WO2019059408A1 - Oam多重通信システムおよびoam多重通信方法 - Google Patents

Oam多重通信システムおよびoam多重通信方法 Download PDF

Info

Publication number
WO2019059408A1
WO2019059408A1 PCT/JP2018/035537 JP2018035537W WO2019059408A1 WO 2019059408 A1 WO2019059408 A1 WO 2019059408A1 JP 2018035537 W JP2018035537 W JP 2018035537W WO 2019059408 A1 WO2019059408 A1 WO 2019059408A1
Authority
WO
WIPO (PCT)
Prior art keywords
oam
transmitting
weight
station
signal
Prior art date
Application number
PCT/JP2018/035537
Other languages
English (en)
French (fr)
Inventor
裕文 笹木
斗煥 李
浩之 福本
宏礼 芝
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to CN201880062060.2A priority Critical patent/CN111133698B/zh
Priority to US16/650,370 priority patent/US11202211B2/en
Priority to JP2019543146A priority patent/JP6996563B2/ja
Priority to EP18859911.2A priority patent/EP3691153B1/en
Publication of WO2019059408A1 publication Critical patent/WO2019059408A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0469Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking special antenna structures, e.g. cross polarized antennas into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2639Modulators using other transforms, e.g. discrete cosine transforms, Orthogonal Time Frequency and Space [OTFS] or hermetic transforms
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals

