WO2019057629A1 - Panneau composite de polyuréthane pour revêtement de sol de conteneur, sa méthode de préparation et son utilisation - Google Patents

Panneau composite de polyuréthane pour revêtement de sol de conteneur, sa méthode de préparation et son utilisation Download PDF

Info

Publication number
WO2019057629A1
WO2019057629A1 PCT/EP2018/074890 EP2018074890W WO2019057629A1 WO 2019057629 A1 WO2019057629 A1 WO 2019057629A1 EP 2018074890 W EP2018074890 W EP 2018074890W WO 2019057629 A1 WO2019057629 A1 WO 2019057629A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
polyurethane
component
reinforced material
glass fiber
Prior art date
Application number
PCT/EP2018/074890
Other languages
English (en)
Inventor
Chenxi Zhang
Zhan Chen
Liang Xue
Original Assignee
Covestro Deutschland Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710847285.6A external-priority patent/CN109517135A/zh
Priority claimed from EP17199852.9A external-priority patent/EP3479986A1/fr
Application filed by Covestro Deutschland Ag filed Critical Covestro Deutschland Ag
Publication of WO2019057629A1 publication Critical patent/WO2019057629A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/18Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material
    • B32B5/20Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by features of a layer of foamed material foamed in situ
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1209Incorporating or moulding on preformed parts, e.g. inserts or reinforcements by impregnating a preformed part, e.g. a porous lining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1228Joining preformed parts by the expanding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/1228Joining preformed parts by the expanding material
    • B29C44/1233Joining preformed parts by the expanding material the preformed parts being supported during expanding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/04Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B25/045Layered products comprising a layer of natural or synthetic rubber comprising rubber as the main or only constituent of a layer, which is next to another layer of the same or of a different material of foam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B25/00Layered products comprising a layer of natural or synthetic rubber
    • B32B25/10Layered products comprising a layer of natural or synthetic rubber next to a fibrous or filamentary layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/022Non-woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/024Woven fabric
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/02Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer
    • B32B5/08Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by structural features of a fibrous or filamentary layer the fibres or filaments of a layer being of different substances, e.g. conjugate fibres, mixture of different fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B5/00Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts
    • B32B5/22Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed
    • B32B5/24Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer
    • B32B5/245Layered products characterised by the non- homogeneity or physical structure, i.e. comprising a fibrous, filamentary, particulate or foam layer; Layered products characterised by having a layer differing constitutionally or physically in different parts characterised by the presence of two or more layers which are next to each other and are fibrous, filamentary, formed of particles or foamed one layer being a fibrous or filamentary layer another layer next to it being a foam layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/033 layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2250/00Layers arrangement
    • B32B2250/40Symmetrical or sandwich layers, e.g. ABA, ABCBA, ABCCBA
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/02Composition of the impregnated, bonded or embedded layer
    • B32B2260/021Fibrous or filamentary layer
    • B32B2260/023Two or more layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/046Synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2260/00Layered product comprising an impregnated, embedded, or bonded layer wherein the layer comprises an impregnation, embedding, or binder material
    • B32B2260/04Impregnation, embedding, or binder material
    • B32B2260/048Natural or synthetic rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/02Synthetic macromolecular fibres
    • B32B2262/0261Polyamide fibres
    • B32B2262/0269Aromatic polyamide fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/101Glass fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/10Inorganic fibres
    • B32B2262/106Carbon fibres, e.g. graphite fibres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2262/00Composition or structural features of fibres which form a fibrous or filamentary layer or are present as additives
    • B32B2262/14Mixture of at least two fibres made of different materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2264/00Composition or properties of particles which form a particulate layer or are present as additives
    • B32B2264/06Vegetal particles
    • B32B2264/062Cellulose particles, e.g. cotton
    • B32B2264/067Wood particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2266/00Composition of foam
    • B32B2266/02Organic
    • B32B2266/0214Materials belonging to B32B27/00
    • B32B2266/0278Polyurethane
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/30Properties of the layers or laminate having particular thermal properties
    • B32B2307/306Resistant to heat
    • B32B2307/3065Flame resistant or retardant, fire resistant or retardant
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/536Hardness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/546Flexural strength; Flexion stiffness
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/718Weight, e.g. weight per square meter
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/70Other properties
    • B32B2307/72Density
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2439/00Containers; Receptacles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2607/00Walls, panels

