WO2019056818A1 - 一种像素驱动电路、像素驱动方法和显示装置 - Google Patents

一种像素驱动电路、像素驱动方法和显示装置 Download PDF

Info

Publication number
WO2019056818A1
WO2019056818A1 PCT/CN2018/092300 CN2018092300W WO2019056818A1 WO 2019056818 A1 WO2019056818 A1 WO 2019056818A1 CN 2018092300 W CN2018092300 W CN 2018092300W WO 2019056818 A1 WO2019056818 A1 WO 2019056818A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
signal
control
circuit
sub
Prior art date
Application number
PCT/CN2018/092300
Other languages
English (en)
French (fr)
Inventor
胡琪
敬辉
廖伟经
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/328,936 priority Critical patent/US11094257B2/en
Publication of WO2019056818A1 publication Critical patent/WO2019056818A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • G09G3/3241Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror
    • G09G3/325Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element the current through the light-emitting element being set using a data current provided by the data driver, e.g. by using a two-transistor current mirror the data current flowing through the driving transistor during a setting phase, e.g. by using a switch for connecting the driving transistor to the data driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3225Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix
    • G09G3/3233Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED] using an active matrix with pixel circuitry controlling the current through the light-emitting element
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G3/00Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
    • G09G3/20Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
    • G09G3/22Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources
    • G09G3/30Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels
    • G09G3/32Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED]
    • G09G3/3208Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters using controlled light sources using electroluminescent panels semiconductive, e.g. using light-emitting diodes [LED] organic, e.g. using organic light-emitting diodes [OLED]
    • G09G3/3275Details of drivers for data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/04Structural and physical details of display devices
    • G09G2300/0421Structural details of the set of electrodes
    • G09G2300/043Compensation electrodes or other additional electrodes in matrix displays related to distortions or compensation signals, e.g. for modifying TFT threshold voltage in column driver
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0819Several active elements per pixel in active matrix panels used for counteracting undesired variations, e.g. feedback or autozeroing
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2300/00Aspects of the constitution of display devices
    • G09G2300/08Active matrix structure, i.e. with use of active elements, inclusive of non-linear two terminal elements, in the pixels together with light emitting or modulating elements
    • G09G2300/0809Several active elements per pixel in active matrix panels
    • G09G2300/0842Several active elements per pixel in active matrix panels forming a memory circuit, e.g. a dynamic memory with one capacitor
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2310/00Command of the display device
    • G09G2310/02Addressing, scanning or driving the display screen or processing steps related thereto
    • G09G2310/0262The addressing of the pixel, in a display other than an active matrix LCD, involving the control of two or more scan electrodes or two or more data electrodes, e.g. pixel voltage dependent on signals of two data electrodes
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09GARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
    • G09G2320/00Control of display operating conditions
    • G09G2320/04Maintaining the quality of display appearance
    • G09G2320/043Preventing or counteracting the effects of ageing
    • G09G2320/045Compensation of drifts in the characteristics of light emitting or modulating elements

Definitions

  • Embodiments of the present disclosure relate to the field of display technologies, and in particular, to a pixel driving circuit, a pixel driving method, and a display device.
  • OLED display is one of the hotspots in the field of display research today. Compared with liquid crystal display (LCD), OLED display has low energy consumption, low production cost, and self-illumination. Wide viewing angle and fast response.
  • LCD liquid crystal display
  • a pixel driving circuit for driving a light emitting element, comprising: a first control sub-circuit configured to provide a signal of a data signal end to a first node under control of a first signal control terminal a second control sub-circuit configured to provide a signal of the first power terminal to the fourth node under the control of the third signal control terminal, and provide a signal of the fourth node to the second node under the control of the second signal control terminal a third control sub-circuit configured to provide a signal of the second power supply terminal to the third node under control of the fourth signal control terminal; the energy storage sub-circuit configured to store the potential between the first node and the second node And a driving sub-circuit configured to transmit a driving current for driving the light-emitting element from the fourth node to the third node under control of the second node.