Definitions

  • the present invention relates to an OAM multiplex communication system and an OAM multiplex communication method for spatially multiplexing and transmitting a radio signal using an orbital angular momentum (OAM) of an electromagnetic wave.
  • OAM orbital angular momentum
  • the equiphase surface is spirally distributed along the propagation direction around the propagation axis. Because electromagnetic waves having different OAM modes and propagating in the same direction have orthogonal spatial phase distributions in the rotational direction, the signals are multiplexed by separating the signals of each OAM mode modulated by different signal sequences at the receiving station. It is possible.
  • Non-Patent Document 1 coaxial multiplex transmission of signals has been successful by transmitting the beams radiated from a plurality of horn antennas into different OAM modes by means of phase plates and combining them coaxially.
  • a plurality of OAM modes are generated, synthesized, and transmitted using a uniform circular array antenna (UCA: Uniform Circular Array) in which a plurality of antenna elements are circularly arranged at equal intervals, and thus different signal sequences can be obtained.
  • UCA Uniform Circular Array
  • the signal of the OAM mode n is generated by setting the phase of each antenna element of UCA to be n rotations (n ⁇ 360 degrees).
  • OAM generated using UCA only utilizes orthogonality of the rotational direction (circumferential direction) in the polar coordinate system, and maximizes planar (two-dimensional) spatial resources in beam transmission. It can not be said that it can be used to the limit.
  • spatial multiplexing transmission by MIMO signal processing is performed using an array antenna composed of a large number of two-dimensionally arranged antenna elements, although high resource utilization efficiency can be obtained, independent transmission paths can be obtained. A great deal of operation is required for signal processing for securing and weight multiplication.
  • the reception symbol vector y in the MIMO transmission using a normal array antenna can be expressed as Expression (1) using the propagation channel matrix H and the transmission symbol vector s.
  • the noise term is omitted for simplicity.
  • N TX and N RX are the number of transmitting antenna elements and the number of receiving antenna elements, respectively.
  • H can be decomposed as shown in Formula (2) by singular value decomposition.
  • ⁇ (x, y) represents the x rows and y columns of the matrix ⁇ .
  • q min (N RX , N TX )
  • U and V are N RX ⁇ N RX and N TX ⁇ N TX matrices, respectively, and ⁇ is an N RX ⁇ N TX matrix.
  • the number of devices such as mixers, DA converters and AD converters required to realize these increases in proportion to the number of antenna elements, and the amount of operation required for digital signal processing such as channel estimation is the number of antenna elements Increase exponentially according to Moreover, the digital signal processing thereof needs to be performed for each subcarrier, and when performing digital communication using the obtained CSI information, a huge number of operations based on the number of unique values, the number of multi-values, etc. are required. In order to realize ultra-high-speed wireless transmission, it is essential to reduce the number of devices and the amount of operation.
  • the present invention uses M (Multi) -UCA in which a plurality of UCAs are arranged concentrically, and in addition to the OAM mode having orthogonality in the dimension of rotational direction in the polar coordinate system, the dimension in the diametrical direction for each OAM mode It is an object of the present invention to provide an OAM multiplex communication system and an OAM multiplex communication method capable of generating one or more modes and generating a large number of complex modes with a smaller number of apparatuses and a smaller amount of operation compared to the prior art.
  • a first invention is an OAM multiplex communication system for multiplexing and transmitting a plurality of signal sequences using an OAM mode as a basis in the dimension of rotational direction, and a transmitting station arranges a plurality of antenna elements at equal intervals in a circle.
  • the UCA is subjected to basis conversion in each of the rotational and diametrical dimensions in a polar coordinate system having a transmission antenna using M-UCA composed of a plurality of UCAs arranged concentrically and a center of the plurality of UCAs as origins. It includes means for multiplexing and transmitting a plurality of signal sequences for each composite mode formed by a combination of bases of different dimensions.
  • a receiving station receives an M-UCA receiving antenna composed of a plurality of UCAs in which UCAs are concentrically arranged, and means for receiving a signal multiplexed and transmitted from a transmitting station and separating a plurality of multiplexed signal sequences And.
  • the receiving station estimates channel information between the transmitting antenna and the receiving antenna using a known reference signal transmitted from the transmitting station, and performs basis conversion from the channel information in rotational and diametrical dimensions.
  • Means for converting the transmission weights into reception weights and reception weights, and the transmitting station multiplies the plurality of signal sequences by the transmission weights fed back from the receiving stations to perform basis conversion in the diametrical dimension;
  • the apparatus may further comprise weight multiplying means for multiplying the receiving weight to perform diametrical basis conversion.
  • the transmitting station has a function or table in which transmission weights to be multiplied according to the distance between transmitting antennas and receiving antennas are predetermined, and different transmission weights for one or more signal sequences to be multiplexed for each OAM mode to be used.
  • the receiving station performs basis conversion for each UCA, and corresponds to the transmission weights used by the transmitting station for one or more different signal sequences for each OAM mode.
  • the reception weights may be multiplied, and a plurality of signal sequences multiplexed and transmitted may be separated using a predetermined equalization algorithm.
  • the transmitting station is configured to determine the transmission weight from the orthogonal distribution function according to the inter-antenna distance
  • the receiving station may be configured to determine the receiving weight from the orthogonal distribution function used by the transmitting station according to the inter-antenna distance. Good.
  • the transmitting station and the receiving station may further comprise means for determining the combination of the transmit weight and the receive weight and the orthogonal basis, and determining the transmit power and the modulation scheme of the combined mode, based on the available combined mode reception signal quality. Good.
  • a second invention is an OAM multiplex communication method for multiplexing and transmitting a plurality of signal sequences using an OAM mode as a basis in the dimension of rotational direction, wherein the transmitting station circularizes a plurality of antenna elements as a transmitting antenna, etc.
  • Base conversion is performed on each dimension of rotational direction and diameter direction in the polar coordinate system with the centers of a plurality of UCAs as the origin using M-UCA consisting of a plurality of UCAs arranged concentrically, using UCA arranged at intervals,
  • a plurality of signal sequences are multiplexed and transmitted for each composite mode formed by a combination of bases of different dimensions.
  • the receiving station uses an M-UCA composed of a plurality of UCAs in which UCAs are concentrically arranged as a receiving antenna, receives a signal multiplexed and transmitted from the transmitting station, and separates a plurality of multiplexed signal sequences.
  • the receiving station estimates channel information between the transmitting antenna and the receiving antenna using a known reference signal transmitted from the transmitting station, and performs basis conversion from the channel information in rotational and diametrical dimensions.
  • the transmitting station converts a plurality of signal sequences by transmission weights fed back from the receiving station to perform diametrical basis conversion, and transmits from a plurality of UCAs.
  • the signal may be generated respectively, and the receiving station may separate the signal of the OAM mode from the received signals of the plurality of UCAs and multiply the signal of the OAM mode by the receiving weight to perform diametrical basis conversion.
  • the transmitting station has a function or table in which transmission weights to be multiplied according to the distance between transmitting antennas and receiving antennas are predetermined, and different transmission weights for one or more signal sequences to be multiplexed for each OAM mode to be used.
  • the receiving station performs basis conversion for each UCA, and the reception weight corresponding to the transmission weight used by the transmitting station to one or more different signal sequences for each OAM mode.
  • a plurality of signal sequences multiplexed may be separated by multiplication and using a predetermined equalization algorithm.
  • the transmitting station may determine the transmission weight from the orthogonal distribution function according to the distance between the antennas, and the receiving station may determine the reception weight from the orthogonal distribution function used by the transmitting station according to the distance between the antennas.
  • the transmitting station and the receiving station may determine the combination of the transmit weight and the receive weight and the orthogonal basis based on the available combined mode reception signal quality and determine the combined mode transmission power and modulation scheme.
  • the present invention generates OAM modes by basis conversion using Fourier series etc. in the rotational direction in the polar coordinate system using M-UCA, and then corresponds to each basis vector in the rotational direction in the dimension in the diameter direction.
  • FIG. 7 is a diagram illustrating an example of a processing procedure of the OAM multiplex communication method in the first embodiment. It is a figure which shows the structure of Example 2 of the OAM multiplex communication system of this invention. It is a figure which shows the structure of Example 5 of the OAM multiplex communication system of this invention.
  • FIG. 18 is a diagram illustrating an example of a processing procedure of the OAM multiplex communication method in the fifth embodiment. It is a figure which shows the structure of Example 6 of the OAM multiplex communication system of this invention. It is a figure which shows an example of a 8x8 Butler matrix. It is a figure which shows an example of 4x8 Butler matrix.
  • FIG. 1 shows a configuration example of M-UCA of the OAM multiplex communication system of the present invention.
  • M-UCA has a configuration in which a plurality of UCAs are arranged concentrically.
  • a configuration is shown in which four UCAs having different radiuses are arranged, and the first UCA, the second UCA, the third UCA, and the fourth UCA are sequentially arranged from the inner UCA.
  • each UCA shows an example provided with 16 antenna elements (indicated by ⁇ in the figure), the number of antenna elements of each UCA does not necessarily have to be the same.
  • the antenna element constituting the M-UCA may have any other form such as a horn antenna or a patch antenna.
  • the feature of the present invention lies in the antenna configuration by M-UCA and the arithmetic processing method associated therewith.
  • basis conversion is performed in each dimension of the diameter direction and rotation direction of M-UCA, for example, Fourier series as orthogonal basis in rotation direction. Where it is used.
  • FIG. 2 shows the configuration of the first embodiment of the OAM multiplex communication system of the present invention.
  • the transmitting station 10 is provided with a plurality of M TX first UCA 15-1 to M TX UCA 15-M TX, and the number of transmitting antenna elements is N TX (1) to N TX (M TX ).
  • the signal processing unit 11 receives transmission signal sequences and generates M 1 to M L signals to be transmitted in the OAM modes # 1 to #L.
  • the transmission weight multiplication processing unit 12 multiplies each signal generated by the signal processing unit 11 by the transmission weight, and generates a signal to be transmitted in each of the OAM modes # 1 to #L from each UCA.
  • the 1OAM mode generation processing unit 14-1 to the M TX OAM mode generating unit 14-M TX are respectively input a signal to be transmitted by the OAM mode # 1 through # L, OAM mode # 1 from each UCA #
  • the signal is phase-adjusted so as to be transmitted as an L signal, and is input to the antenna element of each UCA.
  • the receiving station 20 includes a plurality of M RX first UCAs 21-1 to M RX UCA 21-M RX, and the number of receiving antenna elements is N RX (1) to N RX (M RX ).
  • the 1OAM mode separation processing unit 22-1 to the M RX OAM mode separation processing unit 22-M RX is the OAM mode # 1 ⁇ # L from a signal received respectively by the 1UCA21-1, second M RX UCA21-M RX Separate the signal.
  • the reception weight multiplication processing unit 23 inputs the signals of the OAM modes # 1 to #L separated for each UCA, respectively multiplies the reception weights, separates the signals of the same OAM mode received by each UCA, and M 1 Output as M L signals.
  • the signal processing unit 25 demodulates the signal received in each UCA and each OAM mode and outputs a received signal sequence.
  • the receiving station 20 from the output signal of the 1OAM mode separation processing unit 22-1 to the M RX OAM mode separation processing unit 22-M RX, channel estimation and singular value decomposition to estimate the channel information of each signal sequence A processing unit 26 is provided.
  • the channel estimation / singular value decomposition processing unit 26 sets the estimated channel information in the reception weight multiplication processing unit 23, and sets the channel information in the transmission weight multiplication processing unit 12 of the transmission station 10 via the channel information feedback unit 27.
  • the multiplexing numbers M 1 to M L for each OAM mode are set in the processing unit 11.
  • the OAM mode separation processing unit 22- MRX may be either digital signal processing or analog signal processing, and the DA converter or AD converter is disposed at an appropriate position according to the method of each processing. Also, the first OAM mode generation processing unit 14-1 to the M TX OAM mode generation processing unit 14-M TX of the transmission station 10, and the first OAM mode separation processing unit 22-1 to the M RX OAM mode separation of the reception station 20.
  • the processing units 22-M RX are sequentially connected in the same rotation direction to the corresponding antenna elements of the UCA.
  • FIG. 3 is an example of the processing procedure of the OAM multiplex communication method in the first embodiment.
  • the transmitting station 10 transmits a known reference signal
  • the receiving station 20 performs channel estimation processing from the reference signal, acquires necessary channel information by singular value decomposition processing, and feeds it back to the transmitting station.
  • the transmitting station 10 determines the multiplexing number / transmission mode using the channel information fed back, performs transmission weight multiplication processing, generates an OAM mode signal, and performs OAM multiplexing transmission.
  • the receiving station 20 performs separation processing of the signal of the OAM mode received for each UCA, performs reception weight multiplication processing, separates the same OAM mode received by a plurality of UCAs, and outputs the result as a reception signal.
  • the receiver station 20 may transmit a known signal to the transmitter station 10, and the transmitter station 10 may perform channel estimation. In either configuration, any configuration may be used as long as the weights multiplied by the transmitting station 10 and the receiving station 20 can be obtained from the channel information.
  • the transmitting antennas are composed of a plurality of M TX first UCA 15-1 to M TX UCA 15-M TX , and the number of transmitting antenna elements is N TX (1) to N TX (M TX ), and the number of receiving antennas is plural consists of a first 1UCA21-1 ⁇ the M RX UCA21-M RX of M RX, when each of the number of receiving antennas elements and N RX (1) ⁇ N RX (M RX), the propagation channel matrix H to the following formula ( 4) It can be expressed as
  • the propagation channel h m, n between each UCA can be subjected to singular value decomposition as follows using a discrete Fourier transform (DFT) matrix D N ⁇ C N * N it can.
  • DFT discrete Fourier transform
  • Equation (5) and Equation (6) represent the indexes of the rows and columns of the matrix ⁇ ⁇ ⁇ and the matrix D, respectively.
  • the indices of matrices and vectors will be expressed similarly in the following.
  • l (x) is the value of the mode in the rotational direction corresponding to the eigenvectors of the x rows of the DFT matrix, and represents the OAM mode.
  • the number of singular values of the propagation channel between each UCA is given by min [N RX (m), N TX (n)] Is one. Therefore, the propagation channel between the m-th reception UCA 21-m and the n-th transmission UCA 15-n is orthogonalized as shown in equation (7) and min [N RX (m), N TX (n)] independent Transmission line can be secured.
  • This equation (7) represents OAM mode generation / separation processing, which is processing equivalent to discrete Fourier transform and inverse transform.
  • H l (x), l (y) is a channel between the OAM modes l (x) and l (y), and is expressed by equation (9).
  • OAM mode generation / separation processing is performed by an analog circuit such as Butler matrix, it is different from the conventional MIMO in which the number of mixers proportional to the number of antennas, devices such as DA converter and AD converter are essential
  • the number of devices such as mixers, DA converters and AD converters can be easily reduced.
  • the number of independent combined modes obtained from all the above channels is at most L ⁇ P.
  • the composite mode to be used may be arbitrarily determined according to the size of the unique value obtained in the installation environment assumed in advance, the required number of parallel transmissions, and the like.
  • the processing procedure in the OAM multiplex communication method shown in FIG. 3 is executed when data to be transmitted arrives at the transmitting station.
  • weight calculation by singular value decomposition processing may not be performed while propagation channels are equal, and weights to be multiplied may use past values.
  • the transmitting and receiving antennas are M-UCA having the parameters shown in Table 1, and the transmitting and receiving antennas are disposed to face each other so that the propagation axis is perpendicular to the antenna plane and passes through the centers of all the UCAs.
  • the parameters in Table 1 are common to the transmitting and receiving antennas.
  • the OAM mode used in this embodiment is five modes of -2, -1, 0, 1, and 2.
  • the equation (4) for the channel formed by opposing arrangement of M-UCA The equivalent channel matrix ⁇ (20 ⁇ 20) shown in equation (8) is obtained by performing the OAM mode generation / separation process shown in (5) at the transmitting / receiving station.
  • the left and right singular matrices (20 ⁇ 20 matrix) are obtained by singular value decomposition as shown in equation (10), and then the right singular matrix is fed back to the transmitting station.
  • the transmission signal sequence is divided into the number of combined modes to be multiplexed (S / P conversion) and modulated in each. Further, weight modulation of the right singular matrix obtained by the above pre-processing and OAM mode generation processing are performed on the modulated signal based on the processing procedure shown in FIG. 3, and converted to an analog signal by DAC. Each antenna element is fed.
  • the signal received by each antenna element is converted into a digital signal by the ADC, and then the left singular matrix obtained by the OAM mode separation processing and the above preprocessing based on the processing procedure shown in FIG. Weight multiplication is performed. Further, after the obtained signal is demodulated, the signal divided for each combined mode is combined on the transmission side (P / S conversion) to obtain a received signal sequence.
  • channel estimation and singular value decomposition are performed for each subcarrier according to the present embodiment, etc., depending on the transmission scheme to be used. It is good to expand the dimension of the direction and to process.
  • MMSE minimum mean square error
  • ZF equal to the left singular matrix
  • FIG. 4 shows the configuration of a second embodiment of the OAM multiplex communication system of the present invention.
  • the transmitting station 10 is provided with a plurality of M TX first UCA 15-1 to M TX UCA 15-M TX, and the number of transmission antenna elements is N TX (1) to N TX (M TX ).
