WO2019056890A1 - 空分复用多址接入方法、装置及存储介质 - Google Patents

空分复用多址接入方法、装置及存储介质 Download PDF

Info

Publication number
WO2019056890A1
WO2019056890A1 PCT/CN2018/100447 CN2018100447W WO2019056890A1 WO 2019056890 A1 WO2019056890 A1 WO 2019056890A1 CN 2018100447 W CN2018100447 W CN 2018100447W WO 2019056890 A1 WO2019056890 A1 WO 2019056890A1
Authority
WO
WIPO (PCT)
Prior art keywords
matrix
base station
access
parameter
antenna receiving
Prior art date
Application number
PCT/CN2018/100447
Other languages
English (en)
French (fr)
Inventor
赵泓毅
戎璐
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2019056890A1 publication Critical patent/WO2019056890A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0456Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
    • H04B7/046Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account
    • H04B7/0473Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting taking physical layer constraints into account taking constraints in layer or codeword to antenna mapping into account
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/0391Spatial equalizers codebook-based design construction details of matrices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/03Shaping networks in transmitter or receiver, e.g. adaptive shaping networks
    • H04L25/03891Spatial equalizers
    • H04L25/03898Spatial equalizers codebook-based design
    • H04L25/03929Spatial equalizers codebook-based design with layer mapping, e.g. codeword-to layer design
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space
    • H04L5/0025Spatial division following the spatial signature of the channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L25/00Baseband systems
    • H04L25/02Details ; arrangements for supplying electrical power along data transmission lines
    • H04L25/0202Channel estimation
    • H04L25/0204Channel estimation of multiple channels

