WO2019057914A1 - Capsules bactericides ou bactériostatiques ou antifongiques comprenant des cellules vivantes et leurs utilisations - Google Patents

Capsules bactericides ou bactériostatiques ou antifongiques comprenant des cellules vivantes et leurs utilisations Download PDF

Info

Publication number
WO2019057914A1
WO2019057914A1 PCT/EP2018/075642 EP2018075642W WO2019057914A1 WO 2019057914 A1 WO2019057914 A1 WO 2019057914A1 EP 2018075642 W EP2018075642 W EP 2018075642W WO 2019057914 A1 WO2019057914 A1 WO 2019057914A1
Authority
WO
WIPO (PCT)
Prior art keywords
phase
capsules
antimicrobial
capsule
cells
Prior art date
Application number
PCT/EP2018/075642
Other languages
English (en)
Inventor
Edouard DULIEGE
Jérôme Bibette
Original Assignee
Capsum
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Capsum filed Critical Capsum
Publication of WO2019057914A1 publication Critical patent/WO2019057914A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N11/00Carrier-bound or immobilised enzymes; Carrier-bound or immobilised microbial cells; Preparation thereof
    • C12N11/02Enzymes or microbial cells immobilised on or in an organic carrier
    • C12N11/04Enzymes or microbial cells immobilised on or in an organic carrier entrapped within the carrier, e.g. gel or hollow fibres
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N1/00Microorganisms, e.g. protozoa; Compositions thereof; Processes of propagating, maintaining or preserving microorganisms or compositions thereof; Processes of preparing or isolating a composition containing a microorganism; Culture media therefor
    • C12N1/12Unicellular algae; Culture media therefor