  • the first control sub-circuit includes: a first switching transistor; a gate of the first switching transistor is connected to a first signal control end, and a first pole of the first switching transistor is connected to a data signal end The second pole of the first switching transistor is connected to the first node.
  • the second control sub-circuit includes: a second switching transistor and a third switching transistor; a gate of the second switching transistor is connected to a second signal control end, and a first pole of the second switching transistor Connected to the second node, the second pole of the second switching transistor is connected to the fourth node; and the gate of the third switching transistor is connected to the third signal control terminal, the first pole of the third switching transistor Connected to the first power terminal, the second pole of the third switching transistor is connected to the fourth node.
  • the third control sub-circuit includes: a fourth switching transistor; a gate of the fourth switching transistor is connected to a fourth signal control end, and a first pole of the fourth switching transistor is connected to a third node The second pole of the fourth switching transistor is connected to the second power terminal.
  • the energy storage sub-circuit includes: a capacitor; one end of the capacitor is connected to the first node, and the other end of the capacitor is connected to the second node.
  • the driving sub-circuit includes: a driving transistor; a gate of the driving transistor is connected to a second node, a source of the driving transistor is connected to a third node, and a drain and a fourth of the driving transistor are Node connection.
  • the capacitor is configured to adjust the potential of the second node by discharging until the potential of the second node is the threshold voltage of the driving transistor.
  • the light emitting element is an organic light emitting diode.
  • the first switching transistor, the second switching transistor, the third switching transistor, the fourth switching transistor, and the driving transistor are all N-type thin film transistors or P-type thin film transistors.
  • the input signal of the first signal control terminal, the input signal of the second signal control terminal, the input signal of the third signal control terminal, and the input signal of the fourth signal control terminal are all at a high level;
  • the input signal of the first signal control terminal, the input signal of the second signal control terminal, and the input signal of the fourth signal control terminal are both high levels;
  • the writing phase the input signal of the first signal control terminal and the input signal of the digital signal terminal Both are high level; and in the lighting phase, the input signal of the third signal control terminal is high.
  • a display device comprising the pixel driving circuit according to the present disclosure described above.
  • a pixel driving method of the above pixel driving circuit including:
  • the first control sub-circuit provides a signal of the data signal end to the first node under the control of the first signal control end; the second control sub-circuit provides the first power supply to the fourth node under the control of the third signal control end.
  • the signal of the terminal, under the control of the third signal control end provides the signal of the fourth node to the second node;
  • the third control sub-circuit provides the signal of the second power terminal to the third node under the control of the fourth signal control terminal;
  • the third control sub-circuit provides a signal of the second power terminal to the third node under the control of the fourth signal control terminal; and detects the threshold voltage of the driving sub-circuit under the action of the energy storage sub-circuit; in the writing phase,
  • the first control sub-circuit provides a signal of the data signal end to the first node under the control of the first signal end; and in the illuminating phase, the second control sub-circuit provides the signal of the first power end to the fourth node according to the control of the
  • the step of detecting the threshold voltage of the driving sub-circuit under the action of the energy storage sub-circuit comprises: the energy storage sub-circuit adjusting the potential of the second node by discharging until the potential of the second node is a driving transistor in the driving sub-circuit Threshold voltage.
  • the potential of the fourth node is equal to the potential of the second node.
  • 1 is an equivalent circuit diagram of a conventional pixel driving circuit
  • FIG. 2 is a structural block diagram of a pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 3 is an operational timing diagram of a pixel driving circuit, in accordance with some embodiments of the present disclosure.
  • FIG. 4 is an equivalent circuit diagram of a pixel driving circuit in accordance with some embodiments of the present disclosure.