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a space division multiplexing multiple access method, apparatus, and storage medium.
  • SDMA Space Division Multiple Access
  • UEs User Equipments
  • Domain, frequency domain and code domain resources data transmission on different spatial resources.
  • the UE needs to send an access request to the base station to access the communication network, and then perform data transmission with the base station.
  • the UE may further perform precoding processing on the transmitted uplink signal to match the spatial distribution characteristics of the transmitted signal with the channel conditions.
  • a space division multiplexing multiple access method including: performing, by a base station, channel estimation on an uplink channel between a UE and a base station based on a sounding reference signal sent by a UE, obtaining an uplink channel matrix, and then performing uplink
  • the channel matrix selects, from the precoding codebook of the UE, a precoding matrix that most closely matches the current uplink channel condition, where the precoding codebook includes a plurality of precoding matrices of a fixed configuration, and then sends the precoding matrix to the UE according to the selected precoding matrix.
  • Precoding Matrix Indicator (PMI) information which is used to indicate the selected precoding matrix.
  • the UE may select a corresponding precoding matrix from the stored precoding codebook according to the PMI information, and then send an access request to the base station according to the precoding matrix to access the communication network where the base station is located.
  • PMI Precoding Matrix Indicator
  • the base station needs to send a PMI indication to each UE, and therefore needs to occupy a large amount of downlink resources
  • the precoding codebook of the UE and the base station includes only a plurality of precoding matrices of a fixed configuration, and includes the pre
  • the number of coding matrices is also limited.
  • the precoding codebook supports only the precoding matrix corresponding to the maximum layer 4 layers. Therefore, the precoding matrix that the UE can select is also limited, thereby limiting the uplink available to the UE.
  • the spatial resources limit the number of UEs that the base station can accommodate for uplink access.
  • the present application provides a space division multiplexing multiple access method and device, and Storage medium.
  • the technical solution is as follows:
  • the first aspect provides a space division multiplexing multiple access method, which is applied to a UE, where the method includes:
  • the channel matrix refers to a channel matrix between the UE and the base station
  • the channel matrix is a channel matrix of a channel between the UE and the base station, and may be a channel matrix of an uplink channel between the UE and the base station, or may be the UE and the The channel matrix of the downlink channel between the base stations may be an uplink channel matrix obtained by converting the downlink channel matrix according to channel reciprocity.
  • the UE may generate an uplink precoding matrix that matches the multi-antenna receiving matrix of the base station preset by the base station according to the configuration of the base station, and then send an access request or data to the base station based on the generated uplink precoding matrix to perform the connection. Enter or transfer data.
  • the base station can flexibly and freely preset any spatial resources to the UE, thereby avoiding that the UE can only utilize the spatial resources indicated by the limited precoding matrix included in the codebook, thereby increasing the UE.
  • the available uplink space resources in turn, increase the number of UEs that the base station can accommodate for uplink access.
  • the base station does not need to deliver the PMI indication to the UE, which saves downlink resources.
  • the pre-agreed parameters are parameters that are pre-configured by the base station for the UE, or parameters that are agreed by the base station and the UE in advance through a protocol.
  • the parameters agreed in advance by the protocol may be agreed by the base station and the UE directly in a form by a table or a formula.
  • the parameter that the base station pre-configures for the UE may be configured by the base station by sending configuration information to the UE.
  • the method before the generating the uplink precoding matrix based on the multiple antenna receiving matrix and the channel matrix, the method further includes:
  • the reference signal is a reference signal capable of assisting the UE to perform channel estimation
  • the channel estimation refers to estimating a model parameter of a channel model corresponding to the downlink channel according to the reference signal, and determining the downlink channel matrix according to the estimated model parameter, where the model parameter is used for determining Corresponding to the model parameters of the channel matrix.
  • the TDD system can convert the downlink channel matrix obtained by performing channel estimation on the downlink channel into an uplink channel matrix according to channel reciprocity, and then generate an uplink precoding matrix according to the uplink channel matrix, so that the base station pair can be avoided.
  • the uplink channel between each UE is measured, and the time overhead and computational overhead used by the base station for channel estimation are reduced.
  • generating an uplink precoding matrix based on the first multi-antenna receiving matrix and the channel matrix including:
  • the number of configuration layers is used to indicate the number of data streams that the UE is allowed to transmit
  • the second multi-antenna receiving matrix is a specified L of the plurality of column vectors included in the first multi-antenna receiving matrix.
  • a column vector composition is obtained, the L is corresponding to the number of configuration layers, and the specified L column vectors are L column vectors corresponding to the largest specified two norm among any L column vectors included in the plurality of column vectors
  • the specified two norm refers to a two norm of a matrix obtained by multiplying a transposed matrix of the composed matrix by the channel matrix;
  • a transposed matrix of a matrix obtained by multiplying a transposed matrix of the second multi-antenna receiving matrix by the channel matrix is determined as the uplink precoding matrix.
  • the UE may select a sub-matrix from the first multi-antenna receiving matrix as the second multi-antenna receiving matrix based on the number of configuration layers, and the selected sub-matrix is a two-dimensional matrix obtained by multiplying the transposed matrix and the channel matrix.
  • the largest sub-matrix, and then the transposed matrix of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix and the channel matrix, that is, the transmitting matrix of the transmitting end, is determined as an uplink precoding matrix. In this way, the transmission matrix for transmitting the access request or data can be maximized, and the loss of access request or data during transmission is minimized, so that the transmission effect is the best.
  • the method before the transposed matrix of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix and the channel matrix is determined as the uplink pre-coding matrix, the method further includes:
  • the transposed matrix of the matrix obtained by multiplying the channel matrix is determined as the step of the uplink precoding matrix.
  • the base station can set the minimum access threshold, that is, the preset two-norm threshold according to the actual transmission condition, and send the access request or data when the second multi-antenna receiving matrix determined by the UE meets the minimum access threshold.
  • the preset two-norm threshold may be determined according to the link quality and the cell load, or may be determined according to the number of users and the user distribution model that the UE is in, or by the user in the cell where the UE is located.
  • the scheduling situation is determined by long-term statistical determination, or is set by the technician based on experience.
  • the determining, by the predetermined agreement or the parameter received from the base station, the first multi-antenna receiving matrix includes:
  • the first multi-antenna receiving matrix from at least one multi-antenna receiving matrix, the at least one multi-antenna receiving matrix being pre-agreed or received from the base station; or ,
  • the first multi-antenna receiving matrix may be selected from the at least one multi-antenna receiving matrix according to the configuration parameter of the base station, or may be configured according to the configuration.
  • the parameters and generation rules generate a first multi-antenna reception matrix.
  • the generating the first multi-antenna receiving matrix by using the pre-agreed or the parameters received from the base station and the at least one expected receiving matrix generation rule received from the base station including:
  • a target parameter based on the prior agreement or a parameter received from a base station, the target parameter being a parameter used to generate the first multi-antenna receiving matrix
  • a target desired reception matrix generation rule based on the at least one desired reception matrix generation rule, the target expected reception matrix generation rule being a desired reception matrix generation rule used to generate the first multi-antenna reception matrix;
  • the determining the target parameter based on the prior agreement or the parameter received from the base station includes:
  • the parameter since the parameter includes parameters corresponding to different time-frequency resources, the parameter does not need to be configured frequently by the base station, and the first multi-antenna receiving matrix generated based on the parameter may dynamically change with time, that is, the base station may pre-stage for the UE at different times. Different multi-antenna receiving matrices are set, thereby avoiding collision of UEs on spatial resources, and further increasing the number of uplink-accessible UEs that the base station can accommodate.
  • the determining, according to the parameter corresponding to the target time-frequency resource, the target parameter includes:
  • the selecting a parameter corresponding to the target layer from the parameters corresponding to the at least one layer includes:
  • the parameter corresponding to the at least one layer is a pseudo-random sequence construction parameter, constructing a plurality of random numbers according to the pseudo-random sequence construction parameter according to a pre-agreed or pseudo-random sequence construction rule received from the base station;
  • the selected at least one random number is determined as a parameter corresponding to the target layer.
  • the data amount of the pseudo-random sequence construction parameter is much smaller than the specific parameter, by indicating the multi-antenna reception matrix according to the pseudo-random sequence construction parameter, the amount of data transmitted in the system can be greatly reduced, thereby reducing the system load.
  • the determining the target expected receiving matrix generation rule based on the at least one expected receiving matrix generation rule comprises:
  • the target expected reception matrix generation rule is configured by the index information, the dynamic configuration of the target expected reception matrix generation rule is realized, and the flexibility of generating the first multi-antenna reception matrix is improved.
  • the at least one desired reception matrix generation rule includes an N-dimensional matrix
  • the column vectors in the N-dimensional matrix are orthogonal to each other, and the N-dimensional matrix includes N-1 variable parameters, and each variable parameter is used to indicate a rotation angle of the corresponding column vector, and the N is positive Integer.
  • the at least one expected reception matrix generation rule includes an N-dimensional initial orthogonal basis and a transformation rule
  • the transform rule is configured to indicate that at least one vector element in the initial orthogonal basis is transformed based on the prior agreement or a parameter received from a base station, and Schmitt is performed on the transformed initial orthogonal basis. Orthogonalization to obtain the first multi-antenna receiving matrix, the N being a positive integer.
  • the two expected matrix generation rules of the N-dimensional matrix and the N-dimensional initial orthogonal basis and the transform rule can generate a multi-antenna reception matrix covering all directions of the space.
  • the two expected reception matrix generation rules can be utilized. Achieve full use of space resources.
  • the method before the sending, by the uplink precoding matrix, the access request or data to the base station, the method further includes:
  • the determining whether the UE meets a preset condition includes at least one of the following manners:
  • the fairness parameter of the UE is greater than the first parameter threshold and smaller than the second parameter threshold, determining the UE Satisfying the preset condition, where the fairness parameter refers to a ratio between an uplink throughput rate and a maximum transmission rate within a first preset duration before the current time; or
  • determining whether a norm of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix is greater than a preset two norm threshold, when the transposed matrix of the second multi-antenna receiving matrix is When the two norms of the matrix obtained by multiplying the channel matrix are greater than the preset two norm threshold, determining that the UE satisfies the preset condition, the second multi-antenna receiving matrix is based on the configured flow number of the UE And determining, by the channel matrix and the first multi-antenna receiving matrix, the number of configuration layers is used to indicate the number of data streams that the UE is allowed to transmit.
  • the first parameter threshold and the second parameter threshold are determined by considering the fairness access situation of the UE, for example, the base station may perform long-term statistical determination on the scheduling situation of the user in the cell where the UE is located, Or it can be set by the technician based on experience.
  • the UE is configured with the constraint condition, so that the UE can determine whether to apply for uplink access according to the configured constraints, so that the UE can also have a certain autonomy to participate, thereby improving the flexibility of the UE access.
  • the access request includes data
  • the access request is used to request access to a communication network where the base station is located and send data to a communication network where the base station is located. That is, in the embodiment of the present invention, data can also be directly transmitted through the access request.
  • the method before the sending, by the uplink precoding matrix, the access request to the base station, the method further includes:
  • the access request includes data, adding a first orthogonal sequence at a preset position of the application sequence of the access request and/or adding a second orthogonal sequence to the data;
  • the first orthogonal sequence and the second orthogonal sequence are both used to identify the UE.
  • the base station can facilitate the base station to distinguish users according to the orthogonal sequence, and can implement multiplexing on the code domain in the same spatial direction, increasing the number of users that can be accommodated in the same spatial direction, and improving Communication efficiency.
  • the method further includes:
  • the authorization indication information When receiving the authorization indication information sent by the base station within a second preset duration after the uplink precoding matrix sends the access request to the base station, accessing the communication network where the base station is located or Transmitting into the communication network where the base station is located and transmitting data to the communication network where the base station is located, where the authorization indication information is used to indicate that the UE is allowed to access;
  • the authorization indication information is a number of UEs that the base station requests to access in a direction corresponding to the first multi-antenna receiving matrix, a number of UEs that are allowed to access, and a fairness parameter of each UE that is requested to access.
  • the fairness parameter refers to a ratio between an uplink throughput rate and a maximum transmission rate within a second preset time period before the current time.
  • the base station By performing access according to the authorization of the base station, collisions of users in the same spatial direction can be avoided, and the base station can determine the authorized UE according to the fairness parameter of each UE, so that each UE has a fair access opportunity to avoid starvation or The phenomenon of exclusive channel.
  • the method further includes:
  • the access priority of the UE is increased, and the access priority is used to indicate a success rate of access by the UE.
  • the improving the access priority of the UE includes at least one of the following manners:
  • An orthogonal sequence is added to the application sequence of the access request to be transmitted.
  • the user conflict can be further resolved and the access success rate of the UE can be improved by abandoning the access, delaying the access, or increasing the access priority.
  • a second aspect provides a space division multiplexing multiple access method, which is applied to a base station, where the method includes:
  • Transmitting a parameter to the at least one user equipment UE determining, by each of the at least one UE, a first multi-antenna receiving matrix based on the received parameters, and generating an uplink precoding matrix based on the determined first multi-antenna receiving matrix and the channel matrix, And sending an access request or data to the base station according to the uplink precoding matrix, to access a communication network where the base station is located, or sending data to the base station according to the uplink precoding matrix;
  • the parameter is used to indicate a multi-antenna receiving matrix preset by the base station, where the channel matrix is a channel matrix between each UE and the base station.
  • the base station may preset a multi-antenna reception matrix of the base station end for the UE, and the UE may generate a precoding matrix that matches the multi-antenna reception matrix preset by the base station according to the configuration of the base station, and then send the connection to the base station based on the generated precoding matrix.
  • Request or data for access or data transfer By pre-positioning the multi-antenna receiving matrix of the base station for the UE, the base station can flexibly and freely preset any spatial resources to the UE, thereby avoiding that the UE can only utilize the spatial resources indicated by the limited precoding matrix included in the codebook, thereby increasing the UE.
  • the available uplink space resources in turn, increase the number of UEs that the base station can accommodate for uplink access.
  • the base station does not need to deliver the PMI indication to the UE in this process, which saves downlink resources.
  • the method before the sending the parameter to the at least one UE, the method further includes:
  • each of the at least one UE performs channel estimation on a downlink channel between the base station and the base station according to the received reference signal, to obtain the channel matrix.
  • the uplink channel in the system can be reduced.
  • the feedback overhead of the matrix By transmitting a reference signal capable of assisting the UE to perform channel estimation to the UE, so that the UE estimates the downlink channel to obtain a downlink channel matrix, and converting the downlink channel matrix into an uplink channel matrix according to channel reciprocity, the uplink channel in the system can be reduced.
  • the feedback overhead of the matrix By transmitting a reference signal capable of assisting the UE to perform channel estimation to the UE, so that the UE estimates the downlink channel to obtain a downlink channel matrix, and converting the downlink channel matrix into an uplink channel matrix according to channel reciprocity, the uplink channel in the system can be reduced.
  • the feedback overhead of the matrix By transmitting a reference signal capable of assisting the UE to perform channel estimation to the UE, so that the UE estimates the downlink channel to obtain a downlink channel matrix, and converting the downlink channel matrix into an uplink channel matrix according to channel reciprocity, the uplink channel in the system can be reduced.
  • the method further includes:
  • Determining a direction corresponding to each first multi-antenna receiving matrix based on the number of UEs that apply for access in the direction corresponding to each of the first multi-antenna receiving matrices, the fairness parameter of each UE that is requested to access, and the number of UEs that are allowed to access a UE that is allowed to access;
  • the UE that allows the access in the direction corresponding to the first multiple antenna receiving matrix sends the authorization indication information, where the authorization indication information is used to indicate that the corresponding UE is allowed to access.
  • the user in each of the preset multi-antenna receiving matrix directions is detected, and the conflict situation of the user in the direction of each preset multi-antenna receiving matrix is determined, according to the conflict situation of the user in the direction of each preset multi-antenna receiving matrix and each UE
  • the fairness parameter determines the UE that is authorized to access, which can avoid user conflicts, and can give each UE a fair access opportunity to avoid starvation or exclusive channel.
  • the first multiple antenna receiving matrix is determined according to the number of UEs that apply for access in the direction corresponding to each first multi-antenna receiving matrix, the number of UEs that are allowed to access, and the fairness parameters of each UE.
  • the UEs that are allowed to access in the corresponding direction include:
  • the number of UEs requesting access in the direction corresponding to the target first multi-antenna receiving matrix is less than or equal to the number of UEs that are allowed to access, all the applications in the direction corresponding to the target first multi-antenna receiving matrix are accessed. Determining, by the UE, a UE that is allowed to access in a direction corresponding to the target first multi-antenna receiving matrix, where the target first multi-antenna receiving matrix is any one of the at least one first multi-antenna receiving matrix Antenna receiving matrix;
  • the UE that applies for access in the direction corresponding to the target first multi-antenna receiving matrix is fair. And determining, by the M parameters of the preceding or following, the UEs that are allowed to access in a direction corresponding to the target first multi-antenna receiving matrix, where the M is equal to a direction corresponding to the target first multi-antenna receiving matrix The number of UEs allowed to access.
  • the method further includes:
  • the UE When the number of UEs requesting access in the direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, the UE applying for access in the direction corresponding to the target first multi-antenna receiving matrix.
  • the UE that is not allowed to access the UE sends the conflict resolution indication information to the UE that is not allowed to access, where the conflict resolution indication information is used to indicate that the corresponding UE performs at least one of the following modes:
  • the access priority of the corresponding UE is increased, and the access priority is used to indicate the success rate of the corresponding UE access.
  • the improving the access priority of the corresponding UE includes at least one of the following manners:
  • An orthogonal sequence is added to the application sequence of the access request to be transmitted.
  • the UE can further resolve the user conflict and improve the access success rate of the UE by instructing the UE to abandon the access, delay the access, or increase the access priority.
  • a space division multiplexing multiple access device in a third aspect, is provided, and the space division multiplexing multiple access device has a function of implementing the behavior of the space division multiplexing multiple access method in the first aspect.
  • the space division multiplexing multiple access device includes at least one module, and the at least one module is configured to implement the space division multiplexing multiple access method provided by the foregoing first aspect.
  • the space division multiple access device includes:
  • a determining module configured to determine a first multi-antenna receiving matrix according to a pre-agreed or a parameter received from a base station, where the parameter is used to indicate a multi-antenna receiving matrix preset by the base station;
  • a generating module configured to generate an uplink precoding matrix based on the first multi-antenna receiving matrix and a channel matrix, where the channel matrix refers to a channel matrix between the UE and the base station;
  • a sending module configured to send an access request to the base station according to the uplink precoding matrix to access a communication network where the base station is located, or send data to the base station according to the uplink precoding matrix.
  • the base station may preset a multi-antenna receiving matrix of the base station end for the UE, and the UE may generate a precoding matrix that matches the multi-antenna receiving matrix preset by the base station according to the configuration of the base station, and then generate the precoding matrix according to the configuration of the base station.
  • the precoding matrix sends an access request or data to the base station for access or data transmission.
  • the base station can flexibly and freely preset any spatial resources to the UE, thereby avoiding that the UE can only utilize the spatial resources indicated by the limited precoding matrix included in the codebook, thereby increasing the UE.
  • the available uplink space resources in turn, increase the number of UEs that the base station can accommodate for uplink access.
  • the base station does not need to deliver the PMI indication to the UE in this process, which saves downlink resources.
  • the apparatus further includes:
  • a receiving module configured to receive a reference signal sent by the base station, where the reference signal is a reference signal capable of assisting the UE to perform channel estimation;
  • a channel estimation module configured to perform channel estimation on a downlink channel between the UE and the base station based on the reference signal, to obtain the channel matrix.
  • the generating module includes:
  • a first determining unit configured to determine a second multi-antenna receiving matrix based on the stored configuration layer number, the channel matrix, and the first multi-antenna receiving matrix
  • the number of configuration layers is used to indicate the number of data streams that the UE is allowed to transmit
  • the second multi-antenna receiving matrix is a specified L of the plurality of column vectors included in the first multi-antenna receiving matrix.
  • a column vector composition is obtained, the L is corresponding to the number of configuration layers, and the specified L column vectors are L column vectors corresponding to the largest specified two norm among any L column vectors included in the plurality of column vectors
  • the specified two norm refers to a two norm of a matrix obtained by multiplying a transposed matrix of the composed matrix by the channel matrix;
  • a second determining unit configured to determine, as the uplink precoding matrix, a transposed matrix of a matrix obtained by multiplying a transposed matrix of the second multi-antenna receiving matrix by the channel matrix.
  • the generating module further includes:
  • a triggering unit configured to trigger the second determining unit to trigger the second norm of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix by a preset two norm threshold
  • the transposed matrix of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix is determined as the uplink precoding matrix.
  • the determining module includes:
  • a third determining unit configured to determine the first multi-antenna receiving matrix from at least one multi-antenna receiving matrix based on the prior agreement or a parameter received from a base station, where the at least one multi-antenna receiving matrix is pre-agreed or The base station receives the received; or,
  • a generating unit configured to generate the first multi-antenna receiving matrix based on the prior agreement or a parameter received from a base station and at least one expected receiving matrix generating rule, where the at least one expected receiving matrix generating rule is a prior agreement or a The base station receives it.
  • the generating unit includes:
  • a first determining subunit configured to determine a target parameter based on the prior agreement or a parameter received from a base station, where the target parameter is a parameter used to generate the first multi-antenna receiving matrix
  • a second determining subunit configured to determine a target expected receiving matrix generation rule based on the at least one expected receiving matrix generation rule, where the target expected receiving matrix generating rule is a desired receiving matrix used to generate the first multi-antenna receiving matrix Generating rules;
  • the first determining subunit is configured to:
  • the first determining subunit is configured to:
  • the first determining subunit is configured to:
  • the parameter corresponding to the at least one layer is a pseudo-random sequence construction parameter, constructing a plurality of random numbers according to the pseudo-random sequence construction parameter according to a pre-agreed or pseudo-random sequence construction rule received from the base station;
  • the selected at least one random number is determined as a parameter corresponding to the target layer.
  • the second determining subunit is configured to:
  • the at least one desired reception matrix generation rule includes an N-dimensional matrix
  • the column vectors in the N-dimensional matrix are orthogonal to each other, and the N-dimensional matrix includes N-1 variable parameters, and each variable parameter is used to indicate a rotation angle of the corresponding column vector, and the N is positive Integer.
  • the at least one expected reception matrix generation rule includes an N-dimensional initial orthogonal basis and a transformation rule
  • the transform rule is configured to indicate that at least one vector element in the initial orthogonal basis is transformed based on the prior agreement or a parameter received from a base station, and Schmitt is performed on the transformed initial orthogonal basis. Orthogonalization to obtain the first multi-antenna receiving matrix, the N being a positive integer.
  • the device further includes:
  • a determining module configured to determine whether the UE meets a preset condition
  • a triggering module configured to: when the UE meets the preset condition, trigger the sending module to send an access request or data to the base station according to the uplink precoding matrix.
  • the determining module is configured to perform at least one of the following manners:
  • the fairness parameter of the UE is greater than the first parameter threshold and smaller than the second parameter threshold, determining the UE Satisfying the preset condition, where the fairness parameter refers to a ratio between an uplink throughput rate and a maximum transmission rate within a first preset time period before the current time;
  • determining whether a norm of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix is greater than a preset two norm threshold, when the transposed matrix of the second multi-antenna receiving matrix is When the two norms of the matrix obtained by multiplying the channel matrix are greater than the preset two norm threshold, determining that the UE satisfies the preset condition, the second multi-antenna receiving matrix is based on the configured flow number of the UE And determining, by the channel matrix and the first multi-antenna receiving matrix, the number of configuration layers is used to indicate the number of data streams that the UE is allowed to transmit.
  • the access request includes data, and the access request is used to request access to a communication network where the base station is located and send data to the base station.
  • the device further includes:
  • Adding a module when the access request includes data, adding a first orthogonal sequence at a preset position of the application sequence of the access request and/or adding a second orthogonal sequence to the data;
  • the first orthogonal sequence and the second orthogonal sequence are both used to identify the UE.
  • the device further includes:
  • An access module configured to access the base station when receiving the authorization indication information sent by the base station within a second preset duration after the uplink request pre-coding matrix sends the access request to the base station
  • the communication network in which the communication network is located or the communication network in which the base station is located is sent to the communication network where the base station is located, and the authorization indication information is used to indicate that the UE is allowed to access;
  • the authorization indication information is a number of UEs that the base station requests to access in a direction corresponding to the first multi-antenna receiving matrix, a number of UEs that are allowed to access, and a fairness parameter of each UE that is requested to access.
  • the fairness parameter refers to a ratio between an uplink throughput rate and a maximum transmission rate within a second preset time period before the current time.
  • the device further includes:
  • An execution module configured to perform at least one of the following steps when the authorization indication information is not received within the second preset duration after the uplink request is sent to the base station by using the uplink precoding matrix :
  • the access priority of the UE is increased, and the access priority is used to indicate a success rate of access by the UE.
  • the improving the access priority of the UE includes at least one of the following manners:
  • An orthogonal sequence is added to the application sequence of the access request to be transmitted.
  • a space division multiplexing multiple access device is provided, and the space division multiplexing multiple access device has a function of implementing the behavior of the space division multiplexing multiple access method in the second aspect.
  • the space division multiplexing multiple access device includes at least one module, and the at least one module is configured to implement the space division multiplexing multiple access method provided by the foregoing second aspect.
  • the space division multiple access device includes:
  • a sending module configured to send a parameter to the at least one user equipment UE, determine, by each UE in the at least one UE, a first multi-antenna receiving matrix based on the received parameters, and generate, according to the determined first multi-antenna receiving matrix and a channel matrix An uplink precoding matrix, and sending an access request or data to the base station based on the uplink precoding matrix to access a communication network where the base station is located, or sending data to the base station based on the uplink precoding matrix;
  • the parameter is used to indicate a multi-antenna receiving matrix preset by the base station, where the channel matrix is a channel matrix between each UE and the base station.
  • the base station may preset a multi-antenna receiving matrix of the base station end for the UE, and the UE may generate a precoding matrix that matches the multi-antenna receiving matrix preset by the base station according to the configuration of the base station, and then generate the precoding matrix according to the configuration of the base station.
  • the precoding matrix sends an access request or data to the base station for access or data transmission.
  • the base station can flexibly and freely preset any spatial resources to the UE, thereby avoiding that the UE can only utilize the spatial resources indicated by the limited precoding matrix included in the codebook, thereby increasing the UE.
  • the available uplink space resources in turn, increase the number of UEs that the base station can accommodate for uplink access.
  • the base station does not need to deliver the PMI indication to the UE in this process, which saves downlink resources.
  • the sending module is further configured to:
  • each of the at least one UE performs channel estimation on a downlink channel between the base station and the base station according to the received reference signal, to obtain the channel matrix.
  • the device further includes:
  • a first determining module configured to determine at least one first multi-antenna receiving matrix based on parameters sent to the at least one UE;
  • a detecting module configured to detect, in a direction corresponding to the at least one first multi-antenna receiving matrix, to determine a number of UEs to apply for access in a direction corresponding to each of the first multi-antenna receiving matrices;
  • a second determining module configured to determine a fairness parameter of each UE that is requested to access in a direction of each first multiple antenna receiving matrix, and a number of UEs that are allowed to access in a direction corresponding to each first multiple antenna receiving matrix;
  • a third determining module configured to determine, according to the number of UEs that apply for access in a direction corresponding to each of the first multi-antenna receiving matrices, the fairness parameter of each UE that requests to access, and the number of UEs that are allowed to access, determine each first a UE that allows access in a direction corresponding to the multi-antenna receiving matrix;
  • the sending module is further configured to send the authorization indication information to the UE that is allowed to access in a direction corresponding to the first multiple antenna receiving matrix, where the authorization indication information is used to indicate that the corresponding UE is allowed to access.
  • the third determining module includes:
  • a first determining unit configured to: when the number of UEs requesting access in a direction corresponding to the target first multi-antenna receiving matrix is less than or equal to the number of UEs allowed to access, the target first multi-antenna receiving matrix is corresponding to All UEs that apply for access in the direction are determined to be UEs that are allowed to access in a direction corresponding to the target first multi-antenna receiving matrix, and the target first multi-antenna receiving matrix is the at least one first multi-antenna receiving matrix. Any of the first multiple antenna receiving matrices;
  • a second determining unit configured to: when the number of UEs that apply for access in a direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, the direction corresponding to the target first multi-antenna receiving matrix Determining, in the UE that is requested to access, the M UEs in the preceding or following, the UEs that are allowed to access in the direction corresponding to the target first multi-antenna receiving matrix, where the M is equal to the target first The number of UEs allowed to access in the direction corresponding to the multi-antenna reception matrix.
  • the sending module is further configured to: when the number of UEs that apply for access in a direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, the first The UE that is not allowed to access the UE that is requested to access in the direction corresponding to the antenna receiving matrix sends the conflict resolution indication information to the UE that is not allowed to access, where the conflict resolution indication information is used to indicate that the corresponding UE performs the following manner. At least one of:
  • the access priority of the corresponding UE is increased, and the access priority is used to indicate the success rate of the corresponding UE access.
  • the improving the access priority of the corresponding UE includes at least one of the following manners:
  • An orthogonal sequence is added to the application sequence of the access request to be transmitted.
  • a space division multiplexing multiple access device where the structure of the space division multiplexing multiple access device includes a processor and a memory, and the memory is used for storing and supporting space division multiplexing.
  • the address access device performs the procedure of the space division multiplexing multiple access method provided by the above first aspect, and stores data involved in implementing the space division multiplexing multiple access method provided by the above first aspect.
  • the processor is configured to execute a program stored in the memory.
  • the operating device of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • a space division multiplexing multiple access device where the structure of the space division multiplexing multiple access device includes a processor and a memory, and the memory is used for storing and supporting space division multiplexing.
  • the address access device performs the procedure of the space division multiplexing multiple access method provided by the second aspect, and stores data related to implementing the space division multiplexing multiple access method provided by the second aspect.
  • the processor is configured to execute a program stored in the memory.
  • the operating device of the storage device may further include a communication bus for establishing a connection between the processor and the memory.
  • a computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the space division multiplexing multiple access described in the first aspect above Access method.
  • a computer readable storage medium stores instructions that, when run on a computer, cause the computer to perform the space division multiplexing multiple access described in the second aspect above Access method.
  • a computer program product comprising instructions for causing a computer to perform the space division multiplexing multiple access method of the first aspect described above when operating on a computer is provided.
  • a computer program product comprising instructions for causing a computer to perform the space division multiplexing multiple access method of the second aspect described above when executed on a computer is provided.
  • the base station may preset a multi-antenna receiving matrix for the UE, and the UE may generate an uplink precoding matrix that matches the multi-antenna receiving matrix preset by the base station according to the configuration parameter of the base station, and then, based on the generated uplink precoding matrix, The base station transmits an uplink signal.
  • the base station can flexibly and freely preset any spatial resources to the UE, thereby avoiding that the UE can only utilize the spatial resources indicated by the limited precoding matrix included in the codebook, and increase the uplink available to the UE.
  • the spatial resources in turn, increase the number of UEs that the base station can accommodate for uplink access.
  • the base station does not need to deliver PMI information to the UE, which saves downlink resources.
  • FIG. 1A is a schematic diagram of a MIMO system according to an embodiment of the present invention.
  • FIG. 1B is a schematic diagram of spatial division multiplexing multiple access according to an embodiment of the present invention.
  • FIG. 1C is a schematic structural diagram of a UE according to an embodiment of the present disclosure.
  • 1D is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 1E is a flowchart of a method for space division multiplexing multiple access according to an embodiment of the present invention
  • FIG. 1F is a schematic diagram of a transmission parameter through an SIB according to an embodiment of the present invention.
  • FIG. 1G is a schematic structural diagram of a beam corresponding to different frequency domain resources according to an embodiment of the present disclosure
  • 1H is a schematic diagram of adding an orthogonal sequence in an access request according to an embodiment of the present invention.
  • 2A is a flowchart of another method for spatial division multiplexing multiple access according to an embodiment of the present invention.
  • 2B is a schematic diagram showing the relationship between the number of layers and the coverage of a base station according to an embodiment of the present invention
  • FIG. 3A is a block diagram of a space division multiplexing multiple access apparatus according to an embodiment of the present invention.
  • FIG. 3B is a block diagram of another space division multiplexing multiple access apparatus according to an embodiment of the present invention.
  • FIG. 3C is a schematic structural diagram of a second generation module 302 according to an embodiment of the present disclosure.
  • FIG. 3D is a schematic structural diagram of another generation module 302 according to an embodiment of the present invention.
  • FIG. 3E is a schematic structural diagram of a determining module 301 according to an embodiment of the present invention.