Definitions

  • the present invention relates to a composition comprising bactericidal or bacteriostatic capsules comprising living cells and their uses, especially in kits.
  • capsules comprising a liquid heart and at least one outer envelope completely encapsulating the liquid core at its periphery, said capsules comprising living cells, respectively, plant and eukaryotic mammals.
  • the encapsulation of living cells and the capsule culture of these living cells, in particular microalgae, have certain advantages over conventional methods.
  • the encapsulated cells are protected from mechanical stresses, such as shearing, thereby decreasing cell death during the cell culture process.
  • solid objects that are easier to handle are obtained, on the scale of industrial processes such as mixing, mixing, filtering, washing and decanting, and it is also easier to handle these objects, and therefore the biomass they encapsulate. , to facilitate the differential characterization of the samples.
  • the latter are advantageous in that they make it possible to limit the passage of unwanted cellular organisms. through the outer envelope.
  • means to fight against contaminations, particularly bacterial at the level of the continuous phase as such.
  • Such means are known.
  • molecules having bacteriostatic or bactericidal properties such as antibiotics, chlorine, 70 ° alcohol, sodium azide, preservatives, silver, formaldehyde or oxide.
  • the filtration of the continuous phase at 0.2 ⁇ imposes a preliminary stage of isolation of the capsules and, as such, is much too slow to meet the industrial requirements.
  • the washing of the capsules to get rid of contaminants present in the continuous phase does not effectively fight against contaminations. For example, in the case of bacteria, there are still bacteria adsorbed on the surface of the capsules which annihilates the washing efforts. It then becomes very difficult to ensure the microbiological cleanliness of the corresponding composition under normal conditions of use and on a reasonable time scale that can range from several weeks to several months.
  • microorganisms in particular bacteria
  • bacteria may furthermore be detrimental to the growth of living cells, and therefore to the expected production yields, especially in the case where the living cells of interest have a slow division cycle.
  • these microorganisms, in particular exogenous bacteria then consume a significant part of the nutrients of the culture medium present in continuous phase which is therefore no longer available to living cells to ensure their development.
  • the present invention therefore aims to provide a means for effectively combating contaminations in continuous phase but without altering the contents of the capsules, and in particular the living cells that they contain.
  • the present invention therefore aims to provide a simple and inexpensive way to effectively fight against contaminations in continuous phase while maintaining intact the contents of the capsules.
  • the present invention aims to provide a means of preventing and / or effectively fight against contaminations in continuous phase without impacting the content of capsules, including encapsulated living cells, to enhance the growth of said living cells, and therefore the production yields, which is a particularly important aspect in the industrial field.
  • the present invention relates to a composition
  • a composition comprising an aqueous continuous phase and at least one capsule, said capsule comprising a heart, liquid or at least partially gelled or at least partly thixotropic, and at least one outer envelope completely encapsulating said heart to its periphery,
  • At least one capsule comprises at least one living cell
  • said continuous aqueous phase comprises at least one antimicrobial and / or antifungal polymer.
  • the outer envelope comprises (or is formed of) at least one polyelectrolyte in the gelled state.
  • the inventors have observed that the continuous phase implementation of an antimicrobial and / or antifungal polymer makes it possible to effectively prevent / fight against contaminations in the continuous phase without negatively impacting the contents of the capsules, in particular living cells. present in the capsules.
  • the subject of the present invention is also a process for culturing living cells, in particular plant cells, as well as a process for producing compounds of interest produced by said living cells, if necessary after elicitation.
  • the present invention also relates to the use of at least one antimicrobial and / or antifungal polymer for preventing and / or controlling the contamination by microorganisms, in particular bacteria, of an aqueous continuous phase of a composition
  • a composition comprising, in addition to said aqueous continuous phase, at least one capsule, said capsule comprising a core, liquid or at least partly gelled or at least partly thixotropic, and at least one outer envelope completely encapsulating said core at its periphery, the capsule comprising at least one living cell.
  • the presence of at least one continuous phase antimicrobial and / or antifungal polymer of such a composition is particularly effective for decontaminating or sterilizing said continuous phase and thus ensure optimal cell development. living encapsulated.
  • the present invention also relates to a culture medium adapted to the culture of encapsulated living cells, characterized in that the medium comprises at least one antimicrobial and / or antifungal polymer.
  • composition according to the invention is therefore devoid of a chemical preservative, such as phenoxyethanol or pentylene glycol, and / or an antibiotic, such as for example ampicillin or penicillin.
  • a chemical preservative such as phenoxyethanol or pentylene glycol
  • an antibiotic such as for example ampicillin or penicillin.
  • compositions according to the invention comprise an aqueous continuous phase in which the capsules are contained and further containing at least one antimicrobial and / or antifungal polymer.
  • the continuous phase has a pH compatible with the survival of the encapsulated microorganism and the antimicrobial and / or antifungal properties of the antimicrobial and / or antifungal polymer (s) used.
  • the continuous phase does not include a preservative, for example parabens or phenoxyethanol, or antibiotic.
  • the aqueous continuous phase comprises a culture medium.
  • the aqueous continuous phase can act as a culture medium.
  • the continuous phase is a suitable culture medium which has the advantage of preventing the swelling and destruction of the capsules.
  • a culture medium adapted according to the invention has a satisfactory osmolarity, comparable to that of conventionally used media.
  • Osmolarity is the number of moles of dissolved solute per liter of solvent. This magnitude is directly related to the osmotic pressure. But a medium with too strong (hypertonic) or too weak (hypotonic) osmolarity causes osmosis phenomena in the cells that affect its physiology.
  • the aqueous continuous phase comprises a culture medium, called MC2, which is for example chosen from Erdschreiber culture medium, F / 2 medium, TAP medium, seawater reconstituted, DM (diatom) medium, Minimum medium, RCCM medium, and any of their mixtures.
  • MC2 a culture medium, called Erdschreiber culture medium, F / 2 medium, TAP medium, seawater reconstituted, DM (diatom) medium, Minimum medium, RCCM medium, and any of their mixtures.
  • the aqueous continuous phase comprises a culture medium, called MC2, as described above, adapted so as to eliminate the calcium chelants and / or add a small amount of at least one calcium salt, for example chloride of calcium (1 mM).
  • MC2 a culture medium
  • Such media like the medium RCCM medium described in Example 1, then have improved compatibility with the outer casing of the capsules according to the invention.
  • the present invention is particularly advantageous in that it allows the culture of living cells in a heterotrophic medium (ie catabolization of a carbon substrate), which leads to a substantial improvement in the speed of the cycles of division and / or production yields compared to a culture of living cells in autotrophic medium.
  • the osmolarity of the culture medium MC2 is preferably between 10 mOsm and 1000 mOsm.
  • the Erdschreiber culture medium is a solution comprising NaCl (11.4 g / L), Tris (5.90 g / L), NH 4 CI (2.92 g / L), KCl (0.73 g / L), K 2 HPO 4 .2H 2 O (72 mg / L), FeSO 4 H 2 O (1.9 mg / L), H 2 SO 4 (0.04 mg / L), MgSO 4 ( 7.65 g / L), CaCl 2 (1.43 g / L), NaN0 3 (2 mg / L), Na 2 HPO 4 (0.2 mg / L), a soil extract (24.36 mL) / L) and water (QSP 1 L).
  • a soil extract refers to the filtrate obtained by filtration of a mixture of soil and water.
  • F / 2 medium commercially available (in particular at the School of Biological Sciences of the University of Texas, or at Varicon Aqua), is a solution comprising NaN0 3 (8.82.10 "4 mol / L), NaH 2 PO 4 OH 2 O (3.62 ⁇ 10 -5 mol / L), Na 2 SiO 3 .9H 2 O (1.06 ⁇ 10 -4 mol / L), FeCl 3 H 6 O (1, 17.1 ⁇ 5 mol / L ), Na 2 EDTA 2 H 2 O (1, 17 ⁇ 10 5 mol / L), CuSO 4 .5H 2 O (3.93 ⁇ 10 -8 mol / L), Na 2 MoO 4 .2H 2 O (2.60 ⁇ 10 -8) mol / l), ZnS0 4 .7H 2 0 (7,65.10 "8 mol / L), COCl 2 .6H 2 0 (4,20.10" 8 mol / L), MnCl 2 .4H 2
  • TAP medium commercially available, (including LifeTech), is a mixture of Beijerincks buffer (2x) (50 mL), 1 M phosphate buffer pH 7 (1 mL), trace solution (1 mL), acid acetic acid (1 mL) and water (QSP 1 L).
  • the compositions of the Beijerincks (2x) and 1 M phosphate pH 7 buffers and of the trace solution are described in the examples below.
  • the pH of the TAP medium is 7.3.
  • the osmolarity of the TAP medium is 60 mOsm.
  • the reconstituted seawater is a solution comprising NaCl (11.7 g / L), Tris (6.05 g / L), NH 4 CI (3.00 g / L), KCl (0.75 g / L), L), K 2 HPO 4 .2H 2 O (74.4 mg / L), FeSO 4 H 2 O (2 mg / L), H 2 SO 4 (0.05 mg / L), MgSO 4 (7). 85 g / L), CaCl 2 (1.47 g / L) and water (QSP 1 L).
  • the pH of reconstituted seawater varies from 7.5 to 8.4.
  • the osmolarity of reconstituted seawater is 676 mOsm.
  • DM (diatom) medium is a solution comprising Ca (NO 3 ) 2 (20 g / L), KH 2 PO 4 (12.4 g / L), MgSO 4 .7H 2 O (25 g / L), NaHCO 3. 3 (15.9 g / L), FeNaEDTA (2.25 g / L), Na 2 EDTA (2.25 g / L), H 3 B0 3 (2.48 g / L), MnCl 2 .4H 2 0 (1.39 g / L), (NH 4 ) 6 Mo 7 0 24 .4H 2 O (1 g / L), cyanocobalamin (0.04 g / L), thiamine HCl (0.04 g / L) , biotin (0.04 g / L), NaSiO 3 .9H 2 O (57 g / L) and water (QSP 1 L).
  • the Minimum medium is a mixture of Beijerincks buffer (2x) (50 mL), phosphate buffer (2x) (50 mL), trace solution (1 mL) and water (QSP 1 L).
  • the Beijerincks (2x) and phosphate (2x) buffers and trace solution are described in the examples below.
  • the osmolarity of the Minimum medium is 37 mOsm.
  • the RCCM medium is described in detail in Example 1.
  • the continuous aqueous phase may be in the form of an oil-in-water emulsion, said emulsion comprising a continuous aqueous phase and a dispersed fatty phase in the form of drops (G1), the size of the drops (G1) being preferably less than 500 ⁇ , preferably less than 400 ⁇ , in particular less than 300 ⁇ , better than 200 ⁇ , in particular less than 100 ⁇ , or even less than 20 ⁇ , and better still less than 10 ⁇ .
  • the size of the drops (G1) is smaller than the size of the particles according to the invention.
  • the size of the drops (G1) is between 0.1 ⁇ and 200 ⁇ , preferably between 0.25 ⁇ and 100 ⁇ , in particular between 0.5 ⁇ and 50 ⁇ , preferably between 1 ⁇ and 20 ⁇ . , and better between 1 ⁇ and 10 ⁇ , or even between 3 ⁇ and 5 ⁇ .
  • the drops (G1) comprise a bark resulting from an interfacial coacervation reaction, in particular between at least one anionic polymer and at least one cationic polymer, as described for example in WO 2012/120043.
  • the continuous aqueous phase of the compositions of the invention comprise at least one antimicrobial and / or antifungal polymer.
  • the term "antimicrobial” is intended to denote a polymer having a bactericidal (germ-killing) or bacteriostatic effect (the seed can neither grow nor reproduce, in other words it prevents the multiplication of germs. without killing them).
  • This antimicrobial and / or antifungal polymer thus makes it possible to kill or prevent the development of specifically contaminants outside the capsules without impacting the contents of said capsules.
  • the antimicrobial and / or antifungal polymer (or polymer having antimicrobial and / or antifungal activity) is present in the continuous phase predominantly in a free form.
  • an adhesion of the antimicrobial and / or antifungal polymer with the outer envelope of the capsules, in particular the gelled alginate forming the outer envelope of the capsules can be observed.
  • the skilled person will be able to adjust the minimum content of antimicrobial polymer (s) and / or antifungal (s) to ensure its presence in the continuous phase in a predominantly free form.
  • the antimicrobial and / or antifungal polymer should be put in a sufficient amount so that the concentration of free antimicrobial and / or antifungal polymer in the continuous phase provides the desired antimicrobial and / or antifungal effect.
  • the antimicrobial and / or antifungal polymer is set to excess.
  • polymers as antimicrobial and / or antifungal agents in the present invention has several advantages, since these products usually exhibit long-term activity, limited residual toxicity, are chemically stable, non-volatile and do not penetrate the skin.
  • the determination of the antimicrobial and / or antifungal activity of a polymer is within the general skill of those skilled in the art. As such, reference may be made to the method for evaluating the antimicrobial activity of a polymer described in Materials 2016, 9, 599 (doi: 10.3390 / ma9070599) or to that described in WO 97 / 30082.
  • the antimicrobial and / or antifungal polymers are chosen from polymers that are not able to penetrate inside the capsules, so as to preserve the integrity of the capsule contents, and in particular the survival of the encapsulated living cells.
  • This inability to penetrate into the capsules may result from a minimum size (or molecular weight) greater than the average pore diameter of the gelled envelope of the capsules according to the invention (we can also speak of the cut-off diameter) and / or its polarity such that weak bonds, in particular electrostatic bonds, with the material, in particular the polyelectrolyte, constituting the outer envelope of the capsules are created.
  • an antimicrobial and / or antifungal polymer according to the invention has a molecular weight greater than 10,000 Da, preferably greater than 100,000 Da, and / or is a cationic polymer.
  • the antimicrobial and / or antifungal polymer has a molecular weight of between 10,000 Da and 300,000 Da, preferably between 100,000 Da and 200,000 Da.
  • the antimicrobial and / or antifungal polymer is a cationic polymer.
  • the cationic character of the antimicrobial and / or antifungal polymer ensures the creation of weak bonds, in particular of electrostatic bonds, with the outer envelope of the capsules when this envelope consists of at least one polyelectrolyte; the antimicrobial and / or antifungal polymer therefore can not diffuse through the outer shell. This is why it can exert its bacteriostatic and / or antifungal activity in the continuous phase exclusively.
  • the antimicrobial and / or antifungal polymer is a cationic polymer having a repeating unit comprising at least one amine function.
  • the antimicrobial and / or antifungal polymers according to the invention may be of natural or synthetic origin, preferably of natural origin.
  • the antimicrobial and / or antifungal polymer may be chosen from the antimicrobial and / or antifungal polymers described below.
  • the antimicrobial and / or antifungal polymers according to the invention may be chosen from (i) biocidal polymers, which are polymers with intrinsic antimicrobial and / or antifungal activity; (ii) polymeric biocides, which are based on a polymeric backbone to which biocidal molecules are attached; and (iii) biocide-releasing polymers (i.e. "biocide-releasing polymers") which are charged polymers of biocidal molecules; and their mixtures.
  • biocidal polymers which are polymers with intrinsic antimicrobial and / or antifungal activity
  • polymeric biocides which are based on a polymeric backbone to which biocidal molecules are attached
  • biocide-releasing polymers i.e. "biocide-releasing polymers" which are charged polymers of biocidal molecules; and their mixtures.
  • the antimicrobial and / or antifungal polymers according to the invention are chosen from biocidal polymers, in particular taking into account their particularly satisfactory property in terms of non-toxicity.
  • Biocidal polymers that is, with intrinsic antimicrobial and / or antifungal activity, are usually based on polycations capable of killing microbes by action on their negatively charged cell membrane.
  • the Cationic groups present in these polymers are quaternary ammonium, quaternary phosphonium, guanidinium or tertiary sulfonium.
  • the biocidal polymers may be chosen from chitosan; polylysine; cationic polymers containing quaternary phosphonium salts (QPS) or quaternary ammonium salts (QAS) such as poly ((2-methacryloxyethyl) triethylammonium), poly (p-vinylbenzyltetramethylenesulphonium tetrafluoroborate), tributyl (4- vinylbenzyl) phosphonium (QPM), [2- (acryloyloxy) ethyl] trimethylammonium chloride (ATC); antimicrobial and / or antifungal zwitterionic (or amphiphilic) polymers such as ammonium ethyl methacrylate homopolymers (AEMPs); poly (ethyleneamines); poly (ethyleneimines); polyvinylamines; polyarginine; polyornithine; polyaniline; androctonine as described in WO 97/30082; one of
  • Polymeric biocides are prepared by binding several known biocidal molecules to a polymer.
  • Polymeric biocides consist of a polymeric backbone in which biocidal molecules (e.g., antibiotics) are attached to provide antimicrobial and / or antifungal activity.
  • biocidal molecules e.g., antibiotics
  • TMC trimethylchitosan
  • chitosan-sulphonamide derivatives dodecenyl phthaloyl chitosan succinylated, and mixtures thereof.
  • Polymers releasing biocides are based on polymer matrices loaded with biocidal molecules, which can be trapped using different methods, or polymers containing biocides attached by cleavable bonds.
  • the antimicrobial and / or antifungal polymer is polylysine, in particular poly-L-lysine or poly-D-lysine, or their mixtures, or one of its derivatives.
  • the antimicrobial and / or antifungal polymer is poly-L-lysine.
  • poly-L-lysine P5899 marketed by Sigma-Aldrich (Mw> 300 kDa).
  • polylysine As derivatives of polylysine (PLL), mention may be made of the electrostatic complex between polylysine and gum arabic which has the advantage of preventing the turbidity of the aqueous phase and / or the sedimentation of PLL in said aqueous phase; or alternatively polylysine hydrogels grafted with methacrylamide groups.
  • the antimicrobial and / or antifungal polymer is used in the continuous aqueous phase in a sufficient quantity so that the concentration of free antimicrobial and / or antifungal polymer in the continuous phase ensures the antimicrobial effect and / or antifungal sought and this, even in the presence of a reaction between said antimicrobial and / or antifungal polymer and the outer envelope, optionally gelled, capsules.
  • This amount is sufficient general knowledge of the skilled person in light of the teaching of the present description
  • a content of cationic antimicrobial polymer (s) and / or antifungal (s) (s) ) in the continuous phase greater than 10 ⁇ 4 %, preferably greater than or equal to 10 ⁇ 3 %, relative to the total weight of said continuous phase.
  • the composition according to the invention comprises a content greater than 10 -4 %, preferably greater than or equal to 10 -3 %, by weight of antimicrobial (s) and / or antifungal polymer (s) ( s), especially cationic polymer (s) antimicrobial (s) and / or antifungal (s), relative to the total weight of the continuous phase.
  • the aqueous continuous phase according to the invention may also comprise at least one antibiotic in which case the antibiotic must not be able to penetrate the capsules and / or must not be deleterious to the encapsulated medium. , especially encapsulated living cells.
  • antibiotics are a matter of general knowledge of those skilled in the art at light of the teaching of the present description. By way of illustration, mention may be made of ampicillin, which is not deleterious to microalgae.
  • Antibiotics include, for example, the following compounds: novobiocin, ceftazidime, ampicillin, ticarcillin, carbenicillin, piperacillin, cefotaxime, chloramphenicol, rifampin, norfloxacin, and mixtures thereof.
  • the capsules according to the invention comprise at least one living cell.
  • the living cells are necessarily present in the heart of the capsules of the invention.
  • a capsule according to the invention may further comprise living cells at the level of the outer envelope.
  • the cells present in the capsules of the invention may be of any type.
  • prokaryotic cells in particular, prokaryotic cells, eukaryotic cells and their mixture may be mentioned.
  • the living cell or cells are chosen from prokaryotic or eukaryotic cells.
  • the living cell or cells are chosen from animal or plant cells, and are preferably chosen from plant cells.
  • the encapsulated cells according to the invention may be animal (in particular mammalian) or plant cells, in particular algae and microalgae, bacteria, protists, fungi or archaebacteria (archaea), and mixtures thereof .
  • the cells present in the capsules of the invention may be adherent or non-adherent cells.
  • the cells present in the inner phase of the capsules are in a living form. They are therefore not cells in a lyophilized state, or in the form of lysate, dead or inactivated.
  • the cells are plant cells.
  • the cells present in the inner phase of the capsules are suspended in the internal phase.
  • the cells do not adhere to the outer membrane, optionally gelled, capsules, and are not in prolonged contact with said membrane.
  • the living cells are thus completely immersed in the medium constituting the internal phase and are free to move in three dimensions.
  • the living cells used according to the invention are cells capable of producing a molecule of interest, where appropriate by elicitation.
  • the capsules of the invention comprise at least one algal cell (also called algal cell), preferably a microalgae cell.
  • the capsules of the invention comprise several cells of algae, of the same species or of different species.
  • Algae are living beings capable of photosynthesis whose life cycle generally takes place in the aquatic environment.
  • prokaryotes cyanobacteria
  • eukaryotes severe very diverse sets.
  • micro-algae refers to microscopic algae. They are undifferentiated, photosynthetic, eukaryotic or prokaryotic unicellular or multicellular beings.
  • algae used in the capsules of the invention mention may be made of a green alga, a red alga, a brown alga, and their mixture.
  • it is a prokaryotic algae.
  • it is a eukaryotic algae.
  • the alga is preferably of the genus Chlamydomonas, such as Chlamydomonas reinhardtii, or of the genus Peridinium, such as Peridinium cinctum.
  • Suitable algae for the implementation of the invention may be chosen from the group consisting of Alexandrium minutum, Amphiprora hyalina, Anabaena cylindrica, Arthrospira platensis, Chattonella verruculosa, Chlorella vulgaris, Chlorella protothecoides, Chysochromulina breviturrita, Chrysochromulina kappa, Dunaliella Salina, Dunaliella minuta, Emiliania huxleyi (Haptophyta), Gymnodinium catenatum, Gymnodinium nagasakiense, Haematococcus pluvialis, Isochrysis galbana, Noctiluca scintillans, Odontella aurita, Oryza sativa, Ostreococcus lucimarinus, Pavlova utheri, Porphyridium cruentum, Spirodela oligorrhiza, Spirulina maxima,
  • the heart of the capsules is monophasic or comprises an intermediate drop of an intermediate phase, the intermediate phase being placed in contact with the outer envelope, and at least one, preferably a single, internal drop of an internal phase disposed in the intermediate drop, at least one of the intermediate phase and / or the internal phase comprises at least one living cell.
  • the capsule of the invention is a so-called “simple” capsule, meaning that the heart consists of a single phase.
  • a “simple” capsule is for example a capsule as described in the international application WO 2010/063937.
  • the living cell or cells are present in the heart of the capsules.
  • the living cell or cells are present in the core and / or in said intermediate phase.
  • the outer envelope of the capsules according to the invention may be of any type known to those skilled in the art, provided that its composition is not detrimental to the survival / growth of the encapsulated living cells and prevents the entering the antimicrobial (s) and / or antifungal polymer (s) into said capsules.
  • the nature of the outer envelope is advantageously compatible with the field (s) of application envisaged (s), and in particular with the cosmetic, pharmaceutical, agricultural, preferably cosmetic.
  • the antibacterial and / or antifungal polymer does not form and / or is not involved in the formation of the outer casing of the capsules according to the invention.
  • the outer envelope of the capsules typically comprises at least one polyelectrolyte in the gelled state. This outer envelope may also be called "gelled envelope”.
  • gelled envelope means an external phase at least partially surrounding an internal phase, and comprising a compound in the gelled state or in gel form.
  • the gelled envelope is an aqueous phase, and typically a hydrogel of a polyelectrolyte in the gelled state.
  • the gelled envelope may also be referred to as "membrane" or "bark”.
  • the gelled envelope has a thickness of less than 500 ⁇ , advantageously greater than 10 ⁇ .
  • the gelled envelope is generally formed by a monolayer of a homogeneous material.
  • the gelled envelope preferably comprises a gel containing water and a polyelectrolyte advantageously chosen from proteins, natural polysaccharides and polyelectrolytes reactive with multivalent ions.
  • polyelectrolyte reactive with polyvalent ions means a polyelectrolyte capable of passing from a liquid state in an aqueous solution to a gelled state under the effect of contact with a gelling solution containing multivalent ions such as ions of an alkaline earth metal selected for example from calcium ions, barium ions, magnesium ions.
  • the individual polyelectrolyte chains are substantially free to flow relative to one another.
  • An aqueous solution of 2% by weight of polyelectrolyte then exhibits a purely viscous behavior at the shear gradients characteristic of the forming process.
  • the viscosity of this zero shear solution is between 50 mPa.s and 10,000 mPa.s, advantageously between 3000 mPa.s and 7000 mPa.s.
  • This viscosity at the shear gradients characteristic of the flows involved during the manufacture of the capsules is for example measured using a stress-strain rheometer, or deformation, imposed at the manufacturing temperature, for example 25 ° C.
  • For measurements use a cone-plane geometry with a diameter of 10 to 50 mm, and a cone angle of 2 ° maximum.
  • the individual polyelectrolyte chains in the liquid state advantageously have a molar mass greater than 65,000 g / mol.
  • the individual polyelectrolyte chains together with the multivalent ions form a coherent three-dimensional network which holds the liquid core and prevents its flow.
  • the individual channels are retained by to others and can not flow freely from each other.