  • the signal processing unit 11 receives transmission signal sequences, generates M 1 to M L signals to be transmitted in the OAM modes # 1 to #L, respectively, and transmits the first transmission weight multiplication processing unit 12-1 to the Lth transmission. Input to the weight multiplication processing unit 12-L.
  • the first transmission weight multiplication processing unit 12-1 multiplies the transmission weight by the signal to be transmitted in the OAM mode # 1, and generates a signal to be transmitted in the OAM mode # 1 from each UCA to generate a first OAM mode generation processing unit 14-.
  • the L-th transmission weight multiplication processing unit 12-L multiplies the transmission weight in the signal transmitted in the OAM mode #L, generates a signal transmitted in the OAM mode #L from each UCA, and generates the first OAM mode generation process.
  • the unit 14-1 to the M-th M TX OAM mode generation processing unit 14-M TX are respectively input.
  • the 1OAM mode generation processing unit 14-1 to the M TX OAM mode generating unit 14-M TX are respectively input a signal to be transmitted by the OAM mode # 1 through # L, OAM mode # 1 from each UCA #
  • the signal is phase-adjusted so as to be transmitted as an L signal, and is input to the antenna element of each UCA.
  • the receiving station 20 includes a plurality of M RX first UCAs 21-1 to M RX UCA 21-M RX, and the number of receiving antenna elements is N RX (1) to N RX (M RX ).
  • the 1OAM mode separation processing unit 22-1 to the M RX OAM mode separation processing unit 22-M RX separates the signals of OAM mode # 1 ⁇ # L from a signal received by the respective UCA, the each OAM mode entered on one reception weight multiplication processing units 24-1 to the L reception weight multiplication unit 24-M L.
  • the first reception weight multiplication processing unit 24-1 inputs the signal of the OAM mode # 1 received by each UCA, multiplies and separates the reception weight, and outputs it as M 1 signals.
  • the first L reception weight multiplication unit 24-M L the reception weight by inputting a signal of OAM mode #L received by each UCA were separated by multiplying, for output as M L-number of signal.
  • the signal processing unit 25 demodulates the signal received in each UCA and each OAM mode and outputs a received signal sequence.
  • the receiving station 20 from the output signal of the 1OAM mode separation processing unit 22-1 to the M RX OAM mode separation processing unit 22-M RX, channel estimation and singular value decomposition to estimate the channel information of each signal sequence A processing unit 26 is provided.
  • the channel estimation / singular value decomposition processing unit 26 sets the estimated channel information in the first reception weight multiplication processing unit 24-1 to the L-th reception weight multiplication processing unit 24 -ML , and the channel information feedback unit 27 and it sets the first transmission weight multiplication processing units 13-1 to L th transmission weight multiplication unit 13-M L of the transmitting station 10, the multiplex number M 1 ⁇ M L for each OAM mode to the signal processing unit 11 Set
  • a feature of the second embodiment is that transmission weight multiplication processing and reception weight multiplication processing are performed in parallel in each OAM mode.
  • the OAM mode generation processing unit and the OAM mode separation processing unit respectively generate / separate signals of different OAM modes, so an OAM mode constituting an equivalent channel ⁇ ⁇ including OAM mode generation / separation processing shown in equation (8)
  • the channel between different OAM modes (x ⁇ y) can be approximated as a zero matrix, and a block diagonal matrix like equation (12) is obtained
  • P min (M RX , M TX ) by performing weight multiplication processing with Then, P independent transmission paths can be secured for each of the L OAM modes.
  • OAM modes are generated by N TX L-point discrete Fourier transforms at the transmitting station and N RX L-point discrete Fourier transforms at the receiving station.
  • Separating processing and singular value decomposition processing of Luse times (M RX ⁇ M TX ) matrix may be performed, and the amount of operation can be significantly reduced compared to the conventional MIMO and the first embodiment. It is.
  • OAM mode generation / separation processing is performed by an analog circuit such as Butler matrix, it is different from the conventional MIMO in which the number of mixers proportional to the number of antennas, devices such as DA converter and AD converter are essential
  • the number of devices such as mixers, DA converters and AD converters can be easily reduced.
  • the number of independent combined modes obtained from all the above channels is at most L ⁇ P.
  • the composite mode to be used may be arbitrarily determined according to the size of the unique value obtained in the installation environment assumed in advance, the required number of parallel transmissions, and the like.
  • the processing procedure in the OAM multiplex communication method shown in FIG. 3 is executed when data to be transmitted arrives at the transmitting station.
  • weight calculation by singular value decomposition processing may not be performed while propagation channels are equal, and weights to be multiplied may use past values.
  • the transmitting and receiving antennas are M-UCA having the parameters shown in Table 1, and the transmitting and receiving antennas are disposed to face each other so that the propagation axis is perpendicular to the antenna plane and passes through the centers of all UCAs.
  • the parameters in Table 1 are common to the transmitting and receiving antennas.
  • the OAM mode used in this embodiment is 16 modes of -8, -7, ..., 6, 7.
  • the equation (4) for the channel formed by opposing arrangement of M-UCA By performing the OAM mode generation / separation process shown in (5) at the transmitting / receiving station, among the channels between the OAM modes shown in equation (9), the channel matrix H 1 (4 ⁇ 4) between the same OAM mode l is acquired Do.
  • the left and right singular matrices (16 4 ⁇ 4 matrices) are obtained by singular value decomposition as shown in equation (13), and then the right singular matrix is fed back to the transmitter.
  • Table 2 shows eigenvalues corresponding to combinations of rotational and diametrical dimensions when the antenna is installed with the parameters of Table 1.
  • the transmission signal sequence is divided into the number of combined modes to be multiplexed (S / P conversion) and modulated in each. Further, weight modulation of the right singular matrix obtained by the above pre-processing and OAM mode generation processing are performed on the modulated signal based on the processing procedure shown in FIG. 3, and converted to an analog signal by DAC. Each antenna element is fed.
  • the signal received by each antenna element is converted into a digital signal by the ADC, and then the left singular matrix obtained by the OAM mode separation processing and the above preprocessing based on the processing procedure shown in FIG. Weight multiplication is performed. Further, after the obtained signal is demodulated, the signal divided for each combined mode is combined on the transmission side (P / S conversion) to obtain a received signal sequence.
  • channel estimation and singular value decomposition are performed for each subcarrier according to the present embodiment, etc., depending on the transmission scheme to be used. It is good to expand the dimension of the direction and to process.
  • MMSE minimum mean square error
  • ZF equal to the left singular matrix
  • Example 3 when the transmission signal sequence is subjected to S / P conversion and modulation, the eigenvalues of the complex mode are used to perform complex control to be used using the water injection theorem and the like and power control to be allocated to them. Perform channel coding.
  • Table 3 shows the power when combined mode selection and power allocation are performed using the water injection theorem. Note that the power is normalized to 1 when the combination of the rotational and diametrical modes is [0, 0]. Table 3 shows that when the transmission and reception antenna is installed with the parameters of Table 1 and the water injection theorem is applied, the composite mode in the bold frame of the figure is used.
  • the modulation scheme and the coding scheme are adaptively selected according to the reception SNR for each mode in consideration of the noise superimposed on the transmitting and receiving station. By doing this, it is possible to secure a high transmission capacity as compared with the first embodiment.
  • the fourth embodiment prepares in advance a composite mode to be used corresponding to the distance between antennas, a weight to be multiplied by the transmitting / receiving station, a table or a function of power distribution, and the like.
  • the channels between the antennas and their eigenvalues are uniquely determined by the distance between the antennas. That is, in the fourth embodiment, the use combined mode and the power distribution are determined based on the previously created table or function or the like by acquiring information on the distance between antennas without the need for channel information estimation and feedback. be able to.
  • FIG. 5 shows the configuration of the fifth embodiment of the OAM multiplex communication system of the present invention.
  • Weight calculation unit 28 from the output signal of the 1OAM mode separation processing unit 22-1 to the M RX OAM mode separation processing unit 22-M RX, performs channel estimation and weight calculation, setting the reception weight multiplication unit 23 Do.
  • FIG. 6 is an example of the processing procedure of the OAM multiplex communication method in the fifth embodiment.
  • the transmitting station 10 determines the multiplexing number / transmission mode using prescribed channel information, performs weight multiplication processing, generates an OAM mode signal, and performs OAM multiplex transmission.
  • the receiving station 20 separates the received signal in the OAM mode, performs channel estimation and weight calculation, performs weight multiplication processing, and outputs the result as a received signal.
  • the operation principle of the fifth embodiment is basically the same as the operation principle of the first embodiment, but for the channel response ⁇ obtained by the equation (8), transmission formed by a predetermined transmission weight vector By multiplying the weight matrix V, a signal such as the following equation (15) is obtained.
  • reception weights obtained using a predetermined reception weight matrix U, or an equalization algorithm such as a minimum mean square error (MMSE) algorithm or a zero forcing (ZF) algorithm.
  • MMSE minimum mean square error
  • ZF zero forcing
  • the elements H l (x) and l (y) of equation (9) are limited to the combination of the OAM modes actually used. . Therefore, if the transmitting station does not have OAM mode generation / separation processing by N TX L-point discrete Fourier transforms at the transmitting station and N RX L-point discrete Fourier transforms at the receiving station, and if the transmission / reception weights are not determined in advance (Luse ⁇ It is only necessary to equalize the M RX ) ⁇ (Luse ⁇ M TX ) matrix, and it is possible to reduce the amount of computation compared to conventional MIMO.
  • OAM mode generation / separation processing is performed by an analog circuit such as Butler matrix, it is different from the conventional MIMO in which the number of mixers proportional to the number of antennas, devices such as DA converter and AD converter are essential
  • the number of devices such as mixers, DA converters and AD converters can be easily reduced.
  • the number of independent combined modes obtained from all the above channels is at most L ⁇ P.
  • the composite mode to be used may be arbitrarily determined according to the size of the unique value obtained in the installation environment assumed in advance, the required number of parallel transmissions, and the like.
  • the processing procedure in the OAM multiplex communication method shown in FIG. 6 is executed when data to be transmitted arrives at the transmitting station.
  • weight calculation may not be performed while propagation channels are equal, and weights to be multiplied may use past values.
  • the transmitting and receiving antennas are M-UCA having the parameters shown in Table 1, and the transmitting and receiving antennas are disposed to face each other so that the propagation axis is perpendicular to the antenna plane and passes through the centers of all the UCAs.
  • the OAM mode used in this embodiment is five modes of -2, -1, 0, 1, and 2.
  • the unit matrix shown in equation (17) is used as a transmission weight matrix used in the present method.
  • the transmission signal sequence is divided into the number of complex modes to be multiplexed (S / P conversion) and modulated in each of them.
  • different known signal sequences previously shared by the transmitting and receiving stations are provided before each signal.
  • weight multiplication and OAM mode generation processing shown in equation (12) are performed on the modulated signal, and after being converted into an analog signal by a DA converter, power is supplied to each antenna element.
  • the signal received by each antenna element is converted to a digital signal by an AD converter and then subjected to an OAM mode separation process, and the reception weight matrix calculated by the MMSE algorithm for the received signal y. Multiply U Further, after the obtained signal is demodulated, the signal divided for each combined mode is combined on the transmission side (P / S conversion) to obtain a received signal sequence.
  • FIG. 7 shows the configuration of a sixth embodiment of the OAM multiplex communication system of the present invention. 7, in place of the channel estimation / singular value decomposition processing unit 26 and the feedback unit 27 of the receiving station 20 of the second embodiment shown in FIG. 4, a weight calculation processing unit 28 is provided in the sixth embodiment. Weight calculation unit 28 from the output signal of the 1OAM mode separation processing unit 22-1 to the M RX OAM mode separation processing unit 22-M RX, performs channel estimation and weight calculation, setting the reception weight multiplication unit 23 Do.
  • the OAM mode generation processing unit and the OAM mode separation processing unit generate / separate signals of different OAM modes, so an OAM mode constituting an equivalent channel including OAM mode generation / separation processing shown in equation (8)
  • the channel between different OAM modes (x ⁇ y) can be approximated as a zero matrix, and a block diagonal matrix like equation (18) is obtained
  • s l is a signal vector.
  • a predetermined reception weight matrix U or MMSE (minimum mean square error) algorithm or ZF (zero forcing) equalization algorithm such as the algorithm
  • the elements H l (x) and l (y) of equation (9) are limited to the combination of the OAM modes actually used. . Therefore, OAM mode generation / separation processing by N TX L-point discrete Fourier transforms at the transmitting station and N RX L-point discrete Fourier transforms at the receiving station, and Luse times if the transmit / receive weights are not determined in advance. It is only necessary to equalize the N TX ⁇ N RX matrix, and the amount of computation can be significantly reduced as compared with the conventional MIMO and the first embodiment.
  • OAM mode generation / separation processing is performed by an analog circuit such as Butler matrix, it is different from the conventional MIMO in which the number of mixers proportional to the number of antennas, devices such as DAC converters and AD converters are essential By limiting the number of OAM modes, the number of devices such as mixers, DAC converters and AD converters can be easily reduced.
  • the number of independent combined modes obtained from all the above channels is at most L ⁇ P.
  • the composite mode to be used may be arbitrarily determined according to the size of the unique value obtained in the installation environment assumed in advance, the required number of parallel transmissions, and the like.
  • the processing procedure in the OAM multiplex communication method shown in FIG. 6 is executed when data to be transmitted arrives at the transmitting station.
  • weight calculation may not be performed while propagation channels are equal, and weights to be multiplied may use past values.
  • the transmitting and receiving antennas are M-UCA having the parameters shown in Table 1, and the transmitting and receiving antennas are disposed to face each other so that the propagation axis is perpendicular to the antenna plane and passes through the centers of all UCAs.
  • the parameters in Table 1 are common to the transmitting and receiving antennas.
  • the OAM mode used in this embodiment is five modes of -2, -1, 0, 1, and 2.
  • the unit matrix shown in equation (21) is used as a transmission weight matrix used in the present method.
  • the transmission signal sequence is divided into the number of complex modes to be multiplexed (S / P conversion) and modulated in each of them.
  • different known signal sequences previously shared by the transmitting and receiving stations are provided before each signal.
  • weight multiplication and OAM mode generation processing shown in equation (21) are performed on the modulated signal, and after being converted into an analog signal by the DAC, each antenna element is fed.
  • OAM mode separation process after converting into a digital signal by the ADC is performed with respect to the signal y l received for each the same OAM mode, calculated by the MMSE algorithm
  • the received weight matrix U is multiplied.
  • the signal divided for each combined mode is combined on the transmission side (P / S conversion) to obtain a received signal sequence.
  • the seventh embodiment determines orthogonal transmission weight vectors and reception weight vectors based on the distance between transmitting and receiving antennas and a Gaussian function.
  • the transmitting station acquires information on the distance between the transmitting and receiving antennas using a laser range finder or other distance estimation method. Assuming that the distance between the transmitting and receiving antennas is z, weight matrices V l and U l formed by the transmission weight vector and the reception weight vector can be expressed as in equation (22).
  • ⁇ 0 is a beam weight diameter of the Gaussian beam
  • z 0 is a value representing an offset of the beam weight position of the Gaussian beam, and may be set to any value according to the installation environment of the antenna.
  • Example 8 when the transmission signal sequence is subjected to S / P conversion and modulation, the eigenvalues of the composite mode are used, the composite mode to be used using water injection theorem, etc. and power control to be allocated to them is performed. Perform encoding.
  • eigenvalues for each mode corresponding to the distance between antennas can be calculated and prepared in advance.
  • the received power to be allocated for each composite mode used can be obtained by using the water injection theorem, etc., and the modulation scheme and coding are adaptively made according to the reception SNR for each mode considering noise superimposed on the transmitting and receiving station.
  • a high transmission capacity can be secured as compared with the fifth to seventh embodiments. This may be performed sequentially and adaptively by feeding back communication quality information during communication.
  • the ninth embodiment performs function distribution of digital signal processing and signal processing by an analog circuit.
  • a Butler matrix, a Rotman lens, and analog circuits similar thereto are used in the OAM mode generation / separation process.
  • eight antenna elements are provided for each UCA of the transmitting and receiving antennas.
  • FIG. 8 shows an example of an 8 ⁇ 8 Butler matrix of a transmitting station.
  • an 8 ⁇ 8 Butler matrix is composed of a 90-degree hybrid and phase shifters indicated by numerical values. As described above, it is possible to further reduce the load of digital signal processing by performing a part of digital signal processing with an analog circuit.
  • OAM modes may not be used up or may not be used.
  • the OAM mode 8 is not used.
  • the number of AD converters and DA converters can be reduced by terminating from the beginning the input port corresponding to the OAM mode not used in the analog circuit of the transmitting and receiving station.
  • the size of the analog circuit can be reduced depending on the maximum number of OAM modes used.
  • the tenth embodiment is provided with a reflector or lens of a parabolic antenna as a method of installing the transmitting antenna and the receiving antenna.
  • high received signal gain can be obtained by arranging so that the propagation axis passing through the center of each UCA coincides with the symmetry axis of the paraboloid of the parabolic antenna.
  • an offset parabola antenna installed so as to obtain a similar beam may be used.
  • Transmission station 11 Signal processing unit 12, 13 Transmission weight multiplication processing unit 14 OAM mode generation processing unit 15 Transmission UCA 20 receiving station 21 receiving UCA 22 OAM mode separation processing unit 23, 24 Reception weight multiplication processing unit 25 Signal processing unit 26 Channel estimation / singular value decomposition processing unit 27 Feedback unit 28 Weight calculation processing unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radio Transmission System (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