  • FIG. 3F is a block diagram of still another spatial division multiplexing multiple access device according to an embodiment of the present invention.
  • FIG. 3G is a block diagram of still another spatial division multiplexing multiple access device according to an embodiment of the present invention.
  • FIG. 3H is a block diagram of still another spatial division multiplexing multiple access device according to an embodiment of the present invention.
  • FIG. 3I is a block diagram of still another spatial division multiplexing multiple access device according to an embodiment of the present invention.
  • 4A is a block diagram of a space division multiplexing multiple access device according to an embodiment of the present invention.
  • 4B is a block diagram of another space division multiplexing multiple access device according to an embodiment of the present invention.
  • FIG. 4C is a schematic structural diagram of a third determining module 405 according to an embodiment of the present invention.
  • the embodiment of the present invention is applied to an uplink access scenario or an uplink data transmission scenario of the UE.
  • the UE may send an access request to the base station after the power is turned on or when the cell handover is performed, to try to access the network, thereby establishing a basic signaling connection with the communication network where the base station is located.
  • the UE may also send data to the base station as needed, that is, perform uplink data transmission with the base station.
  • the uplink access scenario may be a random access channel (RACH) based random access scenario.
  • the embodiment of the present invention is applied to a multiple-input multiple-output (MIMO) system
  • MIMO system refers to a communication system that implements information transmission and reception by using MIMO technology.
  • the MIMO technology refers to using a plurality of transmitting antennas and receiving antennas at the transmitting end and the receiving end respectively, so that signals are transmitted and received through multiple antennas at the transmitting end and the receiving end, thereby improving communication quality.
  • MIMO technology can make full use of space resources and achieve multiple transmission and reception through multiple antennas. It can multiply the system channel capacity without increasing spectrum resources and antenna transmission power.
  • the MIMO system may be a Time Division Duplexing (TDD) system, and in the TDD MIMO system, the channel reciprocity of the uplink and downlink channels may be utilized.
  • TDD Time Division Duplexing
  • the space division multiplexing multiple access method provided by the embodiment of the present invention is specifically applied to an uplink of a MIMO system, where the transmitting end is a UE, and the receiving end is a base station.
  • the base station is a multi-antenna base station
  • the UE may be a multi-antenna UE or a single-antenna UE, which is not limited in this embodiment of the present invention.
  • FIG. 1A is a schematic diagram of a MIMO system according to an embodiment of the present invention.
  • the system includes multiple UEs 10 and a base station 20, and the multiple UEs 10 can send an access request to the base station 20 to apply for access to the base station.
  • the UE 10 has multiple antennas, and can transmit signals through multiple antennas.
  • the base station 20 also has multiple antennas, and can receive signals through multiple antennas.
  • the UE 10 may access by using space division multiplexing multiple access. Specifically, referring to FIG. 1B, before transmitting a signal, the UE 10 may first perform processing such as encoding, modulation, layer mapping, etc. on the access request or data to be sent, and then perform precoding processing on the processed access request or data, and then The access request or data after the precoding process is transmitted to the base station 20 through multiple antennas, and the base station 20 can receive the access request or data sent by the UE 10 through multiple antennas, and then decode the received access request or data and Demodulation and the like to obtain the actual signal content transmitted by the UE 10.
  • processing such as encoding, modulation, layer mapping, etc.
  • precoding processing on the processed access request or data
  • the access request or data after the precoding process is transmitted to the base station 20 through multiple antennas, and the base station 20 can receive the access request or data sent by the UE 10 through multiple antennas, and then decode the received access request or data and Demodulation and the like to obtain the actual signal
  • FIG. 1A illustrates only a MIMO system including one UE.
  • the MIMO system may include multiple UEs, and the multiple UEs may be multi-antenna UEs or single-antenna UEs. This embodiment of the present invention does not limit this.
  • FIG. 1C is a schematic structural diagram of a UE according to an embodiment of the present invention.
  • the UE includes at least one processor 101, a communication bus 102, a memory 103, and at least one communication interface 104.
  • the processor 101 can be a general purpose central processing unit (CPU), a microprocessor, an application-specific integrated circuit (ASIC), or one or more for controlling the execution of the program of the present application. integrated circuit.
  • CPU central processing unit
  • ASIC application-specific integrated circuit
  • Communication bus 102 can include a path for communicating information between the components described above.
  • the memory 103 can be a read-only memory (ROM) or other type of static storage device that can store static information and instructions, a random access memory (RAM), or other information that can store information and instructions.
  • ROM read-only memory
  • RAM random access memory
  • Type of dynamic storage device or Electro Scientific Erasable Programmable Read-Only Memory (EEPROM), Compact Disc Read-Only Memory (CD-ROM) or other optical disc storage, optical disc Storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage devices, or capable of carrying or storing desired program code in the form of instructions or data structures and capable of being Any other medium accessed by the computer, but is not limited thereto.
  • the memory 103 can exist independently and be coupled to the processor 101 via a communication bus 102.
  • the memory 103 can also be integrated with the processor 101.
  • the communication interface 104 uses devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • devices such as any transceiver for communicating with other devices or communication networks, such as Ethernet, Radio Access Network (RAN), Wireless Local Area Networks (WLAN), and the like.
  • RAN Radio Access Network
  • WLAN Wireless Local Area Networks
  • processor 101 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 1C.
  • the UE may further include an output device 105 and an input device 106.
  • Output device 105 is in communication with processor 101 and can display information in a variety of ways.
  • the output device 105 can be a liquid crystal display (LCD), a light emitting diode (LED) display device, a cathode ray tube (CRT) display device, or a projector.
  • Input device 106 is in communication with processor 101 and can receive user input in a variety of ways.
  • input device 106 can be a keyboard, a touch screen device, or a sensing device, and the like.
  • the above UE may be a general UE or a dedicated UE.
  • the UE may be a mobile phone, a portable computer, a network server, a personal digital assistant (PDA), a tablet computer, a wireless UE, a communication device, or an embedded device.
  • PDA personal digital assistant
  • the embodiment of the invention does not limit the type of the UE.
  • the memory 103 is used to store program code for executing the solution of the present application, and is controlled by the processor 101 for execution.
  • the processor 101 is configured to execute program code stored in the memory 103.
  • the UE shown in FIG. 1C can implement the methods described in the following FIG. 1E and FIG. 2A by the processor 101 and the program code in the memory 103.
  • FIG. 1D is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • the base station mainly includes a transmitter 201, a receiver 202, a memory 203, a processor 204, and a communication bus 205.
  • the structure of the base station 20 shown in FIG. 1D does not constitute a limitation of the base station 20.
  • the base station 20 may include more or less components than those illustrated, or may combine certain components. The embodiment of the present invention does not limit this.
  • the transmitter 201 and the receiver 202 are configured to communicate with other devices, for example, the receiver 202 can receive information sent by the core network, or the transmitter 201 can send information to the UE.
  • the memory 203 can be used to store data, such as can be used to store information transmitted by the core network, and the memory 203 can also be used to store one or more operating programs for performing the space division multiple access method. And / or modules.
  • the processor 204 is a control center of the base station 20.
  • the processor 204 can be a general-purpose central processing unit (CPU), a microprocessor, and an application-specific integrated circuit (ASIC). Or one or more integrated circuits for controlling the execution of the program of the embodiments of the present application.
  • the processor 204 can implement the spatial division multiplexing multiple access method provided by the embodiments below by running or executing software programs and/or modules stored in the memory 203, as well as invoking data stored in the memory 203.
  • the communication bus 205 can include a path for transferring information between the processor 204 and the memory 203.
  • FIG. 1E is a flowchart of a method for space division multiplexing multiple access according to an embodiment of the present invention.
  • the interaction subject of the method is a base station and a UE. As shown in FIG. 1E, the method includes the following steps:
  • Step 101 The base station sends a reference signal to the at least one UE, where the reference signal is a reference signal capable of assisting the UE to perform channel estimation.
  • the reference signal may be a Cell Reference Signal (CRS), a Demodulation Reference Signal (DMRS), or a Channel State Information Reference Signal (CSI-RS), or A reference signal specially designed for the communication system to assist the UE in channel estimation of the downlink channel, such as a Channel Estimation Reference Signal (CE-RS) or a Mobility Reference Signal (MRS). .
  • CRS Cell Reference Signal
  • DMRS Demodulation Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • CE-RS Channel Estimation Reference Signal
  • MRS Mobility Reference Signal
  • the embodiment of the present invention is only an example in which a base station sends a reference signal to a UE.
  • the base station may further send another physical signal with a channel estimation function to the UE, so that the UE can perform a base signal according to the physical signal.
  • Channel estimation is performed between the downlink channels.
  • the form in which the base station sends the reference signal or the other physical signal to the UE may be in the form of unicast, multicast, or broadcast.
  • the embodiment of the present invention does not limit the transmission format.
  • Step 102 The UE receives the reference signal, and performs channel estimation on the downlink channel between the UE and the base station based on the reference signal to obtain a channel matrix.
  • the UE is any one of the at least one UE, that is, each of the at least one UE may be processed according to the processing mode of the UE.
  • the channel estimation refers to estimating a model parameter of a certain channel model according to the received signal, and determining a channel matrix for transmitting the signal according to the estimated model parameter.
  • a model parameter of a channel model corresponding to a downlink channel may be estimated according to a reference signal, and a downlink channel matrix is determined according to the estimated model parameter, where the model parameter refers to a model parameter used to determine a corresponding channel matrix.
  • performing channel estimation on the downlink channel may obtain a downlink channel matrix, and the downlink channel matrix is used to indicate channel conditions of the downlink channel.
  • the UE may convert the downlink channel matrix obtained by performing channel estimation on the downlink channel into an uplink channel matrix according to the characteristics of channel reciprocity, and then perform the following steps according to the uplink channel matrix.
  • the method for converting the downlink channel matrix into the uplink channel matrix may be: determining the downlink channel matrix as the uplink channel matrix, or obtaining the uplink channel matrix by performing matrix transposition and the like on the downlink channel matrix.
  • the downlink channel matrix can also be directly used without converting the downlink channel matrix into an uplink channel matrix.
  • the calculation model used for channel estimation by different physical signals may be different. Therefore, in the process of channel estimation, the calculation model of the physical signal for channel estimation may be first determined, and then according to the physical signal and the corresponding calculation. The model performs channel estimation on the downlink channel.
  • precoding refers to signal processing mapping data to multiple transmit antennas before transmitting data to further improve the throughput of the system, and specifically needs to be implemented by using a precoding matrix. Moreover, it is usually necessary to obtain an uplink channel matrix before precoding the uplink signal to preprocess the transmitted signal using the channel state information.
  • the uplink channel matrix is generally obtained by the base station performing channel estimation on the uplink channel according to the uplink signal sent by the UE, and then the obtained uplink channel matrix is fed back to the UE, but the base station determines the uplink channel matrix and then feeds back to the UE.
  • the implementation of the system will greatly increase the system feedback overhead.
  • the UE may perform channel estimation on the downlink channel to obtain a downlink channel matrix, and then directly convert the downlink channel matrix into an uplink channel matrix according to channel reciprocity of the uplink and downlink channels, so that the UE does not need base station feedback.
  • the upstream channel matrix can be obtained, so that the feedback overhead of the system can be greatly reduced.
  • the embodiment of the present invention is only an example of determining an uplink channel matrix according to channel reciprocity.
  • the uplink channel matrix may also be determined by other methods, such as being sent by the base station according to the UE.
  • the uplink signal is used for channel estimation of the uplink channel matrix, and then is fed back to the UE, which is not limited in this embodiment of the present invention.
  • Step 103 The base station sends a parameter to the at least one UE, where the parameter is used to generate a multi-antenna receiving matrix preset by the base station.
  • the multi-antenna receiving matrix is a multi-antenna receiving beam direction matrix of the base station, and is used to indicate a spatial direction in which the base station receives the uplink signal.
  • the base station is a receiving end and is a receiving end configured with multiple antennas in the uplink transmission process. Therefore, the matrix of the receiving direction of the base station is referred to as a multi-antenna receiving matrix.
  • the base station may preset a multi-antenna receiving matrix for the at least one UE, and may send parameters to the at least one UE, so that each UE determines, according to the received parameters, the multi-antenna receiving preset by the base station for the UE. matrix.
  • the UE may also store the received parameters and determine, at an appropriate time, the multi-antenna reception matrix preset by the base station for the UE based on the stored parameters.
  • the UE may also agree with the base station in advance, and determine, at an appropriate time, the multi-antenna reception matrix preset by the base station for the UE based on the previously agreed parameters.
  • the UE may facilitate the UE to subsequently access the spatial resource indicated by the multi-antenna receiving matrix preset by the base station, or perform uplink data transmission.
  • the base station can also receive in the direction of the preset multi-antenna receiving matrix. That is, the preset multi-antenna receiving matrix is a multi-antenna receiving matrix desired by the base station.
  • the base station can flexibly and freely preset any spatial resources to the UE, thereby increasing the uplink space resources available to the UE, and avoiding the limited pre-compensation that the UE can only use the codebook.
  • the spatial resources indicated by the coding matrix improve the utilization of uplink space resources, and further increase the number of uplink access UEs that the base station can accommodate.
  • the UE also needs to feed back the information of the used precoding matrix to the base station, thereby further reducing the feedback overhead of the system and implementing the open loop. Ways to utilize space resources.
  • the parameter may be an index parameter for indicating a multi-antenna receiving matrix preset for the UE from a set of multi-antenna receiving matrices, or the parameter may be a generating parameter for generating a rule according to a specific preset matrix.
  • a multi-antenna reception matrix preset for the UE is generated.
  • the index parameter may be an index parameter that is agreed upon by a protocol
  • the generated parameter may be a parameter that can be manifested by a formula or a rule that is agreed upon by a protocol.
  • the parameter may include a parameter corresponding to different time-frequency resources, where the different time-frequency resource refers to a time-frequency resource that the UE can use to send an access request or send data.
  • the parameters corresponding to different time-frequency resources may include parameters corresponding to different time domain resources and different frequency domain resources, or parameters corresponding to different time domain resources and the same frequency domain resource. That is, the parameter may include a plurality of specific parameters, and the time domains corresponding to the plurality of specific parameters are different, and the corresponding frequency domains may be the same or different.
  • the parameters may include parameters corresponding to different time-frequency resources. Therefore, the parameters may be configured in a single configuration, and the UE may determine the multi-antenna receiving matrix corresponding to different moments according to the parameter. That is, the multi-antenna reception matrix determined based on the parameter may dynamically change with time.
  • the base station may preset different multi-antenna receiving matrices for the UE at different times, thereby avoiding conflicts of the UE in spatial resources, and further increasing the base station can accommodate. The number of UEs accessing the uplink.
  • the parameters may include parameters corresponding to different layers.
  • the parameters corresponding to each time-frequency resource in the different time-frequency resources may include parameters corresponding to at least one layer.
  • the parameter may further include time-frequency resource indication information and a layer mapping rule, where the time-frequency resource indication information is used to indicate that the UE sends an access request or a time-frequency resource that can be used by the data, where the layer mapping rule is used to indicate The mapping relationship between the frequency resource and the layer, that is, the number of layers corresponding to different time-frequency resources.
  • the number of layers determined according to the layer mapping function is related to the number of antennas that the base station can currently use, and is used to indicate the number of data streams that the base station can receive, and the determined number of layers is equal to the multi-antenna receiving matrix preset for the UE.
  • the number of dimensions is the number of rows and columns of the multi-antenna receiving matrix preset by the UE.
  • the layer mapping rule may be agreed in advance or may be sent by the base station. For example, the layer mapping rule may be sent to the UE through a protocol agreement or through configuration information.
  • the UE may first determine a layer corresponding to the available time-frequency resource according to the time-frequency resource indication information and the layer mapping rule included in the parameter, and then according to the available time-frequency.
  • the layer corresponding to the resource determines the target parameter from the parameters corresponding to the different layers, and then determines, according to the target parameter, the multi-antenna receiving matrix preset by the base station for the UE.
  • each of the different layers may also correspond to the determined base station antenna port.
  • the base station antenna port numbers corresponding to layer 4 may be port1, port2, port3, and port4, respectively.
  • the correspondence between the layer and the antenna port may be previously agreed by the base station and the UE, or may be sent by the base station to the UE.
  • the correspondence between the layer and the antenna port may be agreed by the base station and the UE through a protocol, or broadcast by the base station to the UE or the like.
  • the parameters may include conventional parameters and/or special parameters.
  • the conventional parameter refers to a parameter that occupies a small amount of data, and can specify a plurality of preset multi-antenna receiving matrices under certain rules, and can be used to serve a common UE.
  • the special parameter refers to a parameter occupying a large amount of data, and can accurately specify a specific preset multi-antenna receiving matrix, and can be used to serve a specific UE, such as a UE with a special priority.
  • the conventional parameter and the special parameter may be sent through a Physical Broadcast Channel (PBCH) or may be sent through a System Information Block (SIB).
  • PBCH Physical Broadcast Channel
  • SIB System Information Block
  • the regular parameter may be sent through the PBCH
  • the special parameter may be sent through the SIB
  • the regular parameter and the special parameter may be sent through the SIB.
  • the SIB shown in FIG. 1F includes special parameters, and special parameters can be sent through the SIB, and the special parameters include time-frequency resource indication information: prach-ConfigIndex and prach-FreqOffset, and layer mapping rule: Layer(t ) Layer mapping functions and parameters corresponding to different layers.
  • the Layer(t) layer number mapping function is a specific layer mapping rule that is set to indicate how much the layer should be taken by the UE under the time-frequency resources determined by the prach-ConfigIndex and the prach-FreqOffset, for example, 1, 2, 3, and the like.
  • the parameter may further include a parameter identifier, where the parameter identifier is used to indicate whether the sent parameter is a regular parameter or a special parameter. For example, when a parameter is transmitted through SIB2, a parameter identifier may be sent in the first bit of SIB2 to indicate whether the transmitted parameter is a regular parameter or a special parameter.
  • the multi-antenna reception matrix can be configured by transmitting the regular parameters, and the amount of data transmitted can be greatly reduced.
  • the total throughput and fairness of uplink access coverage can be balanced.
  • the conventional parameters can cover more and more extensive UEs, but relatively complex designs are required to be more accurate and complete coverage, and special parameters can be directed to some possible missing directions, or UEs with lower fairness parameters, or Other special cases of UE.
  • special parameters are not necessarily required in the embodiment of the present invention. For example, for some scenarios or services, you can set only regular parameters without setting special parameters.
  • the form in which the base station sends the parameter to the UE may be in the form of unicast, multicast, or broadcast, which is not limited by the embodiment of the present invention.
  • the parameters may be sent periodically or non-periodically. For example, regular parameters can be sent periodically, and special parameters can be sent aperiodically, only when needed.
  • the base station presets the multi-antenna receiving matrix for at least one UE
  • different frequency domain resources may be corresponding to different preset multi-antenna receiving at the same time.
  • the matrix and the same frequency domain resources may also correspond to preset multi-antenna receiving matrices of different layers, that is, different frequency domain resources may correspond to preset multi-antenna receiving matrices of the same layer or preset multi-antenna receiving matrices of different layers.
  • the frequency domain resource may be a subband or the like.
  • the beam set shown in FIG. 1G includes a beam set corresponding to two subbands, wherein the solid beam is a beam corresponding to subband1, and the dotted beam is a beam corresponding to subband2.
  • the same numbered beam representations belong to the same preset multi-antenna reception matrix, ie the same numbered beams represent different sub-matrices of the same multi-antenna reception channel matrix.
  • the preset multi-antenna receiving matrix of different layers of different frequency domain resources may change correspondingly at subsequent corresponding moments.
  • the division of the frequency domain resources and the distribution of the layers may be configured by the base station.
  • the configuration of the PBCH and/or the SIB is not limited by the embodiment of the present invention.
  • Step 104 The UE determines a first multi-antenna receiving matrix according to parameters received from the base station.
  • the parameter is used to indicate a multi-antenna receiving matrix preset by the base station, where the first multi-antenna receiving matrix refers to a multi-antenna receiving matrix preset by the base station for the UE.
  • the first multi-antenna receive matrix can include a plurality of sub-matrices, each sub-matrix being comprised of at least one column vector of the first multi-antenna receive matrix.
  • the UE may select a sub-matrix from the first multi-antenna receiving matrix to generate an uplink pre-coding matrix according to the selected sub-matrix.
  • the UE may directly determine the first multi-antenna receiving matrix based on the received parameters, or may first store the received parameters locally, and then obtain the locally stored parameters at an appropriate timing, based on the acquired parameters.
  • the parameter generates a first multi-antenna reception matrix.
  • the embodiment of the present invention is only described by the UE determining the first multi-antenna receiving matrix according to the parameters received from the base station, and in actual application, the UE may also determine the first multi-antenna receiving according to the previously agreed parameters. matrix. That is, the parameters may be agreed in advance or may be received from the base station. By pre-agreed parameters, the transmission consumption between the base station and the UE can be reduced, and downlink resources are saved.
  • the pre-agreed parameter may be a parameter that is pre-configured by the base station for the UE, or a parameter that is agreed by the base station and the UE in advance through a protocol, and may be a parameter that is previously agreed by other forms. This is not limited.
  • the parameters agreed in advance by the protocol may be agreed by the base station and the UE directly in the form of a table or a formula or the like in the protocol.
  • the parameters pre-configured by the base station for the UE may be configured by the base station by sending configuration information to the UE.
  • determining, by the UE, the first multi-antenna receiving matrix according to the parameter may include the following two implementation manners:
  • the first implementation manner is: determining, according to the parameter, a first multi-antenna receiving matrix from at least one multi-antenna receiving matrix, where the at least one multi-antenna receiving matrix is pre-agreed or received from a base station.
  • the at least one multi-antenna receiving matrix includes one or more multi-antenna receiving matrices.
  • the parameter may be an index parameter for indicating a certain multi-antenna reception moment from the at least one multi-antenna receiving matrix, and the UE may determine the multi-antenna receiving matrix indicated by the index parameter as the first multi-antenna receiving matrix.
  • a second implementation manner generating a first multi-antenna receiving matrix based on the parameter and the at least one desired receiving matrix generation rule, where the at least one expected receiving matrix generating rule is previously agreed or received from a base station.
  • the at least one desired reception matrix generation rule refers to a pre-configured generation rule capable of generating a multi-antenna reception matrix preset by the base station according to a previously agreed parameter or a parameter sent by the base station, and can generate multiple directions or all of the coverage space. Multi-antenna receive matrix for direction.
  • the at least one desired receiving matrix generation rule may be obtained by the base station by using the configuration information, or may be agreed by the protocol, which is not limited by the embodiment of the present invention.
  • the at least one expected reception matrix generation rule may be constructed by a function construction method, a Schmidt orthogonalization modification method, a Discrete Fourier Transform (DFT) matrix generation method, or other positive matrix generation methods. get.
  • the at least one expected reception matrix generation rule will be described by a function construction method and a Schmidt orthogonalization modification method, respectively.
  • the at least one expected reception matrix generation rule may include an N-dimensional matrix, wherein the column vectors in the N-dimensional matrix are orthogonal to each other, and the N-dimensional matrix includes N-1 variable parameters. Each variable parameter is used to indicate the rotation angle of the corresponding column vector, which is a positive integer.
  • the N-dimensional matrix may be determined based on an initial matrix, where the initial matrix is an N-dimensional unit matrix, and the N is a N-1 variable parameter in the matrix for indicating a corresponding column vector of the N-dimensional matrix relative to the initial The rotation angle of the corresponding column vector of the matrix.
  • the N-dimensional matrix can be:
  • the N-dimensional matrix comprises N-1 variable parameters ⁇ 1, ⁇ 2, ..., ⁇ n-1, and this N-1 variable parameters in any one of the variable parameters ⁇ i according to take
  • the difference in value may be such that the fixed N-dimensional matrix covers all directions in the spatial dimension corresponding to the variable parameter ⁇ i from 0° to 360°. That is, the N-dimensional matrix can generate a multi-antenna reception matrix covering all directions of the space according to the difference of the values of the N-1 variable parameters ⁇ 1 , ⁇ 2 , . . . , ⁇ n-1 , so that the N-dimensional matrix can be fully utilized. Space resources.
  • the initial matrix is a two-dimensional unit matrix.
  • the initial matrix W 0 is the following two-dimensional unit matrix (3):
  • the two-dimensional unit matrix (3) is a set of orthogonal bases, that is, the column vectors in the two-dimensional unit matrix (3) are orthogonal to each other. If one of the column vectors is deflected by the angle ⁇ , and the relative positions of the other column vectors and the column vector are unchanged, then all the column vectors in the two-dimensional unit matrix (3) can be deflected relative to all the column vectors of the initial matrix.
  • the ⁇ angle that is, the column vector in the two-dimensional unit matrix (3) after the deflection is still orthogonal to each other.
  • the two-dimensional matrix (4) can generate multiple antennas covering all directions of the two-dimensional space as the value of the variable parameter ⁇ is different. Receive matrix.
  • the three-dimensional matrix (5) can generate a three-dimensional overlay as the variable parameters ⁇ 1 and ⁇ 2 take different values. Multi-antenna reception matrix in all directions of space.
  • the above-described N-dimensional matrix (2) can be generated, because N-1 variable parameters ⁇ 1 , ⁇ 2 , ..., ⁇ n-1 in the above N-dimensional matrix (2) can be Any value is taken. Therefore, as the variable parameters ⁇ 1 , ⁇ 2 , . . . , ⁇ n-1 are different in value, the N-dimensional matrix (2) can generate a multi-antenna reception matrix covering all directions of the N-dimensional space.
  • the special parameter may be N-1 parameters, the N-1 parameters are specific assignments to the N-1 variable parameters, and the N is equal to the base station configuration.
  • the number of layers that is, the number of data streams that the base station can receive.
  • the above-mentioned conventional parameter may be a construction parameter of a pseudo-random sequence, by which a pseudo-random sequence may be constructed, and special parameters may be selected from the constructed pseudo-random sequence according to a pre-agreed rule received from the base station or received from the base station.
  • the at least one expected reception matrix generation rule may include an N-dimensional initial orthogonal basis and a transformation rule, and the transformation rule is used to indicate receiving or receiving from the base station based on the prior agreement
  • the parameter transforms at least one vector element in the initial orthogonal basis, and performs Schmitt orthogonalization on the transformed initial orthogonal basis to obtain the first multi-antenna receiving matrix, where N is a positive integer .
  • Schmitt orthogonalization is performed on a linearly independent set, which can be changed into a set of orthogonal bases in an N-dimensional space, which is an N-dimensional initial orthogonal basis. Then, if a certain vector element in the N-dimensional initial orthogonal basis is replaced with another vector element, and then Schmitt orthogonalization is performed, another set of orthogonal bases in the N-dimensional space can be obtained. In this way, only a set of initial orthogonal basis and transform rules are agreed in advance, and then the base station transmits parameters, so that the UE according to the transform rule and the parameters received from the base station, one or more of the initial orthogonal bases.
  • the item vector elements are transformed to obtain a plurality of orthogonal bases different from the initial orthogonal basis, and the obtained orthogonal basis is a multi-antenna reception matrix preset by the base station.
  • Schmitt orthogonalization is performed on the linear independent set S, it can be changed into a set of orthogonal bases S' in the N-dimensional space, as shown in the following formula (7):
  • an orthogonal basis in an arbitrary direction different from the spatial direction indicated by the initial orthogonal basis can be obtained.
  • the full utilization of the spatial resources can be realized, thereby increasing the space resources available to the UE, thereby increasing the number of UEs that the base station can accommodate.
  • the process of generating the first multi-antenna receiving matrix may include the following steps 1)-3):
  • the determining the target parameter based on the parameter may include: when the parameter includes a parameter corresponding to different time-frequency resources, determining a parameter corresponding to the target time-frequency resource from the parameter corresponding to the different time-frequency resource, where the target time-frequency resource refers to The time-frequency resource used by the current application for accessing or transmitting data; determining the target parameter based on the parameter corresponding to the target time-frequency resource.
  • determining the target parameter based on the parameter corresponding to the target time-frequency resource includes: determining, according to the layer mapping rule, the target corresponding to the target time-frequency resource
  • the layer mapping rule is used to indicate a mapping relationship between the time-frequency resource and the layer; selecting a parameter corresponding to the target layer from the parameters corresponding to the at least one layer, and determining the selected parameter as the target parameter.
  • the layer mapping rule may be pre-agreed or sent by the base station to the UE, which is not limited by the embodiment of the present invention.
  • the layer mapping rule may be previously agreed by the base station and the UE, or may be sent by the base station to the UE through configuration information, where the configuration information is used to configure a layer mapping rule for the UE.
  • the time-frequency resource used for the current application for accessing or transmitting data may be determined by the time-frequency resource indication information configured by the base station, and the time-frequency resource indication information may be sent by the base station, or may be agreed in advance, and the embodiment of the present invention does not Make a limit.
  • the parameter is a special parameter shown in FIG. 1F, and the special parameter includes time-frequency resource indication information: prach-ConfigIndex and prach-FreqOffset, layer mapping rule: Layer(t) layer mapping function and parameters corresponding to different layers.
  • the parameters corresponding to the time-frequency resources determined by the prach-ConfigIndex and the prach-FreqOffset are the parameters corresponding to the different layers
  • the layers corresponding to the time-frequency resources determined by the prach-ConfigIndex and the prach-FreqOffset are 2 and 4
  • the 2 layers and the 4 layers can be determined as the target layer, and the corresponding parameters of the 2 layers and the corresponding parameters of the 4 layers are respectively selected from the parameters corresponding to the different layers, and the selected parameters are determined as the target parameters.
  • selecting a parameter corresponding to the target layer from the parameters corresponding to the at least one layer may include: when the parameter corresponding to the at least one layer is a pseudo-random sequence construction parameter, the configuration parameter is sent according to the pre-agreed or base station according to the pseudo-random sequence configuration parameter. a pseudo-random sequence construction rule, constructing a plurality of random numbers; selecting at least one random number from the plurality of random numbers according to a pre-agreed or a fetch rule sent by the base station; determining at least one selected random number as The parameters corresponding to the target layer.
  • the pseudo-random sequence construction rule and the retrieving rule may be sent by the base station through a protocol, or may be sent through configuration information, which is not limited by the embodiment of the present invention.
  • the pseudo-random sequence may be a linear congruence pseudo-random sequence or the like.
  • the parameter corresponding to the at least one layer may be four parameters: I 0 , a, c, and m.
  • the UE can construct a set of pseudo-random sequences according to the construction rules of the above-described linear congruence pseudo-random sequence.
  • the target parameter is selected from the constructed pseudo-random sequence, it can be selected according to the target layer number and the pre-agreed rules.
  • the first s pseudo random numbers may be selected from the pseudo random sequence, and then the first M-1 pseudo random numbers among the s pseudo random numbers are taken as N.
  • the parameters corresponding to the layer, and the M-2 pseudo-random numbers following the first M-1 pseudo-random numbers are used as parameters corresponding to the N-1 layer.
  • the parameters corresponding to at least one layer are constructed by constructing a pseudo-random sequence, and in actual application, the parameters corresponding to at least one layer may be constructed in other manners.
  • the embodiment of the invention does not limit this.
  • the specific target-receiving matrix generation rule that can be used may be configured by a protocol or dynamically, which is not limited by the embodiment of the present invention.
  • the UE may store at least one desired reception matrix generation rule, and then agree to one of the at least one expected reception matrix generation rule by the protocol as the target expected reception matrix generation rule.
  • one of the at least one expected reception matrix generation rule is dynamically configured as a target expected reception matrix generation rule by using configuration information such as index information.
  • determining the target expected reception matrix generation rule based on the at least one expected reception matrix generation rule may include: when the parameter includes the index information of the target expected reception matrix generation rule, based on the index information, The target desired reception matrix generation rule is determined in the at least one desired channel matrix generation rule.
  • the UE may store three types of expected reception matrix generation rules, and the indexes of the three expected reception matrix generation rules are 1, 2, and 3, respectively, and the base station may add index information of the target expected reception matrix generation rule to the transmitted parameters.
  • the index information may be 3, indicating that the UE adopts a third expected reception matrix generation rule in the stored three expected reception matrix generation rules.
  • the target parameter is 2 (3-1) parameters corresponding to the 3 layers
  • the target expected reception matrix generation rule is a 3-dimensional matrix including two variable parameters obtained by the function construction method
  • the two parameters are substituted into the The 3-dimensional matrix obtained after the 3-dimensional matrix is the first multi-antenna reception matrix.
  • the UE may perform uplink synchronization with the base station to synchronize the first multi-antenna receiving matrix corresponding to different times. Specifically, in the process of performing uplink synchronization, the UE may change necessary parameters from the received parameters, such as changing time-frequency resources from parameters corresponding to different time-frequency resources, so as to determine current from parameters corresponding to different time-frequency resources. The parameter corresponding to the time, and then generating the first multi-antenna receiving matrix corresponding to the current time according to the expected receiving matrix generation rule. Moreover, by uplink synchronization, the UE may also generate an expectation for the multi-antenna reception matrix desired by the base station of any time to apply for an access occasion or a data transmission base station within a period of time after receiving the parameter.
  • Step 105 The UE generates an uplink precoding matrix based on the first multi-antenna receiving matrix and the channel matrix.
  • the UE may generate an uplink precoding matrix based on the first multi-antenna receiving matrix and the channel matrix to transmit to the base station based on the uplink precoding matrix when there is a current access requirement or a requirement for transmitting data. Incoming request or sending data.
  • the UE may also generate a corresponding uplink precoding matrix based on the first multi-antenna receiving matrix and the channel matrix at any requesting access occasion or data transmission timing.
  • an access request or a transmission data is directly sent to the base station based on the generated uplink precoding matrix.
  • generating the uplink precoding matrix based on the first multi-antenna receiving matrix and the channel matrix includes: determining a second multi-antenna receiving matrix based on the stored configuration layer number, the channel matrix, and the first multi-antenna receiving matrix; The transposed matrix of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix is determined as the uplink precoding matrix.
  • the number of the configuration layer is used to indicate the number of data streams that the UE is allowed to transmit
  • the second multi-antenna receiving matrix is composed of the specified L column vectors of the plurality of column vectors included in the first multi-antenna receiving matrix.
  • the L corresponds to the number of configuration layers
  • the specified L column vectors are L column vectors corresponding to the largest specified norm in any L column vectors included in the plurality of column vectors
  • the specified two norms are The two norms of the matrix obtained by multiplying the transposed matrix of the composed matrix by the channel matrix.
  • the L corresponds to the number of configuration layers, that is, the L is the same as the number of configuration layers of the UE, that is, the L is equal to the number of data streams that the UE is allowed to transmit. For example, when the number of data streams allowed to be transmitted by the UE is three, the UE may select three column vectors satisfying the condition from the first multi-antenna receiving matrix to form a second multi-antenna receiving matrix.
  • H is the channel matrix between the transmitting end and the receiving end.
  • the transmission equation can be expressed as:
  • q H represents the conjugate transposed matrix of q
  • the transmit matrix p refers to the transmit beam direction matrix of the transmitting end.
  • x is the data sent by the transmitting end
  • the number of data streams of the data is l
  • the size of the H matrix is m*n, that is, H is m rows n
  • the size of the q matrix is m*l, that is, q is a matrix of m rows and 1 column
  • the size of the p matrix is n*l, that is, p is a matrix of n rows and 1 column.
  • 2 refers to a binary norm of q H Hp for indicating the transmission energy of the data.
  • the second multi-antenna receiving matrix refers to a matrix composed of column vectors selected from the first multi-antenna receiving matrix, and the number of selected column vectors is equal to the number of configured layers. That is, the UE may select a corresponding number of column vectors from the first multi-antenna receiving matrix to form a second multi-antenna receiving matrix according to the number of data streams allowed to be transmitted.
  • the first multi-antenna receiving matrix is equivalent to the multi-antenna receiving matrix set
  • the second multi-antenna receiving matrix is equivalent to the sub-matrix selected from the first multi-antenna receiving matrix.
  • the base station may preset the dynamically variable first multi-antenna receiving matrix Q by using the parameter, and the UE may select q in the Q to make max
  • 2 , and then p (q H H) H , then q and p at this time can make max
  • the UE may further convert the result H DL of the downlink channel estimation into the uplink channel matrix H UL according to the channel reciprocity, and record the H UL as the channel matrix H.
  • the second multi-antenna receiving matrix may also be indicated by the base station by using a parameter, and the UE may determine the first multi-antenna receiving matrix and the second multi-antenna receiving matrix directly according to parameters agreed in advance or received from the base station.
  • the UE may further determine that the second norm of the matrix obtained by multiplying the determined transposed matrix of the second multi-antenna receiving matrix by the channel matrix is greater than a preset two-norm threshold
  • the transposed matrix of the matrix obtained by multiplying the transposed matrix of the two-multiple antenna receiving matrix by the channel matrix is determined as the uplink precoding matrix. That is, when the second multi-antenna receiving matrix satisfies certain conditions, the uplink precoding matrix is determined and uplink transmission is performed.
  • the preset two norm threshold may be agreed in advance, or pre-configured by the base station, or preset by the UE.
  • the preset two norm threshold may be directly agreed by the base station and the UE through a protocol, or the base station may notify the UE to set.
  • the preset two-norm threshold may be determined according to the link quality and the cell load.
  • the preset two norm threshold may be calculated by the base station according to the link quality and the cell load, and then sent to the UE; or The preset two norm threshold may be determined according to the number of users and the user distribution model that the UE is located in, for example, the number of users that can be accommodated by the cell and the user distribution model may be determined by a protocol; or the preset two norm threshold
  • the long-term statistical determination may be performed on the scheduling of the user in the cell where the UE is located, for example, the base station may perform long-term statistical determination on the scheduling of the user in the cell where the UE is located, and then send the information to the UE; or, the preset second
  • the norm threshold may also be an empirical value set by a technician. The manner in which the preset two norm threshold is set is not limited in the embodiment of the present invention.
  • the base station may set a minimum access threshold minPreRxPower according to the cell condition, and when the UE calculates max
  • the UE may determine a time-frequency resource used by the current application for accessing or transmitting data when there is currently an access requirement or a data transmission requirement, and generate and calculate according to the parameter and at least one expected receiving matrix generation rule. And using the first multi-antenna receiving matrix corresponding to the time-frequency resource, and then generating an uplink pre-coding matrix based on the first multi-antenna receiving matrix and the channel matrix, so as to subsequently send an uplink signal based on the uplink pre-coding matrix.
  • the UE may perform uplink synchronization with the base station according to the time-frequency resource that the UE applies for accessing or transmitting data, the parameter, and the at least one expected receiving matrix generation rule, thereby generating different time-frequencys that can be used.
  • the first multi-antenna receiving matrix corresponding to the resource and then selecting the first multi-antenna receiving matrix corresponding to the currently used time-frequency resource from the generated first multi-antenna receiving matrix when there is currently an access requirement or a data transmission requirement, And generating an uplink precoding matrix according to the first multi-antenna receiving matrix and the channel matrix corresponding to the currently used time-frequency resource, so as to subsequently send the uplink signal based on the uplink pre-coding matrix.
  • the uplink multi-antenna receiving matrix may be matrix-transposed to obtain a downlink equivalent precoding matrix, and then the downlink equivalent is obtained.
  • the precoding matrix is multiplied by the downlink channel matrix to obtain a downlink equivalent channel matrix, and finally the downlink equivalent multi-antenna receiving matrix is determined based on the downlink equivalent channel matrix, and the downlink equivalent multi-antenna receiving matrix is matrix-transposed , get the uplink precoding matrix.
  • the downlink multi-antenna receiving matrix refers to a matrix obtained by linearly transforming a multi-antenna received signal when the downlink multi-antenna is received.
  • Step 106 The UE sends an access request to the base station according to the uplink precoding matrix to access the communication network where the base station is located, or send data to the base station based on the uplink precoding matrix.
  • the uplink transmission based on the uplink precoding matrix between the UE and the base station in the embodiment of the present invention may include two application scenarios: an uplink access scenario and an uplink data transmission scenario. That is, the UE may send an access request to the base station when there is an access requirement based on the uplink precoding matrix determined according to the above steps 101-105, or may send data to the base station when there is a data transmission request.
  • the access request is used to indicate that the UE requests to access the communication network where the base station is located, and sending an access request to the base station based on the uplink precoding matrix refers to pre-preceding the sent access request based on the uplink precoding matrix.
  • the data may be transmitted to the base station based on the uplink precoding matrix, for example, the uplink data is sent to the base station based on the uplink precoding matrix.
  • the first information (Message1, MSG1) in the random access procedure sent by the UE may be caused by the preset multi-antenna receiving matrix.
  • the number of configuration layers preset by the UE can be 1 by default.
  • the access request may further include data for requesting access to the communication network where the base station is located and transmitting data to the communication network where the base station is located. That is, the user data can also be transmitted directly in the access request, thereby improving the data transmission rate of the UE.
  • the UE may also be in an access request to be sent before sending an access request or data to the base station. Or adding a first orthogonal sequence to the preset position of the data to implement multiplexing on the code domain by using the orthogonal sequence, increasing the number of users that can be accommodated in the same spatial direction, and improving communication efficiency. Moreover, since the data transmission error caused by the user conflict can be avoided, the influence on the error propagation is also small.
  • the first orthogonal sequence is used to identify the UE. That is, the base station can identify and distinguish different UEs by using an access request sent by different UEs or a first orthogonal sequence included in the data.
  • the preset position may be agreed in advance or may be dynamically configured by the base station, which is not limited in this embodiment of the present invention.
  • the preset location may be a head location or an intermediate location of the application sequence of the access request, and the like.
  • the base station after receiving the access request or data including the first orthogonal sequence, the base station also needs to determine whether the UE is correctly identified in the determined time. Specifically, the response may be acknowledged in an acknowledgement/negative acknowledgement (ACK/NACK) manner, for example, several subframe responses may be fixed after receiving the access request or data.
  • ACK/NACK acknowledgement/negative acknowledgement
  • the first orthogonal sequence may be added at a preset position of the application sequence of the access request and/or the second orthogonal sequence may be added to the data; wherein the first positive The intersection sequence corresponds to the second orthogonal sequence and is used to identify the UE.
  • the first orthogonal sequence and the second orthogonal sequence correspond to the first orthogonal sequence and the second orthogonal sequence having a determined mapping relationship, which is used to assist the UE to determine the first orthogonal sequence and
  • the second orthogonal sequence belongs to the same UE, and further determines that the access request and the user data belong to the same UE.
  • the first orthogonal sequence and the second orthogonal sequence may be the same, or the first orthogonal sequence may be a ZC sequence, and the second orthogonal sequence may be the first 1/2 or 1 of the ZC sequence. 4 sequence part.
  • the first orthogonal sequence and the second orthogonal sequence may also be an M sequence or a golden sequence or the like.
  • the uplink precoding matrix 1 and the uplink precoding matrix 2 belong to the uplink precoding matrix of the same layer, and multiple UEs may be accessed in the direction of the same uplink precoding matrix 2, assuming that the multiple UEs respectively For the UE1, the UE2, the UE3, and the UE4, the access requests sent by the four UEs all include data. Therefore, in order to avoid user conflicts, the head positions of the application sequences of the access requests sent by the four UEs may be different.
  • the first orthogonal sequence is to distinguish users who send access requests by different first orthogonal sequences.
  • a different second orthogonal sequence (not shown in FIG. 1H) may be added to the data sent by the four UEs to distinguish users who send data by the second orthogonal sequence.
  • the base station may preset a multi-antenna receiving matrix for the UE, and the UE may generate an uplink precoding matrix that matches the multi-antenna receiving matrix preset by the base station according to the configuration parameter of the base station, and then, based on the generated uplink precoding matrix, The base station transmits an uplink signal.
  • the base station can flexibly and freely preset any spatial resources to the UE, thereby avoiding that the UE can only utilize the spatial resources indicated by the limited precoding matrix included in the codebook, and increase the uplink available to the UE.
  • the spatial resources in turn, increase the number of UEs that the base station can accommodate for uplink access.
  • the base station does not need to deliver PMI information to the UE, which saves downlink resources.
  • the UE may also determine whether to apply for uplink access according to the configured constraints.
  • the base station may also perform UE collision according to user conflict conditions in the direction of each multiple antenna receiving matrix. Perform access authorization.
  • FIG. 2A a process for the UE to determine whether to apply for uplink access and the base station to perform access authorization for the UE according to the user conflict situation will be described in detail.
  • FIG. 2A is a flowchart of another method for spatial multiplexing multiple access according to an embodiment of the present invention.
  • the interaction subject of the method is a base station and a UE. As shown in FIG. 2A, the method includes the following steps:
  • Step 201 The base station sends a reference signal to the at least one UE, where the reference signal is a reference signal capable of assisting the UE to perform channel estimation.
  • Step 202 The UE receives the reference signal, and performs channel estimation on the downlink channel between the UE and the base station based on the reference signal to obtain a channel matrix.
  • Step 203 The base station sends a parameter to the at least one UE, where the parameter is used to generate a multi-antenna receiving matrix preset by the base station.
  • Step 204 The UE determines a first multi-antenna receiving matrix according to parameters received from the base station.
  • Step 205 The UE generates an uplink precoding matrix based on the first multi-antenna receiving matrix and the channel matrix.
  • Step 206 The UE determines whether the UE meets a preset condition.
  • the preset condition may be an interference constraint condition, a power constraint condition, or a fairness constraint condition.
  • the interference constraint is used to ensure that the application access signal to be sent by the UE does not cause interference to other UEs of the system or that the interference caused by the UE is small.
  • the power constraint condition is used to ensure that the current transmit power meets a certain transmit power.
  • the fairness constraint is used to ensure the fairness of each UE in the system to send an application access signal.
  • determining whether the UE meets the preset condition may include at least one of the following manners:
  • the first implementation manner is to determine whether the transmit power of the UE is greater than the preset transmit power. When the transmit power of the UE is greater than the preset transmit power, determine that the UE meets the preset condition.
  • the preset transmit power may be configured by the base station, or may be agreed by a protocol, which is not limited by the embodiment of the present invention.
  • the power constraint condition is defined by the first implementation manner. When the transmit power of the UE is greater than the preset transmit power, the UE may determine that the UE meets the power constraint condition, and determine that the UE meets the preset condition. .
  • the second implementation manner is: determining whether the fairness parameter of the UE is greater than the first parameter threshold and less than the second parameter threshold. When the fairness parameter of the UE is greater than the first parameter threshold and less than the second parameter threshold, determining the The UE satisfies the preset condition.
  • the fairness parameter refers to a ratio between an uplink throughput rate and a maximum transmission rate within a first preset duration before the current time.
  • the UE's fairness parameter can be expressed by the following formula:
  • I u represents an uplink throughput rate of the UE within a first preset duration before the current moment
  • I max represents a maximum transmission rate of the UE within a first preset duration before the current moment
  • the access priority is set to be higher to ensure that the UE can preferentially access.
  • the fairness constraint can avoid that some UEs do not have access to the opportunity and some UEs monopolize the channel, ensuring fairness of access of each UE.
  • the first parameter threshold and the second parameter threshold may be agreed in advance with the base station, or may be preset by the UE, or configured by the base station, which is not limited in this embodiment of the present invention.
  • the second implementation manner defines the fairness constraint.
  • the UE may determine that the UE meets the fairness constraint. And determining that the UE satisfies the preset condition.
  • the first parameter threshold and the second parameter threshold are determined by considering a fair access condition of the UE, for example, the base station may perform long-term statistical determination on the scheduling situation of the user in the cell where the UE is located, or It can be set by the technician based on experience.
  • the third implementation manner is: determining whether the two norm of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix is greater than a preset two norm threshold, when the second multi-antenna receiving matrix is transposed When the two norms of the matrix obtained by multiplying the matrix by the channel matrix are greater than the preset two norm threshold, determining that the UE satisfies the preset condition, the second multi-antenna receiving matrix is based on the configured flow number of the UE, The channel matrix and the first multi-antenna receiving matrix are determined, and the configured layer number is used to indicate the number of data streams that the UE is allowed to transmit.
  • the base station may set a minimum access threshold minPreRxPower according to the cell condition, and when the UE calculates max
  • the number of layers selected may also be reduced, so as to improve the success rate of the UE access.
  • the number of layers selected by the UE is reduced to one layer, and the base station is an omnidirectional antenna, the UE is equivalent to returning to the existing random access mechanism, that is, only relying on code domain multiplexing of orthogonal sequences. Access.
  • the relationship between the number of layers and the coverage of the base station can be referred to FIG. 2B.
  • the 4-layer channel matrix corresponds to four pairs of orthogonal beams, and the four beams can reach the farthest distance, and along with The rotation of the four beam directions also covers the largest range.
  • the two-layer channel matrix corresponds to two mutually orthogonal beams, and the two beams can reach less than four layers at the same power, but the lateral coverage ranges from more than four layers.
  • the precoding codebook supports at most only the precoding matrix corresponding to the maximum number of layers of 4 layers, the space resources that can be covered are very limited.
  • the base station can freely preset the channel matrix for the UE, the number of layers of the channel matrix and the direction of the column vectors in each layer can be freely preset, thereby greatly increasing the space resources that can be covered, and enhancing Coverage of UEs within the service area.
  • each of the different layers may also correspond to the determined base station antenna port.
  • Step 207 When the UE meets the preset condition, send an access request to the base station based on the uplink precoding matrix.
  • Step 208 The base station determines at least one first multi-antenna receiving matrix based on parameters sent to the at least one UE, and performs detection in a direction corresponding to the at least one first multi-antenna receiving matrix to determine each first multi-antenna receiving. The number of UEs requesting access in the direction corresponding to the matrix.
  • multiple UEs may send an access request to the base station, and at the same time, there may be multiple sets of candidate first multi-antenna receiving matrices at the same time. Therefore, the base station may preset a plurality of first multiples through the transmitted parameters. An access request is detected in the direction of the antenna receiving matrix to detect all UEs transmitting the access request.
  • the base station may use a detection algorithm such as Serial Interference Cancellation (SIC) or Interference Alignment (IA) for detection.
  • SIC Serial Interference Cancellation
  • IA Interference Alignment
  • Step 209 The base station determines the fairness parameter of each UE that is requested to access in the direction of each first multi-antenna receiving matrix, and the number of UEs that are allowed to access in the direction corresponding to each first multi-antenna receiving matrix, and based on each first The number of UEs to apply for access in the direction corresponding to the multi-antenna receiving matrix, the fairness parameter of each UE to be accessed, and the number of UEs that are allowed to access, determine the allowable access in the direction corresponding to each of the first multi-antenna receiving matrices UE.
  • the fairness parameter of each UE may be sent by the UE, or may be calculated by the base station, which is not limited by the embodiment of the present invention. If code domain multiplexing is performed in a direction corresponding to a first multiple antenna receiving matrix, the number of UEs allowed to access in the direction also needs to be determined according to actual code domain multiplexing.
  • the base station may first determine a frequency domain resource configured for the at least one UE, and then perform multiple detections on the multiple antenna receiving matrix of the multiple layers corresponding to the frequency domain resource.
  • the base station can count the total number of UEs detected at each layer and the total number of UEs allowed to access in each layer, and judge each layer according to the total number of UEs detected by each layer and the total number of UEs allowed to be accessed by each layer. Whether there is a user conflict condition, and then the total number of UEs detected by each layer, the user conflict situation, and the fairness parameters of each UE detected by each layer are integrated, and it is determined comprehensively which UE of each layer is authorized to access.
  • determining, according to the number of UEs that apply for access in the direction corresponding to each of the first multi-antenna receiving matrices, the number of UEs that are allowed to access, and the fairness parameters of each UE, determining the direction corresponding to each of the first multi-antenna receiving matrices The UEs that allow access can include the following two implementations:
  • the first implementation manner is: when the number of UEs to apply for access in the direction corresponding to the target first multi-antenna receiving matrix is less than or equal to the number of UEs that are allowed to access, the direction corresponding to the target first multi-antenna receiving matrix is All UEs that apply for access are determined to be UEs that are allowed to access in a direction corresponding to the target first multi-antenna receiving matrix, and the target first multi-antenna receiving matrix is any one of the at least one first multi-antenna receiving matrix A multi-antenna reception matrix.
  • the second implementation manner is: when the number of UEs to apply for access in the direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, apply in the direction corresponding to the target first multi-antenna receiving matrix
  • the M UEs in the UE that are ranked in the preceding or following are determined to be the UEs that are allowed to access in the direction corresponding to the target first multi-antenna receiving matrix, and the M is equal to the target multi-antenna receiving matrix corresponding to the target.
  • the number of UEs allowed to access in the direction is: when the number of UEs to apply for access in the direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, apply in the direction corresponding to the target first multi-antenna receiving matrix
  • the M UEs in the UE that are ranked in the preceding or following are determined to be the UEs that are allowed to access in the
  • the UEs with the higher access fairness parameters are preferentially accessed, and the UEs with higher priority are preferentially accessed, and the fairness parameters are sorted by the priority of the UEs that are allowed to access the UEs.
  • the UEs that are determined to be allowed to access the M UEs may implement preferential access to UEs with lower fairness parameters, and ensure fairness of UE access, so that UEs with lower fairness parameters also have opportunities to access the base station.
  • Step 210 The base station sends the authorization indication information to the UE that is allowed to access in the spatial direction corresponding to the first multiple antenna receiving matrix, where the authorization indication information is used to indicate that the corresponding UE is allowed to access.
  • the base station may further send the conflict resolution indication information to the UE that is not allowed to access, where the conflict resolution indication information is used to indicate that the corresponding UE performs at least one of the following manners: determining that the current access fails The fairness parameter is updated; after the third preset duration is delayed, the access request is sent to the base station again; and the access priority of the corresponding UE is increased, where the access priority is used to indicate the success rate of the corresponding UE access.
  • the improving the access priority of the corresponding UE includes at least one of the following methods: increasing the transmit power of the corresponding UE, reducing the number of layers selected by the corresponding UE, and adding an orthogonal sequence to the application sequence of the sent access request. .
  • increasing the access priority of the corresponding UE the UE can preferentially send an access request when the next access time is reached, and the success rate of the access is also improved.
  • a UE that satisfies an authorization condition in the direction may authorize access, and a UE that does not satisfy the authorization condition in the layer may not authorize access, and may also
  • the conflict resolution indication information is sent according to the preset conflict resolution rule, and the conflict resolution information indication information may be used to indicate that the UE abandons the access, delays access, or upgrades the priority, and then applies for access.
  • Step 211 When the UE receives the authorization indication information sent by the base station within a second preset duration after the uplink precoding matrix sends the access request to the base station, access the communication network where the base station is located or connect Enter the communication network where the base station is located and send data to the communication network where the base station is located.
  • the second preset duration may be set by default by the UE, or may be agreed in advance by the UE and the base station, which is not limited by the embodiment of the present invention.
  • the UE may access the communication network where the base station is located, and when the sent access request includes data and receives the authorization indication information, the UE accesses the The communication network where the base station is located and transmits data to the communication network where the base station is located.
  • Step 212 Perform a preset operation when the UE does not receive the authorization indication information within the second preset duration after the UE sends an access request to the base station based on the uplink precoding matrix.
  • the preset operation may be configured by the base station, for example, the conflict resolution information sent by the base station indicates the information configuration, and may be agreed with the UE in advance, for example, by using a protocol, which is not limited by the embodiment of the present invention.
  • the preset operation may include: performing at least one of the following operations: determining that the UE access fails, and updating the fairness parameter of the UE; after delaying the third preset duration, resending the access request to the base station; The access priority of the UE, where the access priority is used to indicate the success rate of access by the UE.
  • the preset operation is performed only when the UE does not receive the authorization indication information within the second preset duration after the UE sends an access request to the base station based on the uplink precoding matrix.
  • the UE may perform an operation specified by the conflict resolution information indication information when receiving the conflict resolution information indication information sent by the base station.
  • the embodiment of the present invention is only in the uplink access scenario, the UE first determines whether the user meets the preset condition, and when it is determined that the preset condition is met, the UE sends an access request to the base station as an example.
  • the UE may first determine whether it meets the preset condition, and then send data to the base station when it is determined that the preset condition is met.
  • the base station may preset a multi-antenna receiving matrix of the base station end for the UE, and the UE may generate an uplink precoding matrix that matches the multi-antenna receiving matrix preset by the base station according to the configuration parameter of the base station, and then bases the generated uplink precoding.
  • the matrix sends an uplink signal to the base station.
  • FIG. 3A is a block diagram of a space division multiplexing multiple access device according to an embodiment of the present invention, which may be a UE.
  • the apparatus includes:
  • a determining module 301 configured to perform the operations performed by step 104 in the foregoing embodiment of FIG. 1E;
  • a generating module 302 configured to perform the operations performed by step 105 in the foregoing embodiment of FIG. 1E;
  • the sending module 303 is configured to perform the operations performed by step 106 in the foregoing embodiment of FIG. 1E.
  • the apparatus further includes:
  • the receiving module 304 and the channel estimating module 305 are configured to perform the operations performed by step 102 in the embodiment described above with reference to FIG. 1E.
  • the generating module 302 includes:
  • a first determining unit 3021 configured to determine a second multi-antenna receiving matrix based on the stored configuration layer number, the channel matrix, and the first multi-antenna receiving matrix;
  • a second determining unit 3022 configured to determine, as the uplink precoding matrix, a transposed matrix of a matrix obtained by multiplying a transposed matrix of the second multi-antenna receiving matrix by the channel matrix;
  • the number of the configuration layer is used to indicate the number of data streams that the UE is allowed to transmit
  • the second multi-antenna receiving matrix is composed of the specified L column vectors of the plurality of column vectors included in the first multi-antenna receiving matrix.
  • the L corresponds to the number of configuration layers
  • the specified L column vectors are L column vectors corresponding to the largest specified norm in any L column vectors included in the plurality of column vectors
  • the specified two norms are The two norms of the matrix obtained by multiplying the transposed matrix of the composed matrix by the channel matrix.
  • the generating module 302 further includes:
  • the triggering unit 3023 is configured to trigger the second determining unit 3022 to trigger the second norm 3022 when the two norm of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix is greater than a preset two-norm threshold
  • the transposed matrix of the matrix obtained by multiplying the transposed matrix of the two-multiple antenna receiving matrix by the channel matrix is determined as the uplink precoding matrix.
  • the determining module 301 includes:
  • the third determining unit 3011 determines, according to the prior agreement or the parameter received from the base station, the first multi-antenna receiving matrix from the at least one multi-antenna receiving matrix, where the at least one multi-antenna receiving matrix is pre-agreed or received from the base station ;
  • the generating unit 3012 is configured to generate the first multi-antenna receiving matrix according to the prior agreement or the parameter received from the base station and the at least one expected receiving matrix generating rule, where the at least one expected receiving matrix generating rule is agreed in advance or received from the base station get.
  • the generating unit 3012 includes:
  • a first determining subunit configured to determine, according to the prior agreement or a parameter received from the base station, a target parameter, where the target parameter is a parameter used to generate the first multi-antenna receiving matrix
  • a second determining subunit configured to determine, according to the at least one expected receiving matrix generation rule, a target expected receiving matrix generating rule, where the target expected receiving matrix generating rule is a desired receiving matrix generating rule used to generate the first multi-antenna receiving matrix;
  • the first determining subunit is configured to:
  • the parameter corresponding to the target time-frequency resource is determined from the parameters corresponding to the different time-frequency resources, where the target time-frequency resource refers to the current application for access. Or the time-frequency resource used to send the data;
  • the target parameter is determined based on a parameter corresponding to the target time-frequency resource.
  • the first determining subunit is configured to:
  • the target layer corresponding to the target time-frequency resource is determined according to the layer mapping rule, where the layer mapping rule is used to indicate the mapping relationship between the time-frequency resource and the layer ;
  • the first determining subunit is configured to:
  • the parameter corresponding to the at least one layer is a pseudo-random sequence construction parameter, constructing a plurality of random numbers according to the pseudo-random sequence construction parameter according to a pre-agreed or pseudo-random sequence construction rule received from the base station;
  • the selected at least one random number is determined as a parameter corresponding to the target layer.
  • the second determining subunit is configured to:
  • the target expected reception matrix generation rule is determined from the at least one expected reception matrix generation rule based on the index information.
  • the at least one expected reception matrix generation rule includes an N-dimensional matrix
  • the column vectors in the N-dimensional matrix are orthogonal to each other, and the N-dimensional matrix includes N-1 variable parameters, and each variable parameter is used to indicate a rotation angle of the corresponding column vector, and the N is a positive integer.
  • the at least one expected reception matrix generation rule includes an N-dimensional initial orthogonal basis and a transformation rule
  • the transformation rule is used to indicate that at least one vector element in the initial orthogonal basis is transformed based on the prior agreement or a parameter received from the base station, and Schmitt orthogonalization is performed on the transformed initial orthogonal basis. And obtaining the first multi-antenna receiving matrix, where N is a positive integer.
  • the apparatus further includes:
  • the determining module 306 is configured to determine whether the UE meets a preset condition
  • the triggering module 307 is configured to trigger the sending module 303 to send an access request or data to the base station based on the uplink precoding matrix when the UE meets the preset condition.
  • the determining module 307 is configured to perform at least one of the following manners:
  • the fairness parameter refers to a ratio between an uplink throughput rate and a maximum transmission rate within a first preset time period before the current time; or
  • the second multi-antenna receiving matrix Determining whether a norm of the matrix obtained by multiplying the transposed matrix of the second multi-antenna receiving matrix by the channel matrix is greater than a preset two norm threshold, when the transposed matrix of the second multi-antenna receiving matrix is compared with the channel matrix
  • the two norm of the obtained matrix is greater than the preset two norm threshold
  • the second multi-antenna receiving matrix is based on the configured flow number of the UE, the channel matrix, and the first The multi-antenna receiving matrix determines that the number of configuration layers is used to indicate the number of data streams that the UE is allowed to transmit.
  • the access request includes data
  • the access request is used to request access to a communication network where the base station is located and send data to a communication network where the base station is located.
  • the apparatus further includes:
  • the adding module 308 is configured to: when the access request includes data, add a first orthogonal sequence at a preset position of the application sequence of the access request and/or add a second orthogonal sequence to the data;
  • the first orthogonal sequence and the second orthogonal sequence are both used to identify the UE.
  • the apparatus further includes:
  • the access module 309 is configured to: when the authorization indication information sent by the base station is received within a second preset duration after the uplink request is sent to the base station by using the uplink precoding matrix, a communication network where the base station is located or a communication network where the base station is located, and sends data to the communication network where the base station is located, where the authorization indication information is used to indicate that the UE is allowed to access;
  • the authorization indication information is a number of UEs that the base station requests to access in a direction corresponding to the first multi-antenna receiving matrix, a number of UEs that are allowed to access, and a fairness parameter of each UE that is requested to access.
  • the fairness parameter refers to a ratio between an uplink throughput rate and a maximum transmission rate within a second preset time period before the current time.
  • the apparatus further includes:
  • the executing module 310 is configured to perform at least one of the following steps when the authorization indication information is not received within the second preset duration after the access request is sent to the base station by using the uplink precoding matrix:
  • the access priority of the UE is increased, and the access priority is used to indicate the success rate of access by the UE.
  • the improving the access priority of the UE includes at least one of the following manners:
  • An orthogonal sequence is added to the application sequence of the access request to be transmitted.
  • the base station may preset a multi-antenna receiving matrix of the base station end for the UE, and the UE may generate an uplink precoding matrix that matches the multi-antenna receiving matrix preset by the base station according to the configuration parameter of the base station, and then bases the generated uplink precoding.
  • the matrix sends an uplink signal to the base station.
  • FIG. 4A is a block diagram of an apparatus for spatial division multiplexing multiple access method according to an embodiment of the present invention, which may be a base station.
  • the apparatus includes:
  • the sending module 401 is configured to perform the operations performed by step 103 in the embodiment of FIG. 1E.
  • the sending module 401 is further configured to perform the operations performed by step 101 in the embodiment of FIG. 1E.
  • the apparatus further includes:
  • the first determining module 402 and the detecting module 403 are configured to perform the operations performed by step 208 in the embodiment of FIG. 2A above;
  • a second determining module 404 and a third determining module 405, configured to perform the operations performed by step 209 in the embodiment of FIG. 2A above;
  • the sending module 401 is further configured to perform the operations performed by step 210 in the embodiment of FIG. 2A.
  • the third determining module 405 includes:
  • the first determining unit 4051 is configured to: when the number of UEs that apply for access in a direction corresponding to the target first multi-antenna receiving matrix is less than or equal to the number of UEs that are allowed to access, the target first multi-antenna receiving matrix is corresponding to All UEs that apply for access in the direction are determined to be UEs that are allowed to access in a direction corresponding to the target first multi-antenna receiving matrix, and the target first multi-antenna receiving matrix is any one of the at least one first multi-antenna receiving matrix a first multiple antenna receiving matrix;
  • a second determining unit 4052 configured to: when the number of UEs that apply for access in a direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, the direction corresponding to the target first multi-antenna receiving matrix
  • the M UEs in the UE that apply for access are ranked as the UEs that are allowed to access in the direction corresponding to the target first multi-antenna receiving matrix, and the M is equal to the target multi-antenna receiving matrix corresponding to the target.
  • the number of UEs allowed to access in the direction is configured to: when the number of UEs that apply for access in a direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, the direction corresponding to the target first multi-antenna receiving matrix
  • the M UEs in the UE that apply for access are ranked as the UEs that are allowed to access in the direction corresponding to the target first
  • the sending module 401 is further configured to: when the number of UEs that apply for access in a direction corresponding to the target first multi-antenna receiving matrix is greater than the number of UEs that are allowed to access, the first multi-antenna receiving matrix for the target.
  • the UE that is not allowed to access in the UE that is requested to access in the corresponding direction sends the conflict resolution indication information to the UE that is not allowed to access, and the conflict resolution indication information is used to indicate that the corresponding UE performs at least one of the following modes:
  • the access priority of the corresponding UE is increased, and the access priority is used to indicate the success rate of the corresponding UE access.
  • the improving the access priority of the corresponding UE includes at least one of the following manners:
  • An orthogonal sequence is added to the application sequence of the access request to be transmitted.
  • the base station may preset a multi-antenna receiving matrix of the base station end for the UE, and the UE may generate an uplink precoding matrix that matches the multi-antenna receiving matrix preset by the base station according to the configuration parameter of the base station, and then bases the generated uplink precoding.
  • the matrix sends an uplink signal to the base station.
  • space division multiplexing multiple access device provided by the foregoing embodiment is only illustrated by the division of the foregoing functional modules when performing access. In actual applications, the foregoing functions may be allocated according to requirements. Different functional modules are completed, that is, the internal structure of the device is divided into different functional modules to complete all or part of the functions described above.
  • the space division multiplexing multiple access device provided by the foregoing embodiment and the space division multiplexing multiple access method are in the same concept. For details, refer to the method embodiment, and details are not described herein again.
  • the computer program product includes one or more computer instructions.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer instructions can be stored in a computer readable storage medium or transferred from one computer readable storage medium to another computer readable storage medium, for example, the computer instructions can be from a website site, computer, server or data center Transfer to another website site, computer, server, or data center by wire (eg, coaxial cable, fiber optic, Digital Subscriber Line (DSL)) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer readable storage medium can be any available media that can be accessed by a computer or a data storage device such as a server, data center, or the like that includes one or more available media.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a digital versatile disc (DVD)), or a semiconductor medium (for example, a solid state disk (SSD)). )Wait.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a digital versatile disc (DVD)
  • DVD digital versatile disc
  • SSD solid state disk
  • an embodiment of the present invention further provides a computer readable storage medium having instructions stored therein, when executed on a computer, causing the computer to perform the above-described FIG. 1E or FIG. 2A
  • the embodiment of the present invention further provides a computer program product comprising instructions, when executed on a computer, causing the computer to perform the method performed by the base station or the method performed by the UE in any of the embodiments described above with reference to FIG. 1E or FIG. 2A.
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种空分复用多址接入方法、装置及存储介质,属于通信技术领域。该方法包括:根据事先约定或者从基站接收的参数,确定第一多天线接收矩阵,该参数用于指示该基站预先设置的多天线接收矩阵;基于该第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,该信道矩阵是指该UE与该基站之间的信道矩阵;基于该上行预编码矩阵向该基站发送接入请求或数据。本申请通过为UE预置基站端多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,进而增大了基站可容纳的上行接入的UE的数目。