  • the viscosity of the formed gel is infinite.
  • the gel has a threshold of stress to the flow. This stress threshold is greater than 0.05 Pa.
  • the gel also has a modulus of elasticity that is non-zero and greater than 35 kPa.
  • the three-dimensional polyelectrolyte gel contained in the envelope traps water and the surfactant when present.
  • the mass content of the polyelectrolyte in the envelope is, for example, from 0.5% to 5% relative to the total mass of the envelope.
  • the polyelectrolyte is preferably a biocompatible polymer that is harmless to the human body. It is for example produced biologically.
  • polysaccharides synthetic polyelectrolytes based on acrylates (sodium, lithium, potassium or ammonium polyacrylate, or polyacrylamide), synthetic polyelectrolytes based on sulfonates (poly (styrene sulfonate) ) of sodium, for example). More particularly, the polyelectrolyte is chosen from alkaline earth alginates, such as sodium alginate or potassium alginate, gellan or pectin.
  • the polyelectrolyte is a sodium alginate.
  • Alginates are produced from brown algae called “laminar”, referred to as “sea weed”.
  • Such alginates advantageously have a content of ⁇ -L-guluronate greater than about 50%, preferably greater than 55%, or even greater than 60%.
  • the gelled envelope may further contain at least one surfactant.
  • the surfactant is preferably an anionic surfactant, a nonionic surfactant, a cationic surfactant or a mixture thereof.
  • the molecular weight of the surfactant is between 150 g / mol and 10,000 g / mol, advantageously between 250 g / mol and 1500 g / mol.
  • the surfactant is sodium lauryl sulphate (SLS or SDS).
  • the mass content of surfactant in the shell is greater than 0.001% and is advantageously greater than 0.1%.
  • a capsule according to the invention is a capsule which comprises a liquid heart or at least partially gelled or at least partially thixotropic and an outer envelope, optionally gelled, completely encapsulating said liquid core, said core being monophasic.
  • Such a type of particles corresponds to a simple capsule comprising two distinct phases, an internal liquid phase or at least partially gelled or at least partially thixotropic and an external phase, optionally in the gelled state, surrounding the internal phase.
  • the ratio of the volume of the core to the volume of the outer envelope, optionally gelled is between 1 and 50, preferably between 1 and 10, and better between 1 and 2.
  • a capsule according to the invention is a capsule which comprises a liquid core or at least partially gelled or at least partially thixotropic and an outer envelope, optionally gelled, completely encapsulating said heart, said heart having a intermediate drop of an intermediate phase, the intermediate phase being placed in contact with the outer envelope, optionally gelled, and at least one, preferably a single, internal drop of an inner phase disposed in the intermediate drop.
  • the ratio of the volume of the core to the volume of the outer envelope, optionally gelled is greater than 2, advantageously less than 50, and preferably is between 5 and 10.
  • the intermediate phase is for example made from an aqueous or oily solution.
  • the internal phase is oily
  • Such a type of capsule corresponds to a complex capsule signifying that the liquid core, viscous or thixotropic, comprises a single intermediate drop of an intermediate phase, the intermediate phase being placed in contact with the outer envelope, optionally gelled, and at least one, preferably a single, internal drop of an internal phase disposed in the intermediate drop.
  • the core comprises a continuous intermediate phase within which a plurality of internal phase drops (s) are located.
  • a capsule according to the invention comprises a liquid heart or at least partially gelled or at least partially thixotropic and an outer envelope, optionally gelled, completely encapsulating said heart, said heart having an intermediate drop of a oily phase, the oily phase being placed in contact with the outer shell, optionally gelled, and less an internal drop of an aqueous phase disposed in the intermediate drop.
  • a capsule according to the invention comprises a liquid heart or at least partially gelled or at least partly thixotropic and an outer envelope, optionally gelled, completely encapsulating said heart, said heart having an intermediate drop of an aqueous phase, the aqueous phase being placed in contact with the outer envelope, optionally gelled, and at least one, preferably a single, internal drop of an oily phase disposed in the intermediate drop.
  • living cells are necessarily located in the heart at the aqueous phase.
  • the intermediate phase further comprises at least one gelling agent, especially as defined below.
  • the gelling agent contributes in particular to improving the suspension of the internal drop (s) disposed in the intermediate drop of the capsules of the invention according to this embodiment.
  • the gelling agent makes it possible to prevent / avoid the phenomena of creaming or sedimentation of the internal drop (s) arranged in the intermediate drop of the capsules of the invention according to this method. embodiment.
  • the gelling agent When the gelling agent is in the aqueous phase comprising living cells, those skilled in the art will be able to adjust the nature and / or amount of agent (s) gelling (s) so as to ensure the desired suspensivity without prejudicing the survival or growth of said living cells.
  • the phase comprising living cells is liquid.
  • liquid means a phase, optionally a gel, which may flow under its own weight at ambient temperature and atmospheric pressure.
  • a phase comprising the living cells according to the invention has a viscosity ranging from 1 mPa.s to 500,000 mPa.s, preferably from 10 mPa.s to 300,000 mPa.s, better than 400 mPa.s to 200,000 mPa.s, and more particularly from 2,000 mPa.s to 150,000 mPa.s, as measured at 25 ° C.
  • the intermediate phase of the capsule of the invention comprises at least one living cell C1 and the inner phase comprises at least one living cell C2, C1 and C2 being different from each other.
  • C1 and C2 are beneficial vis-à-vis each other (symbiosis).
  • the intermediate phase or the internal phase of the capsule of the invention comprises at least one living cell, the other phase comprises at least one fatty phase.
  • This embodiment is advantageous in that it makes it easy to provide fat which may be useful for the growth of encapsulated living cells and / or the screening of living cells, for example for easy identification of cells capable of degrading the cell. oil.
  • the internal phase of the capsules of the invention is typically suitable for the survival of the living cell (s), in particular the plant cell, included in said internal phase.
  • the internal phase comprises a buffer solution adapted to the survival of living cells.
  • any buffer known per se can be used to be adapted to the survival of living cells.
  • the internal phase preferably has a pH of from 5 to 10, more preferably from 6 to 9.
  • the internal phase does not include a preservative, for example parabens or phenoxyethanol.
  • the internal phase comprises nutrients capable of proliferating the living cell or cells.
  • the internal phase comprises a culture medium called MC1 in the context of the present invention.
  • culture medium is meant a solution comprising nutrients capable of proliferation of the living cell (s) and acting as a pH buffer.
  • the osmolarity of the culture medium MC1 is preferably between 10 mOsm and 1000 mOsm.
  • the culture medium MC1 is, for example, chosen from Erdschreiber culture medium, F / 2 medium, TAP medium, reconstituted seawater, DM (diatom) medium, Minimum medium, RCCM medium. and any of their mixtures.
  • the heart of the capsules comprises a culture medium MC1 identical to or different from the culture medium MC2 defined above.
  • the size of the capsules is less than 5 mm, preferably between 50 ⁇ and 3 mm.
  • the culture of living cells in capsule imposes to have an optimal diffusion of the nutrients present in the continuous phase until the center of the capsules. It may be better to work with capsules a few hundred microns rather than a few millimeters.
  • the size of the capsules is advantageously between 50 ⁇ and 250 ⁇ , and preferably between 100 ⁇ and 150 ⁇ .
  • the internal phase can typically comprise from 10 3 to 10 9 , preferably from 10 4 to 10 8 , more preferably from 10 to 10 9. 5-10 8, for example from 10 6 to 5.10 6 living cells per milliliter of internal phase.
  • the internal phase typically comprises from 1 to 10 7 , preferably from 5 to 10 6 , from 30 to 5 ⁇ 10 5 , from 50 to 10 5 , from 75 to 5 ⁇ 10 4 , from 100 to 10 4 , from 150 to 10 4 , even from 200 to 10 3 living cells, per capsule.
  • the counting of the living cells of the internal phase is preferably carried out before encapsulation, or after the opening of the capsules.
  • Counting living cells can be done by the Malassez counting method.
  • Malassez's cell is a glass slide that counts the number of cells in suspension in a solution. On this glass slide, a grid of 25 rectangles has been engraved, containing 20 small squares themselves. To count the cells, one deposits on the cell of Malassez between 10 ⁇ ⁇ - and 15 ⁇ ⁇ - of internal phase including cells in suspension. After sedimentation, we count the number of cells in 10 rectangles (squares). The volume of a grid rectangle being 0.01 ⁇ ⁇ -, this number is multiplied by 10,000 to obtain the number of cells per milliliter of internal phase.
  • the counting of cells can be done by absorbance measurement.
  • absorbance measurement for a given wavelength ⁇ , the absorbance of a solution is proportional to its concentration and to the length of the optical path (distance over which the light passes through the solution). So we can measure the cell concentration of the inner phase based on an absorbance measurement method (also called optical density). To do this, it suffices to measure the optical densities of internal phases containing a known quantity of cells, which makes it possible to construct a standard curve as a function of the cell concentration.
  • the internal phase comprises one million living cells per milliliter of internal phase before any culture method, which corresponds to about 60 living cells per capsule 500 ⁇ in diameter.
  • the internal phase typically comprises from 50 million to 40 billion, preferably from 100 million to 30 billion, and more preferably from 150 million to 20 billion, of living cells per milliliter of internal phase. .
  • the capsules of the invention are typically prepared by a process comprising the following steps:
  • a solution optionally containing a reagent B capable of ensuring the formation of the envelope, in particular a gelling solution containing a reagent capable of gelling the polyelectrolyte of the external liquid phase (or second solution), by which we obtain the gelled external phase, and
  • double drop a drop consisting of an internal phase and a liquid external phase, completely encapsulating said inner phase at its periphery.
  • the production of this type of drop is generally carried out by concentric coextrusion of two solutions, according to a hydrodynamic mode of dripping or jetting, as described in applications WO 2010/063937 and FR2964017.
  • the reagent capable of gelling the polyelectrolyte present in the gelling solution then forms bonds between the different polyelectrolyte chains present in the liquid external phase.
  • the polyelectrolyte in the liquid state then passes to the gelled state, thus causing the gelation of the liquid external phase.
  • the individual polyelectrolyte chains present in the liquid external phase are connected to each other to form a crosslinked network, also called a hydrogel, which traps the water contained in the external phase.
  • a gelled external phase suitable for retaining the internal phase of the first solution, is thus formed.
  • This gelled outer phase has a clean mechanical strength, that is to say that it is able to completely surround the internal phase and retain the plant cell or cells present in this internal phase to retain them in the heart of the capsule gelled.
  • the capsules according to the invention remain in the gelling solution until the outer phase is completely gelled. They are then collected and optionally immersed in an aqueous rinsing solution, generally consisting essentially of water and / or culture medium.
  • the size of the different phases initially forming the double drops, and ultimately the capsules, is generally controlled by the use of two independent syringe pumps (at the laboratory scale) or two pumps (on an industrial scale). which respectively provide the first solution and the second liquid solution mentioned above.
  • the flow rate Qi of the syringe pump associated with the first solution controls the diameter of the internal phase of the final capsule obtained.
  • the flow rate Q 0 of the syringe pump associated with the second liquid solution controls the thickness of the outer phase, optionally gelled, of the final capsule obtained.
  • the relative and independent adjustment of the flow rates Q 1 and Q 0 makes it possible to control the thickness of the external phase, optionally gelled, independently of the outer diameter of the capsule, and to modulate the volume ratio between the internal phase and the external phase.
  • Capsules comprising an intermediate phase are generally obtained by concentric coextrusion of three solutions, by means of a triple envelope: a first flux constitutes the internal phase, a second flow constitutes the intermediate phase and a third flow constitutes the external phase.
  • the production of such capsules, called “complex”, is described in particular in the international application WO 2012/089820.
  • the three flows come into contact and then form a multi-component drop, which is then gelled when immersed in a gelling solution, in the same way as in the process for preparing capsules "Simple" described above.
  • the inner phase and / or the intermediate phase may comprise at least one living cell, preferably a plant cell, in particular an algal cell.
  • the intermediate phase may comprise at least one living cell, preferably a plant cell, in particular an algal cell, which may be identical to or different from the living cells present in the internal phase.
  • the intermediate phase when present and comprising living cells, is preferably capable of survival of said living cells. It advantageously comprises a culture medium capable of culturing said cells, typically one of the MC1 culture media mentioned above for the internal phase.
  • the intermediate phase when present and comprising living cells, typically comprises from 1 to 10 7 , preferentially from 5 to 10 6 , from 30 to 5 ⁇ 10 5 , from 50 to 10 5 , from 75 to 5 ⁇ 10 4. , from 100 to 10 4 , from 150 to 10 4 , even from 200 to 10 3 living cells, per capsule.
  • the composition of the invention comprises at least two different populations of capsules which differ from each other by the nature of the encapsulated active agents, in particular living cells used.
  • Such a composition may therefore comprise a population of capsules (C) as defined above and comprising at least one living cell C1 and a capsule population (C) as defined above and comprising at least one living cell C2, cells C1 and C2 being different.
  • the present invention also relates to a kit comprising two separate compositions (A) and (B), wherein:
  • composition (A) is a composition as defined above, and
  • composition (B) comprises a depolymerizing agent.
  • the term "separate compositions” means distinct compositions, for example placed in different compartments.
  • the compositions (A) and (B) are arranged in the same kit, but can not come into contact in the kit.
  • the compositions (A) and (B) are therefore distinct entities.
  • the term "depolymerizing agent” is intended to mean a compound capable of embrittling and / or breaking the outer, optionally gelled envelope of the capsule to enable the core to be released into the continuous phase.
  • Composition (B) may also be referred to as "depolymerizing solution” or “depolymerizing composition”.
  • the depolymerizing agent is chosen from agents that are not or only slightly detrimental to the growth or even the survival of encapsulated living cells. Such a selection is a general knowledge of the person skilled in the art.
  • the depolymerizing agent of the composition (B) is chosen from calcium chelating agents, calcium exchangeable salts, enzymes capable of degrading proteins or polysaccharides, and mixtures thereof.
  • the depolymerizing agent is a calcium chelating agent. These compounds are capable of forming very stable metal complexes. They are suitable for being bound to metal cations in the form of one of its conjugate bases.
  • EDTA ethylene diamine tetraacetic acid
  • EGTA ethylene glycol tetraacetic acid
  • crown ethers such as 1, 13-diaza-21-crown-7 or 1 , 10-diaza-18-crown-6
  • cryptands or else acids such as citric acid, acrylic acid, polyacrylic acid, phytic acid, phosphoric acid, tartaric acid, malic acid, or more generally a polyacid, their inorganic salts, such as a sodium or potassium salt, or their esters, and mixtures thereof.
  • the depolymerizing agent is a polymer or a copolymer comprising at least one monomer having a free acid function after polymerization.
  • the depolymerizing agent is for example chosen from polymers or copolymers of acrylic acid, methacrylic acid, crotonic acid and maleic acid, their salts or their esters.
  • the depolymerizing agent may also be a salt capable of being exchanged with the ions capable of forming the gel of the envelope.
  • the depolymerizing agent is chosen from monovalent cations of monovalent anions.
  • the depolymerizing agent is citric acid or a salt thereof.
  • the depolymerizing agent is, for example, sodium citrate dihydrate.
  • the mass concentration of chelating compound is in particular greater than 0.5% and is for example from 2% to 30% relative to the total mass of the composition (B).
  • the depolymerizing agent is an enzyme capable of degrading proteins or polysaccharides.
  • enzymes capable of degrading polysaccharides mention may be made of endocellulases, exoglucanases and exoglycosidases which degrade the cellulose fibers by enzymatic hydrolysis.
  • compositions (A) and (B) trigger the depolymerization of the outer envelope, optionally gelled, of the capsule by the depolymerizing agent.
  • the interchain links at the origin of the three-dimensional network constituting the envelope break up progressively.
  • the envelope then moves from the gelled state to the liquid state, thus releasing the heart of the capsule in the continuous phase.
  • the mixing time of the compositions (A) and (B) required to obtain a homogeneous final product free of capsule shell residues is directly determined by the depolymerization kinetics.
  • the mixing time is less than one hour, advantageously between 1 second and 30 minutes, and preferably between 5 seconds and 10 minutes.
  • the mixing time depends on various parameters, in particular the viscosities of the compositions (A) and (B), the effectiveness of the depolymerizing agent vis-à-vis the outer shell, optionally gelled, capsules, but also characteristics of the capsules (size, composition, thickness of the envelope, etc.).
  • the polyelectrolyte of the capsule of the composition (A) is chosen from calcium ion-reactive polyelectrolytes, such as sodium alginate, and the depolymerizing agent of the composition (B) is chosen from among the calcium chelating agents and calcium-exchangeable salts, such as EDTA.
  • composition (B) of the kit according to the invention has a viscosity of from 1 mPa.s to 100 Pa.s, advantageously from 1 mPa.s to 60 Pa.s.
  • the texture of the composition (B) is chosen according to the texture that is desired for the final product.
  • composition (B) is in particular in the form of a liquid solution, a gel, a cream, a foam or an emulsion. Its visual appearance partly determines the visual appearance of the final product.
  • the composition (B) contains a mass percentage of water of at least 60%, advantageously from 70% to 95%, preferably from 75% to 95%, relative to the total weight of said composition.
  • the invention also relates to an application of compositions (A) and (B) of the kit according to the invention.
  • the invention therefore also relates to the kit as defined above for its use for simultaneous or separate application over time, especially on the skin, of compositions (A) and (B) as defined above.
  • the kit of the invention therefore makes it possible to apply the compositions (A) and (B) as defined above simultaneously, that is to say together, or one after the other.
  • the present invention relates to a method for culturing living cells comprising a step of culturing at least one composition according to the invention.
  • a composition according to the invention is such that the heart of the capsules comprises a culture medium MC1 and / or the aqueous continuous phase comprises a culture medium MC2 as described above.
  • a person skilled in the art is able to select the appropriate culture media MC1 and / or MC2, as well as the temperature and light conditions appropriate for the proliferation of living cells.
  • capsule harvesting is typically by removal of the MC2 culture medium by filtration of the capsules, or by any other capsule recovery technique.
  • a sieve having an opening size smaller than the average diameter of the capsules of the invention, which are substantially spherical, is typically used.
  • the encapsulation of living cells in particular of plant cells, in particular of algae, and the capsule culture of these living cells, also has the following advantages over conventional methods:
  • encapsulated living cells are protected from mechanical stresses, such as shearing, thereby decreasing cell death during the cell culture process;
  • the encapsulated living cells are partially protected from the external medium, because the membrane of the capsule has a selective permeability (in particular, the bacteria can not penetrate into the capsule), which advantageously makes it possible to avoid possible contaminations and therefore reduce cell death;
  • the size of the capsules (several hundred micrometers) and their mechanical properties make them easier to handle than the cells as such, in particular for changes in MC2 culture medium or during harvesting;
  • post-growth treatment and possibly elicitation can be implemented to waterproof the capsules, thus isolating their contents to facilitate preservation until their use.
  • the present invention further relates to a process for producing a compound of interest, said method comprising:
  • the term “elicitation” means the stimulation of the production of compounds of interest by a living cell, said stimulation being caused by the setting in particular conditions, whether physicochemical, resulting from a modulation of temperature, pressure or illumination, or that they rely on the presence of a particular molecule, called “elicitant molecule”.
  • the production of compounds of interest by the encapsulated living cells is thus artificially induced.
  • the step of elicitation of living cells typically comprises:
  • the step of elicitation of the living cells consists, for example, in culturing the capsules of the invention in a culture medium MC2 different from the culture medium MC1, or in a culture medium comprising an eliciting molecule, or in the same MC1 medium with a change in culture conditions (temperature, light, etc.).
  • the capsules according to the invention can be cultured under eliciting conditions well known to those skilled in the art, such as by adding to the culture medium MC2 salicylic acid, ethylene, jasmonate or chitosan (cf. for example the international application WO 2003/077881).
  • the compounds of interest produced by the production method of the invention are typically subjected to one or more treatments, such as purification, concentration, drying, sterilization and / or extraction. These compounds are then intended to be incorporated into a cosmetic, agri-food or pharmaceutical composition.
  • the capsules of the invention make it possible in particular to produce lipids of interest in cosmetics, such as, for example, fatty acids, such as linoleic acid, alpha-linoleic acid or gamma acid. linoleic, palmitic acid, stearic acid, eicosapentaenoic acid, docosahexanoic acid, arachidonic acid; fatty acid derivatives, such as ceramides; or sterols, such as brassicasterol, campesterol, stigmasterol and sitosterol.
  • fatty acids such as linoleic acid, alpha-linoleic acid or gamma acid.
  • fatty acid derivatives such as ceramides
  • sterols such as brassicasterol, campesterol,
  • the present invention further relates to the use of a composition according to the invention, for the production of living cells and / or the production of compounds of interest.
  • - BF calcium bath (gelling solution): CaCl 2 (90 mM) and a few drops of a solution of Tween 20 10% w / v and osmosis water.
  • - OF external phase (membrane): alginate solution (1.7%) and 0.5 mM SDS in HEPES (50 mM) and osmosis water.
  • TAP medium a known culture medium
  • compounds such as calcium chelants, others are added, such as calcium chloride (1 mM), and others are substituted, such as TRIS buffer which is replaced by 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid (HEPES) + 2.7 mM phosphate (to maintain cell division).
  • compounds such as calcium chelants, others are added, such as calcium chloride (1 mM), and others are substituted, such as TRIS buffer which is replaced by 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid (HEPES) + 2.7 mM phosphate (to maintain cell division).
  • HEPES 4- (2-hydroxyethyl) -1-piperazine ethanesulfonic acid
  • microalgae are then encapsulated by means of at least one nozzle (or "millifluidic device") associated with a piezoelectric device and an electrode.
  • the method of manufacturing capsules is based on the concentric coextrusion of two solutions through a nozzle (or "millifluidic device"), in particular described in WO 2010/063937 and FR2964017, to form double drops.
  • a piezoelectric device (Preloaded piezo actuator, 15 ⁇ , from PI) is then energized, and the excitation frequency is adjusted (typically around 1.6 kHz).
  • An electrode is energized, typically at 1000 V, to charge the drops.
  • the induced repulsions cause the drops to move away, which transforms the jet into a cone and reduces coalescence in flight. This allows to obtain a population of drops, and therefore capsules, very monodisperse.
  • the drops then complete their fall in the calcium bath, thus forming capsules according to the invention.
  • This system makes it possible to encapsulate microalgae without deleterious effect, and to cultivate them in this vehicle. It is possible to reach very high concentrations (3460 million cells per mL in the capsule), without major impact on the viability of the culture.
  • ionizing radiation gamma rays
  • UV non-ionizing radiation
  • composition of the four flanges is shown in the table below.
  • E. coli YFP or Chiamydomonas reinhardtii bacteria will induce turbidity of the RCCM culture medium.
  • the flasks are then incubated for one week at 25 ° C. After that, the flanges are observed.
  • Figure 1 shows the growth curve of Chiamydomonas reinhardtii WTS24- in capsule, in RCCM culture medium supplemented with 10 ⁇ 3 % poly-L-lysine (Sigma-Aldrich, P5899, Mw> 300kDa) (PLL).
  • a composition according to the invention therefore constitutes an innovative means of decontaminating exclusively the continuous phase in which bathes the capsules, without impacting the contents thereof. This makes it possible to supplement or even replace the traditional use of antibiotics.