Definitions

  • the present invention provides a polyurethane composite panel for container flooring, method for its preparation and use thereof.
  • Container transportation is an important way in the transport of goods, and has advantages of rapid loading and unloading, easy transport and high transport mechanization and so on.
  • container transport has been developing rapidly.
  • China's container production accounts for the vast majority of the world, with the top five container manufacturing plants all in China.
  • Container flooring needs to meet the high requirements in terms of durability, horizontal and vertical strength, bending strength, stiffness and so on, and thereby ordinary panels usually cannot meet these requirements.
  • container flooring has been made by using plywood based on the panel of high-density hardwood (Apitong) grown in tropical rainforests.
  • CN1192420A discloses a container flooring and its manufacturing method.
  • Medium-density wood is used as raw material, and mixed with an appropriate amount of bamboo.
  • the method comprises mechanical processing, application of adhesive, assembly, and the following hot pressing to form a substrate.
  • 0.2 to 3.0 mm of surface material is glued on two surfaces of the substrate, which are surrounded by waterproof material to perform edge sealing treatment to further improve the strength and elastic modulus of the panel and to maintain its mechanical and logistics properties for a long time.
  • the performance of container flooring made of the substrate according to this method can meet the industrial requirements on containers in terms of density, strength, elastic modulus and surface quality and so on.
  • the method uses medium-density wood and bamboo instead of tropical rainforest high-density hardwood, requires 19 to 21 layers of glued sheets, and thus has complex processes. In addition, it still consumes a large number of native tree species.
  • CN1287960A discloses a larch container flooring and its manufacturing method, wherein the larch is softened and degreased by heating in water bath, rotationally cut into veneer, refurbished, assembled, and hot-pressed to obtain the container flooring.
  • the flooring made by this method can replace the traditional tropical hardwood plywood flooring.
  • the method does not use imported tropical rainforest high-density hardwood species, it still uses the native species of larch and thus leads to consumption of a large number of domestic native tree species.
  • the method has been not in line with the economic development situation due to China's comprehensive control of natural forest harvesting today. Moreover, the method requires 19 to 21 layers of glued sheets, and complex processes.
  • the CN2516497Y discloses a composite wood container flooring.
  • the composite wood container flooring comprises a core layer having a surface layer on each side of the core layer.
  • the core layer is made of 17 to 21 layers of veneers having a thickness of 1.7 mm or 1.8 mm, each of which is glued.
  • the surface layers are composed of 1 to 3 layers of veneers having a thickness of 1.7 mm.
  • the container flooring maintains the original container appearance, meets the requirements of container maintenance, and further improves the performance of flooring, so that it is easy to nail and reduce its weight.
  • the container flooring according to this method is mainly used to meet the requirements of container maintenance. The method still has to use forest wood, and requires complex processes.
  • CN1583526A discloses a high-strength composite plywood for container flooring.
  • the plywood includes a surface board, a long middle board and a core board.
  • the middle layer of the plywood is a medium-density fiberboard or particleboard.
  • the surface board made of tropical broadleaf hardwood is symmetrically arranged as a veneer on each side of the medium-density fiberboard or particleboard.
  • the veneers from the long middle board most inside the surface board to the fiberboard are orthogonally arranged.
  • the invention utilizes medium-density fiberboards or particleboards made of branches of trees as the core layer of the plywood, and tropical broadleaf hardwood only as the surface boards. Although the requirement on the materials used in this technology is relatively low, it still needs to use tropical broadleaf hardwood and wood.
  • the polyurethane composite panel for container flooring comprises two fiber-reinforced material layers and a polyurethane layer, wherein the polyurethane layer is applied between the two fiber-reinforced material layers with the polyurethane penetrating into the fiber-reinforced material layers.
  • the polyurethane layer is obtained from the reaction of a polyurethane system comprising:
  • (A) di and/or polyisocyanate(s) of a general formula R(NCO)n, wherein R is an aliphatic radical having 2 to 18 carbon atoms, an aromatic radical having 6 to 15 carbon atoms or an araliphatic radical having 8 to 15 carbon atoms, and n 2 to 4, and (B) a polyol component comprising
  • (B2) one or more chain extender(s) having a content of preferably not more than 25 wt.%, and more preferably not more than 20 wt.%, based on the amount of the component (B) being 100 wt.%,
  • (B4) one or more foaming agent(s) having a content of 0.0 to 4.5 wt. , based on the amount of the component (B) being 100 wt.%, and wherein the fiber-reinforced material is selected from one or more of glass fiber mesh, alkali-free glass fiber mesh, glass fiber felt, short glass fiber mat, random glass fiber mesh, as well as nonwoven fabrics and woven fabrics of polymer fiber, carbon fiber, aramid fiber, and mixtures thereof and has a mass per unit area of 300 to 1200 g/m 2 , preferably 400 to 1000 g/m 2 , and more preferably 500 to 900 g/m 2 .
  • (B l) one or more polyether polyol(s) having a functionality of preferably 2 to 8, more preferably 3 to 6, and a hydroxyl value of preferably 200 to 1000, more preferably 250 to 800; wherein at least one polyether polyol is prepared by using amines as a starter molecule and has a functionality of preferably 3 to 5, more preferably 4, and a content of 30 to 70 wt.%, preferably 40 to 60 wt.%, and more preferably 45 to 55 wt.%, based on the amount of the component (B) being 100 wt.%, (B2) one or more chain extender(s) having a content of preferably not more than 25 wt.%, and more preferably not more than 20 wt.%, based on the amount of the component (B) being 100 wt.%,
  • the fiber-reinforced material is selected from one or more of glass fiber mesh, alkali-free glass fiber mesh, glass fiber felt, short glass fiber mat, random glass fiber mesh, as well as nonwoven fabrics and woven fabrics of polymer fiber, carbon fiber, aramid fiber, and mixtures thereof and has a mass per unit area of 300 to 1200 g/m 2 , preferably 400 to 1000 g/m 2 , and more preferably 500 to 900 g/m 2 , the method comprising the steps of: 1) disposing two parts of fiber-reinforced material respectively on the inner surface of the upper cover and the inner surface of the lower cover of a forming mold for panel,