  • 5A is a diagram showing an operational state of a pixel driving circuit in a first stage, in accordance with some embodiments of the present disclosure
  • 5B is a diagram showing an operational state of a pixel driving circuit in a second stage, in accordance with some embodiments of the present disclosure
  • 5C is a diagram showing an operational state of a pixel driving circuit in a third stage, in accordance with some embodiments of the present disclosure.
  • 5D is a diagram showing an operational state of a pixel driving circuit in a fourth stage, in accordance with some embodiments of the present disclosure.
  • FIG. 6 is a flow chart of a pixel driving method, in accordance with some embodiments of the present disclosure.
  • the switching transistor and the driving transistor used in all embodiments of the present application may be thin film transistors or field effect transistors or other devices having the same characteristics.
  • the thin film transistor used in the embodiment of the present disclosure may be an oxide semiconductor transistor. Since the source and drain of the switching transistor used here are symmetrical, the source and the drain can be interchanged.
  • one of the electrodes is referred to as a first pole, the other electrode is referred to as a second pole, and the first pole may be a source or a drain.
  • the two poles can be drain or source.
  • the pixel driving circuit is the core technology of the OLED display. In the OLED display, the pixel driving circuit needs to detect the threshold voltage of the driving transistor to output a stable current to control the OLED light emission.
  • the existing pixel driving circuit ignores the parasitic capacitance of the OLED, so that the detection result of the threshold voltage of the driving transistor is not high and the detection time is too long.
  • a conventional pixel driving circuit is composed of 2T1C, that is, one driving transistor D, one switching transistor T, and one capacitor C for driving organic light emission.
  • a diode OLED wherein a drain of the driving transistor D is connected to the first power terminal VDD, a source is connected to the second node B, a gate is connected to the first node A, and a gate of the switching transistor T is connected to the signal control terminal G1.
  • the first pole is connected to the data signal end Data
  • the second pole is connected to the first node A
  • one end of the capacitor C is connected to the first node A
  • the other end is connected to the second node B.
  • One end of the organic light emitting diode OLED and the second node B is connected, and the other end is connected to the second power terminal VSS.
  • the organic light emitting diode OLED due to the parasitic capacitance of the organic light emitting diode OLED, when the source voltage of the driving transistor D, that is, V B , is always raised in the threshold detecting phase, the organic light emitting diode OLED is simultaneously The parasitic capacitance is charged, so that the threshold detection result of the driving transistor is not accurate, and the detection time is too long.
  • embodiments of the present disclosure provide a pixel driving circuit, a pixel driving method, and a display device.
  • a pixel driving circuit includes: a first control sub-circuit for providing a signal of a data signal end to a first node under control of a first signal control terminal, for controlling at a third signal control end Controlling, providing a signal to the fourth node to the fourth node, and a second control sub-circuit for providing a signal of the fourth node to the second node under control of the second signal control terminal, for controlling the fourth signal a third control sub-circuit for providing a signal of the second power supply terminal to the third node, an energy storage sub-circuit for storing the potential between the first node and the second node, and for the second node and the fourth Under the control of the node, a driving sub-circuit for driving the driving current of the light-emitting element is sent to the third node, and the embodiment of the present disclosure provides the signal of the second power terminal to the third node through the third control sub-circuit during the threshold detecting phase, and the light is emitted.
  • the short circuit of the component eliminates the technical problem that the threshold voltage detection result by the parasitic capacitance of the light-emitting element is not accurate and the detection time is too long, and the threshold is improved.
  • the value of the test results is accurate and reduces the time required for threshold voltage detection.
  • a pixel driving circuit provided by an embodiment of the present disclosure is configured to drive a light emitting component, including: a first control sub-circuit and a second control The circuit, the third control sub-circuit, the energy storage sub-circuit, and the drive sub-circuit.
  • the first control sub-circuit is respectively connected to the data signal end Data, the first signal control terminal V1 and the first node a, and is used to control the first node a under the control of the first signal control terminal V1.