Description

空分复用多址接入方法、装置及存储介质 技术领域
本申请涉及通信技术领域,特别涉及一种空分复用多址接入方法、装置及存储介质。
背景技术
空分复用多址接入(Space Division Multiple Access,SDMA)是复用空间资源的一种多址接入技术,采用SDMA技术的多个用户设备(User Equipment,UE)可以使用完全相同的时域、频域和码域资源,在不同的空间资源上进行数据传输。其中,在SDMA系统的上行链路中,UE需要向基站发送接入请求,以便接入通信网络,进而与基站进行数据传输。而且,在UE进行上行空分复用多址接入的过程中,UE还可以对发送的上行信号进行预编码处理,以便使发送信号的空间分布特性与信道条件相匹配。
相关技术中,提供了一种空分复用多址接入方法,包括:基站基于UE发送的探测参考信号对该UE与基站之间的上行信道进行信道估计,得到上行信道矩阵,然后基于上行信道矩阵从与UE的预编码码本中选择与当前上行信道条件最为匹配的预编码矩阵,该预编码码本中包括固定配置的多个预编码矩阵,之后根据选择的预编码矩阵向UE发送预编码矩阵指示(Precoding Matrix Indicator,PMI)信息,该PMI信息用于指示选择的预编码矩阵。UE可以根据该PMI信息从存储的预编码码本中选择对应的预编码矩阵,然后基于该预编码矩阵向基站发送接入请求,以接入基站所在的通信网络。
相关技术中,基站需要下发PMI指示给每个UE,因此需要占用大量的下行链路资源,而且由于UE与基站的预编码码本仅包括固定配置的多个预编码矩阵,且包括的预编码矩阵的数目也有限,比如实际应用中,预编码码本最多仅支持与最大层数4层对应的预编码矩阵,因此UE能够选择的预编码矩阵也有限,从而限制了UE可利用的上行空间资源,进而限制了基站可容纳的上行接入的UE的数目。
发明内容
为了解决现有技术的存在的上行空间资源的利用率较低,且会限制基站可容纳的上行接入UE数目的问题,本申请提供了一种空分复用多址接入方法、装置及存储介质。所述技术方案如下:
第一方面,提供了一种空分复用多址接入方法,应用于UE中,所述方法包括:
根据事先约定或者从基站接收的参数,确定第一多天线接收矩阵,所述参数用于指示所述基站预先设置的多天线接收矩阵;
基于所述第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,所述信道矩阵是指所述UE与所述基站之间的信道矩阵;
基于所述上行预编码矩阵向所述基站发送接入请求,以接入所述基站所在的通信网络,或者基于所述上行预编码矩阵向所述基站发送数据。
其中,所述信道矩阵是指所述UE与所述基站之间的信道的信道矩阵,具体可以为所述UE与所述基站之间的上行信道的信道矩阵,也可以为所述UE与所述基站之间的下行信道的信道矩阵,也可以为根据信道互易性,将下行信道矩阵进行转换得到的上行信道矩阵。
也即是,UE可以根据基站的配置,生成与基站预置的基站端的多天线接收矩阵匹配的上行预编码矩阵,然后基于生成的上行预编码矩阵向基站发送接入请求或数据,以进行接入或进行数据传输。通过为UE预置基站端的多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,进而增大了基站可容纳的上行接入的UE的数目。而且在此过程中,基站也无需下发PMI指示给UE,节省了下行链路资源。
在具体实现中,所述事先约定的参数为所述基站为所述UE预先配置的参数,或者所述基站与所述UE预先通过协议约定的参数。其中,所述预先通过协议约定的参数可以由所述基站与所述UE直接在协议中通过表格或者公式等的形式约定。所述基站为所述UE预先配置的参数可以由所述基站通过向所述UE发送配置信息进行配置。
在另一实施例中,所述基于所述多天线接收矩阵和信道矩阵生成上行预编码矩阵之前,还包括:
接收所述基站发送的参考信号,所述参考信号为能够辅助所述UE进行信道估计的参考信号;
基于所述参考信号对所述UE与所述基站之间的下行信道进行信道估计,得到所述信道矩阵。
其中,所述信道估计是指根据所述参考信号将所述下行信道对应的信道模型的模型参数估计出来,并根据估计出来的模型参数确定所述下行信道矩阵,所述模型参数为用于确定对应信道矩阵的模型参数。
本发明实施例对于TDD系统可以根据信道互易性,将对下行信道进行信道估计得到的下行信道矩阵转换为上行信道矩阵,进而根据上行信道矩阵生成上行预编码矩阵,如此即可避免基站对与每个UE的之间的上行信道进行测量,减小基站用于信道估计的时间开销和计算开销。
在具体实现中,基于第一所述多天线接收矩阵和信道矩阵生成上行预编码矩阵,包括:
基于存储的配置层数、所述信道矩阵和所述第一多天线接收矩阵,确定第二多天线接收矩阵;
其中,所述配置层数用于指示所述UE允许传输的数据流个数,所述第二多天线接收矩阵是由所述第一多天线接收矩阵包括的多个列向量中的指定L个列向量组成得到,所述L与所述配置层数对应,且所述指定L个列向量是所述多个列向量包括的任意L个列向量中对应指定二范数最大的L个列向量,所述指定二范数是指所组成的矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数;
将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵。
具体地,UE可以基于配置层数,从第一多天线接收矩阵中选择子矩阵作为第二多天线接收矩阵,且选择的子矩阵是其转置矩阵与信道矩阵相乘得到的矩阵的二范数最大的子矩阵,然后可以将第二多天线接收矩阵的转置矩阵与信道矩阵相乘得到的矩阵的转置矩阵即发射端 的发射矩阵,确定为上行预编码矩阵。如此,即可保证用于发送接入请求或数据的传输矩阵的能量最大,传输过程中接入请求或数据的损失最小,从而使得传输效果最好。
在具体实现中,所述将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵之前,还包括:
当所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数大于预设二范数阈值时,执行将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵的步骤。
也即是,基站可以根据实际传输情况设置最低接入门限即预设二范数阈值,当UE确定的第二多天线接收矩阵满足最低接入门限时,才发送接入请求或数据。
其中,所述预设二范数阈值可以根据链路质量和小区负载确定得到,或者根据所述UE所在小区可容纳的用户数目和用户分布模型确定得到,或者通过对所述UE所在小区中用户的调度情况进行长期统计确定得到,或者由技术人员根据经验设置得到。
在具体实现中,所述根据事先约定或者从基站接收的参数,确定第一多天线接收矩阵,包括:
基于所述事先约定或者从基站接收的参数,从至少一个多天线接收矩阵中确定所述第一多天线接收矩阵,所述至少一个多天线接收矩阵为事先约定或者从所述基站接收得到;或者,
基于所述事先约定或者从基站接收的参数和至少一个期望接收矩阵生成规则,生成所述第一多天线接收矩阵,所述至少一个期望接收矩阵生成规则为事先约定或者从所述基站接收得到。
也即是,UE根据事先约定或者从基站接收的参数确定第一多天线接收矩阵时,具体可以根据基站的配置参数从至少一个多天线接收矩阵中选择第一多天线接收矩阵,也可以根据配置参数和生成规则生成第一多天线接收矩阵。
在具体实现中,所述基于所述事先约定或者从基站接收的参数和事先约定或者从所述基站接收的至少一个期望接收矩阵生成规则,生成所述第一多天线接收矩阵,包括:
基于所述事先约定或者从基站接收的参数确定目标参数,所述目标参数为生成所述第一多天线接收矩阵所使用的参数;
基于所述至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则,所述目标期望接收矩阵生成规则为生成所述第一多天线接收矩阵所使用的期望接收矩阵生成规则;
基于所述目标参数和所述目标期望接收矩阵生成规则,生成所述第一多天线接收矩阵。
在具体实现中,所述基于所述事先约定或者从基站接收的参数确定目标参数,包括:
当所述事先约定或者从基站接收的参数包括不同时频资源对应的参数时,从所述不同时频资源对应的参数中确定目标时频资源对应的参数,所述目标时频资源是指当前申请接入或发送数据所使用的时频资源;
基于所述目标时频资源对应的参数,确定所述目标参数。
由于该参数包括不同时频资源对应的参数,因此该参数无需基站频繁配置,且基于该参数生成的第一多天线接收矩阵可以随时间动态变化,也即是,基站可以为UE在不同时间预设不同的多天线接收矩阵,从而避免了UE在空间资源上的冲突,进一步增大了基站可容纳的上行接入的UE的数目。
在具体实现中,所述基于所述目标时频资源对应的参数,确定所述目标参数,包括:
当所述目标时频资源对应的参数包括至少一个层对应的参数时,基于层映射规则确定所述目标时频资源对应的目标层,所述层映射规则用于指示时频资源和层之间的映射关系;
从所述至少一个层对应的参数中选择所述目标层对应的参数,并将选择的参数确定为所述目标参数。
在具体实现中,所述从所述至少一个层对应的参数中选择所述目标层对应的参数,包括:
当所述至少一个层对应的参数为伪随机序列构造参数时,基于所述伪随机序列构造参数按照事先约定或者从所述基站接收的伪随机序列构造规则,构造多个随机数;
基于所述目标层按照事先约定或者从所述基站接收的取数规则,从所述多个随机数中选取至少一个随机数;
将选取的至少一个随机数确定为所述目标层对应的参数。
由于伪随机序列构造参数的数据量要远远小于具体的参数,因此通过根据伪随机序列构造参数指示多天线接收矩阵,能够大大减小系统中传输的数据量,进而减小系统负担。
在具体实现中,所述基于所述至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则,包括:
当所述事先约定或者从所述基站接收参数包括所述目标期望接收矩阵生成规则的索引信息时,基于所述索引信息,从所述至少一个期望接收矩阵生成规则中确定所述目标期望接收矩阵生成规则。
通过索引信息配置目标期望接收矩阵生成规则,实现了目标期望接收矩阵生成规则的动态配置,提高了生成第一多天线接收矩阵的灵活性。
在具体实现中,所述至少一个期望接收矩阵生成规则包括N维矩阵;
其中,所述N维矩阵中的列向量两两正交,且所述N维矩阵包括N-1个变量参数,每个变量参数用于指示对应的列向量的旋转角度,所述N为正整数。
在具体实现中,所述至少一个期望接收矩阵生成规则包括N维的初始正交基和变换规则;
其中,所述变换规则用于指示基于所述事先约定或者从基站接收的参数对所述初始正交基中的至少一项向量元素进行变换,并对变换后的初始正交基进行施密特正交化,以得到所述第一多天线接收矩阵,所述N为正整数。
由于上述N维矩阵以及N维的初始正交基和变换规则这两种期望接收矩阵生成规则均可以生成覆盖空间所有方向的多天线接收矩阵,因此,利用这两种期望接收矩阵生成规则即可实现对空间资源的充分利用。
在另一实施例中,所述基于所述上行预编码矩阵向所述基站发送接入请求或数据之前,还包括:
判断所述UE是否满足预设条件;
当所述UE满足所述预设条件时,执行基于所述上行预编码矩阵向所述基站发送接入请求或数据的步骤。
在具体实现中,所述判断所述UE是否满足预设条件,包括以下方式中的至少一种:
判断所述UE的发射功率是否大于预设发射功率,当所述UE的发射功率大于所述预设发射功率时,确定所述UE满足所述预设条件;
判断所述UE的公平性参数是否大于第一参数阈值且小于第二参数阈值,当所述UE的公平性参数大于所述第一参数阈值且小于所述第二参数阈值时,确定所述UE满足所述预设 条件,所述公平性参数是指在距当前时刻之前的第一预设时长内的上行吞吐率和最大传输速率之间的比值;或,
判断第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数是否大于预设二范数阈值,当所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数大于所述预设二范数阈值时,确定所述UE满足所述预设条件,所述第二多天线接收矩阵是基于所述UE的配置流数、所述信道矩阵和所述第一多天线接收矩阵确定得到,所述配置层数用于指示所述UE允许传输的数据流个数。
其中,所述第一参数阈值和所述第二参数阈值为综合考虑UE的公平性接入情况确定得到,例如,可以由基站对所述UE所在小区中用户的调度情况进行长期统计确定得到,或者由技术人员根据经验设置得到。
本发明实施例中,通过为UE配置的约束条件,以便UE根据配置的约束条件自行判断是否申请上行接入,可以让UE也有一定的自主参与权利,提高了UE接入的灵活性。
在具体实现中,所述接入请求包含数据,所述接入请求用于请求接入所述基站所在的通信网络并向所述基站所在的通信网络发送数据。也即是,本发明实施例中,通过接入请求还可以直接传输数据。
在另一实施例中,所述基于所述上行预编码矩阵向所述基站发送接入请求之前,还包括:
当所述接入请求包含数据时,在所述接入请求的申请序列的预设位置添加第一正交序列和/或在所述数据中添加第二正交序列;
其中,所述第一正交序列和所述第二正交序列相对应,均用于标识所述UE。
通过在UE发送的接入请求中添加正交序列,可以便于基站根据正交序列区分用户,且可以实现同一空间方向上码域上的复用,增加同一空间方向上可容纳的用户数目,提升通信效率。
在另一实施例中,所述方法还包括:
当在基于所述上行预编码矩阵向所述基站发送所述接入请求之后的第二预设时长内接收到所述基站发送的授权指示信息时,接入所述基站所在的通信网络或者接入所述基站所在的通信网络并向所述基站所在的通信网络发送数据,所述授权指示信息用于指示允许所述UE接入;
其中,所述授权指示信息是所述基站基于所述第一多天线接收矩阵对应的方向上申请接入的UE的数目、允许接入的UE的数目和申请接入的各个UE的公平性参数确定发送的,所述公平性参数是指在距当前时刻之前的第二预设时长内的上行吞吐率和最大传输速率之间的比值。
通过根据基站的授权进行接入,可以避免同一空间方向上用户的冲突,而且通过基站根据各个UE的公平性参数确定授权的UE,可以让各个UE有公平接入的机会,避免出现饿死或独占信道的现象。
在另一实施例中,所述方法还包括:
当在基于所述上行预编码矩阵向所述基站发送接入请求之后的所述第二预设时长内未接收到所述授权指示信息时,执行以下步骤中的至少一种:
确定所述UE接入失败,并更新所述UE的公平性参数;
延迟第三预设时长之后,重新向所述基站发送接入请求;或,
提高所述UE的接入优先级,所述接入优先级用于指示所述UE接入的成功率。
在具体实现中,所述提高所述UE的接入优先级,包括以下方式中的至少一种:
提高所述UE的发射功率;
降低所述UE选择的层数;
在将发送的接入请求的申请序列中增加正交序列。
当UE不被允许接入时,通过放弃此次接入、延迟接入或者提高接入优先级后再接入等方式,可以进一步解决用户冲突,提高UE的接入成功率。
第二方面,提供了一种空分复用多址接入方法,应用于基站中,所述方法包括:
向至少一个用户设备UE发送参数,由所述至少一个UE中的每个UE基于接收的参数确定第一多天线接收矩阵,基于确定的第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,并基于所述上行预编码矩阵向所述基站发送接入请求或数据,以接入所述基站所在的通信网络,或者基于所述上行预编码矩阵向所述基站发送数据;
其中,所述参数用于指示所述基站预先设置的多天线接收矩阵,所述信道矩阵为每个UE与所述基站之间的信道矩阵。
也即是,基站可以为UE预置基站端的多天线接收矩阵,UE可以根据基站的配置生成与基站预置的多天线接收矩阵匹配的预编码矩阵,然后基于生成的预编码矩阵向基站发送接入请求或数据,以进行接入或进行数据传输。通过为UE预置基站端的多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且在此过程中基站也无需下发PMI指示给UE,节省了下行链路资源。
在另一实施例中,所述向至少一个UE发送参数之前,还包括:
向所述至少一个UE发送参考信号,由所述至少一个UE中的每个UE基于接收的参考信号对与所述基站之间的下行信道进行信道估计,得到所述信道矩阵。
通过向UE发送能够辅助UE进行信道估计的参考信号,以便UE对下行信道进行估计得到下行信道矩阵,并根据信道互易性将下行信道矩阵转换为上行信道矩阵,可以减小系统中对上行信道矩阵的反馈开销。
在另一实施例中,
所述向至少一个UE发送参数之后,还包括:
基于向所述至少一个UE发送的参数,确定至少一个第一多天线接收矩阵;
在所述至少一个第一多天线接收矩阵对应的方向上进行检测,以确定各个第一多天线接收矩阵对应的方向上申请接入的UE的数目;
确定各个第一多天线接收矩阵的方向上申请接入的各UE的公平性参数和各个第一多天线接收矩阵对应的方向上允许接入的UE的数目;
基于各个第一多天线接收矩阵对应的方向上申请接入的UE的数目、申请接入的各UE的公平性参数和允许接入的UE的数目,确定各个第一多天线接收矩阵对应的方向上允许接入的UE;
向各个第一多天线接收矩阵对应的方向上允许接入的UE发送授权指示信息,所述授权指示信息用于指示允许对应UE接入。
通过对各个预置多天线接收矩阵方向上的用户进行检测,并判断各个预置多天线接收矩阵方向上用户的冲突情况,根据各个预置多天线接收矩阵方向上用户的冲突情况和各UE的公平性参数决定授权接入的UE,可以避免用户冲突,且可以让各个UE有公平接入的机会,避免出现饿死或独占信道的现象。
在具体实现中,所述基于各个第一多天线接收矩阵对应的方向上申请接入的UE的数目、允许接入的UE的数目和各个UE的公平性参数,确定各个第一多天线接收矩阵对应的方向上允许接入的UE,包括:
当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目小于或等于允许接入的UE的数目时,将所述目标第一多天线接收矩阵对应的方向上所有申请接入的UE,确定为所述目标第一多天线接收矩阵对应的方向上允许接入的UE,所述目标第一多天线接收矩阵为所述至少一个第一多天线接收矩阵中的任一第一多天线接收矩阵;
当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,将所述目标第一多天线接收矩阵对应的方向上申请接入的UE中公平性参数排序在前或在后的M个UE,确定为所述目标第一多天线接收矩阵对应的方向上允许接入的UE,所述M等于所述目标第一多天线接收矩阵对应的方向上允许接入的UE的数目。
在另一实施例中,所述方法还包括:
当所述目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,对于所述目标第一多天线接收矩阵对应的方向上申请接入的UE中不允许接入的UE,向所述不允许接入的UE发送冲突解决指示信息,所述冲突解决指示信息用于指示对应UE执行以下方式中的至少一种:
确定当前接入失败并更新公平性参数;
延迟第三预设时长之后重新向所述基站发送接入请求;或,
提高对应UE的接入优先级,所述接入优先级用于指示对应UE接入的成功率。
在具体实现中,所述提高对应UE的接入优先级,包括以下方式中的至少一种:
提高对应UE的发射功率;
降低对应UE选择的层数;或,
在将发送的接入请求的申请序列中增加正交序列。
对于未被授权接入的UE,通过指示这些UE放弃此次接入、延迟接入或者提高接入优先级后再接入等方式,可以进一步解决用户冲突,提高UE的接入成功率。
第三方面,提供了一种空分复用多址接入装置,所述空分复用多址接入装置具有实现上述第一方面中所述空分复用多址接入方法行为的功能。所述空分复用多址接入装置包括至少一个模块,该至少一个模块用于实现上述第一方面所提供的空分复用多址接入方法。
具体地,所述空分复用多址接入装置包括:
确定模块,用于根据事先约定或者从基站接收的参数,确定第一多天线接收矩阵,所述参数用于指示所述基站预先设置的多天线接收矩阵;
生成模块,用于基于所述第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,所述信道矩阵是指所述UE与所述基站之间的信道矩阵;
发送模块,用于基于所述上行预编码矩阵向所述基站发送接入请求,以接入所述基站所 在的通信网络,或者基于所述上行预编码矩阵向所述基站发送数据。
通过该空分复用多址接入装置,基站可以为UE预置基站端的多天线接收矩阵,UE可以根据基站的配置生成与基站预置的多天线接收矩阵匹配的预编码矩阵,然后基于生成的预编码矩阵向基站发送接入请求或数据,以进行接入或进行数据传输。通过为UE预置基站端的多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且在此过程中基站也无需下发PMI指示给UE,节省了下行链路资源。
在另一实施例中,所述装置还包括:
接收模块,用于接收所述基站发送的参考信号,所述参考信号为能够辅助所述UE进行信道估计的参考信号;
信道估计模块,用于基于所述参考信号对所述UE与所述基站之间的下行信道进行信道估计,得到所述信道矩阵。
在具体实现中,所述生成模块包括:
第一确定单元,用于基于存储的配置层数、所述信道矩阵和所述第一多天线接收矩阵,确定第二多天线接收矩阵;
其中,所述配置层数用于指示所述UE允许传输的数据流个数,所述第二多天线接收矩阵是由所述第一多天线接收矩阵包括的多个列向量中的指定L个列向量组成得到,所述L与所述配置层数对应,且所述指定L个列向量是所述多个列向量包括的任意L个列向量中对应指定二范数最大的L个列向量,所述指定二范数是指所组成的矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数;
第二确定单元,用于将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵。
在具体实现中,所述生成模块还包括:
触发单元,用于当所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数大于预设二范数阈值时,触发所述第二确定单元将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵。
在具体实现中,所述确定模块包括:
第三确定单元,用于基于所述事先约定或者从基站接收的参数,从至少一个多天线接收矩阵中确定所述第一多天线接收矩阵,所述至少一个多天线接收矩阵为事先约定或者从所述基站接收得到;或者,
生成单元,用于基于所述事先约定或者从基站接收的参数和至少一个期望接收矩阵生成规则,生成所述第一多天线接收矩阵,所述至少一个期望接收矩阵生成规则为事先约定或者从所述基站接收得到。
在具体实现中,所述生成单元包括:
第一确定子单元,用于基于所述事先约定或者从基站接收的参数确定目标参数,所述目标参数为生成所述第一多天线接收矩阵所使用的参数;
第二确定子单元,用于基于所述至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则,所述目标期望接收矩阵生成规则为生成所述第一多天线接收矩阵所使用的期望接 收矩阵生成规则;
生成子单元,用于基于所述目标参数和所述目标期望接收矩阵生成规则,生成所述第一多天线接收矩阵。
在具体实现中,所述第一确定子单元用于:
当所述事先约定或者从基站接收的参数包括不同时频资源对应的参数时,从所述不同时频资源对应的参数中确定目标时频资源对应的参数,所述目标时频资源是指当前申请接入或发送数据所使用的时频资源;
基于所述目标时频资源对应的参数,确定所述目标参数。
在具体实现中,所述第一确定子单元用于:
当所述目标时频资源对应的参数包括至少一个层对应的参数时,基于层映射规则确定所述目标时频资源对应的目标层,所述层映射规则用于指示时频资源和层之间的映射关系;
从所述至少一个层对应的参数中选择所述目标层对应的参数,并将选择的参数确定为所述目标参数。
在具体实现中,所述第一确定子单元用于:
当所述至少一个层对应的参数为伪随机序列构造参数时,基于所述伪随机序列构造参数按照事先约定或者从所述基站接收的伪随机序列构造规则,构造多个随机数;
基于所述目标层按照事先约定或者从所述基站接收的取数规则,从所述多个随机数中选取至少一个随机数;
将选取的至少一个随机数确定为所述目标层对应的参数。
在具体实现中,所述第二确定子单元用于:
当所述事先约定或者从所述基站接收参数包括所述目标期望接收矩阵生成规则的索引信息时,基于所述索引信息,从所述至少一个期望接收矩阵生成规则中确定所述目标期望接收矩阵生成规则。
在具体实现中,所述至少一个期望接收矩阵生成规则包括N维矩阵;
其中,所述N维矩阵中的列向量两两正交,且所述N维矩阵包括N-1个变量参数,每个变量参数用于指示对应的列向量的旋转角度,所述N为正整数。
在具体实现中,所述至少一个期望接收矩阵生成规则包括N维的初始正交基和变换规则;
其中,所述变换规则用于指示基于所述事先约定或者从基站接收的参数对所述初始正交基中的至少一项向量元素进行变换,并对变换后的初始正交基进行施密特正交化,以得到所述第一多天线接收矩阵,所述N为正整数。
在具体实现中,所述装置还包括:
判断模块,用于判断所述UE是否满足预设条件;
触发模块,用于当所述UE满足所述预设条件时,触发所述发送模块基于所述上行预编码矩阵向所述基站发送接入请求或数据。
在具体实现中,所述判断模块用于执行以下方式中的至少一种:
判断所述UE的发射功率是否大于预设发射功率,当所述UE的发射功率大于所述预设发射功率时,确定所述UE满足所述预设条件;
判断所述UE的公平性参数是否大于第一参数阈值且小于第二参数阈值,当所述UE的公平性参数大于所述第一参数阈值且小于所述第二参数阈值时,确定所述UE满足所述预设 条件,所述公平性参数是指在距当前时刻之前的第一预设时长内的上行吞吐率和最大传输速率之间的比值;
判断第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数是否大于预设二范数阈值,当所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数大于所述预设二范数阈值时,确定所述UE满足所述预设条件,所述第二多天线接收矩阵是基于所述UE的配置流数、所述信道矩阵和所述第一多天线接收矩阵确定得到,所述配置层数用于指示所述UE允许传输的数据流个数。
在具体实现中,所述接入请求包含数据,所述接入请求用于请求接入所述基站所在的通信网络并向所述基站发送数据。
在具体实现中,所述装置还包括:
添加模块,用于当所述接入请求包含数据时,在所述接入请求的申请序列的预设位置添加第一正交序列和/或在所述数据中添加第二正交序列;
其中,所述第一正交序列和所述第二正交序列相对应,均用于标识所述UE。
在具体实现中,所述装置还包括:
接入模块,用于当在基于所述上行预编码矩阵向所述基站发送所述接入请求之后的第二预设时长内接收到所述基站发送的授权指示信息时,接入所述基站所在的通信网络或者接入所述基站所在的通信网络并向所述基站所在的通信网络发送数据,所述授权指示信息用于指示允许所述UE接入;
其中,所述授权指示信息是所述基站基于所述第一多天线接收矩阵对应的方向上申请接入的UE的数目、允许接入的UE的数目和申请接入的各个UE的公平性参数确定发送的,所述公平性参数是指在距当前时刻之前的第二预设时长内的上行吞吐率和最大传输速率之间的比值。
在具体实现中,所述装置还包括:
执行模块,用于当在基于所述上行预编码矩阵向所述基站发送接入请求之后的所述第二预设时长内未接收到所述授权指示信息时,执行以下步骤中的至少一种:
确定所述UE接入失败,并更新所述UE的公平性参数;
延迟第三预设时长之后,重新向所述基站发送接入请求;或,
提高所述UE的接入优先级,所述接入优先级用于指示所述UE接入的成功率。
在具体实现中,所述提高所述UE的接入优先级,包括以下方式中的至少一种:
提高所述UE的发射功率;
降低所述UE选择的层数;或,
在将发送的接入请求的申请序列中增加正交序列。
第四方面,提供了一种空分复用多址接入装置,所述空分复用多址接入装置具有实现上述第二方面中所述空分复用多址接入方法行为的功能。所述空分复用多址接入装置包括至少一个模块,该至少一个模块用于实现上述第二方面所提供的空分复用多址接入方法。
具体地,所述空分复用多址接入装置包括:
发送模块,用于向至少一个用户设备UE发送参数,由所述至少一个UE中的每个UE基于接收的参数确定第一多天线接收矩阵,基于确定的第一多天线接收矩阵和信道矩阵生成上 行预编码矩阵,并基于所述上行预编码矩阵向所述基站发送接入请求或数据,以接入所述基站所在的通信网络,或者基于所述上行预编码矩阵向所述基站发送数据;
其中,所述参数用于指示所述基站预先设置的多天线接收矩阵,所述信道矩阵为每个UE与所述基站之间的信道矩阵。
通过该空分复用多址接入装置,基站可以为UE预置基站端的多天线接收矩阵,UE可以根据基站的配置生成与基站预置的多天线接收矩阵匹配的预编码矩阵,然后基于生成的预编码矩阵向基站发送接入请求或数据,以进行接入或进行数据传输。通过为UE预置基站端的多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且在此过程中基站也无需下发PMI指示给UE,节省了下行链路资源。
在具体实现中,所述发送模块还用于:
向所述至少一个UE发送参考信号,由所述至少一个UE中的每个UE基于接收的参考信号对与所述基站之间的下行信道进行信道估计,得到所述信道矩阵。
在具体实现中,所述装置还包括:
第一确定模块,用于基于向所述至少一个UE发送的参数,确定至少一个第一多天线接收矩阵;
检测模块,用于在所述至少一个第一多天线接收矩阵对应的方向上进行检测,以确定各个第一多天线接收矩阵对应的方向上申请接入的UE的数目;
第二确定模块,用于确定各个第一多天线接收矩阵的方向上申请接入的各UE的公平性参数和各个第一多天线接收矩阵对应的方向上允许接入的UE的数目;
第三确定模块,用于基于各个第一多天线接收矩阵对应的方向上申请接入的UE的数目、申请接入的各UE的公平性参数和允许接入的UE的数目,确定各个第一多天线接收矩阵对应的方向上允许接入的UE;
所述发送模块,还用于向各个第一多天线接收矩阵对应的方向上允许接入的UE发送授权指示信息,所述授权指示信息用于指示允许对应UE接入。
在具体实现中,所述第三确定模块包括:
第一确定单元,用于当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目小于或等于允许接入的UE的数目时,将所述目标第一多天线接收矩阵对应的方向上所有申请接入的UE,确定为所述目标第一多天线接收矩阵对应的方向上允许接入的UE,所述目标第一多天线接收矩阵为所述至少一个第一多天线接收矩阵中的任一第一多天线接收矩阵;
第二确定单元,用于当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,将所述目标第一多天线接收矩阵对应的方向上申请接入的UE中公平性参数排序在前或在后的M个UE,确定为所述目标第一多天线接收矩阵对应的方向上允许接入的UE,所述M等于所述目标第一多天线接收矩阵对应的方向上允许接入的UE的数目。
在具体实现中,所述发送模块还用于当所述目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,对于所述目标第一多天线接收矩阵对应的方向上申请接入的UE中不允许接入的UE,向所述不允许接入的UE发送冲突解决指示信息, 所述冲突解决指示信息用于指示对应UE执行以下方式中的至少一种:
确定当前接入失败并更新公平性参数;
延迟第三预设时长之后重新向所述基站发送接入请求;或,
提高对应UE的接入优先级,所述接入优先级用于指示对应UE接入的成功率。
在具体实现中,所述提高对应UE的接入优先级,包括以下方式中的至少一种:
提高对应UE的发射功率;
降低对应UE选择的层数;或,
在将发送的接入请求的申请序列中增加正交序列。
第五方面,提供了一种空分复用多址接入装置,所述空分复用多址接入装置的结构中包括处理器和存储器,所述存储器用于存储支持空分复用多址接入装置执行上述第一方面所提供的空分复用多址接入方法的程序,以及存储用于实现上述第一方面所提供的空分复用多址接入方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第六方面,提供了一种空分复用多址接入装置,所述空分复用多址接入装置的结构中包括处理器和存储器,所述存储器用于存储支持空分复用多址接入装置执行上述第二方面所提供的空分复用多址接入方法的程序,以及存储用于实现上述第二方面所提供的空分复用多址接入方法所涉及的数据。所述处理器被配置为用于执行所述存储器中存储的程序。所述存储设备的操作装置还可以包括通信总线,该通信总线用于该处理器与存储器之间建立连接。
第七方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第一方面所述的空分复用多址接入方法。
第八方面,提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述第二方面所述的空分复用多址接入方法。
第九方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的空分复用多址接入方法。
第十方面,提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的空分复用多址接入方法。
本申请提供的技术方案带来的有益效果是:
本发明实施例中,基站可以为UE预置多天线接收矩阵,UE可以根据基站的配置参数生成与基站预置的多天线接收矩阵匹配的上行预编码矩阵,然后基于生成的上行预编码矩阵向基站发送上行信号。通过预置多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且基站无需下发 PMI信息给UE,节省了下行链路资源。
附图说明
图1A是本发明实施例提供的一种MIMO系统示意图;
图1B是本发明实施例提供的一种空分复用多址接入示意图;
图1C是本发明实施例提供的一种UE的结构示意图;
图1D是本发明实施例提供的一种基站的结构示意图;
图1E是本发明实施例提供的一种空分复用多址接入方法的流程图;
图1F是本发明实施例提供的一种通过SIB传输参数的示意图;
图1G是本发明实施例提供的一种不同频域资源对应的波束的结构示意图;
图1H是本发明实施例提供的一种在接入请求中添加正交序列的示意图;
图2A是本发明实施例提供的另一种空分复用多址接入方法的流程图;
图2B是本发明实施例提供的一种层数与基站的覆盖范围的关系示意图;
图3A是本发明实施例提供的一种空分复用多址接入装置的框图;
图3B是本发明实施例提供的另一种空分复用多址接入装置的框图;
图3C是本发明实施例提供的一种第二生成模块302的结构示意图;
图3D是本发明实施例提供的另一种生成模块302的结构示意图;