  • Another object of the present invention is the use of the polyurethane composite panel for container flooring provided according to the invention in the production of a container and the container itself produced accordingly.
  • the fiber-reinforced material is preferably selected from one or more of glass fiber mesh, alkali-free glass fiber mesh, glass fiber felt, short glass fiber mat, random glass fiber mesh, as well as nonwoven fabrics and woven fabrics of polymer fiber, carbon fiber, aramid fiber, and mixtures thereof.
  • the fiber-reinforced material has a mass per unit area of 300 to 1800 g/m 2 , preferably 500 to 1500 g/m 2 , and more preferably 600 to 1300 g/m 2 .
  • the fiber-reinforced material is preferably subjected to a surface treatment before contacting with the polyurethane, preferably with an agent for the surface treatment being a silane coupling agent.
  • the amine used as a starter molecule for the polyether polyol(s) is ethylene diamine.
  • the polyurethane composite panel for container flooring according to the invention has good strength, rigidity and durability, and can meet the high requirements of container flooring in terms of such as durability, transverse and longitudinal strength, bending strength and - 6 - rigidity.
  • the present invention can avoid the extensive use of tropical rainforest hardwood panel and other natural wood panels in the production of traditional container flooring, simplify the many and complex processes in the production of traditional container flooring and thus significantly improve the productivity.
  • Figures 1 and 2 are schematic views of the structure of the polyurethane composite panel for container flooring according to the invention.
  • Figure 1 is a schematic view of the structure of the polyurethane composite panel for container flooring, wherein I is the fiber-reinforced material and II is the polyurethane foam.
  • Figure 2 is a schematic view of the structure of the polyurethane composite panel for container flooring, wherein A is the fiber-reinforced material and B is the polyurethane foam or composite.
  • the polyurethane system of the present invention is a rigid polyurethane system which can be divided into a one-component reaction system, a two-component reaction system or a multi-component system according to the combination state of individual components.
  • the two-component rigid polyurethane system indicates that all of the components contained are divided into two major components, namely, component A and component B.
  • Component A generally and in the present invention refers to isocyanate components.
  • Component B generally and in the present invention refers to all other components.
  • the rigid polyurethane system according to the invention is a two-component reaction system.
  • the one-component rigid polyurethane system contains all the components mixed together.
  • the multi-component rigid polyurethane system indicates that all the components contained are divided into multiple components. The components and their amounts used in the one-component or multi-component rigid polyurethane system can be determined by referring to those used in the two-component rigid polyurethane system.
  • component A is isocyanate components
  • component B contains all other components.
  • the polyurethane system comprises the following reactive components:
  • (A) di and/or polyisocyanate(s) of a general formula R(NCO)n, wherein R is an aliphatic radical having 2 to 18 carbon atoms, an aromatic radical having 6 to 15 carbon atoms or an araliphatic radical having 8 to 15 carbon atoms, and n 2 to 4,
  • (B2) one or more chain extender(s) having a content of preferably not more than 25 wt.%, and more preferably not more than 20 wt.%, based on the amount of the component (B) being 100 wt.%, (B3) one or more catalyst(s), and
  • (B4) one or more foaming agent(s) having a content of 0.0 to 4.5 wt.%, based on the amount of the component (B) being 100 wt.%,
  • the fiber-reinforced material is selected from one or more of glass fiber mesh, alkali-free glass fiber mesh, glass fiber felt, short glass fiber mat, random glass fiber mesh, as well as nonwoven fabrics and woven fabrics of polymer fiber, carbon fiber, aramid fiber, and mixtures thereof and has a mass per unit area of 300 to 1200 g/m 2 , preferably 400 to 1000 g/m 2 , and more preferably 500 to 900 g/m 2 .
  • Any organic polyisocyanates including aromatic, aliphatic and alicyclic polyisocyanates and combinations thereof, may be used to prepare the rigid polyurethanes according to the invention.
  • Useful polyisocyanates include, but are not limited to, vinyl diisocyanate, tetramethylene-l ,4-diisocyanate, hexamethylene-diisocyanate (HDI), dodecyl-l ,2-diisocyanate, cyclobutane-l ,3-diisocyanate, cyclohexane-l ,3-diisocyanate, cyclohexane- 1 ,4-diisocyanate, 1 -isocyanato-3 ,3 ,5-trimethyl-5-isocyanatomethylcyclohexane, hexahydro-tolylene-2,4-diisocyanate, hexahydro-phenylene- 1 ,3-diisocyanate, hexahydro-phenylene-l ,4-diisocyanate, perhydro-diphenylmethane 2,4-diisocyanate,
  • Useful polyisocyanates also include isocyanates modified with carbodiimide, allophanate or isocyanates; preferably but not limited to, diphenylmethane diisocyanate, carbodiimide-modified diphenylmethane diisocyanate, their isomers, any mixtures thereof with their isomers.
  • the polyisocyanates used in the present invention include isocyanate dimers, trimers, tetramers or combinations thereof.
  • the isocyanate component A) is selected from the group consisting of diphenylmethane diisocyanate (MDI), polymethylene polyphenyl polyisocyanate (polymeric MDI), as well as their polymers, prepolymers or combinations thereof.
  • Useful polyisocyanates further include isocyanate prepolymers. Such isocyanate prepolymers and methods for their preparation are well known in the art.
  • the isocyanates or isocyanate prepolymers have a NCO content of preferably 8 to 33 wt. , more preferably 22 to 32 wt.% (measured according to DIN EN ISO 11 909).
  • polyether polyol(s) one or more polyether polyol(s), wherein at least one polyether polyol is a polyol starting from amines.
  • the polyether polyols have a functionality of preferably 2 to 8, more preferably 3 to 6, and a hydroxyl value of preferably 50 to 1200, more preferably 200 to 800.
  • the polyether polyols starting from amines have a content of 20 to 80 wt.%, preferably 30 to 50, based on the amount of the component (B) being 100 wt.%.