回転方向の次元における基底としてOAMモードを用いて複数の信号系列を多重伝送するOAM多重通信システムであって、送信局は、複数のアンテナ素子を円形に等間隔で配置したUCAを、同心円状に配置した複数のUCAからなるM-UCAを用いた送信アンテナと、複数のUCAの中心を原点とする極座標系における回転方向および直径方向の各次元でそれぞれ基底変換を行い、各次元の異なる基底の組み合わせで形成される複合モードごとに、複数の信号系列を多重伝送する手段を含む。受信局は、UCAを同心円状に配置した複数のUCAからなるM-UCAを用いた受信アンテナと、送信局から多重伝送された信号を受信し、その受信信号から回転方向および直径方向の各次元でそれぞれ基底変換を行い、多重伝送された複数の信号系列を分離する手段とを含む。

Description

OAM多重通信システムおよびOAM多重通信方法
 本発明は、電磁波の軌道角運動量(OAM:Orbital Angular Momentum)を用いて無線信号を空間多重伝送するOAM多重通信システムおよびOAM多重通信方法に関する。
 近年、伝送容量向上のため、OAMを用いた無線信号の空間多重伝送技術が報告されている。OAMをもつ電磁波は、伝搬軸を中心に伝搬方向にそって等位相面が螺旋状に分布する。異なるOAMモードをもち、同一方向に伝搬する電磁波は、回転方向において空間位相分布が直交するため、異なる信号系列で変調された各OAMモードの信号を受信局において分離することにより、信号を多重伝送することが可能である。
 現在までに、複数のホーンアンテナから放射されたビームを位相板によってそれぞれ異なるOAMモードに変換・同軸合成して送信することにより、信号を同軸多重伝送することに成功している(非特許文献1)。その他にも、複数のアンテナ素子を円形に等間隔で配置した等間隔円形アレーアンテナ(UCA:Uniform Circular Array)を用い、複数のOAMモードを生成・合成して送信することにより、異なる信号系列の空間多重伝送を行った報告がある(非特許文献2)。ここで、OAMモードnの信号は、UCAの各アンテナ素子の位相がn回転(n×360 度)になるように設定して生成される。
J. Wang et al., "Terabit free-space data transmission employing orbital angular momentum multiplexing, "Nature Photonics, Vol.6, pp.488-496, July 2012. Z. Li, Y. Ohashi, K. Kasai, "A dual-channel wireless communication system by multiplexing twisted radio wave," Proceedings of 44th European Microwave Conference, pp.235-238, Oct. 2014.
 しかしながら、UCAを用いて生成したOAMは、極座標系における回転方向(円周方向)の次元の直交性を利用しているだけであり、ビーム伝送において面的(二次元的)な空間リソースを最大限に活用できているとは言い難い。一方、二次元的に配置された多数のアンテナ素子で構成されるアレーアンテナを用いて、MIMO信号処理による空間多重伝送を行う場合には、高いリソース利用効率が得られるものの、独立な伝送路を確保するための信号処理やウエイト乗算に多大な演算が必要となってしまう。
 通常のアレーアンテナを用いたMIMO伝送における受信シンボルベクトルyは、伝搬チャネル行列Hと送信シンボルベクトルsを用いて式(1) のように表すことができる。なお、簡単のため雑音項は省略している。
Figure JPOXMLDOC01-appb-M000001
 ここで、NTXおよびNRXは、それぞれ送信アンテナ素子数および受信アンテナ素子数である。このとき、Hは特異値分解することにより式(2) のように分解することができる。
Figure JPOXMLDOC01-appb-M000002
 ここで、Σ(x,y) は行列Σのx行y列成分を表す。また、q=min(NRX,NTX) とすると、UおよびVはそれぞれNRX×NRXおよびNTX×NTXの行列であり、ΣはNRX×NTXの行列である。
 以上より、受信側にUH 、送信側にVのウエイトを乗算することにより、式(3) に表されるような直交するMIMOチャネルが形成される。
Figure JPOXMLDOC01-appb-M000003
 しかしながら、これらを実現するために必要なミキサやDA変換器およびAD変換器等の装置数はアンテナ素子数に比例して増大し、チャネル推定等のデジタル信号処理に要する演算量は、アンテナ素子数に応じて指数的に増大する。また、それらのデジタル信号処理はサブキャリア毎に行われる必要がある上に、得られたCSI情報を用いてデジタル通信を行う場合、固有値の数、および多値数などに基づく膨大な演算が必要であり、超高速無線伝送を実現する上でこれらの装置数および演算量の低減が必須である。
 本発明は、複数のUCAを同心円状に配置したM(Multi) -UCAを用い、極座標系における回転方向の次元で直交性を有するOAMモードに加えて、OAMモード毎に直径方向の次元で1つ以上のモードを生成し、かつ従来と比較して少ない装置数および演算量で多数の複合モードを生成することができるOAM多重通信システムおよびOAM多重通信方法を提供することを目的とする。
 第1の発明は、回転方向の次元における基底としてOAMモードを用いて複数の信号系列を多重伝送するOAM多重通信システムであって、送信局は、複数のアンテナ素子を円形に等間隔で配置したUCAを、同心円状に配置した複数のUCAからなるM-UCAを用いた送信アンテナと、複数のUCAの中心を原点とする極座標系における回転方向および直径方向の各次元でそれぞれ基底変換を行い、各次元の異なる基底の組み合わせで形成される複合モードごとに、複数の信号系列を多重伝送する手段を含む。受信局は、UCAを同心円状に配置した複数のUCAからなるM-UCAを用いた受信アンテナと、送信局から多重伝送された信号を受信し、多重伝送された複数の信号系列を分離する手段とを含む。
 受信局は、送信局から送信された既知の参照信号を用いて、送信アンテナと受信アンテナとの間のチャネル情報を推定し、このチャネル情報から回転方向および直径方向の次元で基底変換を行うための送信ウエイトおよび受信ウエイトに変換する手段を備え、送信局は、複数の信号系列に受信局からフィードバックされた送信ウエイトを乗算して直径方向の次元の基底変換を行うウエイト乗算手段と、複数のUCAから送信するOAMモードの信号をそれぞれ生成するOAMモード生成手段とを備え、受信局は、複数のUCAの受信信号からそれぞれOAMモードの信号を分離するOAMモード分離手段と、OAMモードの信号に受信ウエイトを乗算して直径方向の次元の基底変換を行うウエイト乗算手段とを備えてもよい。
 送信局は、送信アンテナと受信アンテナのアンテナ間距離に応じて乗算する送信ウエイトを予め定めた関数またはテーブルを備え、利用するOAMモードごとに多重する1つ以上の信号系列に対して異なる送信ウエイトを乗算してUCAごとに基底変換を行う構成であり、受信局は、UCAごとに基底変換を行い、OAMモードごとに異なる1つの以上の信号系列に、送信局で用いた送信ウエイトに対応する受信ウエイトを乗算し、所定の等化アルゴリズムを用いて多重伝送された複数の信号系列を分離する構成としてもよい。
 送信局は、アンテナ間距離に応じて直交分布関数から送信ウエイトを決定する構成であり、受信局は、アンテナ間距離に応じて送信局で用いた直交分布関数から受信ウエイトを決定する構成としてもよい。
 送信局および受信局は、利用可能な複合モードの受信信号品質に基づいて、送信ウエイトおよび受信ウエイトと直交基底の組合せを決定し、複合モードの送信電力および変調方式を決定する手段を備えてもよい。
 第2の発明は、回転方向の次元における基底としてOAMモードを用いて複数の信号系列を多重伝送するOAM多重通信方法であって、送信局は、送信アンテナとして、複数のアンテナ素子を円形に等間隔で配置したUCAを、同心円状に配置した複数のUCAからなるM-UCAを用い、複数のUCAの中心を原点とする極座標系における回転方向および直径方向の各次元でそれぞれ基底変換を行い、各次元の異なる基底の組み合わせで形成される複合モードごとに、複数の信号系列を多重伝送する。受信局は、受信アンテナとして、UCAを同心円状に配置した複数のUCAからなるM-UCAを用い、送信局から多重伝送された信号を受信し、多重伝送された複数の信号系列を分離する。
 受信局は、送信局から送信された既知の参照信号を用いて、送信アンテナと受信アンテナとの間のチャネル情報を推定し、このチャネル情報から回転方向および直径方向の次元で基底変換を行うための送信ウエイトおよび受信ウエイトに変換し、送信局は、複数の信号系列に受信局からフィードバックされた送信ウエイトを乗算して直径方向の次元の基底変換を行い、複数のUCAから送信するOAMモードの信号をそれぞれ生成し、受信局は、複数のUCAの受信信号からそれぞれOAMモードの信号を分離し、OAMモードの信号に受信ウエイトを乗算して直径方向の次元の基底変換を行ってもよい。
 送信局は、送信アンテナと受信アンテナのアンテナ間距離に応じて乗算する送信ウエイトを予め定めた関数またはテーブルを備え、利用するOAMモードごとに多重する1つ以上の信号系列に対して異なる送信ウエイトを乗算してUCAごとに基底変換を行い、受信局は、UCAごとに基底変換を行い、OAMモードごとに異なる1つの以上の信号系列に、送信局で用いた送信ウエイトに対応する受信ウエイトを乗算し、所定の等化アルゴリズムを用いて多重伝送された複数の信号系列を分離してもよい。
 送信局は、アンテナ間距離に応じて直交分布関数から送信ウエイトを決定し、受信局は、アンテナ間距離に応じて送信局で用いた直交分布関数から受信ウエイトを決定してもよい。
 送信局および受信局は、利用可能な複合モードの受信信号品質に基づいて、送信ウエイトおよび受信ウエイトと直交基底の組合せを決定し、複合モードの送信電力および変調方式を決定してもよい。
 本発明は、M-UCAを用い、極座標系における回転方向の次元において、フーリエ級数等を用いた基底変換によってOAMモードの生成を行ったのち、直径方向の次元で回転方向の各基底ベクトルに対応する複数の複合モードをそれぞれ算出することにより、回転方向および直径方向の異なる基底の組み合わせで表される独立の伝送路を用いて信号の多重伝送を行うことで、従来より低演算量で信号の多重伝送が可能となる。
本発明のOAM多重通信システムのM-UCAの構成例を示す図である。 本発明のOAM多重通信システムの実施例1の構成を示す図である。 実施例1におけるOAM多重通信方法の処理手順の一例を示す図である。 本発明のOAM多重通信システムの実施例2の構成を示す図である。 本発明のOAM多重通信システムの実施例5の構成を示す図である。 実施例5におけるOAM多重通信方法の処理手順の一例を示す図である。 本発明のOAM多重通信システムの実施例6の構成を示す図である。 8×8バトラーマトリックスの一例を示す図である。 4×8バトラーマトリックスの一例を示す図である。
 図1は、本発明のOAM多重通信システムのM-UCAの構成例を示す。
 図1において、M-UCAは、同心円状に複数のUCAを配置した構成である。ここでは、互いに半径が異なる4つのUCAを配置した構成を示し、内側のUCAから順番に、第1UCA,第2UCA,第3UCA,第4UCAとする。各UCAは16素子のアンテナ素子(図中、●で示す)を備える例を示すが、各UCAのアンテナ素子数は必ずしも同数である必要はない。M-UCAを構成するアンテナ素子は、ホーンアンテナやパッチアンテナなど、その他いかなる形態のものでもよい。
 本発明の特徴は、M-UCAによるアンテナ構成とそれに伴う演算処理方法にあり、特にM-UCAの直径方向と回転方向の各次元でそれぞれ基底変換を行い、例えば回転方向の直交基底としてフーリエ級数を用いるところにある。
(実施例1)
 図2は、本発明のOAM多重通信システムの実施例1の構成を示す。
 図2において、送信局10は、複数MTXの第1UCA15-1~第MTXUCA15-MTXを備え、それぞれの送信アンテナ素子数をNTX(1)~NTX(MTX)とする。信号処理部11は、送信信号系列を入力し、OAMモード#1~#Lでそれぞれ送信するM~M個の信号を生成する。送信ウエイト乗算処理部12は、信号処理部11で生成された各信号に送信ウエイトを乗算し、各UCAからOAMモード#1~#Lで送信する信号を生成する。第1OAMモード生成処理部14-1~第MTXOAMモード生成処理部14-MTXは、それぞれOAMモード#1~#Lで送信する信号を入力し、各UCAからそれぞれOAMモード#1~#Lの信号として送信されるように位相調整して各UCAのアンテナ素子に入力する。
 受信局20は、複数MRXの第1UCA21-1~第MRXUCA21-MRXを備え、それぞれの受信アンテナ素子数をNRX(1)~NRX(MRX)とする。第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXは、第1UCA21-1~第MRXUCA21-MRXでそれぞれ受信する信号からOAMモード#1~#Lの信号を分離する。受信ウエイト乗算処理部23は、UCAごとに分離されたOAMモード#1~#Lの信号を入力し、それぞれ受信ウエイトを乗算し、各UCAで受信した同一OAMモードの信号を分離し、M~M個の信号として出力する。信号処理部25は、各UCAおよび各OAMモードで受信した信号を復調して受信信号系列を出力する。
 さらに、受信局20には、第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXの出力信号から、各信号系列のチャネル情報を推定するチャネル推定・特異値分解処理部26を備える。チャネル推定・特異値分解処理部26は、推定したチャネル情報を受信ウエイト乗算処理部23に設定し、チャネル情報フィードバック部27を介して送信局10の送信ウエイト乗算処理部12に設定するとともに、信号処理部11に対してOAMモードごとの多重数M~Mを設定する。
 送信ウエイト乗算処理部12、受信ウエイト乗算処理部23、第1OAMモード生成処理部14-1~第MTXOAMモード生成処理部14-MTX、第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXは、デジタル信号処理およびアナログ信号処理のどちらでもよく、各処理の方法に応じて適切な位置にDA変換器またはAD変換器が配置される。また、送信局10の第1OAMモード生成処理部14-1~第MTXOAMモード生成処理部14-MTX、および受信局20の第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXは、それぞれ対応するUCAのアンテナ素子に対して同じ回転方向に順番に接続される。
 図3は、実施例1におけるOAM多重通信方法の処理手順の一例である。