  • the second control sub-circuit is respectively connected to the second node b, the fourth node d, the second signal control terminal V2, the third signal control terminal V3, and the first power terminal VDD for
  • the signal of the first power terminal VDD is supplied to the fourth node d under the control of the third signal control terminal V3, and is further configured to provide the signal of the fourth node d to the second node b under the control of the second signal control terminal V2.
  • a third control sub-circuit respectively connected to the third node c, the fourth signal control terminal V4 and the second power terminal VSS, for providing the second power to the third node c under the control of the fourth signal control terminal V4 a signal of the end VSS;
  • the energy storage sub-circuit is respectively connected to the first node a and the second node b for storing the potential between the first node a and the second node b;
  • the driving sub-circuit respectively and the second node b
  • the third node c and the fourth node d are connected for control at the second node b , The transmission from the fourth node d for driving a current driving the light emitting element to the third node c.
  • the light emitting element may be an organic light emitting diode OLED having an anode connected to the third node c and a cathode connected to the second power terminal VSS.
  • the potential V dd of the first power terminal VDD continues to be a high level
  • the potential V ss of the second power terminal VSS continues to be a low level
  • the potential of the first power terminal VDD may be 5V or more.
  • the potential of the second power supply terminal VSS is smaller than the potential of the first power supply terminal VDD.
  • FIG. 4 is an equivalent circuit diagram of a pixel driving circuit according to some embodiments of the present disclosure, and specifically illustrates a first control sub circuit, a second control sub circuit, a third control sub circuit, an energy storage sub circuit, and a driver according to some embodiments of the present disclosure.
  • An exemplary structure of a subcircuit An exemplary structure of a subcircuit. Those skilled in the art will readily appreciate that the implementation of the above sub-circuits is not limited thereto, as long as their respective functions can be realized.
  • the first control sub-circuit includes: a first switching transistor T1; a gate of the first switching transistor T1 is connected to the first signal control terminal V1, One pole is connected to the data signal terminal Data, and the second pole is connected to the first node a.
  • a second control sub-circuit comprising: a second switching transistor T2 and a third switching transistor T3; a gate of the second switching transistor T2 is connected to the second signal control terminal V2, the first pole is connected to the second node b, and the second pole Connected to the fourth node d; the gate of the third switching transistor T3 is connected to the third signal control terminal V3, the first pole is connected to the first power terminal VDD, and the second pole is connected to the fourth node d.
  • the third control sub-circuit includes: a fourth switching transistor T4; a gate of the fourth switching transistor T4 is connected to the fourth signal control terminal V4, the first pole is connected to the third node c, and the second pole and the second power terminal VSS connection.
  • the energy storage sub-circuit includes: a capacitor Cs; one end of the capacitor Cs is connected to the first node a, and the other end is connected to the second node b.
  • the driving sub-circuit includes: a driving transistor DTFT; a gate of the driving transistor DTFT is connected to the second node b, a source is connected to the third node c, and a drain is connected to the fourth node d.
  • the capacitor Cs is specifically used to adjust the potential of the second node b by discharge until the potential of the second node b is the threshold voltage V th of the driving transistor DTFT.
  • the input signal of the first signal control terminal V1, the input signal of the second signal control terminal V2, the input signal of the third signal control terminal V3, and the input signal of the fourth signal control terminal V4 are both high.
  • Level; in the threshold detection phase, the input signal of the first signal control terminal V1, the input signal of the second signal control terminal V2, and the input signal of the fourth signal control terminal V4 are both high levels; in the writing phase, the first The input signal of the signal control terminal V1 and the input signal of the digital signal terminal are both high level; in the light emitting phase, the input signal of the third signal control terminal V3 is at a high level.
  • the driving transistor DTFT, the first switching transistor T1, the second switching transistor T2, the third switching transistor T3, and the fourth switching transistor T4 may each be an N-type thin film transistor or a P-type thin film transistor.