  • the polyether polyols may be prepared by known processes. They are synthesized from ethylene oxide or propylene oxide with ethylene glycol, 1 ,2-propanediol, 1 ,3-propanediol, diethylene glycol, glycerol, trimethylolpropane, pentaerythritol, triethanolamine, toluylene diamine, sorbitol, sucrose, or any combination thereof as a starting molecule.
  • the polyether polyols may also be prepared by reacting at least one alkylene oxide having 2 to 4 carbon atoms in its alkylene group with a compound containing 2 to 8, preferably but not limited to 3 to 8 active hydrogen atoms or other reactive compounds in the presence of a catalyst.
  • a catalyst examples include alkali metal hydroxides such as sodium hydroxide, potassium hydroxide, or alkali metal alkoxides such as sodium methoxide, sodium ethoxide, potassium ethoxide or potassium isopropoxide.
  • Useful alkylene oxides include, but are not limited to, tetrahydrofuran, ethylene oxide, 1 ,2-propylene oxide, 1 ,2-butylene oxide, 2,3-butylene oxide, styrene oxide and any mixtures thereof.
  • Useful compounds containing active hydrogen atoms include polyhydroxy compounds, preferably but not limited to, water, ethylene glycol, 1 ,2-propanediol, 1 ,3-propanediol, diethylene glycol, trimethylolpropane and any mixtures thereof; more preferably polyhydric, especially trihydric or higher alcohols such as glycerol, trimethylolpropane, pentaerythritol, sorbitol and sucrose.
  • Useful compounds containing active hydrogen atoms also include, but are not limited to, organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid and terephthalic acid, or aromatic or aliphatic substituted diamines such as ethane diamine, diethylene triamine, triethylene tetramine, propane diamine, butane diamine, hexane diamine or toluylene diamine.
  • organic dicarboxylic acids such as succinic acid, adipic acid, phthalic acid and terephthalic acid
  • aromatic or aliphatic substituted diamines such as ethane diamine, diethylene triamine, triethylene tetramine, propane diamine, butane diamine, hexane diamine or toluylene diamine.
  • Useful other reactive compounds include ethanolamine, diethanolamine, methylethanolamine, ethylethanolamine, methyldiethanolamine, ethyldiethanolamine, triethanolamine and ammonia.
  • the polyether polyols prepared with amines as a starter molecule include the compound obtained from the reaction of an amine as a starter molecule with an alkylene oxide.
  • alkylene oxides generally refers to compounds of a general formula (I):
  • Ri and R 2 are independently selected from H, linear and branched Ci-C6-alkyl groups, as well as phenyl and substituted phenyl groups.
  • Ri and R 2 are independently selected from H, methyl, ethyl, propyl and phenyl.
  • alkylene oxides examples include, but are not limited to, ethylene oxide, 1 ,2-propylene oxide, 1 ,2-butylene oxide, 2,3-butylene oxide, styrene oxide or a mixture thereof, and particularly preferably a mixture of ethylene oxide and 1 ,2-propylene oxide.
  • alkylene oxides also includes oxa-cycloalkanes, which include, but are not limited to, tetrahydrofuran and oxetane.
  • amines refers to a compound containing a primary, secondary, tertiary amino group or a combination thereof.
  • examples of the amines according to the invention include, but are not limited to, triethanolamine, ethane diamine, toluylene 1 ⁇ diamine, diethylene triamine, triethylene tetramine and their derivatives, preferably ethane diamine, toluylene diamine, particularly preferably toluylene diamine.
  • polyether polyols according to the invention are selected from the group consisting of polyether polyols obtained by ring-opening polymerization of propylene oxide with ethane diamine as a starter molecule, by ring-opening copolymerization of ethylene oxide and propylene oxide with ethane diamine as a starter molecule, by ring-opening polymerization of propylene oxide with toluylene diamine as a starter molecule, by ring-opening polymerization of propylene oxide with toluylene diamine as a starter molecule and ethylene oxide as a blocking agent, by ring-opening polymerization of ethylene oxide with toluylene diamine as a starter molecule and propylene oxide as a blocking agent.
  • hydroxyl values are measured according to methods well known to those skilled in the art, for example, published in Houben Weyl, Methoden der Organischen Chemie, vol. XIV/2 Makromolekulare Stoffe, p.17, Georg Thieme Verlag; Stuttgart 1963, the entire contents of which are incorporated herein by reference.
  • polyether compositions according to the invention include, but are not limited to, GR 403 (ethane diamine as the starter molecule, a hydroxyl value of 760), GR405 (ethane diamine as the starter molecule, a hydroxyl value of 450 mg KOH/g), GNT-400 (a mixture of toluylene diamine and triethanolamine as the starter molecule, a hydroxyl value of 400 mg KOH/g) available from Shanghai Gaoqiao Branch of China Petrochemical Co., Ltd, as well as Desmophen 4050 E (ethane diamine as the starter molecule, a hydroxyl value of 620 mg KOH/g), Desmophen 4051 B (ethane diamine as the starter molecule, a hydroxyl value of 470 mg KOH/g) available from Covestro Polymers (China) Co., Ltd.
  • GR 403 ethane diamine as the starter molecule, a hydroxyl value of 760
  • GR405 ethane
  • the chain extenders are usually an active hydrogen atom-containing compound having a molecular weight of less than 800, preferably an active hydrogen atom-containing compound having a molecular weight of 18 to 400.
  • the chain extenders have a content of preferably not more than 25 wt. , more preferably not more than 20 wt.%, based on the amount of the component (B) being 100 wt.%.
  • Useful active hydrogen atom-containing compounds include, but are not limited to, alkyl diols, dialkylene glycols, polyalkyl polyols, any mixtures thereof, such as ethylene glycol, 1 ,4-butanediol 1 ,6-hexanediol, 1 ,7-heptanediol, 1 ,8-octanediol, 1 ,9-nonanediol, 1 ,10-decanediol, diethylene glycol, dipropylene glycol, polyoxyalkylene glycol, any mixtures thereof.
  • Useful active hydrogen atom-containing compounds may also include other grafted or unsaturated alkyl diols, any mixtures thereof, such as 1 ,2-propanediol,
  • Useful active hydrogen atom-containing compounds may also include aliphatic amines, aromatic amines, any mixtures thereof, such as 1 ,2-ethanediamine, 1 ,3-propanediamine, 1 ,4-butanediamine, 1 ,6-hexanediamine, isophorone diamine, 1 ,4-cyclohexanediamine, ⁇ , ⁇ '-diethyl-phenylenediamine, 2,4-diaminotoluene, 2,6-diaminotoluene, any mixtures thereof.
  • the catalyst is used in an amount of 0.001 to 10 wt.%, based on the amount of the component (B) being 100 wt.%.
  • the catalysts preferably include, but are not limited to, amine catalysts, organometallic catalysts, any mixtures thereof, which are known to those skilled in the art.
  • Useful amine catalysts preferably include, but are not limited to, triethylamine, tributylamine, triethylenediamine, N-ethylmorpholine, ⁇ , ⁇ , ⁇ ', ⁇ '-tetramethyl-ethanediamine, pentamethyldiethylene-triamine, N,N-methylaniline, ⁇ , ⁇ -dimethylaniline, any mixtures thereof.