 図3において、送信局10は、既知の参照信号を送信し、受信局20は参照信号からチャネル推定処理を行い、特異値分解処理により必要なチャネル情報を取得して送信局にフィードバックする。送信局10は、フィードバックされたチャネル情報を用いて多重数/伝送モードを決定し、送信ウエイト乗算処理を行い、OAMモードの信号を生成してOAM多重伝送する。受信局20は、UCAごとに受信したOAMモードの信号の分離処理を行い、さらに受信ウエイト乗算処理を行って複数のUCAで受信した同一OAMモード間の分離を行って受信信号として出力する。なお、受信局20から送信局10へ既知信号を送信させ、送信局10においてチャネル推定を行う構成でもよい。いずれの構成であっても、チャネル情報から送信局10および受信局20で乗算するウエイトをそれぞれにおいて得られる構成であればよい。
 以下、本発明の動作原理について説明する。
 送信アンテナは、複数MTXの第1UCA15-1~第MTXUCA15-MTXで構成され、それぞれの送信アンテナ素子数をNTX(1)~NTX(MTX)とし、受信アンテナは、複数MRXの第1UCA21-1~第MRXUCA21-MRXで構成され、それぞれの受信アンテナ素子数をNRX(1)~NRX(MRX)とすると、伝搬チャネル行列Hは以下の式(4) ように表すことができる。
Figure JPOXMLDOC01-appb-M000004
 なお、部分チャネル行列hm,n (m=1,2,…,MRX、n=1,2,…,MTX)は、NRX(m)×NTX(n)の行列であり、第m受信UCA21-mと第n送信UCA15-nとの間の伝搬チャネルである。
 送信アンテナと受信アンテナの正面を対向して配置することにより伝搬軸を中心とした回転対称性が生じるため、これらのアンテナ間に生じるチャネル行列は巡回行列になる。そのため巡回行列の性質より、各UCA間の伝搬チャネルhm,n は、離散フーリエ変換(DFT:Discrete Fourier Transform)行列DN ∈CN*N を用いて以下のように特異値分解することができる。
Figure JPOXMLDOC01-appb-M000005
 なお、式(5) および式(6) で用いたxおよびyは、それぞれ行列Σおよび行列Dの行および列のインデックスを表す。行列やベクトルのインデックスは以後同様の表現を行う。また、l(x)は、DFT行列のx行の固有ベクトルに対応する回転方向の次元のモードの値であり、OAMモードを表す。
 このとき、式(5) より、各UCA間の伝搬チャネルが有する特異値の数は、
      min[NRX(m),NTX(n)]  個
である。よって、第m受信UCA21-mと第n送信UCA15-nとの間の伝搬チャネルは、式(7) のように直交化してmin[NRX(m),NTX(n)] 個の独立な伝送路を確保することができる。
Figure JPOXMLDOC01-appb-M000006
 この式(7) は、OAMモード生成/分離処理を表しており、離散フーリエ変換および逆変換に相当する処理である。
 次に、L=min(NRX,NTX)とすると、OAMモード生成/分離処理を含むチャネル応答Λは、式(8) のように形成される。
Figure JPOXMLDOC01-appb-M000007
 ここで、Hl(x),l(y)は、OAMモードl(x) とl(y) との間のチャネルであり、式(9)のように表される。
Figure JPOXMLDOC01-appb-M000008
 このように得られたチャネル応答Λに対して、式(10)に示すように特異値分解を行い、式(11)に示すように送信局において対応する左特異ベクトルを送信ウエイトとし、受信局において対応する右特異ベクトルを受信ウエイトとするウエイト乗算処理を行うことにより、P=min(MRX,MTX)とすると、L個のOAMモード毎にそれぞれP個の独立な伝送路を確保できる。
Figure JPOXMLDOC01-appb-M000009
 ここで、実際に利用するOAMモードの数をLuse (≦L)とすると、式(9) の要素
l(x),l(y) は、実際に利用するOAMモードの組み合わせに限定される。したがって、送信局ではNTX個のL点離散フーリエ変換、受信局ではNRX個のL点離散フーリエ変換などによるOAMモード生成/分離処理と、(Luse×MRX)×(Luse×MTX)行列の特異値分解処理が行われるだけでよく、
  Luse×MRX=ΣnRX(m)かつLuse×MTX=ΣmTX(n) 
の場合を除き、従来のMIMOと比較して、演算量を低減することが可能である。
 さらに、OAMモード生成/分離処理をバトラーマトリックス等のアナログ回路で行う場合、アンテナ数に比例する数のミキサやDA変換器およびAD変換器等の装置が必須となる従来のMIMOと異なり、使用するOAMモード数を制限することで、ミキサやDA変換器およびAD変換器等の装置数を容易に低減することができる。
 上記のすべてのチャネルから得られる独立な複合モードの数は、最大でL×P個である。
 なお、これらの複合モードの中から、予め想定した設置環境で得られる固有値の大きさや、必要な並列伝送数などに応じて、利用する複合モードを任意に定めることにしてもよい。
 図3に示すOAM多重通信方法における処理手順は、送信局に送信すべきデータが到着した際に実行される。また、特異値分解処理によるウエイト算出は、伝搬チャネルが同等である間は行わず、乗算するウエイトは過去の値を用いることにしてもよい。
 以下、具体例を示す。
 送受信アンテナは、表1に示すパラメータを有するM-UCAとし、伝搬軸がアンテナ面に垂直かつすべてのUCAの中心を通るように送受信アンテナを対向して配置する。ここで、簡単のため、表1のパラメータは送受信アンテナ共通とする。
Figure JPOXMLDOC01-appb-T000010
 また、本実施例で利用するOAMモードは、-2,-1,0,1,2の5モードとする。本手法では、まず前準備として、送受信局のウエイト乗算処理にて乗算するウエイトベクトルを決定するため、M-UCAを対向配置することによって形成されるチャネル(式(4))に対して、式(5) に示すOAMモード生成/分離処理を送受信局で行うことにより、式(8) に示す等価チャネル行列Λ(20×20)を取得する。
 次に、これを式(10)に示すように特異値分解することにより左右の特異行列(20×20行列)を得たのち、右特異行列を送信局にフィードバックする。
 次に、送信信号系列は多重する複合モード数に分割され(S/P変換)、それぞれで変調される。さらに、変調された信号に対し、図3に示す処理手順に基づいて上記の前処理にて得られた右特異行列のウエイト乗算およびOAMモード生成処理がなされ、DACによってアナログ信号に変換したのち、各アンテナ素子に給電される。
 受信局では、各アンテナ素子で受信された信号に対し、ADCによりデジタル信号へ変換したのち、図3に示す処理手順に基づいてOAMモード分離処理および上記の前処理にて得られた左特異行列のウエイト乗算がなされる。さらに得られた信号を復調したのち、送信側で各複合モードに対して分割された信号を結合し(P/S変換)、受信信号系列を得る。
 なお、本実施例において、例えばOFDM方式のようなマルチキャリア伝送方式を用いる場合は、サブキャリア毎に本実施例に従ってチャネル推定および特異値分解を行うなど、利用する伝送方式に応じて時間あるいは周波数方向の次元を拡張して処理を行うとよい。
 また、送受信アンテナ位置の正面対向状態からのずれや、他システムの信号およびマルチパス等による干渉がある場合は、等化ウエイトについて左特異行列の替わりにMMSE(minimum mean square error )アルゴリズムやZF(zero forcing)アルゴリズム等の等化アルゴリズムを用いて求めたウエイトを用いることによって適切な等化処理を行うことが望ましい。
(実施例2)
 図4は、本発明のOAM多重通信システムの実施例2の構成を示す。
 図4において、送信局10は、複数MTXの第1UCA15-1~第MTXUCA15-MTXを備え、それぞれの送信アンテナ素子数をNTX(1)~NTX(MTX)とする。信号処理部11は、送信信号系列を入力し、OAMモード#1~#Lでそれぞれ送信するM~M個の信号を生成し、第1送信ウエイト乗算処理部12-1~第L送信ウエイト乗算処理部12-Lに入力する。第1送信ウエイト乗算処理部12-1は、OAMモード#1で送信する信号に送信ウエイトを乗算し、各UCAからOAMモード#1で送信する信号を生成して第1OAMモード生成処理部14-1~第MTXOAMモード生成処理部14-MTXにそれぞれ入力する。同様に、第L送信ウエイト乗算処理部12-Lは、OAMモード#Lで送信する信号に送信ウエイトを乗算し、各UCAからOAMモード#Lで送信する信号を生成して第1OAMモード生成処理部14-1~第MTXOAMモード生成処理部14-MTXにそれぞれ入力する。第1OAMモード生成処理部14-1~第MTXOAMモード生成処理部14-MTXは、それぞれOAMモード#1~#Lで送信する信号を入力し、各UCAからそれぞれOAMモード#1~#Lの信号として送信されるように位相調整して各UCAのアンテナ素子に入力する。
 受信局20は、複数MRXの第1UCA21-1~第MRXUCA21-MRXを備え、それぞれの受信アンテナ素子数をNRX(1)~NRX(MRX)とする。第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXは、各UCAでそれぞれ受信する信号からOAMモード#1~#Lの信号を分離し、OAMモードごとに第1受信ウエイト乗算処理部24-1~第L受信ウエイト乗算処理部24-Mに入力する。第1受信ウエイト乗算処理部24-1は、各UCAで受信したOAMモード#1の信号を入力して受信ウエイトを乗算して分離し、M個の信号として出力する。同様に、第L受信ウエイト乗算処理部24-Mは、各UCAで受信したOAMモード#Lの信号を入力して受信ウエイトを乗算して分離し、M個の信号として出力する。信号処理部25は、各UCAおよび各OAMモードで受信した信号を復調して受信信号系列を出力する。
 さらに、受信局20には、第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXの出力信号から、各信号系列のチャネル情報を推定するチャネル推定・特異値分解処理部26を備える。チャネル推定・特異値分解処理部26は、推定したチャネル情報を第1受信ウエイト乗算処理部24-1~第L受信ウエイト乗算処理部24-Mに設定し、チャネル情報フィードバック部27を介して送信局10の第1送信ウエイト乗算処理部13-1~第L送信ウエイト乗算処理部13-Mに設定するとともに、信号処理部11に対してOAMモードごとの多重数M~Mを設定する。
 実施例2の特徴は、OAMモードごとに並列に送信ウエイト乗算処理および受信ウエイト乗算処理を行うところにある。
 OAMモード生成処理部およびOAMモード分離処理部では、それぞれ異なるOAMモードの信号を生成/分離しているため、式(8)に示すOAMモード生成/分離処理を含む等価チャネルΛを構成するOAMモード間のチャネルHl(x),l(y) のうち、異なるOAMモード間(x≠y)のチャネルは0行列として近似することができ、式(12)のようなブロック対角行列が得られる。
Figure JPOXMLDOC01-appb-M000011
 ここで、同一OAMモード間(x=y)のチャネルをHl(k)=Hl(k)l(k)(k=1,2,…,L)として再定義すると、L個の独立なチャネル応答Hl(k)に対して、式(13)のように特異値分解を行い、式(14)に示すように送信局および受信局においてそれぞれ対応する左特異ベクトルおよび右特異ベクトルをウエイトとするウエイト乗算処理を行うことにより、P=min(MRX,MTX ) とすると、L個のOAMモード毎にそれぞれP個の独立な伝送路を確保できる。
Figure JPOXMLDOC01-appb-M000012
 ここで、実際に利用するOAMモードの数をLuse (≦L)とすると、送信局ではNTX個のL点離散フーリエ変換、受信局ではNRX個のL点離散フーリエ変換などによるOAMモード生成/分離処理と、Luse 回の(MRX×MTX)行列の特異値分解処理が行われるだけでよく、従来のMIMOや実施例1と比較して、演算量を大幅に低減することが可能である。
 さらに、OAMモード生成/分離処理をバトラーマトリックス等のアナログ回路で行う場合、アンテナ数に比例する数のミキサやDA変換器およびAD変換器等の装置が必須となる従来のMIMOと異なり、使用するOAMモード数を制限することで、ミキサやDA変換器およびAD変換器等の装置数を容易に低減することができる。
 上記のすべてのチャネルから得られる独立な複合モードの数は、最大でL×P個である。
 なお、これらの複合モードの中から、予め想定した設置環境で得られる固有値の大きさや、必要な並列伝送数などに応じて、利用する複合モードを任意に定めることにしてもよい。
 図3に示すOAM多重通信方法における処理手順は、送信局に送信すべきデータが到着した際に実行される。また、特異値分解処理によるウエイト算出は、伝搬チャネルが同等である間は行わず、乗算するウエイトは過去の値を用いることにしてもよい。
 実施例1同様に、送受信アンテナは、表1に示すパラメータを有するM-UCAとし、伝搬軸がアンテナ面に垂直かつすべてのUCAの中心を通るように送受信アンテナを対向して配置する。ここで、簡単のため、表1のパラメータは送受信アンテナ共通とする。
 また、本実施例で利用するOAMモードは-8,-7,…,6,7の16モードとする。本手法では、まず前準備として、送受信局のウエイト乗算処理にて乗算するウエイトベクトルを決定するため、M-UCAを対向配置することによって形成されるチャネル(式(4))に対して、式(5) に示すOAMモード生成/分離処理を送受信局で行うことにより、式(9) に示すOAMモード間のチャネルのうち、同一OAMモードl間のチャネル行列Hl(4×4)を取得する。
 次に、これを式(13)に示すように特異値分解することにより左右の特異行列(4×4行列16個)を得たのち、右特異行列を送信機にフィードバックする。表2に、表1のパラメータでアンテナを設置した場合における、回転方向および直径方向の次元の組み合わせに対応する固有値を示す。
Figure JPOXMLDOC01-appb-T000013
 次に、送信信号系列は多重する複合モード数に分割され(S/P変換)、それぞれで変調される。さらに、変調された信号に対し、図3に示す処理手順に基づいて上記の前処理にて得られた右特異行列のウエイト乗算およびOAMモード生成処理がなされ、DACによってアナログ信号に変換したのち、各アンテナ素子に給電される。
 受信局では、各アンテナ素子で受信された信号に対し、ADCによりデジタル信号へ変換したのち、図3に示す処理手順に基づいてOAMモード分離処理および上記の前処理にて得られた左特異行列のウエイト乗算がなされる。さらに得られた信号を復調したのち、送信側で各複合モードに対して分割された信号を結合し(P/S変換)、受信信号系列を得る。
 なお、本実施例において、例えばOFDM方式のようなマルチキャリア伝送方式を用いる場合は、サブキャリア毎に本実施例に従ってチャネル推定および特異値分解を行うなど、利用する伝送方式に応じて時間あるいは周波数方向の次元を拡張して処理を行うとよい。
 また、送受信アンテナ位置の正面対向状態からのずれや、他システムの信号およびマルチパス等による干渉がある場合は、等化ウエイトについて左特異行列の替わりにMMSE(minimum mean square error )アルゴリズムやZF(zero forcing)アルゴリズム等の等化アルゴリズムを用いて求めたウエイトを用いることによって適切な等化処理を行うことが望ましい。