Abstract

La présente invention concerne une composition comprenant une phase continue aqueuse et au moins une capsule, ladite capsule comprenant un cœur, liquide ou au moins en partie gélifié ou au moins en partie thixotrope, et au moins une enveloppe externe encapsulant totalement ledit cœur à sa périphérie, dans laquelle ladite capsule comprend au moins une cellule vivante, et dans laquelle ladite phase aqueuse continue comprend au moins un polymère antimicrobien et/ou antifongique.

Description

CAPSULES BACTERICIDES OU BACTÉRIOSTATIQUES OU ANTIFONGIQUES COMPRENANT DES CELLULES VIVANTES ET LEURS UTILISATIONS
La présente invention a pour objet une composition comprenant des capsules bactéricides ou bactériostatiques comprenant des cellules vivantes ainsi que leurs utilisations, notamment dans des kits.
Les demandes internationales WO 2016/062836 et WO 2013/1 13855 décrivent des capsules comprenant un cœur liquide et au moins une enveloppe externe encapsulant totalement le cœur liquide à sa périphérie, lesdites capsules comprenant des cellules vivantes, respectivement, végétales et eucaryotes de mammifères. L'encapsulation de cellules vivantes et la culture en capsules de ces cellules vivantes, en particulier des micro-algues, présentent certains avantages par rapport aux procédés classiques. En particulier, les cellules encapsulées sont protégées des contraintes mécaniques, telles que le cisaillement, diminuant ainsi la mort cellulaire au cours du procédé de culture des cellules. On obtient ainsi des objets « solides » plus facilement manipulables, à l'échelle de procédés industriels de type mélange, brassage, filtrage, lavage et décantage, et il est également plus facile de manipuler ces objets, et donc la biomasse qu'ils encapsulent, pour faciliter la caractérisation différentielle des échantillons.
Pour des raisons évidentes, la culture de cellules vivantes, qui plus est pour des finalités industrielles d'ordre alimentaire, pharmaceutique ou cosmétique, requiert de travailler dans des conditions sans contaminations. Toutefois, travailler dans une enceinte stérile est coûteux et contraignant.
Dans le cas d'une contamination par des microorganismes, en particulier des bactéries, de la phase continue dans laquelle sont conservées les capsules susmentionnées, ces dernières s'avèrent avantageuses en ce qu'elles permettent de limiter le passage d'organismes cellulaires non désirés à travers l'enveloppe externe. Toutefois, il demeure nécessaire de mettre en œuvre des moyens pour lutter contre les contaminations, notamment bactériennes, au niveau de la phase continue en tant que telle. De tels moyens sont connus. A ce titre, on peut citer les molécules ayant des propriétés bactériostatiques ou bactéricides, telles que les antibiotiques, le chlore, l'alcool à 70°, l'azoture de sodium, les conservateurs, l'argent, le formaldéhyde ou l'oxyde d'éthylène ; ou encore des moyens physiques comme les radiations ionisantes (rayons gamma) et non-ionisantes (UV), la chaleur ou la filtration à 0,2 μηι.
Cependant, mis à part les antibiotiques, aucun moyen parmi ceux cités ci- dessus n'est compatible avec la culture de cellules vivantes en capsules. En effet, ces moyens ne permettent pas de tuer spécifiquement les cellules contaminantes à l'extérieur des capsules sans impacter le contenu des capsules. L'utilisation de particules d'argent suffisamment grosses pour ne pas pénétrer dans la capsule est exclue car il a été montré qu'un agent cytotoxique, l'ion argent, est libéré par de telles particules et diffuse sans problème dans les capsules. Quant aux antibiotiques, ils posent des problèmes environnementaux et de développement de résistance et, pour des raisons évidentes, sont incompatibles avec certains domaines industriels tels que l'alimentaire ou la cosmétique. Egalement, les conservateurs, notamment en cosmétique, sont de plus en plus critiqués car suspectés d'être cancérogènes et/ou de perturber le système hormonal. Par ailleurs, la filtration de la phase continue à 0,2 μηι impose une étape préliminaire d'isolement des capsules et, en tant que telle, est bien trop lente pour satisfaire aux exigences industrielles. Enfin, le lavage des capsules pour se débarrasser des contaminants présents en phase continue ne permet pas de lutter efficacement contre les contaminations. Par exemple, dans le cas des bactéries, il reste toujours des bactéries adsorbées sur la surface des capsules ce qui anéantit les efforts de lavage. Il devient alors très difficile de garantir la propreté microbiologique de la composition correspondante dans des conditions normales d'utilisation et sur une échelle de temps raisonnable qui peut s'étendre de plusieurs semaines à plusieurs mois.
La présence de microorganismes, en particulier de bactéries, dans la phase continue (également désigné(e)s microorganismes / bactéries exogènes) peut en outre être préjudiciable à la croissance des cellules vivantes, et donc aux rendements de production attendus, notamment dans le cas où les cellules vivantes d'intérêt ont un cycle de division lent. En effet, ces microorganismes, en particulier bactéries, exogènes consomment alors une partie significative des nutriments du milieu de culture présent en phase continue qui n'est donc plus à disposition des cellules vivantes pour assurer leur développement.
Pour contourner ce problème de contamination, la culture d'algues, notamment de microalgues, est aujourd'hui réalisée en milieu autotrophe (notamment photosynthèse), ce qui a pour inconvénient de présenter des rendements faibles. Il demeure donc un besoin de mettre au point un moyen de prévenir et/ou lutter efficacement contre les contaminations en phase continue par des microorganismes, en particulier des bactéries, sans impacter le contenu des capsules, et notamment les cellules vivantes encapsulées, et en particulier sans altérer la croissance desdites cellules, et qui soit aisé à mettre en œuvre et peu onéreux de manière à demeurer compatible à une échelle industrielle.
La présente invention a donc pour but de fournir un moyen permettant de lutter efficacement contre les contaminations en phase continue mais sans altérer le contenu des capsules, et en particulier les cellules vivantes qu'elles contiennent.
La présente invention a donc pour but de fournir un moyen simple et peu onéreux permettant de lutter efficacement contre les contaminations en phase continue tout en maintenant intact le contenu des capsules.
En particulier, la présente invention a pour but de fournir un moyen de prévenir et/ou de lutter efficacement contre les contaminations en phase continue sans impacter le contenu des capsules, et notamment les cellules vivantes encapsulées, pour améliorer la croissance desdites cellules vivantes, et donc les rendements de production, ce qui est un aspect particulièrement important dans le domaine industriel.
Ainsi, la présente invention concerne une composition comprenant une phase continue aqueuse et au moins une capsule, ladite capsule comprenant un cœur, liquide ou au moins en partie gélifié ou au moins en partie thixotrope, et au moins une enveloppe externe encapsulant totalement ledit cœur à sa périphérie,
dans laquelle au moins une capsule comprend au moins une cellule vivante, et dans laquelle ladite phase aqueuse continue comprend au moins un polymère antimicrobien et/ou antifongique.
Avantageusement, l'enveloppe externe comprend (ou est formée d') au moins un polyélectrolyte à l'état gélifié.
Contre toute attente, les inventeurs ont observé que la mise en œuvre en phase continue d'un polymère antimicrobien et/ou antifongique permet de prévenir/lutter efficacement contre les contaminations en phase continue sans impacter négativement le contenu des capsules, en particulier les cellules vivantes présentes dans les capsules. La présente invention a également pour objet un procédé de culture de cellules vivantes, notamment de cellules végétales, ainsi qu'un procédé de production de composés d'intérêts produits par lesdites cellules vivantes, si nécessaire après élicitation.
La présente invention concerne également l'utilisation d'au moins un polymère antimicrobien et/ou antifongique pour prévenir et/ou lutter contre la contamination par des microorganismes, en particulier des bactéries, d'une phase continue aqueuse d'une composition comprenant, outre ladite phase continue aqueuse, au moins une capsule, ladite capsule comprenant un cœur, liquide ou au moins en partie gélifié ou au moins en partie thixotrope, et au moins une enveloppe externe encapsulant totalement ledit cœur à sa périphérie, la capsule comprenant au moins une cellule vivante.
En effet, comme décrit notamment en exemple 3, la présence d'au moins un polymère antimicrobien et/ou antifongique en phase continue d'une telle composition est particulièrement efficace pour décontaminer ou maintenir stérile ladite phase continue et ainsi assurer un développement optimal des cellules vivantes encapsulées.
La présente invention concerne encore un milieu de culture adapté à la culture de cellules vivantes encapsulées, caractérisé en ce que le milieu comprend au moins un polymère antimicrobien et/ou antifongique.
Avantageusement, une composition selon l'invention est donc dénuée de conservateur chimique, à l'image par exemple du phénoxyéthanol ou du pentylène glycol, et/ou d'antibiotique, à l'image par exemple de l'ampicilline ou de la pénicilline.
Phase continue aqueuse
Les compositions selon l'invention comprennent une phase continue aqueuse dans laquelle sont contenues les capsules et contenant en outre au moins un polymère antimicrobien et/ou antifongique.
Selon l'invention, la phase continue présente un pH compatible avec la survie du microorganisme encapsulé et les propriétés antimicrobiennes et/ou antifongiques du/des polymère(s) antimicrobien(s) et/ou antifongique(s) mis en œuvre. De préférence, la phase continue ne comprend pas de conservateur, par exemple parabens ou phénoxyéthanol, ni d'antibiotique.
Selon un mode de réalisation, la phase continue aqueuse comprend un milieu de culture. En particulier, selon l'invention, la phase continue aqueuse peut jouer le rôle de milieu de culture.
De préférence, la phase continue est un milieu de culture adapté qui présente l'avantage de prévenir le gonflement et la destruction des capsules.
Selon un mode de réalisation, un milieu de culture adapté selon l'invention présente une osmolarité satisfaisante, comparable à celle des milieux classiquement utilisés. L'osmolarité est le nombre de moles de soluté dissoutes par litre de solvant. Cette grandeur est directement reliée à la pression osmotique. Or un milieu avec une osmolarité trop forte (hypertonique) ou trop faible (hypotonique) provoque chez les cellules des phénomènes d'osmose qui affectent sa physiologie.
En fonction des cellules présentes, l'homme du métier est apte à sélectionner le milieu de culture approprié.
Selon un mode de réalisation préféré, la phase continue aqueuse comprend un milieu de culture, nommé MC2, qui est par exemple choisi parmi le milieu de culture d'Erdschreiber, le milieu F/2, le milieu TAP, de l'eau de mer reconstituée, le milieu DM (diatomée), le milieu Minimum, le milieu RCCM, et l'un quelconque de leurs mélanges.
Avantageusement, la phase continue aqueuse comprend un milieu de culture, nommé MC2, tel que décrit ci-dessus adapté de manière à supprimer les chélatants du calcium et/ou ajouter une faible quantité d'au moins un sel de calcium, par exemple de chlorure de calcium (1 mM). De tels milieux, à l'image du milieu le milieu RCCM décrit en exemple 1 , présentent alors une compatibilité améliorée avec l'enveloppe externe des capsules selon l'invention.
Au vu de ce qui précède, la présente invention est particulièrement avantageuse en ce qu'elle autorise la culture des cellules vivantes en milieu hétérotrophe (i.e. catabolisation d'un substrat carboné), ce qui conduit à une amélioration substantielle de la vitesse des cycles de division et/ou des rendements de production par rapport à une culture de cellules vivantes en milieu autotrophe. L'osmolarité du milieu de culture MC2 est de préférence comprise entre 10 mOsm et 1 000 mOsm.
Le milieu de culture d'Erdschreiber est une solution comprenant NaCI (1 1 ,4 g/L), Tris (5,90 g/L), NH4CI (2,92 g/L), KCI (0,73 g/L), K2HP04.2H20 (72 mg/L), FeS04.2H20 (1 ,9 mg/L), H2S04 (0,04 mg/L), MgS04 (7,65 g/L), CaCI2 (1 ,43 g/L), NaN03 (2 mg/L), Na2HP04 (0,2 mg/L), un extrait de sol (24,36 mL/L) et de l'eau (QSP 1 L). Un extrait de sol désigne le filtrat obtenu par filtration d'un mélange de terre et d'eau.
Le milieu F/2, commercialement disponible (notamment à l'Ecole des Sciences Biologiques de l'Université du Texas, ou chez Varicon Aqua), est une solution comprenant NaN03 (8,82.10"4 mol/L), NaH2P04O.H20 (3,62.10"5 mol/L), Na2Si03.9H20 (1 ,06.10-4 mol/L), FeCI3.6H20 (1 ,17.1 ο"5 mol/L), Na2EDTA.2H20 (1 ,17.10 5 mol/L), CuS04.5H20 (3,93.10-8 mol/L), Na2Mo04.2H20 (2,60.10-8 mol/L), ZnS04.7H20 (7,65.10"8 mol/L), CoCI2.6H20 (4,20.10"8 mol/L), MnCI2.4H20 (9,10.10-7 mol/L), thiamine HCI (2,96.10-7 mol/L), biotine (2,05.10-9 mol/L), cyanocobalamine (3,69.10"10 mol/L) et de l'eau (QSP 1 L).
Le milieu TAP, commercialement disponible, (notamment chez LifeTech), est un mélange de tampon Beijerincks (2x) (50 mL), de tampon phosphate 1 M pH 7 (1 mL), de Solution trace (1 mL), d'acide acétique (1 mL) et d'eau (QSP 1 L). Les compositions des tampons Beijerincks (2x) et phosphate 1 M pH 7 et de la Solution trace sont décrites dans les exemples ci-après. Le pH du milieu TAP est de 7,3. L'osmolarité du milieu TAP est de 60 mOsm.
L'eau de mer reconstituée est une solution comprenant NaCI (1 1 ,7 g/L), Tris (6,05 g/L), NH4CI (3,00 g/L), KCI (0,75 g/L), K2HP04.2H20 (74,4 mg/L), FeS04.2H20 (2 mg/L), H2S04 (0,05 mg/L), MgS04 (7,85 g/L), CaCI2 (1 ,47 g/L) et de l'eau (QSP 1 L). Le pH de l'eau de mer reconstituée varie de 7,5 à 8,4. L'osmolarité de l'eau de mer reconstituée est de 676 mOsm.
Le milieu DM (diatomée) est une solution comprenant Ca(N03)2 (20 g/L), KH2P04 (12,4 g/L), MgS04.7H20 (25 g/L), NaHC03 (15,9 g/L), FeNaEDTA (2,25 g/L), Na2EDTA (2,25 g/L), H3B03 (2,48 g/L), MnCI2.4H20 (1 ,39 g/L), (NH4)6Mo7024.4H20 (1 g/L), cyanocobalamine (0,04 g/L), thiamine HCI (0,04 g/L), biotine (0,04 g/L), NaSi03.9H20 (57 g/L) et de l'eau (QSP 1 L).
Le milieu Minimum est un mélange de tampon Beijerincks (2x) (50 mL), de tampon phosphate (2x) (50 mL), de Solution trace (1 mL) et d'eau (QSP 1 L). Les compositions des tampons Beijerincks (2x) et phosphate (2x) et de la Solution trace sont décrites dans les exemples ci-après. L'osmolarité du milieu Minimum est de 37 mOsm.
Le milieu RCCM est décrit en détail dans l'exemple 1 .
Selon un mode de réalisation particulier, la phase aqueuse continue peut se présenter sous la forme d'une émulsion huile-dans-eau, ladite émulsion comprenant une phase aqueuse continue et une phase grasse dispersée sous forme de gouttes (G1 ), la taille des gouttes (G1 ) étant de préférence inférieure à 500 μηι, de préférence inférieure à 400 μηι, en particulier inférieure à 300 μηι, mieux inférieure à 200 μηι, en particulier inférieure à 100 μηι, voire inférieure à 20 μηι, et mieux inférieure à 10 μηι. Préférentiellement, la taille des gouttes (G1 ) est inférieure à la taille des particules selon l'invention. Avantageusement, la taille des gouttes (G1 ) est comprise entre 0,1 μηι et 200 μηι, de préférence entre 0,25 μηι et 100 μηι, en particulier entre 0,5 μηι et 50 μηι, de préférence entre 1 μηι et 20 μηι, et mieux entre 1 μηι et 10 μηι, voire entre 3 μηι et 5 μηι.
Optionnellement, les gouttes (G1 ) comprennent une écorce résultant d'une réaction de coacervation interfaciale, notamment entre au moins un polymère anionique et au moins un polymère cationique, comme décrit par exemple dans WO 2012/120043.
Polymère antimicrobien et/ou antifongique
Comme indiqué ci-dessus, la phase aqueuse continue des compositions de l'invention comprennent au moins un polymère antimicrobien et/ou antifongique.
Par « antimicrobien » au sens de la présente invention, on entend notamment désigner un polymère ayant un effet bactéricide (mort du germe) ou bactériostatique (le germe ne peut ni grandir ni se reproduire ; en d'autres termes, empêche la multiplication des germes sans les tuer).
Ce polymère antimicrobien et/ou antifongique permet donc de tuer ou d'empêcher le développement spécifiquement des contaminants à l'extérieur des capsules sans impacter le contenu desdites capsules.
De préférence, le polymère antimicrobien et/ou antifongique (ou polymère ayant une activité antimicrobienne et/ou antifongique) est présent dans la phase continue majoritairement sous une forme libre. En effet, une adhésion du polymère antimicrobien et/ou antifongique avec l'enveloppe externe des capsules, en particulier l'alginate gélifié formant l'enveloppe externe des capsules, peut être observée. Dans un tel cas, l'homme du métier saura ajuster la teneur minimale en polymère(s) antimicrobien(s) et/ou antifongique(s) pour assurer sa présence dans la phase continue sous une forme majoritairement libre. En d'autres termes, le polymère antimicrobien et/ou antifongique doit être mis dans une quantité suffisante de manière à ce que la concentration en polymère antimicrobien et/ou antifongique libre dans la phase continue assure l'effet antimicrobien et/ou antifongique recherché. Ainsi, de préférence, le polymère antimicrobien et/ou antifongique est mis en excès.
Outre l'absence d'interaction délétère vis-à-vis des cellules vivantes encapsulées, l'utilisation de polymères comme agents antimicrobiens et/ou antifongiques dans la présente invention présente plusieurs avantages, car ces produits présentent habituellement une activité à long terme, une toxicité résiduelle limitée, sont chimiquement stables, non volatils et ne pénètrent pas dans la peau.
La détermination de l'activité antimicrobienne et/ou antifongique d'un polymère relève des compétences générales de l'homme du métier. On peut à ce titre faire référence à la méthode d'évaluation de l'activité antimicrobienne d'un polymère décrite dans l'article de Materials 2016, 9, 599 (doi:10.3390/ma9070599) ou encore à celle décrite dans WO 97/30082.
Les polymères antimicrobiens et/ou antifongiques sont choisis parmi les polymères non aptes à pénétrer à l'intérieur des capsules, de manière à préserver l'intégrité du contenu des capsules, et en particulier la survie des cellules vivantes encapsulées. Cette incapacité à pénétrer dans les capsules peut résulter d'une taille (ou poids moléculaire) minimale supérieure au diamètre moyen des pores de l'enveloppe gélifiée des capsules selon l'invention (on peut aussi parler du diamètre de coupure) et/ou de sa polarité telle que des liaisons faibles, en particulier liaisons électrostatiques, avec le matériau, en particulier le polyélectrolyte, constituant l'enveloppe externe des capsules sont créées.