  • the organometallic catalysts preferably include, but are not limited to, organotin compounds such as tin(II) acetate, tin(II) octoate, tin ethylhexanoate, tin laurate, dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin maleate, dioctyltin diacetate, any mixtures thereof.
  • organotin compounds such as tin(II) acetate, tin(II) octoate, tin ethylhexanoate, tin laurate, dibutyltin oxide, dibutyltin dichloride, dibutyltin diacetate, dibutyltin maleate, dioctyltin diacetate, any mixtures thereof.
  • the foaming agent(s) may be selected from various physical foaming agents or chemical foaming agents.
  • Useful foaming agents preferably include, for example, water, halogenated hydrocarbons, and hydrocarbon compounds.
  • Useful halogenated hydrocarbons preferably include monochlorodifluoromethane, dichloromonofluoromethane, dichlorofluoro me thane, trichlorofluoromethane, any mixtures thereof.
  • Useful hydrocarbon compounds preferably include butane, pentane, cyclopentane, hexane, cyclohexane, heptane, any mixtures thereof.
  • the foaming agent is water.
  • the amount of the foaming agent(s) used depends on the density of the desired rigid polyurethane material.
  • the amount of the foaming agent(s) used is 0.0 to 10 wt.%, preferably 0.5 to 5 wt.%, particularly preferably 0.6 to 4 wt.%, based on the used amount of all the polyols in component B (including the polyols as reactive components as well as those used as chain extenders and in other components).
  • the component (B) may further comprise a polyester polyol.
  • the polyester polyol has a functionality of preferably 2 to 6, particularly preferably 2 to 4, and a hydroxyl value of preferably 50 to 1000, particularly preferably 100 to 800.
  • the polyester polyol comprises a reaction product of a small molecule polyol and a polycarboxylic acid or its anhydride.
  • Useful polycarboxylic acids include, but are not limited to, aromatic, alicyclic, aliphatic, heterocyclic polycarboxylic acids. They may be substituted by halogen atoms, and may be unsaturated. Examples of useful polycarboxylic acids include succinic acid, malonic acid, glutaric acid, adipic acid, suberic acid, azelaic acid, sebacic acid, phthalic acid, isophthalic acid, maleic acid, dimeric or trimeric fatty acid.
  • Useful polycarboxylic anhydrides include, but are not limited to, phthalic anhydride, tetrachlorophthalic anhydride, hexahydrophthalic anhydride, maleic anhydride, glutaric anhydride or any mixtures thereof.
  • polycarboxylic anhydrides preferably include, but are not limited to, terephthalic anhydride.
  • the lower alcohols preferably include, but are not limited to, ethylene glycol, diethylene glycol, 1 ,2-propanediol, 1 ,3 -propanediol, dipropylene glycol, 1 ,3-methylpropanediol, 1 ,4-butanediol,
  • polyester polyol may also contain a portion of carboxyl end group, or be prepared by using a lactone or a hydroxycarboxylic acid such as ⁇ -glycolic acid.
  • lactones used for preparing polyester polyol preferably include, but are not limited to, ⁇ -caprolactone.
  • the component (B) may further comprise a flame retardant.
  • Useful flame retardants preferably include, but are not limited to, phosphates, phosphites, inorganic flame retardants.
  • the inorganic flame retardants may be selected, for example, from red phosphorus, antimony trioxide, aluminum hydroxide, magnesium hydroxide, arsenic oxide, polyphosphoric acid amine or any mixtures thereof.
  • the flame retardant is used in an amount of 10 to 30 wt. , based on the amount of the component (B) being 100 wt. .
  • the component (B) may further comprise a surfactant.
  • the surfactants include, for example, compounds that may promote uniform mixing of the starting materials or adjust the micropore structure of a polyurethane foam.
  • Suitable surfactants preferably include, but are not limited to, ethylene oxide-modified siloxane derivatives.
  • the surfactant is used in an amount of 0.01 to 5 wt.%, based on the amount of the component (B) being 100 wt.%.
  • the molar ratio of NCO group to OH group is preferably, but not limited to, 70-130: 100, particularly preferably 90-125: 100.
  • the moles of NCO group are based on the molar content of NCO of the isocyanates in component (A).
  • the moles of OH group are based on the total amount of OH contained in all components of the rigid polyurethane reaction system such as polyols, chain extenders, fillers, foaming agents. NCO is measured according to DIN EN ISO 1 1 909.
  • the fiber-reinforced material is selected from one or more of glass fiber mesh, alkali-free glass fiber mesh, C glass fiber mesh, glass fiber felt, short glass fiber mat, random glass fiber mesh, as well as nonwoven fabrics and woven fabrics of polymer fiber, carbon fiber, aramid fiber, and mixtures thereof.
  • the fiber-reinforced material has a mass per unit area of 300 to 1800 g/m 2 , preferably 500 to 1500 g/m 2 , and more preferably 600 to 1300 g/m 2 .
  • the fiber-reinforced material is preferably subjected to a surface treatment before contacting with the polyurethane, more preferably with an agent for the surface treatment comprising a silane coupling agent. It is possible to determine how many layers are needed to achieve the desired mass per unit area of fiber-reinforced material on basis of the mass per unit area of the commercially available fiber-reinforced material.
  • the fiber-reinforced material is preferably subjected to a surface treatment before contacting with the polyurethane, preferably with an agent for the surface treatment being a silane coupling agent.
  • the polyurethane composite panel for container flooring provided by the invention comprises two fiber-reinforced material layers and a polyurethane layer, wherein the polyurethane layer is applied between the two fiber-reinforced material layers with the polyurethane penetrating into the fiber-reinforced material layers.
  • the polyurethane layer is obtained by foaming the polyurethane system.
  • the polyurethane layer may comprise, in addition to the polyurethane system foaming resin, a structural material, preferably one or more of honeycomb paper, wood, wood fragments.
  • the structural material and the injected partial polyurethane system form the polyurethane layer.
  • the polyurethane composite panel for container flooring according to the invention has a density of 250 to 1800 kg/m 3 , preferably 600 to 1500 kg/m 3 , and particularly preferably 700 to 1200 kg/m 3 , and a hardness of 50 Shore- A to 88 Shore-D, preferably 70 Shore- A 70 to 80
  • the polyurethane composite panel for container flooring provided by the present invention can be produced by the following method:
  • the forming mold for panel may be made of a metallic material such as steel or aluminum, or may be an epoxy resin mold or other molds commonly used for the foaming of a rigid polyurethane system.