(実施例3)
 実施例3は、送信信号系列をS/P変換して変調する際に、複合モードの固有値を用い、注水定理等を用いて利用する複合モードやそれらに割り当てる電力制御を行うとともに、適応変調やチャネル符号化を行う。
 表3は、注水定理を用いて複合モード選択および電力配分を行った場合の電力を示す。なお、回転方向および直径方向の次元のモードの組み合わせが [0, 0] の場合の電力を1 として正規化してある。表3は、表1のパラメータで送受信アンテナを設置して注水定理を適用した場合、図の太枠内の複合モードが利用されることを示している。
Figure JPOXMLDOC01-appb-T000014
 表2および表3より、利用した複合モード毎に割り当てるべき受信電力が得られるため、送受信局で重畳するノイズを考慮したモード毎の受信SNRに応じて適応的に変調方式や符号化方式を選択することにより、実施例1と比較して高い伝送容量を確保することができる。
(実施例4)
 実施例4は、アンテナ間距離に対応する利用複合モードや送受信局で乗算するべきウエイト、電力配分のテーブルまたは関数等を予め用意する。
 アンテナ構成を一意に定めた場合、アンテナ間のチャネルおよびこれらの固有値はアンテナ間距離によって一意に定まる。すなわち、実施例4では、チャネル情報の推定およびフィードバックを必要とせず、アンテナ間距離の情報を取得することで、予め作成した前記のテーブルまたは関数等に基づいて利用複合モードおよび電力配分を決定することができる。
(実施例5)
 図5は、本発明のOAM多重通信システムの実施例5の構成を示す。
 図5において、図2に示す実施例1の受信局20のチャネル推定・特異値分解処理部26およびフィードバック部27に代えて、実施例5ではウエイト算出処理部28を備える。ウエイト算出処理部28は、第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXの出力信号から、チャネル推定およびウエイト算出を行い、受信ウエイト乗算処理部23に設定する。
 図6は、実施例5におけるOAM多重通信方法の処理手順の一例である。
 図6において、送信局10は、規定のチャネル情報を用いて多重数/伝送モードを決定し、ウエイト乗算処理を行い、OAMモードの信号を生成してOAM多重伝送する。受信局20は、受信したOAMモードの信号の分離処理を行い、チャネル推定およびウエイト算出を行い、ウエイト乗算処理を行って受信信号として出力する。
 実施例5の動作原理は、基本的には実施例1の動作原理と同様であるが、式(8) で得られたチャネル応答Λに対して、予め定めた送信ウエイトベクトルで形成される送信ウエイト行列Vを乗算することにより、以下の式(15)のような信号が得られる。
Figure JPOXMLDOC01-appb-M000015
 ここで、sは信号ベクトルである。最後に、得られた受信信号ベクトルyに対し、予め定めた受信ウエイト行列U、またはMMSE(minimum mean square error )アルゴリズムやZF(zero forcing)アルゴリズム等の等化アルゴリズムを用いて得られた受信ウエイト行列Uにより等化処理を行うことで、P=min(MRX,MTX)とすると、L個のOAMモード毎にそれぞれP個の独立な伝送路を確保でき式(16)のような信号が得られる。
Figure JPOXMLDOC01-appb-M000016
 ここで、実際に利用するOAMモードの数をLuse (≦L)とすると、式(9) の要素
l(x),l(y) は、実際に利用するOAMモードの組み合わせに限定される。したがって、送信局ではNTX個のL点離散フーリエ変換、受信局ではNRX個のL点離散フーリエ変換などによるOAMモード生成/分離処理と、予め送受信ウエイトが定められていない場合に(Luse×MRX)×(Luse×MTX)行列の等化処理が行われるだけでよく、従来のMIMOと比較して、演算量を低減することが可能である。
 さらに、OAMモード生成/分離処理をバトラーマトリックス等のアナログ回路で行う場合、アンテナ数に比例する数のミキサやDA変換器およびAD変換器等の装置が必須となる従来のMIMOと異なり、使用するOAMモード数を制限することで、ミキサやDA変換器およびAD変換器等の装置数を容易に低減することができる。
 上記のすべてのチャネルから得られる独立な複合モードの数は、最大でL×P個である。
 なお、これらの複合モードの中から、予め想定した設置環境で得られる固有値の大きさや、必要な並列伝送数などに応じて、利用する複合モードを任意に定めることにしてもよい。
 図6に示すOAM多重通信方法における処理手順は、送信局に送信すべきデータが到着した際に実行される。また、ウエイト算出は、伝搬チャネルが同等である間は行わず、乗算するウエイトは過去の値を用いることにしてもよい。
 以下、具体例を示す。
 送受信アンテナは、表1に示すパラメータを有するM-UCAとし、伝搬軸がアンテナ面に垂直かつすべてのUCAの中心を通るように送受信アンテナを対向して配置する。
 また、本実施例で利用するOAMモードは、-2,-1,0,1,2の5モードとする。本手法で用いる送信ウエイト行列として、式(17)に示す単位行列を用いる。
Figure JPOXMLDOC01-appb-M000017
 これは、4つのOAMモード生成処理部が利用するOAMモードに対応するポートに対して、4×5個の信号をそれぞれ独立に入力することに相当する。
 なお、これは図5に示す送信ウエイト乗算処理部12を省略した構成と等価であり、信号処理部11からOAMモード生成処理部に対して直接信号を入力する構成としてもよい。
 まず、送信局では、送信信号系列が多重する複合モード数に分割され(S/P変換)、それぞれで変調される。なお、それぞれの信号の前には、送受信局で予め共有された異なる既知信号系列が付与される。さらに、変調された信号に対し、式(12)に示すウエイト乗算およびOAMモード生成処理がなされ、DA変換器によってアナログ信号に変換したのち、各アンテナ素子に給電される。
 受信局では、各アンテナ素子で受信された信号に対し、AD変換器によりデジタル信号へ変換した後にOAMモード分離処理が行われ、受信された信号yに対して、MMSEアルゴリズムにより算出した受信ウエイト行列Uを乗算する。さらに得られた信号を復調したのち、送信側で各複合モードに対して分割された信号を結合し(P/S変換)、受信信号系列を得る。
(実施例6)
 図7は、本発明のOAM多重通信システムの実施例6の構成を示す。
 図7において、図4に示す実施例2の受信局20のチャネル推定・特異値分解処理部26およびフィードバック部27に代えて、実施例6ではウエイト算出処理部28を備える。ウエイト算出処理部28は、第1OAMモード分離処理部22-1~第MRXOAMモード分離処理部22-MRXの出力信号から、チャネル推定およびウエイト算出を行い、受信ウエイト乗算処理部23に設定する。
 OAMモード生成処理部およびOAMモード分離処理部では、それぞれ異なるOAMモードの信号を生成/分離しているため、式(8) に示すOAMモード生成/分離処理を含む等価チャネルΛを構成するOAMモード間のチャネルHl(x),l(y) のうち、異なるOAMモード間(x≠y)のチャネルは0行列として近似することができ、式(18)のようなブロック対角行列が得られる。
Figure JPOXMLDOC01-appb-M000018
 ここで、同一OAMモード間(x=y)のチャネルをHl(k)=Hl(k)l(k)(k=1,2,…,L)として再定義すると、L個の独立なチャネル応答Hl(k)に対して、予め送信ウエイトベクトルで形成される送信ウエイト行列VをP(P=min(MRX,MTX) )個の信号に乗算することにより、OAMモードl毎に式(19)のような信号が得られる。
Figure JPOXMLDOC01-appb-M000019
 ここで、sl は信号ベクトルである。最後に、得られた受信信号ベクトルyl に対し、実施例1と同様に、予め定めた受信ウエイト行列U、またはMMSE(minimum mean square error )アルゴリズムやZF(zero forcing)アルゴリズム等の等化アルゴリズムを用いて得られた受信ウエイト行列Uにより等化処理を行うことで、P個の独立な伝送路が得られ、式(20)のような信号が得られる。
Figure JPOXMLDOC01-appb-M000020
 ここで、実際に利用するOAMモードの数をLuse (≦L)とすると、式(9) の要素
l(x),l(y) は、実際に利用するOAMモードの組み合わせに限定される。したがって、送信局ではNTX個のL点離散フーリエ変換、受信局ではNRX個のL点離散フーリエ変換などによるOAMモード生成/分離処理と、予め送受信ウエイトが定められていない場合にLuse 回のNTX×NRX行列の等化処理が行われるだけでよく、従来のMIMOや実施例1と比較して、演算量を大幅に低減することが可能である。
 さらに、OAMモード生成/分離処理をバトラーマトリックス等のアナログ回路で行う場合、アンテナ数に比例する数のミキサやDAC変換器およびAD変換器等の装置が必須となる従来のMIMOと異なり、使用するOAMモード数を制限することで、ミキサやDAC変換器およびAD変換器等の装置数を容易に低減することができる。
 上記のすべてのチャネルから得られる独立な複合モードの数は、最大でL×P個である。
 なお、これらの複合モードの中から、予め想定した設置環境で得られる固有値の大きさや、必要な並列伝送数などに応じて、利用する複合モードを任意に定めることにしてもよい。
 図6に示すOAM多重通信方法における処理手順は、送信局に送信すべきデータが到着した際に実行される。また、ウエイト算出は、伝搬チャネルが同等である間は行わず、乗算するウエイトは過去の値を用いることにしてもよい。
 実施例5同様に、送受信アンテナは、表1に示すパラメータを有するM-UCAとし、伝搬軸がアンテナ面に垂直かつすべてのUCAの中心を通るように送受信アンテナを対向して配置する。ここで、簡単のため、表1のパラメータは送受信アンテナ共通とする。
 また、本実施例で利用するOAMモードは-2,-1,0,1,2の5モードとする。本手法で用いる送信ウエイト行列として、式(21)に示す単位行列を用いる。
Figure JPOXMLDOC01-appb-M000021
 これは、各UCAに対応する4つのOAMモード生成処理部が利用するOAMモードに対応するポートに対して、4つの信号をそれぞれ独立に入力することに相当する。
 なお、これは図7に示す第1送信ウエイト乗算処理部13-1~第L送信ウエイト乗算処理部13-Lを省略した構成と等価であり、信号処理部11から第1OAMモード生成処理部14-1~第MTXOAMモード生成処理部14-MTXに対して直接信号を入力する構成としてもよい。
 まず、送信局では、送信信号系列が多重する複合モード数に分割され(S/P変換)、それぞれで変調される。なお、それぞれの信号の前には、送受信局で予め共有された異なる既知信号系列が付与される。さらに、変調された信号に対し、式(21)に示すウエイト乗算およびOAMモード生成処理がなされ、DACによってアナログ信号に変換したのち、各アンテナ素子に給電される。
 受信局では、各アンテナ素子で受信された信号に対し、ADCによりデジタル信号へ変換した後にOAMモード分離処理が行われ、同じOAMモードごとに受信された信号yl に対して、MMSEアルゴリズムにより算出した受信ウエイト行列Uを乗算する。さらに得られた信号を復調したのち、送信側で各複合モードに対して分割された信号を結合し(P/S変換)、受信信号系列を得る。
(実施例7)
 実施例7は、直交する送信ウエイトベクトルおよび受信ウエイトベクトルを、送受信アンテナ間距離とガウス関数に基づいて決定する。
 まず、送信局は、レーザー距離計やその他の距離推定法を用いて、送受信アンテナ間距離の情報を取得する。送受信アンテナ間距離をzとすると、送信ウエイトベクトルおよび受信ウエイトベクトルで形成されるウエイト行列Vl およびUl は、式(22)のように表すことができる。
Figure JPOXMLDOC01-appb-M000022
 また、ω0 は、ガウシアンビームのビームウエイト径、z0 はガウシアンビームのビームウエイト位置のオフセットを表す値であり、アンテナの設置環境に合わせて任意の値に設定してもよい。
 また、離散的な値をとる距離に対応したウエイト行列を予め算出したテーブルを用意することで演算処理をなくし、テーブルから実際の距離に対して最も近いウエイト行列を選択して利用する構成としてもよい。
(実施例8)
 実施例8は、送信信号系列をS/P変換して変調する際に複合モードの固有値を用い、注水定理等を用いて利用する複合モードやそれらに割り当てる電力制御を行うとともに、適応変調やチャネル符号化を行う。
 実施例7のように規定の関数やテーブルを用いる場合、予めアンテナ間距離に対応するモード毎の固有値を計算して準備おくことができる。このとき、例えば注水定理等を用いることで利用した複合モード毎に割り当てるべき受信電力が得られ、送受信局で重畳するノイズを考慮したモード毎の受信SNRに応じて適応的に変調方式や符号化方式を選択することにより、実施例5~7と比較して高い伝送容量を確保することができる。これは、通信中に通信品質情報をフィードバックして逐次的、適応的に行われてもよい。
(実施例9)
 実施例9は、デジタル信号処理とアナログ回路による信号処理の機能配分を行う。
 実施例9では、OAMモード生成/分離処理においてバトラーマトリックスやロットマンレンズおよびそれらに類するアナログ回路を用いる。なお、実施例9では送受信アンテナの各UCAの備えるアンテナ素子を8個ずつとする。
 図8は、送信局の8×8バトラーマトリックスの一例を示す。
 図8において、8×8バトラーマトリックスは、90度ハイブリッドと、それぞれ数値で示した位相シフタにより構成される。このように、デジタル信号処理の一部をアナログ回路で行うことによってさらなるデジタル信号処理負荷の軽減が可能である。
 さらに、高次のOAMモードは十分な固有値が得られない設置環境である場合など、全てのOAMモードを使いきることができない、あるいは使う必要がない場合がある。例えば、表3の場合でもOAMモード8は利用していない。
 そのような場合、送受信局のアナログ回路において利用しないOAMモードに対応する入力ポートをはじめから終端することにより、AD変換器およびDA変換器の数を低減することができる。
 さらに図9に示すように、使用しないポートを終端装置等を用いて終端しておくことにより、最大利用OAMモード数によってはアナログ回路規模を削減することもできる。
(実施例10)
 実施例10は、送信アンテナおよび受信アンテナの設置方法として、パラボラアンテナの反射器あるいはレンズを備える。ここでは、各UCAの中心を通る伝搬軸がパラボラアンテナの放物面の対称軸に一致するように配置することで、高い受信信号利得が得られる。他にも、例えば同様のビームが得られるよう設置したオフセットパラボラアンテナを用いてもよい。
 10 送信局
 11 信号処理部
 12,13 送信ウエイト乗算処理部
 14 OAMモード生成処理部
 15 送信UCA
 20 受信局
 21 受信UCA
 22 OAMモード分離処理部
 23,24 受信ウエイト乗算処理部
 25 信号処理部
 26 チャネル推定・特異値分解処理部
 27 フィードバック部
 28 ウエイト算出処理部