Ainsi, avantageusement, un polymère antimicrobien et/ou antifongique selon l'invention présente un poids moléculaire supérieur à 10 000 Da, de préférence supérieur à 100 000 Da, et/ou est un polymère cationique.
De préférence, le polymère antimicrobien et/ou antifongique a un poids moléculaire compris entre 10 000 Da et 300 000 Da, de préférence entre 100 000 Da et 200 000 Da. De préférence, le polymère antimicrobien et/ou antifongique est un polymère cationique.
Le caractère cationique du polymère antimicrobien et/ou antifongique assure la création de liaisons faibles, en particulier de liaisons électrostatiques, avec l'enveloppe externe des capsules lorsque cette enveloppe est constituée d'au moins un polyélectrolyte ; le polymère antimicrobien et/ou antifongique ne peut donc pas diffuser à travers l'enveloppe externe. C'est pourquoi il peut exercer son activité bactériostatique et/ou antifongique dans la phase continue exclusivement.
Selon un mode de réalisation préféré, le polymère antimicrobien et/ou antifongique est un polymère cationique ayant une unité répétitive comprenant au moins une fonction aminé.
Les polymères antimicrobiens et/ou antifongiques selon l'invention peuvent être d'origine naturelle ou synthétique, de préférence d'origine naturelle.
La sélection de polymères antimicrobiens et/ou antifongiques selon l'invention relève des connaissances générales de l'homme du métier.
En tenant compte notamment des critères susmentionnés en termes de poids moléculaires et/ou de polarité, le polymère antimicrobien et/ou antifongique peut être choisi parmi les polymères antimicrobiens et/ou antifongiques décrits ci-après.
Plus particulièrement, les polymères antimicrobiens et/ou antifongiques selon l'invention peuvent être choisis parmi (i) les polymères biocides, qui sont des polymères à activité antimicrobienne et/ou antifongique intrinsèque ; (ii) les biocides polymériques, qui sont basés sur un squelette polymérique sur lequel sont fixées des molécules biocides ; et (iii) des polymères libérant des biocides (i.e. « biocide- releasing polymers »), qui sont des polymères chargés de molécules biocides ; et leurs mélanges.
De préférence, les polymères antimicrobiens et/ou antifongiques selon l'invention sont choisis parmi les polymères biocides, en particulier compte tenu de leur propriété particulièrement satisfaisante en termes de non-toxicité.
Polymères biocides
Les polymères biocides, à savoir à activité antimicrobienne et/ou antifongique intrinsèque, sont habituellement basés sur des polycations capables de tuer les microbes par action sur leur membrane cellulaire chargée négativement. Les groupes cationiques présents au niveau de ces polymères sont l'ammonium quaternaire, le phosphonium quaternaire, le guanidinium ou le sulfonium tertiaire.
Les polymères biocides peuvent être choisis parmi le chitosan ; la polylysine ; les polymères cationiques contenant des sels de phosphonium quaternaire (QPS) ou des sels d'ammonium quaternaire (QAS) tels que le poly((2-méthacryloxyéthyl)- triéthylammonium), le poly(p-vinylbenzyltétraméthylènesulfonium tétrafluoroborate), le tributyl(4-vinylbenzyl)phosphonium (QPM), le chlorure de [2- (acryloyloxy)éthyl]triméthylammonium (ATC) ; les polymères antimicrobiens et/ou antifongiques zwitterioniques (ou amphiphiles) tels que les ammonium éthyl méthacrylate homopolymères (AEMPs) ; les poly(éthylèneamines) ; les poly(éthylèneimines) ; les poly(vinylamines) ; la polyarginine ; la polyornithine ; la polyaniline ; l'androctonine telle que décrite dans WO 97/30082 ; un de leurs dérivés ; et leurs mélanges, de préférence la polylysine.
Biocides polymériques
Les biocides polymériques sont préparés par la fixation de plusieurs molécules biocides connues à un polymère.
Les biocides polymériques sont constitués d'un squelette polymérique dans lesquels des molécules biocides (par exemple des antibiotiques) sont fixées pour fournir une activité antimicrobienne et/ou antifongique. Dans certains cas, en modifiant la structure de polymères non antimicrobiens et/ou non antifongiques, il est possible d'induire une activité antimicrobienne et/ou antifongique.
A titre illustratif, on peut citer le Ν,Ν,Ν-triméthyl chitosan (TMC), les dérivés de chitosan-sulfonamide, le dodecenyl phthaloyl chitosan succinylé, et leurs mélanges.
Polymères libérant des biocides
Les polymères libérant des biocides sont basés sur des matrices polymériques chargées de molécules biocides, qui peuvent être piégées en utilisant différentes méthodes, ou des polymères contenant des biocides attachés par des liaisons clivables.
Pour des raisons évidentes, les biocides libérés ne doivent pas être aptes à pénétrer dans les capsules. Cette sélection relève des connaissances générales de l'homme du métier à la lumière de l'enseignement de la présente description.
Selon un mode particulièrement avantageux, le polymère antimicrobien et/ou antifongique est la polylysine, notamment la poly-L-lysine ou la poly-D-lysine, ou leurs mélanges, ou l'un de ses dérivés. Préférentiellement, le polymère antimicrobien et/ou antifongique est la poly-L-lysine.
On peut notamment citer la poly-L-lysine P5899 commercialisée par Sigma- Aldrich (Mw >300 kDa).
A titre de dérivés de la polylysine (PLL), on peut citer le complexe électrostatique entre la polylysine et la gomme arabique qui présente l'avantage de prévenir la turbidité de la phase aqueuse et/ou la sédimentation de la PLL dans ladite phase aqueuse ; ou encore les hydrogels de polylysine greffés avec des groupes méthacrylamide.
Selon l'invention, le polymère antimicrobien et/ou antifongique est mis en œuvre dans la phase aqueuse continue dans une quantité suffisante de manière à ce que la concentration en polymère antimicrobien et/ou antifongique libre dans la phase continue assure l'effet antimicrobien et/ou antifongique recherché et cela, même en présence d'une réaction entre ledit polymère antimicrobien et/ou antifongique et l'enveloppe externe, optionnellement gélifiée, des capsules. Cette quantité suffisante relève des connaissances générales de l'homme du métier à la lumière de l'enseignement de la présente description
Par « quantité suffisante », notamment dans le cas d'un polymère antimicrobien et/ou antifongique cationique, on entend au sens de la présente invention une teneur en polymère(s) antimicrobien(s) et/ou antifongique(s) cationique(s) dans la phase continue supérieure à 10~4 %, de préférence supérieure ou égale à 10~3 %, par rapport au poids total de ladite phase continue.
Selon un mode de réalisation préféré, la composition selon l'invention comprend une teneur supérieure à 10"4%, de préférence supérieure ou égale à 10"3%, en poids de polymère(s) antimicrobien(s) et/ou antifongique(s), notamment de polymère(s) cationique(s) antimicrobien(s) et/ou antifongique(s), par rapport au poids total de la phase continue.
Selon un mode de réalisation, la phase continue aqueuse selon l'invention peut comprendre en outre au moins un antibiotique auquel cas, l'antibiotique ne doit pas être apte à pénétrer dans les capsules et/ou ne doit pas être délétère pour le milieu encapsulé, en particulier les cellules vivantes encapsulées. La sélection de tels antibiotiques relève des connaissances générales de l'homme du métier à la lumière de l'enseignement de la présente description. A titre illustratif, on peut citer l'ampicilline, non délétère pour les micro-algues.
La présence de cet antibiotique en combinaison avec le polymère antibactérien et/ou antifongique peut permettre d'obtenir un effet synergique par rapport à l'utilisation du polymère antibactérien et/ou antifongique seul.
Parmi les antibiotiques, on peut citer par exemple les composés suivants : novobiocine, ceftazidime, ampicilline, ticarcilline, carbenicilline, piperacilline, cefotaxime, chloramphenicol, rifampine, norfloxacine, et leurs mélanges.
Capsules
Les capsules selon l'invention, de type cœur/écorce (ou core/shell), comprennent au moins une cellule vivante.
Cellules vivantes
Les cellules vivantes sont nécessairement présentes dans le cœur des capsules de l'invention.
Selon un mode de réalisation particulier, une capsule selon l'invention peut en outre comprendre des cellules vivantes au niveau de l'enveloppe externe.
Les cellules présentes dans les capsules de l'invention peuvent être de tout type.
On peut notamment citer les cellules procaryotes, les cellules eucaryotes, et leur mélange. Ainsi, selon un mode de réalisation, dans une composition selon l'invention, la ou les cellules vivantes sont choisies parmi les cellules procaryotes ou eucaryotes.
Selon un mode de réalisation, la ou les cellules vivantes sont choisies parmi les cellules animales ou végétales, et sont de préférence choisies parmi les cellules végétales.
Les cellules encapsulées selon l'invention peuvent être des cellules animales (en particulier de mammifères) ou végétales, en particulier des algues et microalgues, des bactéries, des protistes, des champignons ou des archéobactéries (archées), et les mélanges de celles-ci.
On peut également mentionner les probiotiques.
Les cellules présentes dans les capsules de l'invention peuvent être des cellules adhérentes ou non adhérentes. Au vu de ce qui précède, les cellules présentes dans la phase interne des capsules sont sous une forme vivante. Elles ne sont donc pas des cellules sous un état lyophilisé, ou sous forme de lysat, mort ou inactivé.
De préférence, les cellules sont des cellules végétales.
Avantageusement, les cellules présentes dans la phase interne des capsules sont en suspension dans la phase interne.
Par « en suspension » dans la phase interne, on entend que les cellules n'adhèrent pas à la membrane externe, optionnellement gélifiée, des capsules, et ne sont pas en contact prolongé avec ladite membrane. Les cellules vivantes sont ainsi totalement baignées dans le milieu constituant la phase interne et sont libres de se déplacer selon les trois dimensions.
En particulier, les cellules vivantes utilisées selon l'invention sont des cellules aptes à produire une molécule d'intérêt, le cas échéant par élicitation.
Selon un mode de réalisation, les capsules de l'invention comprennent au moins une cellule d'algue (aussi appelée cellule algale), de préférence une cellule de micro-algue.
Selon une variante, les capsules de l'invention comprennent plusieurs cellules d'algue, d'une même espèce ou d'espèces différentes.
Les algues sont des êtres vivants capables de photosynthèse dont le cycle de vie se déroule généralement en milieu aquatique. Chez les algues, on trouve des procaryotes (cyanobactéries) ou des eucaryotes (plusieurs ensembles très divers).
Le terme « micro-algues » désigne des algues microscopiques. Ce sont des êtres unicellulaires ou pluricellulaires indifférenciés, photosynthétiques, eucaryotes ou procaryotes.
A titre d'algue utilisable dans les capsules de l'invention, on peut citer une algue verte, une algue rouge, une algue brune, et leur mélange.
Selon un mode de réalisation, il s'agit d'une algue procaryote.
Selon un autre mode de réalisation, il s'agit d'une algue eucaryote.
L'algue est de préférence du genre Chlamydomonas, comme Chlamydomonas reinhardtii, ou du genre Peridinium, comme Peridinium cinctum.
D'autres algues convenables à la mise en œuvre de l'invention peuvent être choisies dans le groupe constitué de Alexandrium minutum, Amphiprora hyalina, Anabaena cylindrica, Arthrospira platensis, Chattonella verruculosa, Chlorella vulgaris, Chlorella protothecoides, Chysochromulina breviturrita, Chrysochromulina kappa, Dunaliella salina, Dunaliella minuta, Emiliania huxleyi (Haptophyta), Gymnodinium catenatum, Gymnodinium nagasakiense, Haematococcus pluvialis, Isochrysis galbana, Noctiluca scintillans, Odontella aurita, Oryza sativa, Ostreococcus lucimarinus, Pavlova utheri, Porphyridium cruentum, Spirodela oligorrhiza, Spirulina maxima, Tetraselmis tetrathele, Thalassiosira pseudonana, et leurs mélanges.
Selon un mode de réalisation, le cœur des capsules est monophasique ou comporte une goutte intermédiaire d'une phase intermédiaire, la phase intermédiaire étant placée au contact de l'enveloppe externe, et au moins une, de préférence une unique, goutte interne d'une phase interne disposée dans la goutte intermédiaire, au moins une des phases parmi la phase intermédiaire et/ou la phase interne comprend au moins une cellule vivante.
Selon un mode de réalisation, la capsule de l'invention est une capsule dite « simple », signifiant que le cœur est constitué d'une seule phase. Une capsule « simple » est par exemple une capsule telle que décrite dans la demande internationale WO 2010/063937.
Selon un mode de réalisation, lorsque le cœur des capsules est monophasique, la ou les cellules vivantes sont présentes dans le cœur des capsules.
Selon un mode de réalisation, lorsque les capsules comprennent une phase intermédiaire, la ou les cellules vivantes sont présentes dans le cœur et/ou dans ladite phase intermédiaire.
Enveloppe externe
Selon l'invention, l'enveloppe externe des capsules selon l'invention peut être de tout type connu de l'homme du métier, sous réserve que sa composition ne soit pas préjudiciable à la survie / croissance des cellules vivantes encapsulées et empêche l'entrée du/des polymère(s) antimicrobien(s) et/ou antifongique(s) dans lesdites capsules.
Egalement, la nature de l'enveloppe externe est avantageusement compatible avec le(s) domaine(s) d'application envisagé(s), et notamment avec le domaine cosmétique, pharmaceutique, agriculture, de préférence cosmétique.
De préférence, le polymère antibactérien et/ou antifongique ne forme pas et/ou n'est pas impliqué dans la formation de l'enveloppe externe des capsules selon l'invention. Selon l'invention, l'enveloppe externe des capsules comprend typiquement au moins un polyélectrolyte à l'état gélifié. Cette enveloppe externe peut être également nommée « enveloppe gélifiée ».
On entend par « enveloppe gélifiée » une phase externe entourant au moins partiellement une phase interne, et comprenant un composé à l'état gélifié ou sous forme de gel. De préférence, l'enveloppe gélifiée est une phase aqueuse, et typiquement un hydrogel d'un polyélectrolyte à l'état gélifié. L'enveloppe gélifiée peut également être désignée par les termes « membrane » ou « écorce ».
De préférence, l'enveloppe gélifiée a une épaisseur inférieure à 500 μηι, avantageusement supérieure à 10 μηι. L'enveloppe gélifiée est généralement formée par une monocouche d'un matériau homogène.
L'enveloppe gélifiée comprend de préférence un gel contenant de l'eau et un polyélectrolyte avantageusement choisi parmi les protéines, les polysaccharides naturels et les polyélectrolytes réactifs aux ions multivalents.
Par « polyélectrolyte réactif aux ions polyvalents », on entend, au sens de la présente invention, un polyélectrolyte susceptible de passer d'un état liquide dans une solution aqueuse à un état gélifié sous l'effet d'un contact avec une solution gélifiante contenant des ions multivalents tels que des ions d'un métal alcalino- terreux choisis par exemple parmi les ions calcium, les ions baryum, les ions magnésium.
Dans l'état liquide, les chaînes individuelles de polyélectrolyte sont sensiblement libres de s'écouler les unes par rapport aux autres. Une solution aqueuse de 2% en masse de polyélectrolyte présente alors un comportement purement visqueux aux gradients de cisaillement caractéristiques du procédé de mise en forme. La viscosité de cette solution à cisaillement nul est entre 50 mPa.s et 10 000 mPa.s avantageusement entre 3 000 mPa.s et 7 000 mPa.s. Cette viscosité aux gradients de cisaillements caractéristiques des écoulements mises en jeu lors de la fabrication des capsules est par exemple mesurée à l'aide d'un rhéomètre à contrainte, ou déformation, imposée à la température de fabrication, 25°C par exemple. Pour les mesures, on utilisera une géométrie cône-plan de diamètre compris de 10 à 50 mm, et un angle du cône de 2° maximum.
Les chaînes individuelles de polyélectrolyte dans l'état liquide présentent avantageusement une masse molaire supérieure à 65 000 g/moles.
Dans l'état gélifié, les chaînes individuelles de polyélectrolyte forment, avec les ions multivalents, un réseau tridimensionnel cohérent qui retient le cœur liquide et empêche son écoulement. Les chaînes individuelles sont retenues les unes par rapport aux autres et ne peuvent pas s'écouler librement les unes par rapport aux autres. Dans cet état, la viscosité du gel formé est infinie. De plus, le gel a un seuil de contrainte à l'écoulement. Ce seuil de contrainte est supérieur à 0,05 Pa. Le gel possède également un module d'élasticité non-nul et supérieur à 35 kPa.
Le gel tridimensionnel de polyélectrolyte contenu dans l'enveloppe emprisonne de l'eau et l'agent tensioactif lorsqu'il est présent. La teneur massique du polyélectrolyte dans l'enveloppe est par exemple comprise de 0,5% à 5% par rapport à la masse totale de l'enveloppe.
Le polyélectrolyte est de préférence un polymère biocompatible inoffensif pour le corps humain. Il est par exemple produit biologiquement.
Avantageusement, il est choisi parmi les polysaccharides, les polyélectrolytes de synthèse à base d'acrylates (polyacrylate de sodium, de lithium, de potassium ou d'ammonium, ou polyacrylamide), les polyélectrolytes de synthèse à base de sulfonates (poly(styrène sulfonate) de sodium, par exemple). Plus particulièrement, le polyélectrolyte est choisi parmi les alginates d'alcalino-terreux, tel qu'un alginate de sodium ou un alginate de potassium, une gellane ou une pectine.
Selon un mode de réalisation de l'invention, le polyélectrolyte est un alginate de sodium.
Les alginates sont produits à partir d'algues brunes appelées « laminaires », désignées par le terme anglais « sea weed ».
De tels alginates présentent avantageusement une teneur en oc-L-guluronate supérieure à environ 50%, de préférence supérieure à 55%, voire supérieure à 60%.
L'enveloppe gélifiée peut contenir en outre au moins un agent tensioactif.
L'agent tensioactif est avantageusement un tensioactif anionique, un tensioactif nonionique, un tensioactif cationique ou un mélange de ceux-ci. La masse moléculaire de l'agent tensioactif est comprise entre 150 g/mol et 10 000 g/mol, avantageusement entre 250 g/mol et 1 500 g/mol.
Selon un mode de réalisation de l'invention, l'agent tensioactif est le laurylsulfate de sodium (SLS ou SDS).
La teneur massique en agent tensioactif dans l'enveloppe est supérieure à 0,001 % et est avantageusement supérieure à 0,1 %.
Selon un mode de réalisation, une capsule selon l'invention est une capsule qui comprend un cœur liquide ou au moins en partie gélifié ou au moins en partie thixotrope et une enveloppe externe, optionnellement gélifiée, encapsulant totalement ledit cœur liquide, ledit cœur étant monophasique.