  • the mold may include suitable heating means and temperature control means to ensure a certain mold temperature during the foaming of the polyurethane system.
  • the mold may comprise suitable pressure control means, such as a clamping device or a hydraulic device, to ensure a certain in-mold pressure during the foaming of the polyurethane system.
  • suitable pressure control means such as a clamping device or a hydraulic device
  • the mold temperature during the foaming of the polyurethane system should be 40 to 90 °C, preferably 50 to 80 °C, more preferably 60 to 70 °C.
  • the mold clamping pressure is about 10 kg/cm 2 .
  • the method for preparing a polyurethane composite panel for container flooring may further comprise the step of disposing a structural material between the fiber-reinforced materials on the upper and the lower covers, wherein the structural material preferably includes one or more of honeycomb paper, wood, wood fragments.
  • the structural material and the injected partial polyurethane system form the polyurethane layer.
  • Honeycomb paper, wood, wood fragments and the like, which are included in the structural material, can reduce the used amount of the polyurethane system and increase the rigidity of the panel.
  • the structural material is used in an amount of preferably 10 to 50 wt.%, more preferably 20 to 35 wt.%, based on the total amount of the foam composite components.
  • the size of the polyurethane composite panel for container flooring prepared according to the invention may be set as required without being limited to the size of the wood used in the prior art, and the shape may be set as required without being limited to conventional rectangular shape.
  • the polyurethane composite panel for container flooring prepared according to the invention can be used for the manufacture of containers either directly or as required after cutting or other necessary subsequent treatments.
  • the present invention also refers to the use of the polyurethane composite panel for container flooring provided according to the invention for the manufacture of containers and the resulting containers.
  • PS-2312 anhydride polyol Company Product names NCO% Viscosity Manufacturer
  • EKB800 (+45,-45)PU a glass fiber multiaxial fabric. Weaving mode: Tricot. Area weight: 812 g/m 2
  • EKU 1150(0) PU a glass fiber multiaxial fabric. Weaving mode: Tricot. Area weight: 1200 g/m 2
  • EKU 1200(0) PU (TM+) a glass fiber multiaxial fabric. Weaving mode: Tricot. Area weight: 1244 g/m 2
  • EKT 1250(0,+45,-45)PU a glass fiber multiaxial fabric. Weaving mode: Tricot. Area weight: 1250 g/m 2
  • HK-1250 conventional high-pressure casting machine available from Hennecke.
  • H-XP3 conventional high-pressure sprayer available from GRACO.
  • PU20J-R Y conventional low-pressure casting foam machine available from Zhejiang Fly-Dragon Electrical Co., Ltd.
  • EKB800 (+45,-45)PU a glass fiber multiaxial fabric having an area weight of 800 g/m 2 was first put into a mold.
  • the rigid polyurethane system comprising the components and their amounts listed in Table 1-1 was injected into the mold (at a mold temperature of 50-60 °C) by using a HK1250 conventional high-pressure casting machine.
  • the rigid polyurethane system reacted, foamed and cured to form a molding panel in the mold.
  • a polyurethane composite panel for container flooring was obtained after opening the mold.
  • Example 1 illustrates that the above-mentioned molded polyurethane layer has a relatively high hardness and tensile strength and thereby can be used under glass fiber reinforcement in place of high-performance wood.
  • Example 2 illustrates that the above-mentioned molded polyurethane layer has a relatively high hardness and tensile strength and thereby can be used under glass fiber reinforcement in place of high-performance wood.
  • the reaction system comprising the components and their amounts listed in Table 2-1 was injected (injection time ⁇ 4s) into a mold (a feed temperature of 25 °C, a mold temperature of 60-65 °C) by using a HK 1250 conventional high-pressure injection machine.
  • EKU 1150(0) PU a glass fiber multiaxial fabric having an area weight of 1200 g/m 2 was first put into the mold. The system reacted (a NCO index of 110 in reaction) for 10 min and then demolded to form a molded polyurethane material. The physical and mechanical properties of the resulting molded polyurethane material are listed in Table 2-1.
  • Example 2 illustrates that the molded polyurethane layer has a relatively high hardness and tensile strength and thereby can be used under glass fiber reinforcement in place of high-performance wood.
  • the desired products can be produced in batch within a relatively short period of time due to rapid reaction rate of the system and short stripping time.
  • Example 3
  • EKU 1200(0) PU (TM+) a glass fiber multiaxial fabric having an area weight of 1244 g/m 2 was first put into a mold.
  • the reaction system comprising the components and their amounts listed in Table 3-1 was injected into the closed mold (at a temperature of 55-60 °C) by using a HK1250 conventional high-pressure injection machine.
  • the system reacted (a NCO index of 110 in reaction), foamed and cured to form a molded polyurethane material.
  • the physical and mechanical properties of the resulting molded polyurethane material are listed in Table 3-1.
  • Example 3 illustrates that the above-mentioned molded polyurethane layer has a relatively high hardness and tensile strength and thereby can be used under glass or other fiber reinforcement in place of high-performance wood.
  • Example 4
  • EKT 1250(0,+45,-45)PU a glass fiber multiaxial fabric having an area weight of 1250 g/m 2 was first put into a mold.
  • the reaction system comprising the components and their amounts listed in Table 4-1 was injected into the mold (at a mold temperature of 40-60 °C) by using a PU20J-R/Y conventional low-pressure injection machine.
  • the system reacted (a NCO index of 110 in reaction), foamed and cured to form a molded polyurethane material.
  • the physical and mechanical properties of the resulting molded polyurethane material are listed in Table 4-1.
  • Table 4-1 the performance of the composite based on the polyurethane system comprising polyester polyol
  • Example 4 illustrates that the composite based on the polyurethane system comprising polyester polyol has a relatively high hardness and tensile strength and thereby can be used under glass fiber multiaxial fabric reinforcement in place of high-performance wood. Comparative data
  • the polyurethane composite sheets synthesized by the above method fully meet the performance requirements of container flooring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Polyurethanes Or Polyureas (AREA)