  • the process can be unified, and the process of the OLED display can be reduced, which helps to improve the yield of the product.
  • FIG. 3 is an operation timing diagram of a pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 5A is a working state diagram of a pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 5B is a pixel driving circuit according to an embodiment of the present disclosure
  • FIG. 5C is a working state diagram of the pixel driving circuit provided in the third stage of the present disclosure
  • FIG. 5D is a working state diagram of the pixel driving circuit in the fourth stage according to an embodiment of the present disclosure
  • the pixel driving circuit provided by the embodiment of the present disclosure includes: four switching transistors (T1 to T4), one driving transistor (DTFT), one capacitor unit (Cs), and seven input terminals. (Data, VDD, VSS, V1, V2, V3, and V4), the working process includes:
  • the first stage S1 that is, the reset phase: the input signal of the first signal control terminal V1, the input signal of the second signal control terminal V2, the input signal of the third signal control terminal V3, and the input signal of the fourth signal control terminal V4 Is high.
  • the first switching transistor T1, the second switching transistor T2, the third switching transistor T3, and the fourth switching transistor T4 are turned on, and provide data to the first node a under the control of the first signal control terminal V1.
  • the potential of the third node V c V ss , after which the capacitor Cs maintains the first node a and the The difference between the potentials of the two nodes b, the driving transistor DTFT is turned on because V b is at a high level, and the driving transistor DTFT is started at the next stage because the capacitance Cs can maintain the difference between the potentials of the first node a and the second node b It is in the on state and is ready for threshold detection.
  • the fourth switching transistor T4 is turned on to short-circuit the organic light emitting diode OLED, and the organic light emitting diode OLED does not emit light even if the third switching transistor T3 and the driving transistor DTFT are turned on.
  • the second stage S2 that is, the threshold detection phase: the input signal of the first signal control terminal V1, the input signal of the second signal control terminal V2, and the input signal of the fourth signal control terminal V4 are all at a high level.
  • the first switching transistor T1, the second switching transistor T2, and the fourth switching transistor T4 are turned on, and the third switching transistor T3 is turned off.
  • the signal of the data signal terminal Data is supplied to the first node a.
  • the potential V a 0 of the first node a; under the control of the fourth signal control terminal V4,
  • the driving transistor DTFT is turned off.
  • the third stage S3, that is, the writing phase, is that the input signal of the first signal control terminal V1 and the input signal of the digital signal terminal Data are both high.
  • the second switching transistor T2, the third switching transistor T3, and the fourth switching transistor T4 are turned off, and the first switching transistor T1 is turned on, and the potential jump of the first node a is under the control of the digital signal terminal Data.
  • V a V data
  • the fourth stage S4 that is, the light-emitting phase: the input signal of the third signal control terminal V3 is at a high level.
  • the first switching transistor T1, the second switching transistor T2, and the fourth transistor T4 are turned off, the third switching transistor T3 is turned on, and the driving transistor DTFT is turned on under the action of the second node b, in the third signal.
  • a driving current for driving the organic light emitting diode OLED is transmitted from the fourth node d to the third node c.
  • the source voltage V s is equal to the potential of the third node c, that is, the anode potential V OLED of the organic light emitting diode OLED .
  • the driving current I OLED flowing through the light emitting element can be obtained.
  • I OLED K(V GS –V th ) 2
  • K is a fixed constant related to the process parameters and geometric dimensions of the driving transistor DTFT
  • V GS is the gate-to-source voltage difference of the driving transistor DFTF
  • V th is the threshold voltage of the driving transistor DFTF.
  • the third node c can be accurately reset to the low level of the second power terminal VSS.
  • the threshold detection phase since the fourth switching transistor T4 is turned on, the organic light emitting diode is short-circuited, the discharge speed is increased, and the accuracy of the threshold voltage detection is also ensured.