Un tel type de particules correspond alors à une capsule simple comprenant deux phases distinctes, une phase interne liquide ou au moins en partie gélifié ou au moins en partie thixotrope et une phase externe, optionnellement à l'état gélifié, entourant la phase interne. Avantageusement, le rapport du volume du cœur au volume de l'enveloppe externe, optionnellement gélifiée, est compris entre 1 et 50, de préférence entre 1 et 10, et mieux entre 1 et 2.
Selon un mode de réalisation particulier, une capsule selon l'invention est une capsule qui comprend un cœur liquide ou au moins en partie gélifié ou au moins en partie thixotrope et une enveloppe externe, optionnellement gélifiée, encapsulant totalement ledit cœur, ledit cœur comportant une goutte intermédiaire d'une phase intermédiaire, la phase intermédiaire étant placée au contact de l'enveloppe externe, optionnellement gélifiée, et au moins une, de préférence une unique, goutte interne d'une phase interne disposée dans la goutte intermédiaire. Avantageusement, le rapport du volume du cœur au volume de l'enveloppe externe, optionnellement gélifiée, est supérieur à 2, avantageusement est inférieur à 50, et de préférence est compris entre 5 et 10. La phase intermédiaire est par exemple réalisée à base d'une solution aqueuse ou huileuse. Avantageusement, lorsque la phase intermédiaire est aqueuse, la phase interne est huileuse, et à l'inverse lorsque la phase intermédiaire est huileuse, la phase interne est aqueuse.
Un tel type de capsule correspond alors à une capsule complexe signifiant que le cœur liquide, visqueux ou thixotrope, comporte une unique goutte intermédiaire d'une phase intermédiaire, la phase intermédiaire étant placée au contact de l'enveloppe externe, optionnellement gélifiée, et au moins une, de préférence une unique, goutte interne d'une phase interne disposée dans la goutte intermédiaire.
Selon une variante, le cœur comprend une phase intermédiaire continue au sein de laquelle se trouve une pluralité de gouttes de phase(s) interne(s).
Selon un mode de réalisation, une capsule selon l'invention comprend un cœur liquide ou au moins en partie gélifié ou au moins en partie thixotrope et une enveloppe externe, optionnellement gélifiée, encapsulant totalement ledit cœur, ledit cœur comportant une goutte intermédiaire d'une phase huileuse, la phase huileuse étant placée au contact de l'enveloppe externe, optionnellement gélifiée, et au moins une goutte interne d'une phase aqueuse disposée dans la goutte intermédiaire.
Selon un autre mode de réalisation, une capsule selon l'invention comprend un cœur liquide ou au moins en partie gélifié ou au moins en partie thixotrope et une enveloppe externe, optionnellement gélifiée, encapsulant totalement ledit cœur, ledit cœur comportant une goutte intermédiaire d'une phase aqueuse, la phase aqueuse étant placée au contact de l'enveloppe externe, optionnellement gélifiée, et au moins une, de préférence une unique, goutte interne d'une phase huileuse disposée dans la goutte intermédiaire.
Pour des raisons évidentes, dans les deux modes de réalisation ci-dessus, les cellules vivantes sont nécessairement situées dans le cœur au niveau de la phase aqueuse.
Avantageusement, la phase intermédiaire comprend en outre au moins un agent gélifiant, notamment tel que défini ci-dessous. L'agent gélifiant contribue notamment à améliorer la suspension de la/des goutte(s) interne(s) disposée(s) dans la goutte intermédiaire des capsules de l'invention selon ce mode de réalisation. En d'autres termes, l'agent gélifiant permet de prévenir/éviter les phénomènes de crémage ou de sédimentation de la/des goutte(s) interne(s) disposée(s) dans la goutte intermédiaire des capsules de l'invention selon ce mode de réalisation.
Lorsque l'agent gélifiant est en phase aqueuse comprenant les cellules vivantes, l'homme du métier saura ajuster la nature et/ou quantité en agent(s) gélifiant(s) de manière à assurer la suspensivité souhaitée sans porter préjudice à la survie ou croissance desdites cellules vivantes.
De préférence, dans un mode de réalisation de type « capsule complexe » tel que décrit précédemment, la phase comprenant les cellules vivantes est liquide.
Par « liquide » au sens de la présente invention, on entend une phase, le cas échéant un gel, pouvant s'écouler sous son propre poids à température ambiante et pression atmosphérique.
Selon un mode de réalisation, une phase comprenant les cellules vivantes selon l'invention a une viscosité allant de 1 mPa.s à 500 000 mPa.s, de préférence de 10 mPa.s à 300 000 mPa.s, mieux de 400 mPa.s à 200 000 mPa.s, et plus particulièrement de 2 000 mPa.s à 150 000 mPa.s, telle que mesurée à 25°C.
La viscosité est mesurée à température ambiante, par exemple T=25°C ± 2°C, et à pression ambiante, par exemple 1013 hPa, par la méthode décrite dans WO2016/096995. Selon un mode de réalisation, la phase intermédiaire de la capsule de l'invention comprend au moins une cellule vivante C1 et la phase interne comprend au moins une cellule vivante C2, C1 et C2 étant différentes l'une de l'autre. Avantageusement, C1 et C2 sont bénéfiques l'une vis-à-vis de l'autre (symbiose).
Selon un mode de réalisation, la phase intermédiaire ou la phase interne de la capsule de l'invention comprend au moins une cellule vivante, l'autre phase comprend au moins une phase grasse. Ce mode de réalisation est avantageux en ce qu'il permet d'apporter facilement du gras qui peut être utile pour la croissance des cellules vivantes encapsulées et/ou le screening de cellules vivantes, par exemple pour une identification aisée de cellules aptes à dégrader le pétrole.
La phase interne des capsules de l'invention est typiquement apte à la survie de la ou des cellules vivantes, notamment végétales, comprise(s) dans ladite phase interne.
De préférence, la phase interne comprend une solution tampon apte à la survie des cellules vivantes.
A titre de tampon utilisable, on peut utiliser tout tampon connu en soi pour être adapté à la survie de cellules vivantes.
La phase interne a de préférence un pH compris de 5 à 10, plus préférentiellement compris de 6 à 9.
Pour des raisons évidentes, la phase interne ne comprend pas de conservateur, par exemple parabens ou phénoxyéthanol.
Selon un mode de réalisation particulièrement adapté à la culture de cellules vivantes, la phase interne comprend des nutriments aptes à la prolifération de la ou des cellules vivantes.
De préférence, la phase interne comprend un milieu de culture appelé MC1 dans le cadre de la présente invention.
Par « milieu de culture », on entend une solution comprenant des nutriments aptes à la prolifération de la ou des cellules vivantes et jouant le rôle de tampon pH.
L'osmolarité du milieu de culture MC1 est de préférence comprise entre 10 mOsm et 1 000 mOsm.
Le milieu de culture MC1 est par exemple choisi parmi le milieu de culture d'Erdschreiber, le milieu F/2, le milieu TAP, de l'eau de mer reconstituée, le milieu DM (diatomée), le milieu Minimum, le milieu RCCM, et l'un quelconque de leurs mélanges. Selon un mode de réalisation, le cœur des capsules comprend un milieu de culture MC1 identique ou différent du milieu de culture MC2 défini plus haut.
Selon un mode de réalisation, la taille des capsules est inférieure à 5 mm, de préférence comprise entre 50 μηι et 3 mm.
La culture de cellules vivantes en capsule impose d'avoir une diffusion optimale des nutriments présents dans la phase continue jusqu'au centre des capsules. Il peut donc être préférable de travailler avec des capsules faisant quelques centaines de microns plutôt que quelques millimètres. Ainsi, la taille des capsules est avantageusement comprise entre 50 μηι et 250 μηι, et de préférence entre 100 μηι et 150 μηι.
Lors de l'encapsulation des cellules vivantes (i.e. avant tout procédé de culture des cellules végétales), la phase interne (ou cœur) peut typiquement comprendre de 103 à 109, de préférence de 104 à 108, plus préférentiellement de 105 à 108, par exemple de 106 à 5.106 cellules vivantes, par millilitre de phase interne.
En fonction de la taille des capsules, la phase interne comprend typiquement de 1 à 107, préférentiellement de 5 à 106, de 30 à 5.105, de 50 à 105, de 75 à 5.104, de 100 à 104, de 150 à 104, voire de 200 à 103 cellules vivantes, par capsule.
Le comptage des cellules vivantes de la phase interne est préférentiellement réalisé avant l'encapsulation, ou bien après l'ouverture des capsules.
Le comptage des cellules vivantes peut être fait par la méthode de comptage Malassez. La cellule de Malassez est une lame de verre qui permet de compter le nombre de cellules en suspension dans une solution. Sur cette lame de verre, un quadrillage de 25 rectangles a été gravé, contenant eux-mêmes 20 petits carrés. Pour dénombrer les cellules, on dépose sur la cellule de Malassez entre 10 μ\- et 15 μ\- de phase interne comprenant des cellules en suspension. Après sédimentation, on compte le nombre de cellules dans 10 rectangles (quadrillés). Le volume d'un rectangle quadrillé étant de 0,01 μ\-, on multiplie ce nombre par 10 000 pour obtenir le nombre de cellules par millilitre de phase interne.
Alternativement, le comptage des cellules peut être fait par mesure d'absorbance. D'après la loi de Beer-Lambert, pour une longueur d'onde λ donnée, l'absorbance d'une solution est proportionnelle à sa concentration et à la longueur du trajet optique (distance sur laquelle la lumière traverse la solution). On peut donc mesurer la concentration en cellules de la phase interne en se basant sur une méthode de mesure d'absorbance (encore appelée densité optique). Il suffit pour cela de mesurer les densités optiques de phases internes contenant une quantité connue de cellules, ce qui permet de construire une courbe-étalon en fonction de la concentration cellulaire.
A titre d'exemple, la phase interne comprend un million de cellules vivantes par millilitre de phase interne avant tout procédé de culture, ce qui correspond à environ 60 cellules vivantes par capsule de 500 μηι de diamètre.
Après un procédé de culture tel que décrit ci-après, la phase interne comprend typiquement de 50 millions à 40 milliards, de préférence de 100 millions à 30 milliards, et mieux de 150 millions à 20 milliards, de cellules vivantes par millilitre de phase interne.
Les capsules de l'invention sont typiquement préparées par un procédé comprenant les étapes suivantes :
- la mise en contact d'une première solution comprenant au moins une cellule vivante et d'une deuxième solution liquide comprenant au moins un composé A apte à former l'enveloppe, notamment au moins un polyélectrolyte à l'état liquide,
- la formation d'une goutte double comprenant une phase interne formée de la première solution et une phase externe liquide formée de la deuxième solution liquide,
- l'immersion de la goutte double dans une solution, contenant optionnellement un réactif B propre à assurer la formation de l'enveloppe, notamment une solution gélifiante contenant un réactif propre à gélifier le polyélectrolyte de la phase externe liquide (ou deuxième solution), ce par quoi on obtient la phase externe gélifiée, et
- la récupération des capsules formées.
Dans le cadre de la présente description, on entend par « goutte double » une goutte constituée d'une phase interne et d'une phase externe liquide, encapsulant totalement ladite phase interne à sa périphérie. La production de ce type de goutte est généralement effectuée par co-extrusion concentrique de deux solutions, selon un mode hydrodynamique de dripping ou de jetting, tel que décrit dans les demandes WO 2010/063937 et FR2964017.
Lorsque la goutte double entre en contact de la solution gélifiante, le réactif propre à gélifier le polyélectrolyte présent dans la solution gélifiante forme alors des liaisons entre les différentes chaînes de polyélectrolyte présentes dans la phase externe liquide. Le polyélectrolyte à l'état liquide passe alors à l'état gélifié, provoquant ainsi la gélification de la phase externe liquide.
Sans vouloir être lié à une théorie particulière, lors du passage à l'état gélifié du polyélectrolyte, les chaînes individuelles de polyélectrolyte présentes dans la phase externe liquide se raccordent les unes aux autres pour former un réseau réticulé, aussi appelé hydrogel, qui emprisonne de l'eau contenue dans la phase externe.
Une phase externe gélifiée, propre à retenir la phase interne de première solution est ainsi formée. Cette phase externe gélifiée présente une tenue mécanique propre, c'est-à-dire qu'elle est capable d'entourer totalement la phase interne et de retenir la ou les cellules végétales présentes dans cette phase interne pour les retenir au cœur de la capsule gélifiée.
Les capsules selon l'invention séjournent dans la solution gélifiante le temps que la phase externe soit complètement gélifiée. Elles sont ensuite collectées et éventuellement plongées dans une solution aqueuse de rinçage, généralement essentiellement constituée d'eau et/ou de milieu de culture.
La taille des différentes phases formant initialement les gouttes doubles, et in fine les capsules, est généralement contrôlée par l'utilisation de deux pousse- seringues indépendants (à l'échelle du laboratoire) ou de deux pompes (à l'échelle industrielle), qui fournissent respectivement la première solution et la deuxième solution liquide mentionnées ci-dessus.
Le débit Qi du pousse-seringue associé à la première solution contrôle le diamètre de la phase interne de la capsule finale obtenue.
Le débit Q0 du pousse-seringue associé à la deuxième solution liquide contrôle l'épaisseur de la phase externe, optionnellement gélifiée, de la capsule finale obtenue.
Le réglage relatif et indépendant des débits Q, et Q0 permet de commander l'épaisseur de la phase externe, optionnellement gélifiée, indépendamment du diamètre extérieur de la capsule, et de moduler le rapport volumique entre la phase interne et la phase externe.
Les capsules comprenant une phase intermédiaire sont généralement obtenues par co-extrusion concentrique de trois solutions, au moyen d'une triple enveloppe : un premier flux constitue la phase interne, un deuxième flux constitue la phase intermédiaire et un troisième flux constitue la phase externe. La production de telles capsules, dites « complexes », est notamment décrite dans la demande internationale WO 2012/089820.
A la sortie de la triple enveloppe, les trois flux entrent en contact et se forme alors une goutte multi-composante, qui est ensuite gélifiée lorsqu'elle est plongée dans une solution gélifiante, de la même manière que dans le procédé de préparation de capsules « simples » décrit ci-dessus.
La phase interne et/ou la phase intermédiaire peut comprendre au moins une cellule vivante, de préférence une cellule végétale, notamment une cellule d'algue. Selon un mode de réalisation, la phase intermédiaire peut comprendre au moins une cellule vivante, de préférence une cellule végétale, notamment une cellule d'algue, qui peut être identique ou différente des cellules vivantes présentes dans la phase interne.
La phase intermédiaire, lorsqu'elle est présente et qu'elle comprend des cellules vivantes, est de préférence apte à la survie desdites cellules vivantes. Elle comprend avantageusement un milieu de culture apte à la culture desdites cellules, typiquement un des milieux de culture MC1 mentionnés ci-dessus pour la phase interne.
La phase intermédiaire, lorsqu'elle est présente et qu'elle comprend des cellules vivantes, comprend typiquement de 1 à 107, préférentiellement de 5 à 106, de 30 à 5.105, de 50 à 105, de 75 à 5.104, de 100 à 104, de 150 à 104, voire de 200 à 103 cellules vivantes, par capsule.
Selon un mode de réalisation, la composition de l'invention comprend au moins deux populations différentes de capsules qui diffèrent l'une de l'autre par la nature des actifs encapsulés, en particulier des cellules vivantes mises en œuvre.
Une telle composition peut donc comprendre une population de capsules (C) telles que définies ci-dessus et comprenant au moins une cellule vivante C1 et une population de capsules (C) telles que définies ci-dessus et comprenant au moins une cellule vivante C2, les cellules C1 et C2 étant différentes.
La présente invention concerne également un kit comprenant deux compositions séparées (A) et (B), dans lequel :
- la composition (A) est une composition telle que définie ci-dessus, et
- la composition (B) comprend un agent dépolymérisant. Dans le cadre de la présente description, on entend par « compositions séparées » des compositions distinctes, par exemple placées dans des compartiments différents. Ainsi, les compositions (A) et (B) sont disposées dans un même kit, mais ne peuvent pas entrer en contact dans le kit. Les compositions (A) et (B) sont donc des entités distinctes.
Dans le cadre de la présente description, on entend par « agent dépolymérisant » un composé propre à fragiliser et/ou à rompre l'enveloppe externe, optionnellement gélifiée, de la capsule pour permettre la libération du cœur dans la phase continue.
La composition (B) peut également être désignée par l'expression « solution dépolymérisante » ou « composition dépolymérisante ».
Selon l'invention, l'agent dépolymérisant est choisi parmi des agents pas ou peu préjudiciables à la croissance, voire même la survie, des cellules vivantes encapsulées. Une telle sélection relève des connaissances générales de l'homme du métier.
De préférence, l'agent dépolymérisant de la composition (B) est choisi parmi les agents chélatants du calcium, les sels aptes à s'échanger avec le calcium, les enzymes aptes à dégrader les protéines ou les polysaccharides, et leurs mélanges.
Selon un mode de réalisation, l'agent dépolymérisant est un agent chélatant du calcium. Ces composés sont propres à former des complexes métalliques très stables. Ils sont propres à être liés à des cations métalliques sous forme d'une de ses bases conjuguées.
Parmi ces composés chélatants, on peut citer l'EDTA ou acide éthylène diamine tétra-acétique, l'EGTA ou acide éthylène glycol tétra-acétique, les éthers couronnes tels que le 1 ,13-diaza-21 -couronne-7 ou le 1 ,10-diaza-18-couronne-6, les cryptands, ou encore les acides tels que l'acide citrique, l'acide acrylique, l'acide polyacrylique, l'acide phytique, acide phosphorique, acide tartrique, acide malique, ou plus généralement un polyacide, leurs sels inorganiques, tel qu'un sel de sodium ou de potassium, ou leurs esters, et leurs mélanges.
Selon une variante, l'agent dépolymérisant est un polymère ou un copolymère comportant au moins un monomère possédant une fonction acide libre après polymérisation. L'agent dépolymérisant est par exemple choisi parmi les polymères ou copolymères d'acide acrylique, d'acide méthacrylique, d'acide crotonique et d'acide maléique, leurs sels ou leurs esters. L'agent dépolymérisant peut également être un sel apte à s'échanger avec les ions susceptibles de former le gel de l'enveloppe.