Abstract

La présente invention concerne un panneau composite de polyuréthane pour revêtement de sol de conteneur, sa méthode de préparation et son utilisation. Le panneau composite de polyuréthane pour revêtement de sol de conteneur comprend deux couches de matériau renforcé par des fibres et une couche de polyuréthane, la couche de polyuréthane étant appliquée entre les deux couches de matériau renforcé par des fibres, le polyuréthane pénétrant dans les couches de matériau renforcé par des fibres.
PCT/EP2018/074890 2017-09-19 2018-09-14 Panneau composite de polyuréthane pour revêtement de sol de conteneur, sa méthode de préparation et son utilisation WO2019057629A1 (fr)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710847285.6 2017-09-19
CN201710847285.6A CN109517135A (zh) 2017-09-19 2017-09-19 聚氨酯复合材料集装箱底板板材及其制造方法和用途
EP17199852.9A EP3479986A1 (fr) 2017-11-03 2017-11-03 Panneau composite en polyuréthane pour revêtement de sol de conteneur, son procédé de préparation et d'utilisation
EP17199852.9 2017-11-03

Publications (1)

Publication Number Publication Date
WO2019057629A1 true WO2019057629A1 (fr) 2019-03-28

Family

ID=63517908

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/074890 WO2019057629A1 (fr) 2017-09-19 2018-09-14 Panneau composite de polyuréthane pour revêtement de sol de conteneur, sa méthode de préparation et son utilisation

Country Status (1)