  • the driving current outputted by the driving transistor DTFT is not affected by the threshold voltage of the driving transistor DTFT and the anode voltage of the organic light emitting diode OLED, and only the signal on the data signal end Accordingly, the influence of the threshold voltage of the driving transistor DTFT on the driving current is eliminated, thereby ensuring uniform display brightness of the display device and improving the display effect of the entire display device.
  • the input signal of the first power terminal VDD is high level, the input signal of the data signal end Data and the input signal of the second power terminal VSS are both low level; in the threshold detection phase, the input of the first signal control terminal V1 The signal, the input signal of the second signal control terminal V2, the input signal of the fourth signal control terminal V4, and the input signal of the first power terminal VDD are both high level, the input signal of the third signal control terminal V3, and the data signal end Data
  • the input signal and the input signal of the second power terminal VSS are both low; in the writing phase, the input signal of the first signal control terminal V1, the input signal of the data signal terminal Data, and the input signal of the first power terminal VDD are both Is high level, the input signal of the second signal control terminal V2, the input signal of the third signal control terminal V3, the input signal
  • the pixel driving circuit includes: a first control sub-circuit, a second control sub-circuit, a third control sub-circuit, an energy storage sub-circuit, and a driving sub-circuit; the illuminating elements are respectively associated with the third node and the second
  • the first control sub-circuit is respectively connected to the data signal end, the first signal control end and the first node, and is configured to provide the signal of the data signal end to the first node under the control of the first signal control end; a control sub-circuit, which is respectively connected to the second node, the fourth node, the second signal control end, the third signal control end, and the first power supply end, and is configured to provide the first node to the fourth node under the control of the third signal control end
  • the signal at the power end is further configured to provide a signal of the fourth node to the second node under the control of the second signal control end; the third control sub-circuit is respectively connected to the third node, the fourth signal control end, and the second power
  • FIG. 6 is a flowchart of a pixel driving method according to an embodiment of the present disclosure.
  • the pixel driving method provided by the embodiment of the present disclosure adopts the foregoing pixel provided by the embodiment of the present disclosure.
  • the driving circuit is implemented, and specifically includes the following steps:
  • Step 100 In the reset phase, the first control sub-circuit provides a signal of the data signal end to the first node under the control of the first signal control end; the second control sub-circuit provides the fourth node under the control of the third signal control end The signal of the first power terminal provides the signal of the fourth node to the second node under the control of the third signal control end; the third control sub circuit provides the signal of the second power terminal to the third node under the control of the fourth signal control terminal .
  • the input signal of the first signal control terminal, the input signal of the second signal control terminal, the input signal of the third signal control terminal, and the input signal of the fourth signal control terminal are all at a high level, and the input signal of the data signal terminal is at a low level.
  • the low level can be zero.
  • Step 200 In the threshold detection phase, the third control sub-circuit provides a signal of the second power terminal to the third node under the control of the fourth signal control terminal; and detects the threshold voltage of the driving sub-circuit under the action of the energy storage sub-circuit.
  • the energy storage sub-circuit adjusts the potential of the second node by discharging until the potential of the second node is a driving transistor in the driving sub-circuit Threshold voltage.
  • the input signal of the first signal control terminal, the input signal of the second signal control terminal, and the input signal of the fourth signal control terminal are all at a high level, and the input signal of the third signal control terminal and the input signal of the data signal terminal are both low. level. It should be noted that, in this stage, the potential of the fourth node is equal to the potential of the second node.
  • Step 300 In the writing phase, the first control sub-circuit provides a signal of the data signal end to the first node under the control of the first signal end, and the potential of the second node jumps under the action of the energy storage sub-circuit.
  • the input signal of the first signal control end and the input signal of the data signal end are all high level, and the input signal of the second signal control end, the input signal of the third signal control end, and the input signal of the fourth signal control end are all low. level.
  • Step 400 In the illuminating phase, the second control sub-circuit provides a signal of the first power terminal to the fourth node according to the control of the third signal control end, and the driving sub-circuit is provided from the first node to the third node under the control of the second node. A driving current for driving the light emitting element.