Claims (10)

  1.  回転方向の次元における基底として軌道角運動量(以下、OAM)モードを用いて複数の信号系列を多重伝送するOAM多重通信システムであって、
     複数のアンテナ素子を円形に等間隔で配置した等間隔円形アレーアンテナ(以下、UCA)を、同心円状に配置した複数のUCAからなるM-UCAを用いた送信アンテナと、前記複数のUCAの中心を原点とする極座標系における前記回転方向および直径方向の各次元でそれぞれ基底変換を行い、各次元の異なる基底の組み合わせで形成される複合モードごとに、前記複数の信号系列を多重伝送する手段を含む送信局と、
     前記UCAを同心円状に配置した複数のUCAからなるM-UCAを用いた受信アンテナと、前記送信局から多重伝送された信号を受信し、前記多重伝送された前記複数の信号系列を分離する手段とを含む受信局と
     を備えたことを特徴とするOAM多重通信システム。
  2.  請求項1に記載のOAM多重通信システムにおいて、
     前記受信局は、前記送信局から送信された既知の参照信号を用いて、前記送信アンテナと前記受信アンテナとの間のチャネル情報を推定し、このチャネル情報から前記回転方向および直径方向の次元で基底変換を行うための送信ウエイトおよび受信ウエイトに変換する手段を備え、
     前記送信局は、前記複数の信号系列に前記受信局からフィードバックされた前記送信ウエイトを乗算して前記直径方向の次元の基底変換を行うウエイト乗算手段と、前記複数のUCAから送信する前記OAMモードの信号をそれぞれ生成するOAMモード生成手段とを備え、
     前記受信局は、前記複数のUCAの受信信号からそれぞれ前記OAMモードの信号を分離するOAMモード分離手段と、前記OAMモードの信号に前記受信ウエイトを乗算して前記直径方向の次元の基底変換を行うウエイト乗算手段とを備えた
     ことを特徴とするOAM多重通信システム。
  3.  請求項1に記載のOAM多重通信システムにおいて、
     前記送信局は、前記送信アンテナと前記受信アンテナのアンテナ間距離に応じて乗算する送信ウエイトを予め定めた関数またはテーブルを備え、利用する前記OAMモードごとに多重する1つ以上の信号系列に対して異なる送信ウエイトを乗算して前記UCAごとに基底変換を行う構成であり、
     前記受信局は、前記UCAごとに基底変換を行い、前記OAMモードごとに異なる1つの以上の信号系列に、前記送信局で用いた送信ウエイトに対応する受信ウエイトを乗算し、所定の等化アルゴリズムを用いて前記多重伝送された前記複数の信号系列を分離する構成である
     ことを特徴とするOAM多重通信システム。
  4.  請求項3に記載のOAM多重通信システムにおいて、
     前記送信局は、前記アンテナ間距離に応じて直交分布関数から前記送信ウエイトを決定する構成であり、
     前記受信局は、前記アンテナ間距離に応じて前記送信局で用いた直交分布関数から前記受信ウエイトを決定する構成である
     ことを特徴とするOAM多重通信システム。
  5.  請求項2または請求項3に記載のOAM多重通信システムにおいて、
     前記送信局および前記受信局は、利用可能な前記複合モードの受信信号品質に基づいて、前記送信ウエイトおよび前記受信ウエイトと直交基底の組合せを決定し、前記複合モードの送信電力および変調方式を決定する手段を備えた
     ことを特徴とするOAM多重通信システム。
  6.  回転方向の次元における基底として軌道角運動量(以下、OAM)モードを用いて複数の信号系列を多重伝送するOAM多重通信方法であって、
     送信局の送信アンテナは、複数のアンテナ素子を円形に等間隔で配置した等間隔円形アレーアンテナ(以下、UCA)を、同心円状に配置した複数のUCAからなるM-UCAを用い、前記複数のUCAの中心を原点とする極座標系における前記回転方向および直径方向の各次元でそれぞれ基底変換を行い、各次元の異なる基底の組み合わせで形成される複合モードごとに、前記複数の信号系列を多重伝送し、
     受信局の受信アンテナは、前記UCAを同心円状に配置した複数のUCAからなるM-UCAを用い、前記送信局から多重伝送された信号を受信し、前記多重伝送された前記複数の信号系列を分離する
     ことを特徴とするOAM多重通信方法。
  7.  請求項6に記載のOAM多重通信方法において、
     前記受信局は、前記送信局から送信された既知の参照信号を用いて、前記送信アンテナと前記受信アンテナとの間のチャネル情報を推定し、このチャネル情報から前記回転方向および直径方向の次元で基底変換を行うための送信ウエイトおよび受信ウエイトに変換し、
     前記送信局は、前記複数の信号系列に前記受信局からフィードバックされた前記送信ウエイトを乗算して前記直径方向の次元の基底変換を行い、前記複数のUCAから送信する前記OAMモードの信号をそれぞれ生成し、
     前記受信局は、前記複数のUCAの受信信号からそれぞれ前記OAMモードの信号を分離し、前記OAMモードの信号に前記受信ウエイトを乗算して前記直径方向の次元の基底変換を行う
     ことを特徴とするOAM多重通信方法。
  8.  請求項6に記載のOAM多重通信方法において、
     前記送信局は、前記送信アンテナと前記受信アンテナのアンテナ間距離に応じて乗算する送信ウエイトを予め定めた関数またはテーブルを備え、利用する前記OAMモードごとに多重する1つ以上の信号系列に対して異なる送信ウエイトを乗算して前記UCAごとに基底変換を行い、
     前記受信局は、前記UCAごとに基底変換を行い、前記OAMモードごとに異なる1つの以上の信号系列に、前記送信局で用いた送信ウエイトに対応する受信ウエイトを乗算し、所定の等化アルゴリズムを用いて前記多重伝送された前記複数の信号系列を分離する
     ことを特徴とするOAM多重通信方法。
  9.  請求項6に記載のOAM多重通信方法において、
     前記送信局は、前記アンテナ間距離に応じて直交分布関数から前記送信ウエイトを決定し、
     前記受信局は、前記アンテナ間距離に応じて前記送信局で用いた直交分布関数から前記受信ウエイトを決定する
     ことを特徴とするOAM多重通信方法。
  10.  請求項7または請求項8に記載のOAM多重通信方法において、
     前記送信局および前記受信局は、利用可能な前記複合モードの受信信号品質に基づいて、前記送信ウエイトおよび前記受信ウエイトと直交基底の組合せを決定し、前記複合モードの送信電力および変調方式を決定する
     ことを特徴とするOAM多重通信方法。
PCT/JP2018/035537 2017-09-25 2018-09-25 Oam多重通信システムおよびoam多重通信方法 WO2019059408A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201880062060.2A CN111133698B (zh) 2017-09-25 2018-09-25 Oam多路复用通信系统和oam多路复用通信方法
US16/650,370 US11202211B2 (en) 2017-09-25 2018-09-25 OAM multiplexing communication system and OAM multiplexing communication method
JP2019543146A JP6996563B2 (ja) 2017-09-25 2018-09-25 Oam多重通信システムおよびoam多重通信方法
EP18859911.2A EP3691153B1 (en) 2017-09-25 2018-09-25 Oam multiplexing communication system and oam multiplexing communication method

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2017183844 2017-09-25
JP2017-183842 2017-09-25
JP2017183842 2017-09-25
JP2017-183844 2017-09-25

Publications (1)

Publication Number Publication Date
WO2019059408A1 true WO2019059408A1 (ja) 2019-03-28

Family

ID=65811428

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/035537 WO2019059408A1 (ja) 2017-09-25 2018-09-25 Oam多重通信システムおよびoam多重通信方法

Country Status (5)

Country Link
US (1) US11202211B2 (ja)
EP (1) EP3691153B1 (ja)
JP (1) JP6996563B2 (ja)
CN (1) CN111133698B (ja)
WO (1) WO2019059408A1 (ja)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022156608A1 (zh) * 2021-01-20 2022-07-28 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022184161A1 (en) * 2021-03-05 2022-09-09 Qualcomm Incorporated Multi-mode precoding matrix information report for orbital angular momentum based communication system
WO2023286163A1 (ja) * 2021-07-13 2023-01-19 日本電信電話株式会社 無線通信システム、送信装置、及び受信装置
US11588531B2 (en) 2020-04-08 2023-02-21 Nec Corporation Signal estimation apparatus, signal estimation method and program recording medium
WO2023047582A1 (ja) * 2021-09-27 2023-03-30 日本電信電話株式会社 送信方法及び送信装置
JP7485089B2 (ja) 2020-12-24 2024-05-16 日本電信電話株式会社 受信装置、及び受信方法