Selon une variante, l'agent dépolymérisant est choisi parmi les cations monovalents d'anions monovalents.
Selon un mode de réalisation de l'invention, l'agent dépolymérisant est l'acide citrique ou un de ses sels.
L'agent dépolymérisant est par exemple le citrate de sodium dihydraté.
La concentration massique en composé chélatant est notamment supérieure à 0,5% et est par exemple comprise de 2% à 30% par rapport à la masse totale de la composition (B).
De préférence, lorsque l'enveloppe externe, optionnellement gélifiée, des capsules de la composition (A) contient une protéine ou un polysaccharide naturel, l'agent dépolymérisant est une enzyme apte à dégrader les protéines ou les polysaccharides.
Parmi les enzymes aptes à dégrader les protéines, on peut citer l'Aquabeautine, la papaïne et la pepsine.
Parmi les enzymes aptes à dégrader les polysaccharides, on peut citer les endocellulases, les exoglucanases, les exoglycosidases qui dégradent par hydrolyse enzymatique les fibres de cellulose.
La mise en contact et le mélange des compositions (A) et (B) déclenchent la dépolymérisation de l'enveloppe externe, optionnellement gélifiée, de la capsule par l'agent dépolymérisant. Les liaisons interchaînes à l'origine du réseau tridimensionnel constituant l'enveloppe se rompent progressivement. L'enveloppe passe alors de l'état gélifié à l'état liquide, libérant ainsi le cœur de la capsule dans la phase continue.
Le temps de mélange des compositions (A) et (B) requis pour obtenir un produit final homogène, exempt de résidus d'enveloppe de capsules est directement déterminé par la cinétique de dépolymérisation. Afin de permettre au consommateur d'obtenir le produit final en un temps raisonnable, le temps de mélange est inférieur à une heure, avantageusement compris de 1 seconde à 30 min, et préférentiellement compris de 5 secondes à 10 min.
Le temps de mélange dépend de divers paramètres, notamment des viscosités des compositions (A) et (B), de l'efficacité d'action de l'agent dépolymérisant vis-à-vis de l'enveloppe externe, optionnellement gélifiée, des capsules, mais aussi des caractéristiques des capsules (taille, composition, épaisseur de l'enveloppe, etc).
Selon un mode de réalisation, le polyélectrolyte de la capsule de la composition (A) est choisi parmi les polyélectrolytes réactifs aux ions calcium, tels qu'un alginate de sodium, et l'agent dépolymérisant de la composition (B) est choisi parmi les agents chélatants du calcium et les sels aptes à s'échanger avec le calcium, tels que l'EDTA.
Avantageusement, la composition (B) du kit selon l'invention a une viscosité comprise de 1 mPa.s à 100 Pa.s, avantageusement comprise de 1 mPa.s à 60 Pa.s.
La texture de la composition (B) est choisie en fonction de la texture que l'on désire obtenir pour le produit final.
La composition (B) est notamment sous forme d'une solution liquide, d'un gel, d'une crème, d'une mousse ou d'une émulsion. Son aspect visuel détermine en partie l'aspect visuel du produit final.
Avantageusement, la composition (B) contient un pourcentage massique d'eau d'au moins 60%, avantageusement compris de 70% à 95%, préférentiellement compris de 75% à 95%, par rapport à la masse totale de ladite composition.
L'invention concerne également une application des compositions (A) et (B) du kit selon l'invention.
L'invention concerne donc également le kit tel que défini ci-dessus pour son utilisation pour une application simultanée ou séparée dans le temps, notamment sur la peau, des compositions (A) et (B) telles que définies ci-dessus.
Le kit de l'invention permet donc d'appliquer les compositions (A) et (B) telles que définies ci-dessus de façon simultanée, c'est-à-dire ensemble, ou l'une après l'autre.
Egalement, la présente invention concerne un procédé de culture de cellules vivantes comprenant une étape de mise en culture d'au moins une composition selon l'invention. A ce titre, une composition selon l'invention est telle que le cœur des capsules comprend un milieu de culture MC1 et/ou la phase continue aqueuse comprend un milieu de culture MC2 tels que décrits précédemment.
En fonction des cellules vivantes mises en culture, l'homme du métier est apte à sélectionner les milieux de culture MC1 et/ou MC2 appropriés, ainsi que les conditions de température et de luminosité appropriées à la prolifération des cellules vivantes.
A la fin du procédé de culture, la récolte des capsules se fait typiquement par élimination du milieu de culture MC2 par filtration des capsules, ou par toute autre technique de récupération des capsules.
Pour filtrer les capsules, on utilise typiquement un tamis présentant une taille d'ouverture inférieure au diamètre moyen des capsules de l'invention, qui sont sensiblement sphériques.
L'encapsulation de cellules vivantes, notamment de cellules végétales, en particulier d'algues, et la culture en capsules de ces cellules vivantes, présente en outre les avantages suivants par rapport aux procédés classiques :
les cellules vivantes encapsulées sont protégées des contraintes mécaniques, telles que le cisaillement, diminuant ainsi la mort cellulaire au cours du procédé de culture des cellules ;
les cellules vivantes encapsulées sont partiellement protégées du milieu extérieur, car la membrane de la capsule présente une perméabilité sélective (en particulier, les bactéries ne peuvent pas pénétrer dans la capsule), ce qui permet avantageusement d'éviter d'éventuelles contaminations et donc de réduire la mort cellulaire ;
la taille des capsules (plusieurs centaines de micromètres) et leurs propriétés mécaniques les rendent plus faciles à manipuler que les cellules en tant que telles, notamment pour des changements de milieu de culture MC2 ou lors de la récolte ; et
un traitement postérieur à la croissance et éventuellement à l'élicitation peut être mis en œuvre afin d'imperméabiliser les capsules, isolant ainsi leur contenu pour en faciliter la conservation jusqu'à leur utilisation.
La présente invention concerne encore un procédé de production d'un composé d'intérêt, ledit procédé comprenant :
- une étape de mise en culture d'au moins une composition selon l'invention, où la cellule vivante est apte à produire ledit composé d'intérêt, - éventuellement, une étape d'élicitation des cellules vivantes comprises dans ladite capsule, et
- une étape de récupération du composé d'intérêt.
Dans le cadre de la présente description, on entend par « élicitation » la stimulation de la production de composés d'intérêt par une cellule vivante, ladite stimulation étant provoquée par la mise en conditions particulières, qu'elles soient physico-chimiques, résultant d'une modulation de la température, de la pression ou de l'éclairement, ou encore qu'elles reposent sur la présence d'une molécule particulière, dite « molécule élicitante ». On provoque ainsi artificiellement la production de composés d'intérêt par les cellules vivantes encapsulées.
Ainsi, après une première étape de mise en culture, l'étape d'élicitation des cellules vivantes comprend typiquement :
- une étape de mise en culture des capsules en lots séparés dans des conditions différentes,
- une étape de détection et de quantification du composé d'intérêt produit, et
- éventuellement la sélection des individus présentant les meilleurs phénotypes.
L'étape d'élicitation des cellules vivantes consiste par exemple à mettre en culture les capsules de l'invention dans un milieu de culture MC2 différent du milieu de culture MC1 , ou dans un milieu de culture comprenant une molécule élicitante, ou dans le même milieu MC1 avec une modification des conditions de culture (température, lumière, etc.).
Les capsules selon l'invention peuvent être mises en culture en conditions élicitantes bien connues de l'homme du métier, comme par l'ajout au milieu de culture MC2 d'acide salicylique, d'éthylène, de jasmonate ou de chitosan (cf. par exemple la demande internationale WO 2003/077881 ).
Les composés d'intérêt produits par le procédé de production de l'invention sont typiquement soumis à un ou plusieurs traitements, tels que purification, concentration, séchage, stérilisation et/ou extraction. Ces composés sont ensuite destinés à être incorporés dans une composition cosmétique, agro-alimentaire ou pharmaceutique.
A titre de composé d'intérêt, les capsules de l'invention permettent notamment de produire des lipides présentant un intérêt en cosmétique, comme par exemple des acides gras, tels que l'acide linoléique, l'acide alpha linoléique, l'acide gamma linoléique, l'acide palmitique, l'acide stéarique, l'acide eicosapentanoïque, l'acide docosahexanoïque, l'acide arachidonique ; des dérivés d'acide gras, tels que des céramides ; ou encore des stérols, tels que le brassicastérol, le campestériol, le stigmastérol et le sitostérol.
La récupération du composé d'intérêt relève des connaissances générales de l'homme du métier et est notamment décrite dans WO 2016/062836.
La présente invention concerne encore l'utilisation d'une composition selon l'invention, pour la production de cellules vivantes et/ou la production de composés d'intérêt.
Les expressions « compris entre ... et ... », « compris de ... à ... » et « allant de ... à ... » doivent se comprendre bornes incluses, sauf si le contraire est spécifié.
Les exemples ci-après illustrent l'invention sans en limiter la portée.
EXEMPLES
Exemple 1 : Préparation de capsules selon l'invention
1 . Préparation des solutions pour la fabrication de capsules
L'intégralité du matériel (tubes, connecteurs, cristallisoir, etc.) utilisé est autoclavé. Pour les éléments du dispositif fluidique ne résistant pas aux hautes températures, on procède à un rinçage avec de l'éthanol à 70%. Le procédé d'encapsulation décrit ci-après est réalisé en conditions stériles, sous une hotte à flux laminaire. Tous les liquides sont également stérilisés. L'autoclavage est une méthode simple de stérilisation de liquides. Le bain de calcium est autoclavé. Pour les solutions de polymères (alginate et cellulose), si ces dernières sont portées à 120°C pendant 20 min, leurs propriétés rhéologiques sont altérées à un point qui rend l'encapsulation impossible. Leur stérilisation est donc effectuée par filtration à 0,2 μηι (mais étape longue compte-tenu de la viscosité de la solution d'alginate) ou par pasteurisation à 65°C pendant 60 minutes (plus long mais température moins élevée que l'autoclavage, ce qui altère moins les propriétés rhéologiques des polymères).
- Bain de calcium BF (solution gélifiante) : CaCI2 (90 mM) et quelques gouttes d'une solution de Tween 20 10%m/v et de l'eau osmosée. - Phase externe OF (membrane) : solution d'alginate (1 ,7%) et du SDS 0,5 mM dans HEPES (50 mM) et de l'eau osmosée.
- Phase interne IF (cœur) : mélange 50/50 d'une solution à 1 % de cellulose + HEPES 50 mM + eau et milieu de culture RCCM + Chlamydomonas reinhardtii
- Milieu de culture RCCM :
Pour anticiper des problèmes de milieux de culture non compatibles avec les capsules d'alginate, on part d'un milieu de culture connu (i.e. le milieu TAP) dans lequel des composés sont supprimés, tels que les chélatants du calcium, d'autres sont ajoutés, tels que du chlorure de calcium (1 mM), et d'autres sont substitués, à l'image du tampon TRIS qui est remplacé par l'acide 4-(2-hydroxyéthyl)-1 -pipérazine éthane sulfonique (HEPES) + 2,7 mM de phosphate (pour maintenir la division cellulaire).
Préparation
On mélange ensemble 50 ml_ de Beijerincks (2x), 1 ml_ de Phosphate 1 M pH7 Buffer, 1 ml_ de Hutner's trace éléments, 1 ml_ d'acide acétique, 10 mL de la solution de CaCI2 et 5,96 g d'HEPES sont mélangés, et le volume est ajusté à 1 L avec de l'eau distillé. Le pH est ensuite ajusté à 7,1 -7,4 avec une solution de NaOH à 8 M. La solution est filtrée à 0,2 μηι et conservée à 4°C.
Composition
Figure imgf000031_0001
Toutes les phases décrites ci-dessus subissent préalablement à leur utilisation une étape de filtration à 5 μιπ (sauf milieu de culture RCCM). Cette étape de filtration permet d'éviter la présence de particules ou d'agrégats solides conduisant au bouchage des buses (ou « dispositifs millifluidiques ») utilisées pour la production, mais est aussi utilisée pour stériliser les phases.
Les microalgues sont ensuite encapsulées grâce à au moins une buse (ou « dispositif millifluidique ») associée à un dispositif piézo-électrique et une électrode.
2. Fabrication de capsules
Le procédé de fabrication de capsules est basé sur la co-extrusion concentrique de deux solutions grâce à une buse (ou « dispositif millifluidique »), notamment décrite dans WO 2010/063937 et FR2964017, pour former des gouttes doubles.
Débit IF : 130 mIJh.
Débit OF : 70 mIJh.
Un dispositif piézo-électrique (Preloaded piezo actuator, 15 μηι, de chez PI) est ensuite mis sous tension, et la fréquence d'excitation est ajustée (typiquement autour de 1 ,6 kHz). Une électrode est mise sous tension, typiquement à 1000 V, afin de charger les gouttes. Les répulsions induites amènent les gouttes à s'éloigner, ce qui transforme le jet en cône et réduit la coalescence en vol. Cela permet d'obtenir une population de gouttes, et donc de capsules, très monodisperses. Les gouttes terminent ensuite leur chute dans le bain de calcium, formant ainsi des capsules selon l'invention.
Une fois la collecte terminée, les capsules sont laissées quelques minutes dans le bain de calcium, puis sont filtrées grâce à un tamis cellulaire (maille 100 μηι). Les capsules sont ensuite lavées puis conservées avec le milieu de culture RCCM (= phase continue X).
Ce système permet d'encapsuler des microalgues sans effet délétère, et de les cultiver dans ce véhicule. Il est possible d'atteindre des concentrations très importantes (3460 millions de cellules par mL dans la capsule), sans impact majeur sur la viabilité de la culture.
Néanmoins, des contaminations de la phase continue par des microorganismes, en particulier des bactéries, peuvent être observées. Le problème de ces contaminations extérieures est donc réel, a fortiori si le milieu de culture n'impose pas une forte pression de sélection ou si les cellules d'intérêt ont un temps de doublement long, ce qui est le cas de Chlamydomonas reinhardtii qui est 600 fois plus long que celui d'une bactérie comme Escherichia coli (i.e. 25 heures contre 20 minutes). Exemple 2 : challenge-test comparatif
De nombreux moyens physiques de décontamination existent : radiations ionisantes (rayons gamma) et non ionisantes (UV), chaleur, filtration à 0,2 μηι.
Malheureusement, mis à part les antibiotiques, aucun des moyens suscités n'est compatible avec la culture de cellules vivantes, le cas échéant en capsules, la plupart pour des raisons évidentes de compatibilité. En effet, il est crucial de pouvoir tuer spécifiquement les cellules à l'extérieur des capsules sans impacter le contenu des capsules.
L'utilisation de particules d'argent suffisamment grosses pour ne pas pénétrer dans la capsule est exclue, car il a été montré que l'agent cytotoxique est l'ion argent libéré par de telles particules (Zong Ming Xiu, Nano Letters, 12(8) :4271 - 4275, 2012). Cet ion diffuse sans problème dans les capsules et serait préjudiciable à la survie de Chlamydomonas reinhardtii.
L'utilisation d'antibiotiques pose des problèmes environnementaux et de développement de résistances ; et les prescriptions en la matière sont plutôt à la baisse de la consommation (C Lee Ventola., P & T : a peer-reviewed journal for formulary management, 40(5) :344-52, 2015).
Des tentatives de lavage des capsules pour se débarrasser des contaminations présentes dans la phase continue ont été réalisées. Malheureusement, il reste toujours des bactéries adsorbées sur la surface des capsules, ce qui anéantit les efforts du lavage.
Un protocole de challenge-test entre un polymère antibactérien selon l'invention, i.e. la poly-L-lysine (Sigma-Aldrich, P5899, Mw >300kDa) (PLL) et l'ampicilline (A0166, Sigma) a été mis en place et décrit ci-après.
On dispose de quatre flasques en verre contenant 10 mL du milieu de culture RCCM décrit en exemple 1 .
La composition des quatre flasques est présentée dans le tableau ci-dessous.
F1 F2 F3 F4
Milieu de culture
OK OK OK OK RCCM (10 mL)
PLL
0 10-3% 0 10-3%
(en %)
Ampicilline
0 0 10 0
(en g/mL) Puis, 1 μΙ_ d'une suspension de E. coli YFP est ajouté dans chaque flasque F1 à F3 et 1 μΙ_ d'une suspension de Chiamydomonas reinhardtii est ajouté dans la flasque F4.
Le développement des bactéries E. coli YFP ou Chiamydomonas reinhardtii induira une turbidité du milieu de culture RCCM.
Les flasques sont ensuite mises à l'incubateur pendant une semaine à 25 °C. Après quoi, les flasques sont observées.
Résultats
Comme attendu, une turbidité importante est observée en flasque F1 , caractérisant un développement important des bactéries E. coli YFP se développent dans la flasque contrôle F1 .
En revanche, il n'y a pas de croissance dans la flasque contenant de l'ampiciline (flasque F3), ni dans celle contenant la PLL (flasque F2), ce qui illustre l'effet antimicrobien, notamment bactériostatique, de la PLL.
Cet effet impacte aussi Chiamydomonas reinhardtii (flasque F4). Il est donc crucial que la PLL ne pénètre pas dans les capsules.
Exemple 3 : Composition selon l'invention
Des capsules selon l'exemple 1 sont placées dans le milieu de culture RCCM additionné de 10~3 % de PLL (= phase continue Z).
Les cellules encapsulées Chiamydomonas reinhardtii croissent sans problème dans cette phase continue Z, comme montré en figure 1 , et en l'absence totale de contamination bactérienne dans la phase continue pendant une période de temps supérieure à 1 mois à température ambiante.
La Figure 1 représente la courbe de croissance de Chiamydomonas reinhardtii WTS24- en capsule, dans du milieu de culture RCCM additionné de 10~3 % de poly-L-lysine (Sigma-AIdrich, P5899, Mw >300kDa) (PLL).
Le temps de division des microalgues dans ce contexte a été calculé et comparé à celui de ce même système de culture mais sans PLL.
Ce temps vaut 13,9 h ± 1 ,4 h. Ce temps n'est donc pas significativement différent de celui obtenu pour des microalgues dans du RCCM sans PLL. Cela confirme que la PLL ne pénètre pas dans les capsules et n'a aucun impact délétère sur la croissance des microalgues en capsule.
Une composition selon l'invention constitue donc un moyen innovant de décontaminer exclusivement la phase continue dans laquelle baigne les capsules, sans impacter le contenu de celles-ci. Cela permet de compléter, voire remplacer, l'utilisation classique d'antibiotiques.
Cela ouvre également un nouveau champ pour le domaine cosmétique, à savoir celui des produits cosmétiques contenant des microalgues vivantes en capsule.