Country Link
WO (1) WO2019057629A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590012A (zh) * 2022-03-08 2022-06-07 宜兴市恒驰橡塑有限公司 一种纤维增强聚氨酯发泡板及其生产工艺
CN115558284A (zh) * 2022-11-09 2023-01-03 南通北风橡塑制品有限公司 一种玻纤增强的聚氨酯复合板及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192420A (zh) 1997-11-14 1998-09-09 南京林业大学 一种集装箱底板及其制造方法
CN1287960A (zh) 2000-09-26 2001-03-21 塔河林业局盘古木材综合加工厂 落叶松集装箱底板及制造工艺
US20010001687A1 (en) * 1998-05-07 2001-05-24 Tony M. Pokorzynski Fiber-reinforced vehicle interior trim and method of manufacture
CN2516497Y (zh) 2001-06-05 2002-10-16 浙江德仁竹木科技股份有限公司 集装箱复合木底板
CN1583526A (zh) 2004-05-25 2005-02-23 河南黄河林业股份有限公司 一种高强度复合集装箱底板胶合板
WO2007144291A1 (fr) * 2006-06-14 2007-12-21 Huntsman International Llc Panneau composite
WO2012015583A1 (fr) * 2010-07-27 2012-02-02 Dow Global Technologies Llc Panneau composite en polyuréthane écologique et son procédé de fabrication
US20120263931A1 (en) * 2011-04-12 2012-10-18 ATI Industries, Inc. Light weight composite structural support material having natural oil and polyol foam bonded directly between substrates

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1192420A (zh) 1997-11-14 1998-09-09 南京林业大学 一种集装箱底板及其制造方法
US20010001687A1 (en) * 1998-05-07 2001-05-24 Tony M. Pokorzynski Fiber-reinforced vehicle interior trim and method of manufacture
CN1287960A (zh) 2000-09-26 2001-03-21 塔河林业局盘古木材综合加工厂 落叶松集装箱底板及制造工艺
CN2516497Y (zh) 2001-06-05 2002-10-16 浙江德仁竹木科技股份有限公司 集装箱复合木底板
CN1583526A (zh) 2004-05-25 2005-02-23 河南黄河林业股份有限公司 一种高强度复合集装箱底板胶合板
WO2007144291A1 (fr) * 2006-06-14 2007-12-21 Huntsman International Llc Panneau composite
WO2012015583A1 (fr) * 2010-07-27 2012-02-02 Dow Global Technologies Llc Panneau composite en polyuréthane écologique et son procédé de fabrication
US20120263931A1 (en) * 2011-04-12 2012-10-18 ATI Industries, Inc. Light weight composite structural support material having natural oil and polyol foam bonded directly between substrates

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HOUBEN WEYL: "Makromolekulare Stoffe", vol. XIV/2, 1963, GEORG THIEME VERLAG, article "Methoden der Organischen Chemie", pages: 17

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114590012A (zh) * 2022-03-08 2022-06-07 宜兴市恒驰橡塑有限公司 一种纤维增强聚氨酯发泡板及其生产工艺
CN115558284A (zh) * 2022-11-09 2023-01-03 南通北风橡塑制品有限公司 一种玻纤增强的聚氨酯复合板及其制备方法
CN115558284B (zh) * 2022-11-09 2023-07-04 南通北风橡塑制品有限公司 一种玻纤增强的聚氨酯复合板及其制备方法

Similar Documents

Publication Publication Date Title
CA2784241C (fr) Systeme composite de polyurethanne a haute resistance a la compression et haute rigidite
KR101663327B1 (ko) 낮은 성형 온도에서 폴리우레탄 샌드위치 부재를 제조하기 위한 폴리우레탄 시스템
EP1966266B1 (fr) Procede de fabrication de garnitures de toit pour automobiles
CA2674738C (fr) Mousse dure gonflee a l'eau pour l'isolation de cuves pour gaz naturel liquefie
US8431058B2 (en) Polyurethane systems for production of polyurethane sandwich components
CN104045806B (zh) 用于制备聚氨酯复合材料的聚氨酯组合物
CN103890059B (zh) 纤维强化的聚异氰脲酸酯部件及其制造方法
CN109517135A (zh) 聚氨酯复合材料集装箱底板板材及其制造方法和用途
KR101752514B1 (ko) 소성 변형성 강성 폴리우레탄 발포체, 접착제 및 피복재를 함유하는 복합 부품
KR102344130B1 (ko) 폴리우레탄에 기초한 인발성형된 제품의 제조 방법
EP2758459A2 (fr) Mousses à densité moyenne présentant une bonne résistance aux impacts et leur procédé de production
US20130309924A1 (en) Reinforced pultruded polyurethane and production thereof
CN109927146B (zh) 一种异氰酸酯粘合剂体系及用其制备人造板的方法以及制备的人造板
WO2019057629A1 (fr) Panneau composite de polyuréthane pour revêtement de sol de conteneur, sa méthode de préparation et son utilisation
US9868831B2 (en) Composite fibre components and the production thereof
Ye et al. The development of polyurethane
EP3479986A1 (fr) Panneau composite en polyuréthane pour revêtement de sol de conteneur, son procédé de préparation et d'utilisation
US20180223030A1 (en) Method for producing flexible polyester urethane foams with increased compressive strength
KR20150035690A (ko) 폴리아이소사이아네이트 화합물 경화용 아민 촉매, 및 그 아민 촉매를 함유하는 폴리아이소사이아네이트 접착제 조성물
US7442441B2 (en) Composite structure, a resin composition for use in the composite structure, and a process for making the same
US20220251313A1 (en) Polyurethane-based composition
EP4212298A1 (fr) Procédé de préparation d'un panneau à base de bois
WO2023219764A1 (fr) Panneaux sandwich stables à haute température
CN115122453A (zh) 一种制备人造板的方法
CN118159579A (zh) 用于制备聚氨酯夹层元件的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18765669

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18765669

Country of ref document: EP

Kind code of ref document: A1