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6996563B2 (ja) 2017-09-25 2022-01-17 日本電信電話株式会社 Oam多重通信システムおよびoam多重通信方法
JP7067622B2 (ja) * 2018-08-02 2022-05-16 日本電気株式会社 制御装置、oam送信装置、制御方法、及び制御プログラム
CN112803975B (zh) * 2019-11-14 2022-02-25 华为技术有限公司 确定预编码矩阵的方法、设备及系统
CN113765550B (zh) * 2020-06-03 2023-04-07 华为技术有限公司 通信方法及相关装置
US11658719B2 (en) * 2020-06-25 2023-05-23 Qualcomm Incorporated Hybrid beamforming with a butler matrix
WO2022000400A1 (en) * 2020-07-02 2022-01-06 Qualcomm Incorporated Mode determination for orbital angular momentum communication system
CN114205005A (zh) * 2020-09-02 2022-03-18 中国移动通信有限公司研究院 基于轨道角动量的发送、接收方法及装置
WO2022088126A1 (en) * 2020-10-31 2022-05-05 Qualcomm Incorporated Information transmission by mode selection and detection in orbital angular momentum multiplexing communications
WO2022104781A1 (en) * 2020-11-23 2022-05-27 Qualcomm Incorporated Techniques for determining orbital angular momentum transmitter circles
CN116783845A (zh) * 2021-01-29 2023-09-19 中兴通讯股份有限公司 Oam非同轴估计与补偿
EP4309246A1 (en) * 2021-03-15 2024-01-24 QUALCOMM Incorporated Orbital angular momentum mode determination with partial receive circle
CN113114384B (zh) * 2021-04-12 2022-12-06 上海瀚讯信息技术股份有限公司 一种用于多圈uca阵列的通信干扰消除装置
US20240204833A1 (en) * 2021-06-17 2024-06-20 Qualcomm Incorporated Radial modes for oam mimo communication
US11616555B2 (en) * 2021-06-18 2023-03-28 Qualcomm Incorporated Spatial misalignment tracking for orbital angular momentum beams in millimeter wave and higher frequency bands
US11757516B2 (en) 2021-06-18 2023-09-12 Qualcomm Incorporated Beam management procedure for OAM in MMW and higher bands
US11849469B2 (en) 2021-06-18 2023-12-19 Qualcomm Incorporated Orbital angular momentum capability in millimeter wave and higher frequency bands
CN117678309A (zh) * 2021-07-13 2024-03-08 高通股份有限公司 跨轨道角动量模式的发射分集
EP4391406A1 (en) * 2021-08-19 2024-06-26 Beijing Xiaomi Mobile Software Co., Ltd. Oam beam transmission method and apparatus, user equipment, and storage medium
CN114244446B (zh) * 2021-11-09 2023-09-19 北京邮电大学 基于轨道角动量oam实现信号覆盖的系统、方法及设备
WO2023092258A1 (en) * 2021-11-23 2023-06-01 Qualcomm Incorporated Configurable antenna resources for backhaul and access with uniform circular array panel
WO2023097546A1 (en) * 2021-12-01 2023-06-08 Qualcomm Incorporated Mode division multiplex for data and reference signals in orbital angular momentum communication
CN118251851A (zh) * 2021-12-14 2024-06-25 北京小米移动软件有限公司 一种预编码方法及设备/存储介质/装置
WO2023108522A1 (en) * 2021-12-16 2023-06-22 Qualcomm Incorporated Reference signal sequence indication in orbital angular momentum (oam) communication systems
WO2023115452A1 (en) * 2021-12-23 2023-06-29 Qualcomm Incorporated Formula-based inter-circle precoding weight determination for orbital angular momentum (oam) communication systems
WO2023159467A1 (en) * 2022-02-25 2023-08-31 Qualcomm Incorporated Non-integer multiple quantities of transmit and receive antenna subarrays
US20240048192A1 (en) * 2022-08-04 2024-02-08 Samsung Electronics Co., Ltd. Low complexity los mimo system design for near field communication

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017230A1 (ja) * 2007-08-02 2009-02-05 Nec Corporation 決定論的通信路を有するmimo通信システム及びそのアンテナ配置方法
WO2009096316A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 無線通信システム、無線通信装置および無線通信方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6842157B2 (en) 2001-07-23 2005-01-11 Harris Corporation Antenna arrays formed of spiral sub-array lattices
US7613248B2 (en) 2002-06-24 2009-11-03 Qualcomm Incorporated Signal processing with channel eigenmode decomposition and channel inversion for MIMO systems
KR101045454B1 (ko) * 2006-02-08 2011-06-30 후지쯔 가부시끼가이샤 멀티 안테나 송신 기술을 이용한 무선 통신 시스템 및,이에 적용하는 멀티 유저 스케줄러
JP2007295549A (ja) 2006-03-31 2007-11-08 Matsushita Electric Ind Co Ltd Mimo受信装置およびmimo通信システム
WO2010098078A1 (ja) 2009-02-24 2010-09-02 パナソニック株式会社 無線送信装置およびプレコーディング方法
EP2656442A1 (en) * 2010-12-22 2013-10-30 Telefonaktiebolaget LM Ericsson (PUBL) An antenna arrangement
JP5223939B2 (ja) 2011-03-25 2013-06-26 株式会社日立製作所 Mimo無線通信方法およびmimo無線通信装置
US9240956B2 (en) * 2012-03-11 2016-01-19 Broadcom Corporation Communication system using orbital angular momentum
US10228443B2 (en) * 2012-12-02 2019-03-12 Khalifa University of Science and Technology Method and system for measuring direction of arrival of wireless signal using circular array displacement
CN104885302B (zh) * 2012-12-26 2017-11-17 华为技术有限公司 用于生成电磁波束的方法和装置
KR20160146850A (ko) * 2014-04-17 2016-12-21 라이 라디오텔레비지오네 이탈리아나 에스.페.아. 궤도 각 모멘텀을 갖는 전자기 모드들을 가지는 신호들의 송신 및/또는 수신을 위한 시스템, 및 그 디바이스 및 방법
US9998187B2 (en) 2014-10-13 2018-06-12 Nxgen Partners Ip, Llc System and method for combining MIMO and mode-division multiplexing
WO2016148262A1 (ja) 2015-03-17 2016-09-22 日本電気株式会社 通信装置、方法及びシステムと端末とプログラム
US10224641B2 (en) * 2015-04-03 2019-03-05 Amrita Vishwa Vidyapeetham Systems and methods for transmission and reception of radio waves in a focal plane antenna array
US10511092B2 (en) * 2015-10-27 2019-12-17 Intel Corporation Orbital angular momentum in millimeter-wave wireless communication
US10148009B2 (en) * 2015-11-23 2018-12-04 Huawei Technologies Co., Ltd. Sparse phase-mode planar feed for circular arrays
JP6996563B2 (ja) 2017-09-25 2022-01-17 日本電信電話株式会社 Oam多重通信システムおよびoam多重通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009017230A1 (ja) * 2007-08-02 2009-02-05 Nec Corporation 決定論的通信路を有するmimo通信システム及びそのアンテナ配置方法
WO2009096316A1 (ja) * 2008-01-30 2009-08-06 Kyocera Corporation 無線通信システム、無線通信装置および無線通信方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
J. WANG ET AL.: "Terabit free-space data transmission employing orbital angular momentum multiplexing", NATURE PHOTONICS, vol. 6, July 2012 (2012-07-01), pages 488 - 496, XP055375755, DOI: 10.1038/nphoton.2012.138
KWASI A. OPARE ET AL.: "Performance of an Ideal Wireless Orbital Angular Momentum Communication System Using Multiple-input Multiple-output Techniques", 2014 INTERNATIONAL CONFERENCE ON TELECOMMUNICATIONS AND MULTIMEDIA (TEMU), 30 June 2014 (2014-06-30), pages 144 - 149, XP032655935, DOI: 10.1109/TEMU.2014.6917751 *
OVE EDFORS ET AL.: "Is Orbital Angular Momentum (OAM) Based Radio Communication an Unexploited Area?", IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, vol. 60, no. 2, February 2012 (2012-02-01), pages 1126 - 1131, XP011403555, DOI: doi:10.1109/TAP.2011.2173142 *
YUQING YUAN ET AL.: "Capacity analysis of UCA-based OAM multiplexing communication system", 2015 INTERNATIONAL CONFERENCE ON WIRELESS COMMUNICATIONS & SIGNAL PROCESSING (WCSP, 17 October 2015 (2015-10-17), XP032820668, DOI: 10.1109/WCSP.2015.7341308 *
Z. LIY. OHASHIK. KASAI: "A Dual-Channel Wireless Communication System by Multiplexing Twisted Radio Wave", PROCEEDINGS OF 44TH EUROPEAN MICROWAVE CONFERENCE, October 2014 (2014-10-01)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11588531B2 (en) 2020-04-08 2023-02-21 Nec Corporation Signal estimation apparatus, signal estimation method and program recording medium
JP7485089B2 (ja) 2020-12-24 2024-05-16 日本電信電話株式会社 受信装置、及び受信方法
WO2022156608A1 (zh) * 2021-01-20 2022-07-28 索尼集团公司 用于无线通信的电子设备和方法、计算机可读存储介质
WO2022184161A1 (en) * 2021-03-05 2022-09-09 Qualcomm Incorporated Multi-mode precoding matrix information report for orbital angular momentum based communication system
WO2023286163A1 (ja) * 2021-07-13 2023-01-19 日本電信電話株式会社 無線通信システム、送信装置、及び受信装置
WO2023047582A1 (ja) * 2021-09-27 2023-03-30 日本電信電話株式会社 送信方法及び送信装置

Also Published As

Publication number Publication date
JP6996563B2 (ja) 2022-01-17
EP3691153B1 (en) 2022-06-22
EP3691153A4 (en) 2021-07-07
JPWO2019059408A1 (ja) 2020-11-05
CN111133698B (zh) 2022-02-01
EP3691153A1 (en) 2020-08-05
US11202211B2 (en) 2021-12-14
CN111133698A (zh) 2020-05-08
US20200296599A1 (en) 2020-09-17

Similar Documents

Publication Publication Date Title
JP6996563B2 (ja) Oam多重通信システムおよびoam多重通信方法
CN111133697B (zh) Oam复用通信系统以及模式间干扰去除方法
EP2781035B1 (en) Method and apparatus for transmitting and receiving signals in multi-antenna communication system
JP6681692B2 (ja) 混合ビームフォーミング技術における共通信号伝送方法および装置
Han et al. Reference signals design for hybrid analog and digital beamforming
EP3682554B1 (en) Port-to-beam precoding to enable codebook based mu-mimo operation in active antenna systems
CN107836089A (zh) 混合波束成形多天线无线系统
EP3691149B1 (en) Oam multiplexing communication system and oam multiplexing communication method
EP2899896B1 (en) Method for transmitting efficient feedback in multi-antenna wireless communication system and apparatus therefor
US10020866B2 (en) Wireless communication node with adaptive communication
WO2017180485A1 (en) A hybrid beamforming method for wireless multi-antenna and frequency-division duplex systems
KR101718282B1 (ko) 가시선 채널 환경에서 부배열 안테나를 이용한 균일 원형 배열 안테나 시스템 및 그의 빔포밍 방법
CN105453465A (zh) 无线基站装置以及调度方法
WO2019098897A1 (en) Methods, systems and units of a distributed base staton system for handling of downlink communication
Su et al. Omnidirectional precoding for massive MIMO with uniform rectangular array—Part I: Complementary codes-based schemes
EP2452449A1 (en) A transmitter with multiple transmit antennas using polarization
Badrudeen et al. Sub-connected structure hybrid precoding for millimeter-wave NOMA communications
KR102197677B1 (ko) 다중 안테나를 이용한 신호 전송 방법
KR20160080847A (ko) 다중 사용자 동시 전송을 위한 다중 편파 전송 시스템 및 방법
Jiang et al. Omnidirectional beamforming based on complete complementary codes for uniform rectangular array
Su et al. Omnidirectional transmit beamforming for massive MIMO with uniform rectangular array
Lv et al. Signal Processing of Multi-Mode-Multi-Spatial (MOMS) in Line-of-Sight Channels
Su et al. A combination of alamouti code and beamforming technologies via dual-polarized antenna array systems
KR20160134481A (ko) 다중 안테나 시스템에서 안테나를 가상화하는 방법 및 장치, 그리고 이를 이용한 신호 송수신 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18859911

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019543146

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018859911

Country of ref document: EP

Effective date: 20200428