Claims

REVENDICATIONS
1. Composition comprenant une phase continue aqueuse et au moins une capsule, ladite capsule comprenant un cœur, liquide ou au moins en partie gélifié ou au moins en partie thixotrope, et au moins une enveloppe externe encapsulant totalement ledit cœur à sa périphérie,
dans laquelle ladite capsule comprend au moins une cellule vivante, et dans laquelle ladite phase aqueuse continue comprend au moins un polymère antimicrobien et/ou antifongique.
2. Composition selon la revendication 1 , dans laquelle le polymère antimicrobien et/ou antifongique est un polymère cationique, de préférence ayant une unité répétitive comprenant au moins une fonction aminé.
3. Composition selon la revendication 1 ou 2, dans laquelle le polymère antimicrobien et/ou antifongique est choisi dans le groupe constitué des polymères biocides, des biocides polymériques, des polymères libérant des biocides et de leurs mélanges.
4. Composition selon l'une quelconque des revendications 1 à 3, dans laquelle le polymère antimicrobien et/ou antifongique est la polylysine, notamment la poly-L-lysine ou la poly-D-lysine, ou l'un de ses dérivés.
5. Composition selon l'une quelconque des revendications 1 à 4, dans laquelle le polymère antimicrobien et/ou antifongique a un poids moléculaire supérieur à 10 000 Da, de préférence supérieur à 100 000 Da, et mieux compris entre 10 000 Da et 300 000 Da, et de préférence entre 100 000 Da et 200 000 Da.
6. Composition selon l'une quelconque des revendications 1 à 5, comprenant une teneur supérieure à 10"4%, de préférence supérieure ou égale à 10"3%, en poids de polymère(s) antimicrobien(s) et/ou antifongique(s) par rapport au poids total de la phase continue.
7. Composition selon l'une quelconque des revendications 1 à 6, dans laquelle la ou les cellules vivantes sont choisies parmi les cellules procaryotes, les cellules eucaryotes, et leur mélange.
8. Composition selon l'une quelconque des revendications 1 à 7, dans laquelle la ou les cellules vivantes sont choisies parmi les cellules animales ou végétales, et sont de préférence choisies parmi les cellules végétales.
9. Composition selon l'une quelconque des revendications 1 à 8, dans laquelle le cœur des capsules est monophasique ou comporte une goutte intermédiaire d'une phase intermédiaire, la phase intermédiaire étant placée au contact de l'enveloppe externe, et au moins une goutte interne d'une phase interne disposée dans la goutte intermédiaire, et dans laquelle au moins une des phases parmi la phase intermédiaire et/ou la phase interne comprend au moins une cellule vivante.
10. Composition selon l'une quelconque des revendications 1 à 9, dans laquelle le cœur des capsules comprend un milieu de culture MC1 .
11. Composition selon l'une quelconque des revendications 1 à 10, dans laquelle la taille des capsules est inférieure à 5 mm, de préférence comprise entre 50 μηι et 3 mm.
12. Composition selon l'une quelconque des revendications 1 à 1 1 , dans laquelle la phase continue aqueuse comprend un milieu de culture MC2.
13. Composition selon l'une quelconque des revendications 1 à 12, dans laquelle l'enveloppe externe comprend au moins un polyélectrolyte à l'état gélifié.
14. Kit comprenant au moins deux compositions séparées (A) et (B), dans lequel :
- la composition (A) est une composition telle que définie selon l'une quelconque des revendications 1 à 13, et
- la composition (B) comprend au moins un agent dépolymérisant.
15. Kit selon la revendication 14, dans lequel l'agent dépolymérisant de la composition (B) est choisi parmi les agents chélatants du calcium, les sels aptes à s'échanger avec le calcium, les enzymes aptes à dégrader les protéines ou les polysaccharides, et leurs mélanges.
16. Procédé de culture de cellules vivantes comprenant une étape de mise en culture d'au moins une composition selon l'une des revendications 1 à 13.
17. Procédé de production d'un composé d'intérêt, ledit procédé comprenant :
- une étape de mise en culture d'au moins une composition selon l'une des revendications 1 à 13 où la cellule vivante est apte à produire ledit composé d'intérêt,
- éventuellement, une étape d'élicitation des cellules vivantes comprises dans ladite capsule, et
- une étape de récupération du composé d'intérêt.
18. Utilisation d'une composition selon l'une quelconque des revendications 1 à 13, pour la production de cellules vivantes et/ou la production de composés d'intérêt.
19. Utilisation d'au moins un polymère antimicrobien et/ou antifongique selon l'une quelconque des revendications 2 à 6, pour prévenir et/ou lutter contre la contamination par des microorganismes, en particulier des bactéries, d'une phase continue aqueuse d'une composition comprenant, outre ladite phase continue aqueuse, au moins une capsule, ladite capsule comprenant un cœur, liquide ou au moins en partie gélifié ou au moins en partie thixotrope, et au moins une enveloppe externe encapsulant totalement ledit cœur à sa périphérie, la capsule comprenant au moins une cellule vivante.
20. Milieu de culture adapté à la culture de cellules vivantes encapsulées, caractérisé en ce que le milieu comprend au moins un polymère antimicrobien et/ou antifongique selon l'une quelconque des revendications 2 à 6.
PCT/EP2018/075642 2017-09-22 2018-09-21 Capsules bactericides ou bactériostatiques ou antifongiques comprenant des cellules vivantes et leurs utilisations WO2019057914A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1758791 2017-09-22
FR1758791A FR3071505B1 (fr) 2017-09-22 2017-09-22 Capsules bactericides ou bacteriostatiques ou antifongiques comprenant des cellules vivantes et leurs utilisations

Publications (1)

Publication Number Publication Date
WO2019057914A1 true WO2019057914A1 (fr) 2019-03-28

Family

ID=60182773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/075642 WO2019057914A1 (fr) 2017-09-22 2018-09-21 Capsules bactericides ou bactériostatiques ou antifongiques comprenant des cellules vivantes et leurs utilisations

Country Status (2)

Country Link
FR (1) FR3071505B1 (fr)
WO (1) WO2019057914A1 (fr)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030082A2 (fr) 1996-02-16 1997-08-21 Rhone-Poulenc Agrochimie Peptide antibacterien et antifongique
WO2003077881A2 (fr) 2002-03-20 2003-09-25 Rachid Ennamany Procede d'obtention de phytoalexines
WO2010063937A1 (fr) 2008-12-01 2010-06-10 Capsum Procede de fabrication d'une serie de capsules, et serie de capsules associee
WO2011075848A1 (fr) * 2009-12-23 2011-06-30 Micropharma Limited Capsules à base d'epsilon-polylysine
FR2964017A1 (fr) 2010-09-01 2012-03-02 Capsum Procede de fabrication d'une serie de capsules de taille submillimetrique
WO2012089820A1 (fr) 2010-12-31 2012-07-05 Capsum Serie de capsules comprenant au moins une goutte de phase interne dans une goutte de phase intermediaire et procede de fabrication associe
WO2012120043A2 (fr) 2011-03-08 2012-09-13 Capsum Procédé de formation de gouttes d'une première phase dispersées dans une deuxième phase sensiblement immiscible avec la première phase
WO2013113855A2 (fr) 2012-01-31 2013-08-08 Capsum Capsules contenant des cellules de mammifères
WO2016062836A1 (fr) 2014-10-22 2016-04-28 Capsum Capsule gélifiée comprenant une cellule végétale
WO2016096995A1 (fr) 2014-12-16 2016-06-23 Capsum Dispersions stables comprenant des gouttes d'agent parfumant

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997030082A2 (fr) 1996-02-16 1997-08-21 Rhone-Poulenc Agrochimie Peptide antibacterien et antifongique
WO2003077881A2 (fr) 2002-03-20 2003-09-25 Rachid Ennamany Procede d'obtention de phytoalexines
WO2010063937A1 (fr) 2008-12-01 2010-06-10 Capsum Procede de fabrication d'une serie de capsules, et serie de capsules associee
WO2011075848A1 (fr) * 2009-12-23 2011-06-30 Micropharma Limited Capsules à base d'epsilon-polylysine
FR2964017A1 (fr) 2010-09-01 2012-03-02 Capsum Procede de fabrication d'une serie de capsules de taille submillimetrique
WO2012089820A1 (fr) 2010-12-31 2012-07-05 Capsum Serie de capsules comprenant au moins une goutte de phase interne dans une goutte de phase intermediaire et procede de fabrication associe
WO2012120043A2 (fr) 2011-03-08 2012-09-13 Capsum Procédé de formation de gouttes d'une première phase dispersées dans une deuxième phase sensiblement immiscible avec la première phase
WO2013113855A2 (fr) 2012-01-31 2013-08-08 Capsum Capsules contenant des cellules de mammifères
WO2016062836A1 (fr) 2014-10-22 2016-04-28 Capsum Capsule gélifiée comprenant une cellule végétale
WO2016096995A1 (fr) 2014-12-16 2016-06-23 Capsum Dispersions stables comprenant des gouttes d'agent parfumant

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
C LEE VENTOLA., P & T : A PEER-REVIEWED JOURNAL FOR FORMULARY MANAGEMENT, vol. 40, no. 5, 2015, pages 344 - 52
MATERIALS, vol. 9, 2016, pages 599
YE RUOSONG ET AL: "Antibacterial activity and mechanism of action of [epsilon]-poly-L-lysine.", BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS 13 SEP 2013, vol. 439, no. 1, 13 September 2013 (2013-09-13), pages 148 - 153, XP028715144, ISSN: 1090-2104 *
YUYA MORIMOTO ET AL: "Housing for cells in monodisperse microcages", IEEE 21ST INTERNATIONAL CONFERENCE ON MICRO ELECTRO MECHANICAL SYSTEMS, 2008 : MEMS 2008 ; 13 - 17 JAN. 2008, TUCSON, ARIZONA, USA, PISCATAWAY, NJ : IEEE OPERATIONS CENTER, 1 January 2008 (2008-01-01), pages 304 - 307, XP031210743, ISBN: 978-1-4244-1792-6, DOI: 10.1109/MEMSYS.2008.4443653 *
ZONG MING XIU, NANO LETTERS, vol. 12, no. 8, 2012, pages 4271 - 4275

Also Published As

Publication number Publication date
FR3071505B1 (fr) 2022-04-08
FR3071505A1 (fr) 2019-03-29

Similar Documents

Publication Publication Date Title
Weldrick et al. Enhanced clearing of wound-related pathogenic bacterial biofilms using protease-functionalized antibiotic nanocarriers
Srivastava et al. Biofilms and human health
EP0693963B1 (fr) Utilisation d'une reaction de transacylation entre un polysaccharide esterifie et une polyamine pour former en milieu aqueux une membrane au moins en surface de particules gelifiees, particules ainsi realisees, procedes et compositions en contenant
Kim et al. Controlled release of Pantoea agglomerans E325 for biocontrol of fire blight disease of apple
EP2242357B1 (fr) Nouveau materiau a proprietes bacteriostatiques
EP3209266A1 (fr) Capsule gélifiée comprenant une cellule végétale
EP3713665B1 (fr) Procéde de fabrication de capsules formées d'une enveloppe externe d'hydrogel réticulé entourant un noyau central
FR2501715A1 (fr) Procede de culture de cellules necessitant une fixation pour la fabrication de substances therapeutiques
WO2005065697A1 (fr) Procede de photo-stabilisation de phycobiliproteines dans un extrait aqueux, compositions contenant des phycobiliproteines stabilisees et utilisation de phycobiliproteines stabilisees
WO2019057914A1 (fr) Capsules bactericides ou bactériostatiques ou antifongiques comprenant des cellules vivantes et leurs utilisations
Schnepf et al. Phagomyxa bellerocheae sp. nov. and Phagomyxa odontellae sp. nov., Plasmodiophoromycetes feeding on marine diatoms
Eroglu et al. Application of poly (2‐hydroxyethyl methacrylate) hydrogel disks for the immobilization of three different microalgal species
EP3206477A1 (fr) Procede de demucilagination
CA3125836A1 (fr) Procede d'amplification in vitro ou ex vivo de cellules souches du tissu adipeux humain
WO2016034714A1 (fr) Capsules à membrane conductrice
Chauhan et al. Smart nanomaterials and control of biofilms
WO2019115549A1 (fr) Méthode de criblage de séquences de conditions de culture
CA3134894A1 (fr) Billes de verre fonctionnalisees, leur utilisation pour capter des micro-organismes et les dispositifs correspondants
Velázquez-Moreno et al. Multispecies oral biofilm and identification of components as treatment target
Nehal et al. Fermentation Process Versus Nanotechnology
WO2023222956A1 (fr) Procédé de fabrication d'un support microbien, produit associé et son utilisation
FR3109584A1 (fr) Microcompartiment pour la culture de cellules de cnidaires
Trabelsi et al. Biological activities of Arthrospira platensis (filamentous cyanobacteria) extracellular metabolites
Sangeetha et al. Microalgal Biotechnology: Bioprospecting Microalgae for Functional Metabolites Towards Commercial and Sustainable Applications
FR2996752A1 (fr) Utilisation de de billes cosmetiques, emballage et billes cosmetiques associes.

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18769399

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18769399

Country of ref document: EP

Kind code of ref document: A1