차전지용 비수전해액:
    (화학식 1a)
    Figure PCTKR2018011190-appb-I000043
    (화학식 1b)
    Figure PCTKR2018011190-appb-I000044
    (화학식 1c)
    Figure PCTKR2018011190-appb-I000045
    (화학식 1d)
    Figure PCTKR2018011190-appb-I000046
    (화학식 1e)
    Figure PCTKR2018011190-appb-I000047
    (화학식 1f)
    Figure PCTKR2018011190-appb-I000048
    (화학식 1g)
    Figure PCTKR2018011190-appb-I000049
    (화학식 1h)
    Figure PCTKR2018011190-appb-I000050
    (화학식 1i)
    Figure PCTKR2018011190-appb-I000051
    (화학식 1j)
    Figure PCTKR2018011190-appb-I000052
    (화학식 1k)
    Figure PCTKR2018011190-appb-I000053
    (화학식 1l)
    Figure PCTKR2018011190-appb-I000054
    (화학식 1m)
    Figure PCTKR2018011190-appb-I000055
    (화학식 1n)
    Figure PCTKR2018011190-appb-I000056
    (화학식 1o)
    Figure PCTKR2018011190-appb-I000057
    (화학식 1p)
    Figure PCTKR2018011190-appb-I000058
  7. 청구항 1에 있어서,
    상기 제1 첨가제인 화학식 1로 표시되는 화합물은 비수전해액 전체 함량을 기준으로 0.1 중량% 내지 7 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  8. 청구항 7에 있어서,
    상기 제1 첨가제인 화학식 1로 표시되는 화합물은 비수전해액 전체 함량을 기준으로 0.1 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  9. 청구항 1에 있어서,
    상기 제2 첨가제인 리튬 디플루오로 포스페이트는 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 7 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  10. 청구항 9에 있어서,
    상기 제2 첨가제인 리튬 디플루오로 포스페이트는 비수전해액 전체 중량을 기준으로 0.1 중량% 내지 5 중량%로 포함되는 것인 리튬 이차전지용 비수전해액.
  11. 청구항 1에 있어서,
    상기 비수전해액은 제3 첨가제로 테트라비닐실란을 추가로 포함하는 것인 리튬 이차전지용 비수전해액.
  12. 청구항 1의 리튬 이차전지용 비수전해액을 포함하는 리튬 이차전지.
PCT/KR2018/011190 2017-09-21 2018-09-20 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지 WO2019059694A2 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/606,852 US11183711B2 (en) 2017-09-21 2018-09-20 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
EP18857655.7A EP3605710B1 (en) 2017-09-21 2018-09-20 Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same
CN201880028357.7A CN110612632B (zh) 2017-09-21 2018-09-20 锂二次电池用非水性电解质溶液和包含其的锂二次电池
EP20185671.3A EP3742537B1 (en) 2017-09-21 2018-09-20 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR20170121950 2017-09-21
KR10-2017-0121950 2017-09-21
KR1020180112330A KR102264735B1 (ko) 2017-09-21 2018-09-19 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
KR10-2018-0112330 2018-09-19

Publications (2)

Publication Number Publication Date
WO2019059694A2 true WO2019059694A2 (ko) 2019-03-28
WO2019059694A3 WO2019059694A3 (ko) 2019-05-09

Family

ID=65810407

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011190 WO2019059694A2 (ko) 2017-09-21 2018-09-20 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Country Status (1)

Country Link
WO (1) WO2019059694A2 (ko)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066864A (ja) 2005-08-05 2007-03-15 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7794876B2 (en) * 2006-11-08 2010-09-14 Ube Industries, Ltd. Pentafluorophenyloxy compound, and nonaqueous electrolyte solution and lithium secondary battery using same
JP2010027361A (ja) * 2008-07-18 2010-02-04 Denso Corp 二次電池用非水電解液及び該電解液を用いた非水電解液二次電池
US8703344B2 (en) * 2011-06-09 2014-04-22 Asahi Kasei Kabushiki Kaisha Materials for battery electrolytes and methods for use
WO2017061464A1 (ja) * 2015-10-09 2017-04-13 宇部興産株式会社 非水電解液及びそれを用いた蓄電デバイス

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007066864A (ja) 2005-08-05 2007-03-15 Ube Ind Ltd 非水電解液及びそれを用いたリチウム二次電池

Also Published As

Publication number Publication date
WO2019059694A3 (ko) 2019-05-09

Similar Documents

Publication Publication Date Title
WO2021034141A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018169371A2 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2019013501A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2019203622A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019093853A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020009436A1 (ko) 고온 특성이 향상된 리튬 이차전지
WO2018106078A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2020060295A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019135624A1 (ko) 겔 폴리머 전해질 조성물, 이에 의해 제조된 겔 폴리머 전해질 및 이를 포함하는 리튬 이차전지
WO2020242138A1 (ko) 리튬 이차전지용 양극, 이의 제조방법 및 이를 포함한 리튬 이차전지
WO2020096343A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019039903A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022010281A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2021015535A1 (ko) 리튬 이차전지
WO2020060293A1 (ko) 겔 폴리머 전해질용 조성물 및 이로부터 형성된 겔 폴리머 전해질을 포함하는 리튬 이차전지
WO2019088733A1 (ko) 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2018080259A1 (ko) 이차전지용 고분자 전해질 및 이를 포함하는 이차전지
WO2022055307A1 (ko) 고분자 전해질용 전구체 조성물 및 이로부터 형성된 젤 고분자 전해질
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019107855A1 (ko) 이차전지용 폴리머 전해질 및 이를 포함하는 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018044128A1 (ko) 고분자 전해질 및 이를 포함하는 리튬 이차전지
WO2019059694A2 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857655

Country of ref document: EP

Kind code of ref document: A2

ENP Entry into the national phase

Ref document number: 2018857655

Country of ref document: EP

Effective date: 20191024

NENP Non-entry into the national phase

Ref country code: DE