图3E是本发明实施例提供的一种确定模块301的结构示意图;
图3F是本发明实施例提供的又一种空分复用多址接入装置的框图;
图3G是本发明实施例提供的又一种空分复用多址接入装置的框图;
图3H是本发明实施例提供的又一种空分复用多址接入装置的框图;
图3I是本发明实施例提供的又一种空分复用多址接入装置的框图;
图4A是本发明实施例提供的一种空分复用多址接入装置的框图;
图4B是本发明实施例提供的另一种空分复用多址接入装置的框图;
图4C是本发明实施例提供的一种第三确定模块405的结构示意图。
具体实施方式
为使本申请的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施方式作进一步地详细描述。
在对本发明实施例提供的空分复用多址接入方法进行详细说明之前,首先对本发明实施例的应用场景进行介绍。
本发明实施例应用于UE的上行接入场景或上行数据传输场景中。具体地,UE可以在开机之后或者进行小区切换等时机向基站发送接入请求,以尝试接入网络,从而与基站所在的通信网络建立起基本的信令连接。另外,在成功接入基站所在的通信网络之后,UE还可以根据需要向基站发送数据,即与基站之间进行上行数据传输。示例地,所述上行接入场景可以为基于随机接入信道(Random Access Channel,RACH)的随机接入场景。
在对本发明实施例的应用场景进行介绍之后,接下来将对本发明实施例的实施环境进行介绍。
本发明实施例应用于多输入多输出(Multiple-Input Multiple-Output,MIMO)系统中,MIMO系统是指利用MIMO技术实现信息收发的通信系统。其中,MIMO技术是指在发射端和接收端分别使用多个发射天线和接收天线,使信号通过发射端与接收端的多个天线传送和接收,从而改善通信质量。MIMO技术能充分利用空间资源,通过多个天线实现多发多收,在不增加频谱资源和天线发射功率的情况下,可以成倍的提高系统信道容量。
进一步地,该MIMO系统可以为时分双工(Time Division Duplexing,TDD)系统,在TDD MIMO系统中,可以利用上下行信道的信道互易性。
需要说明的是,本发明实施例提供的空分复用多址接入方法具体应用于MIMO系统的上行链路中,其发射端为UE,接收端为基站。而且,该基站为多天线基站,该UE可以为多天线UE,也可以为单天线UE,本发明实施例对此不做限定。
图1A是本发明实施例提供的一种MIMO系统示意图,如图1A所示,该系统包括多个UE10和一个基站20,这多个UE10可以向基站20发送接入请求,以申请接入基站20所在的通信网络,或者向基站20发送数据,以进行上行数据传输。其中,UE10具有多个天线,可以通过多个天线发射信号,基站20也具有多个天线,可以通过多个天线接收信号。
本发明实施例中,在MIMO系统中,为了合理利用空间资源,UE10可以采用空分复用多址接入进行接入。具体地,参见图1B,在发送信号之前,UE10可以先对待发送的接入请求或数据进行编码、调制、层映射等处理,然后对处理后的接入请求或数据进行预编码处理,之后再将预编码处理之后的接入请求或数据通过多天线发送给基站20,而基站20可以通过多天线接收UE10发送的接入请求或数据,之后再对接收到的接入请求或数据进行解码和解调等处理,以得到UE10的发送的实际信号内容。
需要说明的是,图1A仅以MIMO系统包括一个UE为例进行说明,而实际应用中,该MIMO系统可以包括多个UE,且该多个UE可以为多天线UE,也可以为单天线UE,本发明实施例对此不做限定。
在对本发明实施例的应用场景和实施环境进行简单介绍之后,接下来将结合图1C对本发明实施例涉及的UE的结构进行详细介绍。
图1C是本发明实施例提供的一种UE的结构示意图。参见图1C,该UE包括至少一个处理器101,通信总线102,存储器103以及至少一个通信接口104。
处理器101可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(application-specific integrated circuit,ASIC),或一个或多个用于控制本申请方案程序执行的集成电路。
通信总线102可包括一通路,在上述组件之间传送信息。
存储器103可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其它类型的静态存储设备,随机存取存储器(random access memory,RAM))或者可存储信息和指令的其它类型的动态存储设备,也可以是电可擦可编程只读存储器(Electrically Erasable Programmable Read-Only Memory,EEPROM)、只读光盘(Compact Disc Read-Only Memory,CD-ROM)或其它光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其它磁存储设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其它介质,但不限于此。存储 器103可以是独立存在,通过通信总线102与处理器101相连接。存储器103也可以和处理器101集成在一起。
通信接口104,使用任何收发器一类的装置,用于与其它设备或通信网络通信,如以太网,无线接入网(RAN),无线局域网(Wireless Local Area Networks,WLAN)等。
在具体实现中,作为一种实施例,处理器101可以包括一个或多个CPU,例如图1C中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,UE还可以包括输出设备105和输入设备106。输出设备105和处理器101通信,可以以多种方式来显示信息。例如,输出设备105可以是液晶显示器(liquid crystal display,LCD),发光二级管(light emitting diode,LED)显示设备,阴极射线管(cathode ray tube,CRT)显示设备,或投影仪(projector)等。输入设备106和处理器101通信,可以以多种方式接收用户的输入。例如,输入设备106可以是键盘、触摸屏设备或传感设备等。
上述的UE可以是一个通用UE或者是一个专用UE。在具体实现中,UE可以是手机、便携式电脑、网络服务器、掌上电脑(Personal Digital Assistant,PDA)、平板电脑、无线UE、通信设备或者嵌入式设备等。本发明实施例不限定UE的类型。
其中,存储器103用于存储执行本申请方案的程序代码,并由处理器101来控制执行。处理器101用于执行存储器103中存储的程序代码。图1C中所示UE可以通过处理器101以及存储器103中的程序代码,来实现下述图1E和图2A实施例所述的方法。
在对本发明实施例涉及的UE的结构进行说明之后,接下来将结合图1D对本发明实施例涉及的基站的结构进行详细介绍。
图1D是本发明实施例提供的一种基站的结构示意图,参见图1D,该基站主要包括有发射器201、接收器202、存储器203、处理器204以及通信总线205。本领域技术人员可以理解,图1D中示出的基站20的结构并不构成对基站20的限定,实际应用中,基站20可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,本发明实施例对此不做限定。
其中,该发射器201和接收器202用于与其他设备进行通信,比如可以通过接收器202接收核心网发送的信息,或者通过发射器201向UE发送信息。该存储器203可以用于存储数据,比如可以用于存储核心网发送的信息,并且,该存储器203也可以用于存储用于执行该空分复用多址接入方法的一个或多个运行程序和/或模块。
其中,该处理器204是基站20的控制中心,该处理器204可以是一个通用中央处理器(Central Processing Unit,CPU),微处理器,特定应用集成电路(Application-Specific Integrated Circuit,ASIC),或一个或多个用于控制本申请实施例方案程序执行的集成电路。该处理器204可以通过运行或执行存储在存储器203内的软件程序和/或模块,以及调用存储在存储器203内的数据,来实现下文实施例所提供的空分复用多址接入方法。
其中,该通信总线205可包括通路,在上述处理器204和存储器203之间传送信息。
图1E是本发明实施例提供的一种空分复用多址接入方法的流程图,该方法的交互主体为基站和UE,如图1E所示,该方法包括如下步骤:
步骤101:基站向至少一个UE发送参考信号,该参考信号为能够辅助UE进行信道估计的参考信号。
具体地,该参考信号可以为小区参考信号(Cell Reference Signal,CRS)、解调参考信号(Demodulation Reference Signal,DMRS)或者信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)等,或者为通信系统单独设计的专门用于辅助UE对下行信道进行信道估计的参考信号,如信道估计参考信号(Channel Estimation Reference Signal,CE-RS)或者移动性测量参考信号(Mobility Reference Signal,MRS)等。
需要说明的是,本发明实施例仅是以基站向UE发送参考信号为例,而实际应用中,基站还可以向UE发送其他具有信道估计作用的物理信号,以便UE根据该物理信号对与基站之间的下行信道进行信道估计。
其中,基站向UE发送参考信号或其他物理信号的形式可以为单播、组播或者广播等形式,本发明实施例对发送形式不做限定。
步骤102:UE接收该参考信号,基于该参考信号对该UE与该基站之间的下行信道进行信道估计,得到信道矩阵。
其中,该UE为上述至少一个UE中的任一UE,也即是,上述至少一个UE中的每个UE均可以按照该UE的处理方式进行处理。
其中,信道估计是指根据接收信号将假定的某个信道模型的模型参数估计出来,根据估计出来的模型参数即可确定传输该信号的信道矩阵。本发明实施例中,可以根据参考信号将下行信道对应的信道模型的模型参数估计出来,并根据估计出来的模型参数确定下行信道矩阵,所述模型参数是指用于确定对应信道矩阵的模型参数。
具体地,对下行信道进行信道估计可以得到下行信道矩阵,下行信道矩阵用于指示下行信道的信道条件。本发明实施例中,UE可以根据信道互易性的特性,将通过对下行信道进行信道估计得到的下行信道矩阵转换为上行信道矩阵,然后根据上行信道矩阵进行下述步骤的处理。具体地,将下行信道矩阵转换为上行信道矩阵的方式可以为:将下行信道矩阵确定为上行信道矩阵,或者,通过对下行信道矩阵进行矩阵转置等处理得到上行信道矩阵。当然,也可以直接利用下行信道矩阵,而不将下行信道矩阵转换为上行信道矩阵。
实际应用中,不同物理信号用于进行信道估计的计算模型可能不同,因此进行信道估计的过程中,可以先确定该物理信号用于进行信道估计的计算模型,然后根据该物理信号和对应的计算模型对该下行信道进行信道估计。
需要说明的一点是,预编码是指在发送数据之前把数据映射到多个发射天线上的信号处理,以进一步提高系统的吞吐量,具体需要使用预编码矩阵实现。而且,在对上行信号进行预编码之前通常需要先获取上行信道矩阵,以便利用信道状态信息对待发射信号进行预处理。
现有技术中,上行信道矩阵通常由基站根据UE发送的上行信号对上行信道进行信道估计得到,然后再将得到的上行信道矩阵反馈给UE,但是这种由基站确定上行信道矩阵再反馈给UE的实现方式将会大大增加系统反馈开销。
而本发明实施例中,则可以由UE对下行信道进行信道估计得到下行信道矩阵,然后直接根据上下行信道的信道互易性将下行信道矩阵转换为上行信道矩阵,如此,UE无需基站反馈即可得到上行信道矩阵,从而可以大大减小系统的反馈开销。
需要说明的另一点是,本发明实施例仅是以根据信道互易性确定上行信道矩阵为例进行 说明,而实际应用中,还可以通过其他方式确定上行信道矩阵,比如由基站根据UE发送的上行信号对上行信道进行信道估计上行信道矩阵,然后再反馈给UE,本发明实施例对此不做限定。
步骤103:基站向该至少一个UE发送参数,该参数用于生成该基站预先设置的多天线接收矩阵。
其中,多天线接收矩阵为基站端的多天线接收波束方向矩阵,用于指示基站接收上行信号的空间方向。本发明实施例中,在上行传输过程中基站为接收端,且为配置有多根天线的接收端,因此将基站接收方向的矩阵称之为多天线接收矩阵。
本发明实施例中,基站可以为该至少一个UE预置多天线接收矩阵,并可以向该至少一个UE发送参数,以便每个UE根据接收到的参数确定基站为该UE预置的多天线接收矩阵。或者UE也可以对接收到的参数进行存储,并在合适的时间基于存储的参数确定基站为该UE预置的多天线接收矩阵。或者,UE也可以与基站事先约定参数,并在合适的时间基于事先约定的参数确定基站为该UE预置的多天线接收矩阵。
UE通过确定基站为该UE预置的多天线接收矩阵,可以便于UE后续在基站预置的多天线接收矩阵指示的空间资源上进行接入,或者进行上行数据传输。而且,后续该基站还可以在预置的多天线接收矩阵的方向上进行接收。也即是,该预置的多天线接收矩阵为该基站期望的多天线接收矩阵。
基站通过为UE预置基站端的多天线接收矩阵,可以灵活、自由的预置任意空间资源给UE,从而增大了UE可利用的上行空间资源,避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,提高了上行空间资源的利用率,也进而增大了基站可容纳的上行接入的UE的数目。另外,通过在预置的多天线接收矩阵的方向上进行接收,避免了UE还需要将使用的预编码矩阵的信息反馈给基站,从而进一步减小了系统的反馈开销,实现了以开环的方式利用空间资源。
所述参数可以为索引参数,用于从一组多天线接收矩阵中指示为该UE预置的多天线接收矩阵,或者,所述参数可以为生成参数,用于根据特定的预设矩阵生成规则生成为该UE预置的多天线接收矩阵。实际应用中,所述索引参数可以为按协议约定的索引参数,所述生成参数可以为按协议约定的公式或规则等可以显现的参数。
进一步地,所述参数可以包括不同时频资源对应的参数,该不同时频资源是指UE发送接入请求或发送数据可使用的时频资源。具体地,不同时频资源对应的参数可以包括不同时域资源和不同频域资源分别对应的参数,或者不同时域资源和相同频域资源对应的参数。也即是,所述参数可以包括多个具体参数,该多个具体参数所对应的时域不同,而对应的频域可以相同,也可以不同。
由于所述参数可以包括不同时频资源对应的参数,因此所述参数可以无需基站频繁配置,通过一次配置,UE即可根据该参数确定不同时刻对应的多天线接收矩阵。也即是,基于该参数确定的多天线接收矩阵可以随时间动态变化。通过在所述参数中配置不同时频资源对应的参数,基站可以为UE在不同时间预设不同的多天线接收矩阵,从而避免了UE在空间资源上的冲突,进一步增大了基站可容纳的上行接入的UE的数目。
进一步地,所述参数可以包括不同层(Layer)对应的参数。例如,上述不同时频资源中的每个时频资源对应的参数均可以包括至少一个层对应的参数。进一步地,所述参数还可以 包括时频资源指示信息和层映射规则,该时频资源指示信息用于指示UE发送接入请求或数据可使用的时频资源,该层映射规则用于指示时频资源和层之间的映射关系,也即是,指示不同的时频资源所对应的层数。
其中,根据层映射函数确定的层数与基站当前能够利用的天线数目相关,用于指示该基站能够接收的数据流的个数,且确定的层数还等于为UE预置的多天线接收矩阵的维数,即为UE预置的多天线接收矩阵的行列数。实际应用中,该层映射规则可以事先约定,也可以由基站发送得到。例如,该层映射规则可以通过协议约定,或者通过配置信息向UE发送。
对于UE而言,UE接收到基站发送的所述参数之后,可以先根据该参数包括的时频资源指示信息和层映射规则确定可使用的时频资源对应的层,然后根据可使用的时频资源对应的层从不同层对应的参数中确定目标参数,再根据该目标参数确定基站为该UE预置的多天线接收矩阵。
进一步地,不同层中的每个层还可以与确定的基站天线端口(port)对应,例如,层4对应的基站天线端口号可以分别为port1、port2、port3和port4。实际应用中,层与天线端口的对应关系可以由基站与UE事先约定,也可以由基站发送给UE。例如,层与天线端口的对应关系可以由基站与UE通过协议约定,或者由基站广播给UE等。
进一步地,所述参数可以包括常规参数和/或特殊参数。所述常规参数是指占用数据量较小的参数,可以在一定规律下指定较多的预置多天线接收矩阵,且可以用于服务普通UE。所述特殊参数是指占用数据量较大的参数,可以精确指定特定预置多天线接收矩阵,且可以用于服务特定UE,比如具有特殊优先级的UE。
需要说明的是,所述常规参数和所述特殊参数可以通过物理广播信道(Physical Broadcast Channel,PBCH)发送,也可以通过系统信息块(System Information Block,SIB)发送,本发明实施例对此不做限定。例如,当所述参数包括常规参数和特殊参数时,可以将常规参数通过PBCH发送,将特殊参数通过SIB发送,也可以将常规参数和特殊参数均通过SIB发送。
例如,参见图1F,图1F所示的SIB包括特殊参数,可以将特殊参数通过该SIB发送,该特殊参数包括时频资源指示信息:prach-ConfigIndex和prach-FreqOffset,层映射规则:Layer(t)层映射函数以及不同层对应的参数。其中,Layer(t)层数映射函数为设置的具体层映射规则,其作用是指示UE在prach-ConfigIndex和prach-FreqOffset确定的时频资源下layer应该取多少,例如1、2、3等。
进一步地,所述参数还可以包括参数标识,该参数标识用于指示所发送的参数是常规参数还是特殊参数。例如,当通过SIB2发送参数时,可以在SIB2的第一个bit中发送参数标识,以指示所发送的参数是常规参数还是特殊参数。
需要说明的是,由于常规参数的数据量要小于特殊参数的数据量,因此,通过发送常规参数来配置多天线接收矩阵,可以大大减少传输的数据量。通过设置两种类型的参数,可以兼顾上行接入覆盖的总吞吐率和公平性。其中,常规参数可以覆盖更远更多更广泛的UE,但需要相对复杂的设计才能较为精确而完备的覆盖,特殊参数则可以针对一些可能遗漏的方向,或者公平性参数较低的UE,或者其他特殊情况的UE。
值得说明的是,特殊参数在本发明实施例中并非必须要有。比如,对于有些场景或者业务,可以仅设置常规参数,而无需设置特殊参数。
实际应用中,基站向UE发送参数的形式可以为单播、组播或者广播等形式,本发明实 施例对此不做限定。而且,所述参数可以周期性发送,也可以非周期发送。例如,常规参数可以周期性发送,特殊参数可以非周期发送,而仅在需要时发送。
还需要说明的是,基站在为至少一个UE预置多天线接收矩阵时,同一时刻对应的预置多天线接收矩阵可以有多个,同一时刻不同频域资源可以对应不同的预置多天线接收矩阵,且相同频域资源也可以对应不同层的预置多天线接收矩阵,也即是,不同频域资源可以对应相同层的预置多天线接收矩阵或者不同层的预置多天线接收矩阵。具体地,该频域资源可以为子带宽(subband)等。
参见图1G,图1G所示的波束集包括两个subband对应的波束集,其中,实线波束为subband1对应的波束,虚线波束为subband2对应的波束。而且,相同编号的波束表示属于同一预置多天线接收矩阵,即相同编号的波束表示同一多天线接收信道矩阵的不同子矩阵。
而且本发明实施例中,在后续相应时刻不同频域资源(例如不同的subband)的不同层的预置多天线接收矩阵还可以相应变化。其中,频域资源的划分和层的分布可以由基站配置。比如通过PBCH和/或SIB进行配置,或者通过协议约定,本发明实施例对此不做限定。
步骤104:UE根据从基站接收的参数,确定第一多天线接收矩阵。
其中,该参数用于指示基站预先设置的多天线接收矩阵,该第一多天线接收矩阵是指基站为该UE预置的多天线接收矩阵。而且,该第一多天线接收矩阵可以包括多个子矩阵,每个子矩阵由该第一多天线接收矩阵中的至少一个列向量组成。UE可以从该第一多天线接收矩阵中选择子矩阵,以根据选择的子矩阵生成上行预编码矩阵。
UE接收到基站发送的参数之后,可以直接基于接收的参数确定第一多天线接收矩阵,也可以先将接收的参数存储在本地,然后再在合适的时机获取本地已存储的参数,基于获取的参数生成第一多天线接收矩阵。
需要说明的是,本发明实施例仅是以UE根据从基站接收的参数确定第一多天线接收矩阵为例进行说明,而实际应用中,UE也可以根据事先约定的参数确定第一多天线接收矩阵。也即是,所述参数可以事先约定,也可以从基站接收得到。通过事先约定参数可以减小基站与UE之间的传输消耗,节省下行链路资源。
其中,所述事先约定的参数可以为该基站为该UE预先配置的参数,或者该基站与该UE预先通过协议约定的参数,当然也可以为通过其他形式事先约定的参数,本发明实施例对此不做限定。例如,该预先通过协议约定的参数可以由该基站与该UE直接在协议中通过表格或者公式等的形式约定。该基站为UE预先配置的参数可以由该基站通过向该UE发送配置信息进行配置。
具体地,UE根据所述参数确定第一多天线接收矩阵可以包括以下两种实现方式:
第一种实现方式:基于所述参数,从至少一个多天线接收矩阵中确定第一多天线接收矩阵,所述至少一个多天线接收矩阵为事先约定或者从基站接收得到。
其中,该至少一个多天线接收矩阵包括一个或多个多天线接收矩阵。所述参数可以为索引参数,用于从该至少一个多天线接收矩阵中指示某个多天线接收矩,UE可以将该索引参数指示的多天线接收矩阵确定为该第一多天线接收矩阵。
第二种实现方式:基于所述参数和至少一个期望接收矩阵生成规则,生成第一多天线接收矩阵,所述至少一个期望接收矩阵生成规则为事先约定或者从基站接收得到。
其中,该至少一个期望接收矩阵生成规则是指预先配置的能够根据事先约定的参数或基 站发送的参数,生成基站预置的多天线接收矩阵的生成规则,而且能够生成覆盖空间多个方向或所有方向的多天线接收矩阵。另外,该至少一个期望接收矩阵生成规则可以由基站通过配置信息发送得到,也可以通过协议约定,本发明实施例对此不做限定。
具体地,该至少一个期望接收矩阵生成规则可以通过函数构造法、施密特正交化改型法、离散傅里叶变换(Discrete Fourier Transform,DFT)矩阵生成法或者其他正极矩阵生成的方式构建得到。接下来将分别以函数构造法和施密特正交化改型法对该至少一个期望接收矩阵生成规则进行说明。
1)以函数构造法为例,该至少一个期望接收矩阵生成规则可以包括N维矩阵,其中,该N维矩阵中的列向量两两正交,且该N维矩阵包括N-1个变量参数,每个变量参数用于指示对应的列向量的旋转角度,该N为正整数。
其中,该N维矩阵可以基于初始矩阵确定得到,该初始矩阵为N维单位矩阵,则该N为矩阵中的N-1个变量参数用于指示该N维矩阵的对应列向量相对于该初始矩阵的对应列向量的旋转角度。
假设该初始矩阵为W 0,且为下式(1)所示的N维单位矩阵:
Figure PCTCN2018100447-appb-000001
则该N维矩阵可以为:
[a n,1 a n,2 a n,3 a n,4 a n,5 ...a n,j... a n,n]           (2)
其中,
Figure PCTCN2018100447-appb-000002
Figure PCTCN2018100447-appb-000003
由上述特定N维矩阵可知,该N维矩阵中包括N-1个变量参数θ 1,θ 2,…,θ n-1,且这N-1个变量参数中任一变量参数θ i根据取值的不同,可以使得该定N维矩阵覆盖该变量参数θ i对应的空间维度从0°-360°范围内的所有方向。也即是,该N维矩阵根据这N-1个变量参数θ 1,θ 2,…,θ n-1的取值的不同,可以生成覆盖空间所有方向的多天线接收矩阵,从而可以充分利用空间资源。
为了便于说明上述N维矩阵的设置原理,下面将以初始矩阵为二维单位矩阵为例进行说明。假设该初始矩阵W 0为以下二维单位矩阵(3):
Figure PCTCN2018100447-appb-000004
由上可知,该二维单位矩阵(3)为一组正交基,也即是,该二维单位矩阵(3)中的列向量两两正交。如果让其中一个列向量偏转θ角,而其他列向量与该列向量的相对位置不变,则即可将该二维单位矩阵(3)中的所有列向量相对于初始矩阵的所有列向量偏转θ角,也即是,偏转后的二维单位矩阵(3)中列向量仍然两两正交。
例如,让第一列列向量(1,0)偏转θ角,其他列向量与第一列列向量的相对位置不变,则偏转后可以得到如下二维矩阵(4):
Figure PCTCN2018100447-appb-000005
由于上述二维矩阵(4)中的一个变量参数θ可以任意取值,因此,随着变量参数θ取值的不同,上述二维矩阵(4)即可生成覆盖二维空间所有方向的多天线接收矩阵。
同理,对于三维空间,可以生成如下三维矩阵(5):
Figure PCTCN2018100447-appb-000006
由于上述三维矩阵(5)中的两个变量参数θ 1和θ 2可以任意取值,因此,随着变量参数θ 1和θ 2取值的不同,上述三维矩阵(5)即可生成覆盖三维空间所有方向的多天线接收矩阵。
同理,依次类推,对于N维空间,可以生成上述N维矩阵(2),由于上述N维矩阵(2)中的N-1个变量参数θ 1,θ 2,…,θ n-1可以任意取值,因此,随着变量参数θ 1,θ 2,…,θ n-1取值的不同,上述N维矩阵(2)即可生成覆盖N维空间所有方向的多天线接收矩阵。
针对上述N维矩阵对应的期望接收矩阵生成规则,上述特殊参数可以为N-1个参数,该N-1个参数为对上述N-1个变量参数的具体赋值,且所述N等于基站配置的层数,即基站能够接收的数据流的个数。而上述常规参数可以为伪随机序列的构造参数,通过该常规参数可以构造伪随机序列,并可以按照与事先约定的或者从基站接收的取数规则从构造的伪随机序列中选取特殊参数。
2)以施密特正交化改型法为例,该至少一个期望接收矩阵生成规则可以包括N维的初始正交基和变换规则,该变换规则用于指示基于该事先约定或者从基站接收的参数对该初始正交基中的至少一项向量元素进行变换,并对变换后的初始正交基进行施密特正交化,以得到该第一多天线接收矩阵,该N为正整数。
下面将介绍基于施密特正交化改型法构造期望接收矩阵生成规则的原理。
具体地,对一个线性无关集合进行施密特正交化,可以将其变为N维空间中的一组正交基,该正交基即为N维的初始正交基。之后,如果将该N维的初始正交基中的某一向量元素替换为其他向量元素,然后再进行施密特正交化,即可得到N维空间中的另一组正交基。如此一来,只需事先约定一组初始正交基和变换规则,然后再由基站发送参数,以使UE按照变换规则和从基站接收的参数,对该初始正交基中的一项或多项向量元素进行变换,即可得到多组与初始正交基不同的正交基,且所得到的正交基即为基站预置的多天线接收矩阵。
例如,假设一个线性无关集合S,如下式(6)所示:
S={v 1,v 2...,v k}                (6)
若对该线性无关集合S进行施密特正交化,可以将其变为N维空间中的一组正交基S',如下式(7)所示:
S'={u 1,u 2...,u k}                (7)
如果用某一元素u' m替换S’中的u m,则可以得到另一个线性无关集合S (m),如下式(8)所示:
S (m)={u' m,u 1,u 2...,u m-1,u m+1,...,u k}               (8)
对上述S (m)进行施密特正交化,即可得到空间中的另一组不同于S’的正交基。如此一来,只需事先约定一组初始正交基S'和相应的变换规则,然后再由基站发送参数,以使UE按照变换规则和从基站接收的参数,对该初始正交基中的一项或多项向量元素进行变换,即可得到多组与初始正交基S'不同的正交基,以利用任意空间资源。
通过变换得到与初始正交基不同的正交基,可以获得与初始正交基指示的空间方向不同的任意方向的正交基。如此即可实现对空间资源的充分利用,从而增大UE可利用的空间资源,进而增大基站可容纳的UE的数目。
对于上述两种期望接收矩阵生成规则进行详细说明之后,接下来将具体说明如何根据所述参数和所述至少一个期望接收矩阵生成规则生成第一多天线接收矩阵。具体地,生成第一多天线接收矩阵过程可以包括如下步骤1)-3):
1)基于该参数确定目标参数,该目标参数为生成该第一多天线接收矩阵所使用的参数。
其中,基于该参数确定目标参数可以包括:当该参数包括不同时频资源对应的参数时, 从该不同时频资源对应的参数中确定目标时频资源对应的参数,该目标时频资源是指当前申请接入或发送数据所使用的时频资源;基于该目标时频资源对应的参数,确定该目标参数。
其中,当该目标时频资源对应的参数包括至少一个层对应的参数时,所述基于该目标时频资源对应的参数确定该目标参数包括:基于层映射规则确定该目标时频资源对应的目标层,该层映射规则用于指示时频资源和层之间的映射关系;从该至少一个层对应的参数中选择该目标层对应的参数,并将选择的参数确定为该目标参数。
其中,该层映射规则可以是事先约定的,或者是基站发送给该UE的,本发明实施例对此不做限定。例如,该层映射规则可以由基站与该UE事先通过协议约定,或者由基站通过配置信息向该UE发送,该配置信息用于为UE配置层映射规则。
当前申请接入或发送数据所使用的时频资源可以通过基站配置的时频资源指示信息确定得到,该时频资源指示信息可以由基站发送,也可以事先约定,本发明实施例对此也不做限定。
例如,假设该参数为图1F所示的特殊参数,该特殊参数包括时频资源指示信息:prach-ConfigIndex和prach-FreqOffset,层映射规则:Layer(t)层映射函数以及不同层对应的参数。若基于prach-ConfigIndex和prach-FreqOffset确定的时频资源对应的参数即为该不同层对应的参数,且基于prach-ConfigIndex和prach-FreqOffset确定的时频资源对应的层为2和4,则即可将2层和4层确定为目标层,并分别从该不同层对应的参数中选择2层对应的参数以及4层对应的参数,将选择的参数确定为目标参数。
进一步地,从该至少一个层对应的参数中选择目标层对应的参数可以包括:当该至少一个层对应的参数为伪随机序列构造参数时,基于该伪随机序列构造参数按照事先约定或基站发送的伪随机序列构造规则,构造多个随机数;基于该目标层按照事先约定或基站发送的取数规则,从该多个随机数中选取至少一个随机数;将选取的至少一个随机数确定为该目标层对应的参数。
其中,该伪随机序列构造规则和取数规则可以由基站通过协议约定,或通过配置信息发送,本发明实施例对此不做限定。实际应用中,该伪随机序列可以为线性同余伪随机序列等。
示例的,该至少一个层对应的参数可以为I 0,a,c,m这四个参数,这四个参数用于构造线性同余伪随机序列,且线性同余伪随机序列的构造规则可以为I n-1=(aI n+c)modm。UE根据I 0,a,c,m这四个参数,按照上述线性同余伪随机序列的构造规则即可构造出一组伪随机序列。从构造的伪随机序列中选取目标参数时,可以按照目标层数和事先约定的取数规则进行选取。例如,假设目标层为N层和N-1层,则可以从该伪随机序列中选取前s个伪随机数,然后将这s个伪随机数中的前M-1个伪随机数作为N层对应的参数,并将该前M-1个伪随机数之后的M-2个伪随机数作为N-1层对应的参数。
需要说明的是,本发明实施例仅是以采用构造伪随机序列的方式构造至少一个层对应的参数为例进行说明,而实际应用中,还可以采用其他方式构造至少一个层对应的参数,本发明实施例对此不做限定。
2)基于该至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则,该目标期望接收矩阵生成规则为生成该第一多天线接收矩阵所使用的期望接收矩阵生成规则。
实际应用中,具体采用的目标期望接收矩阵生成规则可以通过协议约定,也可以动态配置,本发明实施例对此不做限定。例如,UE可以存储至少一个期望接收矩阵生成规则,然后 通过协议约定该至少一个期望接收矩阵生成规则中的某一个期望接收矩阵生成规则为目标期望接收矩阵生成规则。或者,通过索引信息等配置信息动态配置该至少一个期望接收矩阵生成规则中的某一个期望接收矩阵生成规则为目标期望接收矩阵生成规则。
在一种可能的实现方式中,基于该至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则可以包括:当该参数包括该目标期望接收矩阵生成规则的索引信息时,基于该索引信息,从该至少一个期望信道矩阵生成规则中确定该目标期望接收矩阵生成规则。
例如,UE可以存储3种期望接收矩阵生成规则,且这3种期望接收矩阵生成规则的索引分别为1、2、3,基站可以在发送的参数中添加目标期望接收矩阵生成规则的索引信息,比如,该索引信息可以为3,指示UE采用存储的3个期望接收矩阵生成规则中的第三种期望接收矩阵生成规则。
3)基于该目标参数和该目标期望接收矩阵生成规则,生成该第一多天线接收矩阵。
例如,若目标参数为3层对应的2(3-1)个参数,目标期望接收矩阵生成规则为通过函数构造法得到的包括2个变量参数的3维矩阵,则将这2个参数代入该3维矩阵之后得到的3维矩阵,即为该第一多天线接收矩阵。
需要说明的是,UE接收到参数和期望接收矩阵生成规则之后,可以与基站进行上行同步,以同步不同时刻对应的第一多天线接收矩阵。具体地,在进行上行同步的过程中,UE可以从接收到的参数中变更必要参数,比如从不同时频资源对应的参数中变更时频资源,以便从不同时频资源对应的参数中确定当前时刻对应的参数,然后按照期望接收矩阵生成规则生成当前时刻对应的第一多天线接收矩阵。而且,通过上行同步,UE还可以对接收到参数之后的一段时间内,任意申请接入时机或发送数据时机基站期望的多天线接收矩阵产生预期。
步骤105:UE基于该第一多天线接收矩阵和该信道矩阵生成上行预编码矩阵。
实际应用中,该UE可以在当前有接入需求或有发送数据的需求时,基于该第一多天线接收矩阵和该信道矩阵生成上行预编码矩阵,以便基于该上行预编码矩阵向基站发送接入请求或发送数据。或者,该UE也可以在任意申请接入时机或可发送数据时机,均基于该第一多天线接收矩阵和该信道矩阵生成对应的上行预编码矩阵。当当前有接入需求或发送数据的需求时,便直接基于已生成的上行预编码矩阵向基站发送接入请求或发送数据。
具体地,基于该第一多天线接收矩阵和该信道矩阵生成上行预编码矩阵包括:基于存储的配置层数、该信道矩阵和该第一多天线接收矩阵,确定第二多天线接收矩阵;将该第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的转置矩阵确定为该上行预编码矩阵。
其中,该配置层数用于指示该UE允许传输的数据流个数,该第二多天线接收矩阵是由该第一多天线接收矩阵包括的多个列向量中的指定L个列向量组成得到,该L与该配置层数对应,且该指定L个列向量是该多个列向量包括的任意L个列向量中对应指定二范数最大的L个列向量,该指定二范数是指所组成的矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数。
其中,所述L与该配置层数对应是指所述L与该UE的配置层数相同,即所述L等于该UE允许传输的数据流个数。比如,当该UE允许传输的数据流个数为3时,该UE即可从该第一多天线接收矩阵中选择满足条件的3个列向量组成第二多天线接收矩阵。
接下来将对生成上行预编码矩阵的原理进行说明。若接收数据为y,发送数据为x,则有 传输方程:
y=Hx               (9)
其中,H为发送端与接收端之间的信道矩阵。
假设接收端的多天线接收矩阵为q,发送端的发射矩阵为p,则传输方程可表示为:
y=q HHpx                (10)
其中,q H表示q的共轭转置矩阵,发射矩阵p是指发送端的发射波束方向矩阵。而且,假设发送端有n根天线,接收端有m根天线,x为发送端发送的数据,且数据的数据流个数为l,则H矩阵大小为m*n,即H为m行n列的矩阵,q矩阵大小为m*l,即q为m行l列的矩阵,p矩阵大小为n*l,即p为n行l列的矩阵。
由上述传输方程(10)可知,传输矩阵||q HHp|| 2越大则发送数据x的损失越小,数据传输效果越好。其中,传输矩阵||q HHp|| 2是指q HHp的二范数,用于指示数据的传输能量。
其中,所述第二多天线接收矩阵是指从第一多天线接收矩阵中选择的列向量组成的矩阵,且选择的列向量的数目与该配置层数相等。也即是,该UE可以根据允许传输的数据流个数,从第一多天线接收矩阵中选择对应数目的列向量组成第二多天线接收矩阵。其中,第一多天线接收矩阵相当于多天线接收矩阵集合,第二多天线接收矩阵相当于从第一多天线接收矩阵中选择的子矩阵。
本发明实施例中,为了保证接入请求或上行数据的传输效果,基站可以通过参数为UE预置动态可变的第一多天线接收矩阵Q,UE可以在Q中选择q使得max||q HHp|| 2,也即是,使得q HHp的二范数最大,所选择的q即为第二多天线接收矩阵。而且,若q HH确定则p=(q HH) H时可得到max q HHp,那么对UE来说,可以先从Q中选择q使得max||q HH|| 2,然后令p=(q HH) H,则此时的q和p即可使得max||q HHp|| 2。而且可以将此时的p=(q HH) H确定为UE的上行预编码矩阵,则该上行预编码矩阵即为基站预置的第一多天线接收矩阵Q内UE的最佳发送预编码矩阵。
进一步地,对于TDD系统,UE还可以根据信道互易性,将下行信道估计的结果H DL转换为上行信道矩阵H UL,并将H UL记做上述信道矩阵H。
在另一实施例中,还可以由基站通过参数指示该第二多天线接收矩阵,UE可以直接根据事先约定或从基站接收的参数确定该第一多天线接收矩阵和第二多天线接收矩阵。
进一步地,为了提高上行传输效果,UE还可以在确定的第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数大于预设二范数阈值时,将该第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的转置矩阵确定为该上行预编码矩阵。也即是,当第二多天线接收矩阵满足一定条件时,才确定上行预编码矩阵并进行上行传输。
其中,所述预设二范数阈值可以事先约定,或者由基站预先配置,或者由UE预先设置等。例如,该预设二范数阈值可以由基站和UE通过协议直接约定,或者该由基站通知UE设置。具体地,该预设二范数阈值可以根据链路质量和小区负载确定,例如,可以由基站根据链路质量和小区负载计算得到该预设二范数阈值,然后下发给该UE;或者该预设二范数阈值可以根据该UE所在小区可容纳的用户数目和用户分布模型确定,例如,可以通过协议按照小区可容纳的用户数目和用户分布模型确定;或者该预设二范数阈值可以通过对该UE所在小区中用户的调度情况进行长期统计确定,例如,可以由基站对该UE所在小区中用户的 调度情况进行长期统计确定,然后下发给该UE;或者,该预设二范数阈值也可以为由技术人员设置的经验值,本发明实施例对该预设二范数阈值的设置方式不做限定。
例如,基站可以根据小区情况设置一个最低接入门限minPreRxPower,当UE根据第一多天线接收矩阵Q计算的max||q HH|| 2大于或等于该最低接入门限minPreRxPower时,才会向基站发送接入请求或数据。
实际应用中,该UE可以在当前有接入需求或数据发送需求时,确定当前申请接入或发送数据所使用的时频资源,并根据该参数和至少一个期望接收矩阵生成规则生成与当前所使用的时频资源对应的第一多天线接收矩阵,然后基于该第一多天线接收矩阵和该信道矩阵生成上行预编码矩阵,以便后续基于该上行预编码矩阵发送上行信号。
或者,该UE还可以根据该UE申请接入或发送数据可使用的时频资源、该参数和该至少一个期望接收矩阵生成规则,与基站之间进行上行同步,从而生成可使用的不同时频资源对应的第一多天线接收矩阵,然后在当前有接入需求或数据发送需求时,从已生成的第一多天线接收矩阵中选取当前使用的时频资源对应的第一多天线接收矩阵,并根据当前使用的时频资源对应的第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,以便后续基于该上行预编码矩阵发送上行信号。
在另一实施例中,UE确定基站预置的基站端的上行多天线接收矩阵之后,还可以将该上行多天线接收矩阵进行矩阵转置,得到下行等效预编码矩阵,然后将该下行等效预编码矩阵与下行信道矩阵进行相乘,得到下行等效信道矩阵,最后再基于该下行等效信道矩阵确定下行等效多天线接收矩阵,并对该下行等效多天线接收矩阵进行矩阵转置,得到上行预编码矩阵。其中,所述下行多天线接收矩阵是指下行多天线接收时,对多天线接收信号进行线性变换得到的矩阵。
步骤106:UE基于该上行预编码矩阵向基站发送接入请求,以接入该基站所在的通信网络,或者基于该上行预编码矩阵向该基站发送数据。
需要说明的是,本发明实施例所述的UE与基站之间基于该上行预编码矩阵的上行传输,可以包括两种应用场景:上行接入场景和上行数据传输场景。也即是,UE可以基于按照上述步骤101-105确定的上行预编码矩阵,在有接入需求时向基站发送接入请求,也可以在有数据发送需求时向基站发送数据。
其中,该接入请求用于指示该UE申请接入该基站所在的通信网络,基于该上行预编码矩阵向该基站发送接入请求是指基于该上行预编码矩阵对发送的接入请求进行预编码处理,以使该UE能够在与基站预置的多天线接收矩阵匹配的空间方向上向基站发送该接入请求。当UE完成接入之后,还可以基于该上行预编码矩阵与该基站进行数据传输,例如基于该上行预编码矩阵向基站发送上行数据。
在一个实施例中,当本实施例提供的方法应用于随机接入过程时,通过预置多天线接收矩阵,可以使得UE发送的随机接入过程中的第一个信息(Message1,MSG1)带有预编码(precoding)方向,此时UE预置的配置层数可以默认为1。
进一步地,该接入请求还可以包含数据,该接入请求用于请求接入该基站所在的通信网络并向该基站所在的通信网络发送数据。也即是,还可以直接在接入请求中传输用户数据,从而提高UE的数据传输速率。
进一步地,由于一个第一多天线接收矩阵方向上可能有多个UE接入,因此,为了减小 用户冲突,在向基站发送接入请求或数据之前,UE还可以在待发送的接入请求或数据的预设位置添加第一正交序列,以通过正交序列实现在码域上的复用,增加同一空间方向上可容纳的用户数目,提升通信效率。而且由于可以避免用户冲突导致的数据传输错误,因此对误差传播的影响也较小。
其中,该第一正交序列用于标识该UE。也即是,基站可以通过不同UE发送的接入请求或数据包括的第一正交序列,识别和区分不同UE。该预设位置可以事先约定,也可以由基站动态配置,本发明实施例对此不做限定。例如,该预设位置可以为该接入请求的申请序列的头部位置或者中间位置等。
进一步地,基站在接收到包括第一正交序列的接入请求或数据之后,还需要在确定时间回复是否正确识别该UE。具体可以以应答/否定应答(ACK/NACK)方式回应,例如可以在接收到接入请求或数据之后固定的几个子帧回应。
进一步地,当接入请求包含数据时,还可以在该接入请求的申请序列的预设位置添加第一正交序列和/或在数据中添加第二正交序列;其中,该第一正交序列和该第二正交序列相对应,均用于标识该UE。
其中,该第一正交序列和该第二正交序列相对应是指该第一正交序列和该第二正交序列具有确定的映射关系,用于辅助UE确定该第一正交序列和该第二正交序列属于同一UE,进而确定该接入请求和用户数据属于同一UE。例如,该第一正交序列和该第二正交序列可以相同,或者,该第一正交序列可以为ZC序列,该第二正交序列可以为该ZC序列的前1/2或者1/4序列部分。当然,该第一正交序列和该第二正交序列还可以为M序列或者golden序列等。
例如,参见图1H,上行预编码矩阵1和上行预编码矩阵2属于同一层的上行预编码矩阵,在同一上行预编码矩阵2的方向上可能有多个UE接入,假设这多个UE分别为UE1、UE2、UE3和UE4,且这4个UE发送的接入请求均包括数据,因此,为了避免用户冲突,可以在这4个UE发送的接入请求的申请序列的头部位置添加不同的第一正交序列,以通过不同的第一正交序列区分发送接入请求的用户。进一步地,还可以在这4个UE发送的数据中分别添加不同的第二正交序列(图1H未示出),以通过第二正交序列区分发送数据的用户。
本发明实施例中,基站可以为UE预置多天线接收矩阵,UE可以根据基站的配置参数生成与基站预置的多天线接收矩阵匹配的上行预编码矩阵,然后基于生成的上行预编码矩阵向基站发送上行信号。通过预置多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且基站无需下发PMI信息给UE,节省了下行链路资源。
在另一实施例中,为了增加灵活性,UE还可以根据配置的约束条件自行判断是否申请上行接入,为了解决用户冲突,基站还可以根据各个多天线接收矩阵方向上的用户冲突情况对UE进行接入授权。接下来将结合图2A,对UE自行判断是否申请上行接入以及基站根据用户冲突情况对UE进行接入授权的过程进行详细介绍。
图2A是本发明实施例提供的另一种空分复用多址接入方法的流程图,该方法的交互主体为基站和UE,如图2A所示,该方法包括如下步骤:
步骤201:基站向至少一个UE发送参考信号,该参考信号为能够辅助UE进行信道估计 的参考信号。
步骤202:UE接收该参考信号,基于该参考信号对该UE与该基站之间的下行信道进行信道估计,得到信道矩阵。
步骤203:基站向该至少一个UE发送参数,该参数用于生成该基站预先设置的多天线接收矩阵。
步骤204:UE根据从基站接收的参数,确定第一多天线接收矩阵。
步骤205:UE基于该第一多天线接收矩阵和该信道矩阵生成上行预编码矩阵。
其中,步骤201-205的具体实现过程可以参考图1E实施例中步骤101-105的相关描述,本发明实施例在此不再赘述。
步骤206:UE判断该UE是否满足预设条件。
其中,该预设条件可以为干扰约束条件、功率约束条件或者公平性约束条件等。干扰约束条件用于保证该UE要发送的申请接入信号不会对系统的其他UE造成干扰或者保证造成的干扰较小,该功率约束条件用于保证当前的发射功率满足一定的发射功率,该公平性约束条件用于保证系统中各个UE发送申请接入信号的公平性。
具体地,判断该UE是否满足预设条件,可以包括以下方式中的至少一种:
第一种实现方式:判断该UE的发射功率是否大于预设发射功率,当该UE的发射功率大于该预设发射功率时,确定该UE满足该预设条件。
其中,该预设发射功率可以由基站配置,也可以通过协议约定,本发明实施例对此不做限定。且该第一种实现方式所限定的即为上述功率约束条件,当该UE的发射功率大于该预设发射功率时,即可确定该UE满足功率约束条件,并确定该UE满足该预设条件。
第二种实现方式:判断该UE的公平性参数是否大于第一参数阈值且小于第二参数阈值,当该UE的公平性参数大于该第一参数阈值且小于该第二参数阈值时,确定该UE满足该预设条件。
其中,公平性参数是指在距当前时刻之前的第一预设时长内的上行吞吐率和最大传输速率之间的比值。例如,该UE的公平性参数可以由以下公式表示:
FI=I u/I max              (11)
其中,I u表示该UE在距当前时刻之前的第一预设时长内的上行吞吐率,I max表示该UE在距当前时刻之前的第一预设时长内的最大传输速率。
公平性参数越小,表示该UE在该最近一段时间内接入的成功率越低,因此,为了保证系统中各个UE具有同等的接入机会,对于公平性参数越小的UE,可以将其接入优先级设定为越高,以保证该UE可以优先接入。通过公平性约束条件可以避免某些UE没有机会接入以及某些UE独占信道,保证各UE接入的公平性。
其中,该第一参数阈值和该第二参数阈值可以与基站事先约定,或者由UE预先设置,或者由基站配置,本发明实施例对此也不做限定。且该第二种实现方式所限定的即为上述公平性约束条件,当该UE的公平性参数大于该第一参数阈值且小于该第二参数阈值时,即可确定该UE满足公平性约束条件,并确定该UE满足该预设条件。
具体地,该第一参数阈值和该第二参数阈值为综合考虑UE的公平性接入情况确定得到,例如,可以由基站对该UE所在小区中用户的调度情况进行长期统计确定得到,或者也可以 为由技术人员根据经验设置得到。
第三种实现方式:判断第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数是否大于预设二范数阈值,当该第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数大于该预设二范数阈值时,确定该UE满足该预设条件,该第二多天线接收矩阵是基于该UE的配置流数、该信道矩阵和该第一多天线接收矩阵确定得到,该配置层数用于指示该UE允许传输的数据流个数。
例如,基站可以根据小区情况设置一个最低接入门限minPreRxPower,当UE根据第一多天线接收矩阵Q计算的max||q HH|| 2大于或等于该最低接入门限minPreRxPower时,才会向确定该UE满足该预设条件。
进一步地,当UE的公平性参数较低时,还可以降低其选择的层数,以便提高该UE接入的成功率。例如,当将该UE选择的层数降低为1层,且该基站为全向天线时,该UE相当于退回至现有的随机接入机制,即仅依靠正交序列的码域复用进行接入。
层数与基站的覆盖范围的关系可以参考图2B,如图2B所示,4层的信道矩阵对应4个两两正交的波束,且这4波束能够触及的距离最远,且随着这4个波束方向的旋转,其覆盖的范围也最大。2层的信道矩阵对应2个相互正交的波束,且这2个波束在同等功率下能够触及的距离要小于4层,但是其横向覆盖的范围要大于4层。1层的信道矩阵可以包括两种,一种是如Layer=1(1)所示的全向覆盖的波束,一种是如Layer=1(2)所示的单向覆盖的波束。
由图2B可知,基站配置的信道矩阵能够支持的层数越大,其能够覆盖的空间资源也就越大。但是现有技术中,由于预编码码本最多仅支持与最大层数4层对应的预编码矩阵,因此,能够覆盖的空间资源也就非常有限。而本发明实施例中,由于基站能够为UE自由预置信道矩阵,进而也就能够自由预置信道矩阵的层数和各层中列向量的方向,从而大大增加了能够覆盖的空间资源,增强了对服务范围内UE的覆盖。
进一步地,不同层中的每个层还可以与确定的基站天线端口(port)对应,例如,参见图2B,Layer=1对应port=7;Layer=2对应port=5,6;Layer=4对应port=1,2,3,4。
步骤207:当该UE满足该预设条件时,基于该上行预编码矩阵向该基站发送接入请求。
步骤208:基站基于向该至少一个UE发送的参数,确定至少一个第一多天线接收矩阵,并在该至少一个第一多天线接收矩阵对应的方向上进行检测,以确定各个第一多天线接收矩阵对应的方向上申请接入的UE的数目。
同一时刻可能有多个UE向该基站发送接入请求,且同一时刻可以有多组备选的第一多天线接收矩阵,因此,该基站可以在通过发送的参数预置的多个第一多天线接收矩阵方向上检测接入请求,以便对发送接入请求的所有UE进行检测。
实际应用中,基站可以采用串行干扰消除(Successive Interference Cancellation,SIC)、干扰对齐(Interference Alignment,IA)等检测算法进行检测。
步骤209:基站确定各个第一多天线接收矩阵的方向上申请接入的各UE的公平性参数和各个第一多天线接收矩阵对应的方向上允许接入的UE的数目,并基于各个第一多天线接收矩阵对应的方向上申请接入的UE的数目、申请接入的各UE的公平性参数和允许接入的UE的数目,确定各个第一多天线接收矩阵对应的方向上允许接入的UE。
其中,各UE的公平性参数可以由UE发送得到,或者由基站计算得到,本发明实施例对此不做限定。若某个第一多天线接收矩阵对应的方向上进行了码域复用,则该方向上允许 接入的UE数目还需要根据实际的码域复用确定。
实际应用中,基站可先确定为该至少一个UE配置的频域资源,再对该频域资源对应的多个层的多天线接收矩阵进行逐个检测。基站可以统计在各个层检测到的UE的总数目和各个层允许接入的UE的总数目,并根据各个层检测到的UE的总数目以及各个层允许接入的UE的总数目判断各个层是否存在用户冲突情况,然后综合各层检测到的UE的总数目、用户冲突情况、各层检测到的各个UE的公平性参数,综合决定授权各层的哪个UE接入。
具体地,基于各个第一多天线接收矩阵对应的方向上申请接入的UE的数目、允许接入的UE的数目和各个UE的公平性参数,确定各个第一多天线接收矩阵对应的方向上允许接入的UE可以包括以下两种实现方式:
第一种实现方式:当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目小于或等于允许接入的UE的数目时,将该目标第一多天线接收矩阵对应的方向上所有申请接入的UE,确定为该目标第一多天线接收矩阵对应的方向上允许接入的UE,该目标第一多天线接收矩阵为该至少一个第一多天线接收矩阵中的任意一个第一多天线接收矩阵。
第二种实现方式:当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,将该目标第一多天线接收矩阵对应的方向上申请接入的UE中公平性参数排序在前或在后的M个UE,确定为该目标第一多天线接收矩阵对应的方向上允许接入的UE,该M等于该目标第一多天线接收矩阵对应的方向上允许接入的UE的数目。
通过将公平性参数排序在前的M个UE确定为允许接入的UE,可以实现优先接入公平性参数较高的UE,保证优先级较高的UE优先接入,通过将公平性参数排序在后的M个UE确定为允许接入的UE,可以实现优先接入公平性参数较低的UE,保证UE接入的公平性,使得公平性参数较低的UE也有接入基站的机会。
步骤210:基站向各个第一多天线接收矩阵对应的空间方向上允许接入的UE发送授权指示信息,该授权指示信息用于指示允许对应UE接入。
对于向该基站发送接入请求的多个UE,其中,只有接收到基站发送的授权指示信息的UE才被允许接入,而未接收到基站发送的授权指示信息的UE将不被允许接入。
进一步地,当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,对于该目标第一多天线接收矩阵对应的方向上申请接入的UE中不允许接入的UE,基站还可以向该不允许接入的UE发送冲突解决指示信息,该冲突解决指示信息用于指示对应UE执行以下方式中的至少一种:确定当前接入失败并更新公平性参数;延迟第三预设时长之后重新向该基站发送接入请求;提高对应UE的接入优先级,该接入优先级用于指示对应UE接入的成功率。
其中,提高对应UE的接入优先级,包括以下方式中的至少一种:提高对应UE的发射功率;降低对应UE选择的层数;在将发送的接入请求的申请序列中增加正交序列。通过提高对应UE的接入优先级,该UE在下次接入时机达到时即可优先发送接入请求,且接入的成功率也会提高。
也即是,针对存在用户冲突情况的某个方向,对于该方向中满足授权条件的UE可以授权接入,而对于该层中不满足授权条件的UE则可以不授权接入,而且,还可以根据预先设置的冲突解决规则发送冲突解决指示信息,该冲突解决信息指示信息可以用于指示该UE放弃此次接入、延时接入或者提升优先级后再申请接入等。
步骤211:当该UE在基于该上行预编码矩阵向该基站发送该接入请求之后的第二预设时长内接收到该基站发送的授权指示信息时,接入该基站所在的通信网络或者接入该基站所在的通信网络并向该基站所在的通信网络发送数据。
其中,第二预设时长可以由该UE默认设置,也可以由该UE和基站事先约定,本发明实施例对此不做限定。
具体地,UE可以在发送的接入请求不包含数据且接收到授权指示信息时,接入该基站所在的通信网络,在发送的接入请求包含数据且接收到授权指示信息时,接入该基站所在的通信网络并向该基站所在的通信网络发送数据。
步骤212:当该UE在基于该上行预编码矩阵向该基站发送接入请求之后的该第二预设时长内未接收到该授权指示信息时,执行预设操作。
其中,该预设操作可以由基站配置,比如通过基站发送的冲突解决信息指示信息配置,也可以与UE事先约定,比如通过协议约定,本发明实施例对此不做限定。
其中,该预设操作可以包括以下操作中的至少一种:确定该UE接入失败,并更新该UE的公平性参数;延迟第三预设时长之后,重新向该基站发送接入请求;提高该UE的接入优先级,该接入优先级用于指示该UE接入的成功率。
需要说明的一点是,本发明实施例仅是以UE在基于该上行预编码矩阵向该基站发送接入请求之后的该第二预设时长内未接收到该授权指示信息时,执行预设操作为例,而实际应用中,UE还可以在接收到基站发送的冲突解决信息指示信息时,执行该冲突解决信息指示信息所指定的操作。
需要说明的另一点是,本发明实施例仅是以在上行接入场景中,UE先判断自身是否满足预设条件,当确定满足预设条件时再向基站发送接入请求为例,而在上行数据传输场景中,当UE需要向基站发送数据时,也可以先判断自身是否满足预设条件,当确定满足预设条件时再向基站发送数据。
本发明实施例中,基站可以为UE预置基站端的多天线接收矩阵,UE可以根据基站的配置参数生成与基站预置的多天线接收矩阵匹配的上行预编码矩阵,然后基于生成的上行预编码矩阵向基站发送上行信号。通过为UE预置基站端的多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且基站无需下发PMI信息给UE,节省了下行链路资源。
在对本发明实施例提供的空分复用多址接入方法进行详细介绍之后,接下来将结合附图对空分复用多址接入装置进行介绍。图3A是本发明实施例提供的一种空分复用多址接入装置的框图,该装置可以为UE。参见图3A,该装置包括:
确定模块301,用于执行上述图1E所述实施例中步骤104执行的操作;
生成模块302,用于执行上述图1E所述实施例中步骤105执行的操作;
发送模块303,用于执行上述图1E所述实施例中步骤106执行的操作。
可选地,参见图3B,该装置还包括:
接收模块304和信道估计模块305,用于执行上述图1E所述实施例中步骤102执行的操作。
可选地,参见图3C,该生成模块302包括:
第一确定单元3021,用于基于存储的配置层数、该信道矩阵和该第一多天线接收矩阵,确定第二多天线接收矩阵;
第二确定单元3022,用于将该第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的转置矩阵确定为该上行预编码矩阵;
其中,该配置层数用于指示该UE允许传输的数据流个数,该第二多天线接收矩阵是由该第一多天线接收矩阵包括的多个列向量中的指定L个列向量组成得到,该L与该配置层数对应,且该指定L个列向量是该多个列向量包括的任意L个列向量中对应指定二范数最大的L个列向量,该指定二范数是指所组成的矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数。
可选地,参见图3D,所述生成模块302还包括:
触发单元3023,用于当该第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数大于预设二范数阈值时,触发该第二确定单元3022将该第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的转置矩阵确定为该上行预编码矩阵。
可选地,参见图3E,该确定模块301包括:
第三确定单元3011,基于该事先约定或者从基站接收的参数,从至少一个多天线接收矩阵中确定该第一多天线接收矩阵,该至少一个多天线接收矩阵为事先约定或者从该基站接收得到;
生成单元3012,用于基于该事先约定或者从基站接收的参数和至少一个期望接收矩阵生成规则,生成该第一多天线接收矩阵,该至少一个期望接收矩阵生成规则为事先约定或者从该基站接收得到。
可选地,该生成单元3012包括:
第一确定子单元,用于基于该事先约定或者从基站接收的参数确定目标参数,该目标参数为生成该第一多天线接收矩阵所使用的参数;
第二确定子单元,用于基于该至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则,该目标期望接收矩阵生成规则为生成该第一多天线接收矩阵所使用的期望接收矩阵生成规则;
生成子单元,用于基于该目标参数和该目标期望接收矩阵生成规则,生成该第一多天线接收矩阵。
可选地,该第一确定子单元用于:
当该事先约定或者从基站接收的参数包括不同时频资源对应的参数时,从该不同时频资源对应的参数中确定目标时频资源对应的参数,该目标时频资源是指当前申请接入或发送数据所使用的时频资源;
基于该目标时频资源对应的参数,确定该目标参数。
可选地,该第一确定子单元用于:
当该目标时频资源对应的参数包括至少一个层对应的参数时,基于层映射规则确定该目标时频资源对应的目标层,该层映射规则用于指示时频资源和层之间的映射关系;
从该至少一个层对应的参数中选择该目标层对应的参数,并将选择的参数确定为该目标参数。
可选地,该第一确定子单元用于:
当该至少一个层对应的参数为伪随机序列构造参数时,基于该伪随机序列构造参数按照事先约定或者从该基站接收的伪随机序列构造规则,构造多个随机数;
基于该目标层按照事先约定或者从该基站接收的取数规则,从该多个随机数中选取至少一个随机数;
将选取的至少一个随机数确定为该目标层对应的参数。
可选地,该第二确定子单元用于:
当该事先约定或者从该基站接收参数包括该目标期望接收矩阵生成规则的索引信息时,基于该索引信息,从该至少一个期望接收矩阵生成规则中确定该目标期望接收矩阵生成规则。
可选地,该至少一个期望接收矩阵生成规则包括N维矩阵;
其中,该N维矩阵中的列向量两两正交,且该N维矩阵包括N-1个变量参数,每个变量参数用于指示对应的列向量的旋转角度,该N为正整数。
可选地,该至少一个期望接收矩阵生成规则包括N维的初始正交基和变换规则;
其中,该变换规则用于指示基于该事先约定或者从基站接收的参数对该初始正交基中的至少一项向量元素进行变换,并对变换后的初始正交基进行施密特正交化,以得到该第一多天线接收矩阵,该N为正整数。
可选地,参见图3F,该装置还包括:
判断模块306,用于判断该UE是否满足预设条件;
触发模块307,用于当该UE满足该预设条件时,触发所述发送模块303基于该上行预编码矩阵向该基站发送接入请求或数据。
可选地,该判断模块307用于执行以下方式中的至少一种:
判断该UE的发射功率是否大于预设发射功率,当该UE的发射功率大于该预设发射功率时,确定该UE满足该预设条件;
判断该UE的公平性参数是否大于第一参数阈值且小于第二参数阈值,当该UE的公平性参数大于该第一参数阈值且小于该第二参数阈值时,确定该UE满足该预设条件,该公平性参数是指在距当前时刻之前的第一预设时长内的上行吞吐率和最大传输速率之间的比值;或,
判断第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数是否大于预设二范数阈值,当该第二多天线接收矩阵的转置矩阵与该信道矩阵相乘得到的矩阵的二范数大于该预设二范数阈值时,确定该UE满足该预设条件,该第二多天线接收矩阵是基于该UE的配置流数、该信道矩阵和该第一多天线接收矩阵确定得到,该配置层数用于指示该UE允许传输的数据流个数。
可选地,该接入请求包含数据,该接入请求用于请求接入该基站所在的通信网络并向该基站所在的通信网络发送数据。
可选地,参见图3G,该装置还包括:
添加模块308,用于当该接入请求包含数据时,在该接入请求的申请序列的预设位置添加第一正交序列和/或在该数据中添加第二正交序列;
其中,该第一正交序列和该第二正交序列相对应,均用于标识该UE。
可选地,参见图3H,该装置还包括:
接入模块309,用于当在基于所述上行预编码矩阵向所述基站发送所述接入请求之后的第二预设时长内接收到所述基站发送的授权指示信息时,接入所述基站所在的通信网络或者接入所述基站所在的通信网络并向所述基站所在的通信网络发送数据,所述授权指示信息用于指示允许所述UE接入;
其中,所述授权指示信息是所述基站基于所述第一多天线接收矩阵对应的方向上申请接入的UE的数目、允许接入的UE的数目和申请接入的各个UE的公平性参数确定发送的,所述公平性参数是指在距当前时刻之前的第二预设时长内的上行吞吐率和最大传输速率之间的比值。
可选地,参见图3I,该装置还包括:
执行模块310,用于当在基于该上行预编码矩阵向该基站发送接入请求之后的该第二预设时长内未接收到该授权指示信息时,执行以下步骤中的至少一种:
确定该UE接入失败,并更新该UE的公平性参数;
延迟第三预设时长之后,重新向该基站发送接入请求;或,
提高该UE的接入优先级,该接入优先级用于指示该UE接入的成功率。
可选地,该提高该UE的接入优先级,包括以下方式中的至少一种:
提高该UE的发射功率预设功率;
降低该UE选择的层数;或,
在将发送的接入请求的申请序列中增加正交序列。
本发明实施例中,基站可以为UE预置基站端的多天线接收矩阵,UE可以根据基站的配置参数生成与基站预置的多天线接收矩阵匹配的上行预编码矩阵,然后基于生成的上行预编码矩阵向基站发送上行信号。通过为UE预置基站端的多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且基站无需下发PMI信息给UE,节省了下行链路资源。
图4A是本发明实施例提供的一种空分复用多址接入方法装置的框图,该装置可以为基站。参见图4A,该装置包括:
发送模块401,用于执行上述图1E该实施例中步骤103执行的操作。
可选地,该发送模块401还用于执行上述图1E该实施例中步骤101执行的操作。
可选地,参见图4B,该装置还包括:
第一确定模块402和检测模块403,用于执行上述图2A该实施例中步骤208执行的操作;
第二确定模块404和第三确定模块405,用于执行上述图2A该实施例中步骤209执行的操作;
所述发送模块401,还用于执行上述图2A该实施例中步骤210执行的操作。
可选地,参见图4C,该第三确定模块405包括:
第一确定单元4051,用于当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目小于或等于允许接入的UE的数目时,将该目标第一多天线接收矩阵对应的方向上所有申请接入的UE,确定为该目标第一多天线接收矩阵对应的方向上允许接入的UE,该目标第一多天线接收矩阵为该至少一个第一多天线接收矩阵中的任一第一多天线接收矩阵;
第二确定单元4052,用于当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,将该目标第一多天线接收矩阵对应的方向上申请接入的UE中公平性参数排序在后的M个UE,确定为该目标第一多天线接收矩阵对应的方向上允许接入的UE,该M等于该目标第一多天线接收矩阵对应的方向上允许接入的UE的数目。
可选地,该发送模块401还用于当该目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,对于该目标第一多天线接收矩阵对应的方向上申请接入的UE中不允许接入的UE,向该不允许接入的UE发送冲突解决指示信息,该冲突解决指示信息用于指示对应UE执行以下方式中的至少一种:
确定当前接入失败并更新公平性参数;
延迟第三预设时长之后重新向该基站发送接入请求;或,
提高对应UE的接入优先级,该接入优先级用于指示对应UE接入的成功率。
可选地,该提高对应UE的接入优先级,包括以下方式中的至少一种:
提供对应UE的发射功率;
降低对应UE选择的层数;或,
在将发送的接入请求的申请序列中增加正交序列。
本发明实施例中,基站可以为UE预置基站端的多天线接收矩阵,UE可以根据基站的配置参数生成与基站预置的多天线接收矩阵匹配的上行预编码矩阵,然后基于生成的上行预编码矩阵向基站发送上行信号。通过为UE预置基站端的多天线接收矩阵,基站可以灵活、自由的预置任意空间资源给UE,从而避免了UE只能利用码本包括的有限预编码矩阵指示的空间资源,增大了UE可利用的上行空间资源,也进而增大了基站可容纳的上行接入的UE的数目。而且基站无需下发PMI信息给UE,节省了下行链路资源。
需要说明的是:上述实施例提供的空分复用多址接入装置在进行接入时,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。另外,上述实施例提供的空分复用多址接入装置与空分复用多址接入方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意结合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本发明实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如:同轴电缆、光纤、数据用户线(Digital Subscriber Line,DSL))或无线(例如:红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如:软盘、硬盘、磁带)、光介质(例如:数字通用光盘(Digital  Versatile Disc,DVD))、或者半导体介质(例如:固态硬盘(Solid State Disk,SSD))等。
也即是,本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行上述图1E或图2A所述任一实施例中基站执行的方法或者UE执行的方法。
本发明实施例还提供了一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述图1E或图2A所述任一实施例中基站执行的方法或者UE执行的方法。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。
以上所述为本申请提供的实施例,并不用以限制本申请,凡在本申请的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本申请的保护范围之内。

Claims (31)

  1. 一种空分复用多址接入方法,其特征在于,应用于用户设备UE中,所述方法包括:
    根据事先约定或者从基站接收的参数,确定第一多天线接收矩阵,所述参数用于指示所述基站预先设置的多天线接收矩阵;
    基于所述第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,所述信道矩阵是指所述UE与所述基站之间的信道矩阵;
    基于所述上行预编码矩阵向所述基站发送接入请求,以接入所述基站所在的通信网络,或者基于所述上行预编码矩阵向所述基站发送数据。
  2. 如权利要求1所述的方法,其特征在于,所述基于所述多天线接收矩阵和信道矩阵生成上行预编码矩阵之前,还包括:
    接收所述基站发送的参考信号,所述参考信号为能够辅助所述UE进行信道估计的参考信号;
    基于所述参考信号对所述UE与所述基站之间的下行信道进行信道估计,得到所述信道矩阵。
  3. 如权利要求1或2所述的方法,其特征在于,所述基于所述第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,包括:
    基于存储的配置层数、所述信道矩阵和所述第一多天线接收矩阵,确定第二多天线接收矩阵;
    其中,所述配置层数用于指示所述UE允许传输的数据流个数,所述第二多天线接收矩阵是由所述第一多天线接收矩阵包括的多个列向量中的指定L个列向量组成得到,所述L与所述配置层数对应,且所述指定L个列向量是所述多个列向量包括的任意L个列向量中对应指定二范数最大的L个列向量,所述指定二范数是指所组成的矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数;
    将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵。
  4. 如权利要求3所述的方法,其特征在于,所述将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵之前,还包括:
    当所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数大于预设二范数阈值时,执行将所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的转置矩阵确定为所述上行预编码矩阵的步骤。
  5. 如权利要求1所述的方法,其特征在于,所述根据事先约定或者从基站接收的参数,确定第一多天线接收矩阵,包括:
    基于所述事先约定或者从基站接收的参数,从至少一个多天线接收矩阵中确定所述第一多天线接收矩阵,所述至少一个多天线接收矩阵为事先约定或者从所述基站接收得到;或者,
    基于所述事先约定或者从基站接收的参数和至少一个期望接收矩阵生成规则,生成所述第一多天线接收矩阵,所述至少一个期望接收矩阵生成规则为事先约定或者从所述基站接收得到。
  6. 如权利要求5所述的方法,其特征在于,所述基于所述事先约定或者从基站接收的参数和事先约定或者从所述基站接收的至少一个期望接收矩阵生成规则,生成所述第一多天线接收矩阵,包括:
    基于所述事先约定或者从基站接收的参数确定目标参数,所述目标参数为生成所述第一多天线接收矩阵所使用的参数;
    基于所述至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则,所述目标期望接收矩阵生成规则为生成所述第一多天线接收矩阵所使用的期望接收矩阵生成规则;
    基于所述目标参数和所述目标期望接收矩阵生成规则,生成所述第一多天线接收矩阵。
  7. 如权利要求6所述的方法,其特征在于,所述基于所述事先约定或者从基站接收的参数确定目标参数,包括:
    当所述事先约定或者从基站接收的参数包括不同时频资源对应的参数时,从所述不同时频资源对应的参数中确定目标时频资源对应的参数,所述目标时频资源是指当前申请接入或发送数据所使用的时频资源;
    基于所述目标时频资源对应的参数,确定所述目标参数。
  8. 如权利要求7所述的方法,其特征在于,所述基于所述目标时频资源对应的参数,确定所述目标参数,包括:
    当所述目标时频资源对应的参数包括至少一个层对应的参数时,基于层映射规则确定所述目标时频资源对应的目标层,所述层映射规则用于指示时频资源和层之间的映射关系;
    从所述至少一个层对应的参数中选择所述目标层对应的参数,并将选择的参数确定为所述目标参数。
  9. 如权利要求8所述的方法,其特征在于,所述从所述至少一个层对应的参数中选择所述目标层对应的参数,包括:
    当所述至少一个层对应的参数为伪随机序列构造参数时,基于所述伪随机序列构造参数按照事先约定或者从所述基站接收的伪随机序列构造规则,构造多个随机数;
    基于所述目标层按照事先约定或者从所述基站接收的取数规则,从所述多个随机数中选取至少一个随机数;
    将选取的至少一个随机数确定为所述目标层对应的参数。
  10. 如权利要求6所述的方法,其特征在于,所述基于所述至少一个期望接收矩阵生成规则确定目标期望接收矩阵生成规则,包括:
    当所述事先约定或者从所述基站接收参数包括所述目标期望接收矩阵生成规则的索引信息时,基于所述索引信息,从所述至少一个期望接收矩阵生成规则中确定所述目标期望接收 矩阵生成规则。
  11. 如权利要求5所述的方法,其特征在于,所述至少一个期望接收矩阵生成规则包括N维矩阵;
    其中,所述N维矩阵中的列向量两两正交,且所述N维矩阵包括N-1个变量参数,每个变量参数用于指示对应的列向量的旋转角度,所述N为正整数。
  12. 如权利要求5所述的方法,其特征在于,所述至少一个期望接收矩阵生成规则包括N维的初始正交基和变换规则;
    其中,所述变换规则用于指示基于所述事先约定或者从基站接收的参数对所述初始正交基中的至少一项向量元素进行变换,并对变换后的初始正交基进行施密特正交化,以得到所述第一多天线接收矩阵,所述N为正整数。
  13. 如权利要求1所述的方法,其特征在于,所述基于所述上行预编码矩阵向所述基站发送接入请求或数据之前,还包括:
    判断所述UE是否满足预设条件;
    当所述UE满足所述预设条件时,执行基于所述上行预编码矩阵向所述基站发送接入请求或数据的步骤。
  14. 如权利要求13所述的方法,其特征在于,所述判断所述UE是否满足预设条件,包括以下方式中的至少一种:
    判断所述UE的发射功率是否大于预设发射功率,当所述UE的发射功率大于所述预设发射功率时,确定所述UE满足所述预设条件;
    判断所述UE的公平性参数是否大于第一参数阈值且小于第二参数阈值,当所述UE的公平性参数大于所述第一参数阈值且小于所述第二参数阈值时,确定所述UE满足所述预设条件,所述公平性参数是指在距当前时刻之前的第一预设时长内的上行吞吐率和最大传输速率之间的比值;或,
    判断第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数是否大于预设二范数阈值,当所述第二多天线接收矩阵的转置矩阵与所述信道矩阵相乘得到的矩阵的二范数大于所述预设二范数阈值时,确定所述UE满足所述预设条件,所述第二多天线接收矩阵是基于所述UE的配置流数、所述信道矩阵和所述第一多天线接收矩阵确定得到,所述配置层数用于指示所述UE允许传输的数据流个数。
  15. 如权利要求1所述的方法,其特征在于,所述接入请求包含数据,所述接入请求用于请求接入所述基站所在的通信网络并向所述基站发送数据。
  16. 如权利要求1所述的方法,其特征在于,所述基于所述上行预编码矩阵向所述基站发送接入请求之前,还包括:
    当所述接入请求包含数据时,在所述接入请求的申请序列的预设位置添加第一正交序列 和/或在所述数据中添加第二正交序列;
    其中,所述第一正交序列和所述第二正交序列相对应,均用于标识所述UE。
  17. 如权利要求1所述的方法,其特征在于,所述方法还包括:
    当在基于所述上行预编码矩阵向所述基站发送所述接入请求之后的第二预设时长内接收到所述基站发送的授权指示信息时,接入所述基站所在的通信网络或者接入所述基站所在的通信网络并向所述基站所在的通信网络发送数据,所述授权指示信息用于指示允许所述UE接入;
    其中,所述授权指示信息是所述基站基于所述第一多天线接收矩阵对应的方向上申请接入的UE的数目、允许接入的UE的数目和申请接入的各个UE的公平性参数确定发送的,所述公平性参数是指在距当前时刻之前的第二预设时长内的上行吞吐率和最大传输速率之间的比值。
  18. 如权利要求17所述的方法,其特征在于,所述方法还包括:
    当在基于所述上行预编码矩阵向所述基站发送接入请求之后的所述第二预设时长内未接收到所述授权指示信息时,执行以下步骤中的至少一种:
    确定所述UE接入失败,并更新所述UE的公平性参数;
    延迟第三预设时长之后,重新向所述基站发送接入请求;或,
    提高所述UE的接入优先级,所述接入优先级用于指示所述UE接入的成功率。
  19. 如权利要求18所述的方法,其特征在于,所述提高所述UE的接入优先级,包括以下方式中的至少一种:
    提高所述UE的发射功率;
    降低所述UE选择的层数;或,
    在将发送的接入请求的申请序列中增加正交序列。
  20. 一种空分复用多址接入方法,其特征在于,应用于基站中,所述方法包括:
    向至少一个用户设备UE发送参数,由所述至少一个UE中的每个UE基于接收的参数确定第一多天线接收矩阵,基于确定的第一多天线接收矩阵和信道矩阵生成上行预编码矩阵,并基于所述上行预编码矩阵向所述基站发送接入请求,以接入所述基站所在的通信网络,或者基于所述上行预编码矩阵向所述基站发送数据;
    其中,所述参数用于指示所述基站预先设置的多天线接收矩阵,所述信道矩阵为每个UE与所述基站之间的信道矩阵。
  21. 如权利要求20所述的方法,其特征在于,所述向至少一个UE发送参数之前,还包括:
    向所述至少一个UE发送参考信号,由所述至少一个UE中的每个UE基于接收的参考信号对与所述基站之间的下行信道进行信道估计,得到所述信道矩阵。
  22. 如权利要求20所述的方法,其特征在于,所述向至少一个UE发送参数之后,还包括:
    基于向所述至少一个UE发送的参数,确定至少一个第一多天线接收矩阵;
    在所述至少一个第一多天线接收矩阵对应的方向上进行检测,以确定各个第一多天线接收矩阵对应的方向上申请接入的UE的数目;
    确定各个第一多天线接收矩阵的方向上申请接入的各UE的公平性参数和各个第一多天线接收矩阵对应的方向上允许接入的UE的数目;
    基于各个第一多天线接收矩阵对应的方向上申请接入的UE的数目、申请接入的各UE的公平性参数和允许接入的UE的数目,确定各个第一多天线接收矩阵对应的方向上允许接入的UE;
    向各个第一多天线接收矩阵对应的方向上允许接入的UE发送授权指示信息,所述授权指示信息用于指示允许对应UE接入。
  23. 如权利要求22所述的方法,其特征在于,所述基于各个第一多天线接收矩阵对应的方向上申请接入的UE的数目、允许接入的UE的数目和各个UE的公平性参数,确定各个第一多天线接收矩阵对应的方向上允许接入的UE,包括:
    当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目小于或等于允许接入的UE的数目时,将所述目标第一多天线接收矩阵对应的方向上所有申请接入的UE,确定为所述目标第一多天线接收矩阵对应的方向上允许接入的UE,所述目标第一多天线接收矩阵为所述至少一个第一多天线接收矩阵中的任一第一多天线接收矩阵;
    当目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,将所述目标第一多天线接收矩阵对应的方向上申请接入的UE中公平性参数排序在前或在后的M个UE,确定为所述目标第一多天线接收矩阵对应的方向上允许接入的UE,所述M等于所述目标第一多天线接收矩阵对应的方向上允许接入的UE的数目。
  24. 如权利要求22或23所述的方法,其特征在于,所述方法还包括:
    当所述目标第一多天线接收矩阵对应的方向上申请接入的UE的数目大于允许接入的UE的数目时,对于所述目标第一多天线接收矩阵对应的方向上申请接入的UE中不允许接入的UE,向所述不允许接入的UE发送冲突解决指示信息,所述冲突解决指示信息用于指示对应UE执行以下方式中的至少一种:
    确定当前接入失败并更新公平性参数;
    延迟第三预设时长之后重新向所述基站发送接入请求;或,
    提高对应UE的接入优先级,所述接入优先级用于指示对应UE接入的成功率。
  25. 如权利要求24所述的方法,其特征在于,所述提高对应UE的接入优先级,包括以下方式中的至少一种:
    提高对应UE的发射功率;
    降低对应UE选择的层数;或,
    在将发送的接入请求的申请序列中增加正交序列。
  26. 一种空分复用多址接入装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器被配置为执行权利要求1-19所述的任一项方法的步骤。
  27. 一种空分复用多址接入装置,包括存储器、处理器及存储在所述存储器上并可在所述处理器上运行的计算机程序,其特征在于,所述处理器被配置为执行权利要求20-25所述的任一项方法的步骤。
  28. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1-19任意一项所述的方法。
  29. 一种计算机可读存储介质,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求20-25所述的方法。
  30. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求1-19任意一项所述的方法。
  31. 一种包含指令的计算机程序产品,当其在计算机上运行时,使得计算机执行如权利要求20-25所述的方法。
PCT/CN2018/100447 2017-09-21 2018-08-14 空分复用多址接入方法、装置及存储介质 WO2019056890A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710861973.8 2017-09-21
CN201710861973.8A CN109547079B (zh) 2017-09-21 2017-09-21 空分复用多址接入方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2019056890A1 true WO2019056890A1 (zh) 2019-03-28

Family

ID=65811097

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/100447 WO2019056890A1 (zh) 2017-09-21 2018-08-14 空分复用多址接入方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN109547079B (zh)
WO (1) WO2019056890A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329203A1 (en) * 2009-06-26 2010-12-30 Lg Electronics Inc. Method and apparatus for transmitting uplink signals using optimized rank 3 codebook
CN102158263A (zh) * 2010-02-11 2011-08-17 索尼公司 基于码书的信道信息反馈方法、设备和系统
US20130188593A1 (en) * 2010-09-30 2013-07-25 Zte Corporation Method for channel information feedback and a terminal
CN107078773A (zh) * 2014-09-25 2017-08-18 瑞典爱立信有限公司 使ue能够确定预编码器码本的网络节点、用户设备及其方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8537924B2 (en) * 2008-01-14 2013-09-17 Telefonaktiebolaget Lm Ericsson (Publ) Open loop precoder cycling in MIMO communications
CN105744623A (zh) * 2014-12-09 2016-07-06 中兴通讯股份有限公司 超级小区下的空分多址接入方法及其基站
CN106161299B (zh) * 2015-03-24 2019-02-15 中兴通讯股份有限公司 一种数据传输方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100329203A1 (en) * 2009-06-26 2010-12-30 Lg Electronics Inc. Method and apparatus for transmitting uplink signals using optimized rank 3 codebook
CN102158263A (zh) * 2010-02-11 2011-08-17 索尼公司 基于码书的信道信息反馈方法、设备和系统
US20130188593A1 (en) * 2010-09-30 2013-07-25 Zte Corporation Method for channel information feedback and a terminal
CN107078773A (zh) * 2014-09-25 2017-08-18 瑞典爱立信有限公司 使ue能够确定预编码器码本的网络节点、用户设备及其方法

Also Published As

Publication number Publication date
CN109547079A (zh) 2019-03-29
CN109547079B (zh) 2021-02-12

Similar Documents

Publication Publication Date Title
JP7165232B2 (ja) 効率的なsrsリソース指示方法
WO2018228187A1 (en) Method for Response to Beam Failure Recovery Request
CN112956145A (zh) 信道和干扰测量和报告的方法和装置
JP2020523912A (ja) マルチリソースアップリンクサウンディングおよびアンテナサブセット送信
JP2023081913A (ja) マルチユーザ複数入力複数出力のための、干渉測定およびチャネル状態情報フィードバック
JP6771582B2 (ja) 低複雑性マルチ設定csiレポート
US20150029986A1 (en) Mu-mimo transmission method in wireless lan system
JP2023514126A (ja) 複数の関連付けられたnzp csi-rsを用いた非コードブックベースのマルチtrp puschの信頼性
WO2014032606A1 (zh) 一种传输参考信号的方法、装置及系统
WO2016050197A1 (zh) 一种fd-mimo通信中的csi反馈的ue、基站中的方法和设备
CN115836492A (zh) 辅助增强nr类型ii csi反馈的信令传输
WO2017167091A1 (zh) 信道状态信息的反馈方法及装置、计算机存储介质
CN108604916A (zh) 多天线传输方法、基站和用户终端
WO2016045535A1 (zh) 信道状态信息反馈方法、设备及系统
WO2012159343A1 (zh) 一种发送分集方法、相关设备及系统
JP2022506409A (ja) Pdschダイバーシティをシグナリングするためのシステム及び方法
CN111656713A (zh) 用于非预编码器矩阵指示符(pmi)信道状态信息(csi)反馈的端口索引信令的方法和设备
TW201818686A (zh) 指派傳輸時刻至無線電終端之方法、無線電網路節點、及無線電終端
TW202203693A (zh) 干擾感知波束成形
WO2022027625A1 (en) Frequency domain precoding for fdd reciprocity
US20230328568A1 (en) Quantization scheme for channel state information reports
WO2018023735A1 (zh) 一种终端、基站和获得信道信息的方法
CN112054824A (zh) 一种信道测量方法和通信装置
WO2019056890A1 (zh) 空分复用多址接入方法、装置及存储介质
EP3320628B1 (en) Systems and methods of interference mitigation for concurrent links in beamformed communication

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858339

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858339

Country of ref document: EP

Kind code of ref document: A1