  • the input signal of the third signal control terminal is at a high level, and the input signal of the first signal control terminal, the input signal of the second signal control terminal, the input signal of the fourth signal control terminal, and the input signal of the data signal terminal are all low level. .
  • the pixel driving method provided by the embodiment of the present disclosure specifically includes: in a resetting phase, the first control sub-circuit provides a signal of the data signal end to the first node under the control of the first signal control end; the second control sub-circuit is in the third signal Under the control of the control end, the fourth node is provided with a signal of the first power terminal, and under the control of the third signal control terminal, the signal of the fourth node is provided to the second node; and the third control sub-circuit is under the control of the fourth signal control terminal, Providing a signal of the second power terminal to the third node; in the threshold detecting phase, the third control sub-circuit provides the signal of the second power terminal to the third node under the control of the fourth signal control terminal; under the action of the energy storage sub-circuit, Detecting a threshold voltage of the driving sub-circuit; in the writing phase, the first control sub-circuit provides a signal of the data signal end to the first node under the control of the first signal end, and the potential
  • the signal at the power supply terminal short-circuits the light-emitting element, eliminating the technical problem that the threshold voltage detection result by the parasitic capacitance of the light-emitting element is not accurate and the detection time is too long, and the accuracy of the threshold detection result is improved and reduced.
  • the time required for threshold voltage detection is not accurate and the detection time is too long, and the accuracy of the threshold detection result is improved and reduced.
  • an embodiment of the present disclosure further provides a display device including a pixel driving circuit.
  • the pixel driving circuit is a pixel driving circuit provided according to an embodiment of the present disclosure, and the implementation principle and implementation effect thereof are similar, and details are not described herein again.
  • the display device may include a display substrate, and the pixel driving circuit may be disposed on the display substrate.
  • the display device may be: OLED panel, mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator, etc., any product or component having display function.
  • the display substrate of the display device may adopt a Low Temperature Poly-silicon (LTPS) process, and the design of the plurality of transistors and the plurality of capacitors does not affect the module.
  • LTPS Low Temperature Poly-silicon
  • the display substrate of the display device may also adopt an amorphous silicon process.
  • the pixel driving circuit may employ a thin film transistor of a process of amorphous silicon, polysilicon, oxide, or the like.
  • the type of thin film transistor employed by the pixel driving circuit may be replaced according to actual needs.
  • the above description has been made by taking an active matrix organic light emitting diode as an example, the present disclosure is not limited to a display substrate using an active matrix organic light emitting diode, and can also be applied to a display substrate using other various light emitting diodes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Electroluminescent Light Sources (AREA)
  • Control Of El Displays (AREA)

Abstract

一种像素驱动电路、像素驱动方法和显示装置。一种用于驱动发光元件的像素驱动电路,包括:第一控制子电路,被配置成在第一信号控制端(V1)的控制下,向第一节点(a)提供数据信号端(Data)的信号;第二控制子电路,被配置成在第三信号控制端(V3)的控制下,向第四节点(d)提供第一电源端(VDD)的信号,以及在第二信号控制端(V2)的控制下,向第二节点(b)提供第四节点(d)的信号;第三控制子电路,被配置成在第四信号控制端(V4)的控制下,向第三节点(c)提供第二电源端(VSS)的信号;储能子电路,被配置成存储第一节点(a)和第二节点(b)之间的电位差;以及驱动子电路,被配置成在第二节点(b)控制下,从第四节点(d)向第三节点(c)发送用于驱动所述发光元件的驱动电流。

Description

一种像素驱动电路、像素驱动方法和显示装置
相关申请的交叉引用
本公开要求2017年9月21日提交到中国专利局的发明专利申请号201710860876.7的优先权,其全部内容通过引用包含于此。
技术领域
本公开实施例涉及显示技术领域,尤指一种像素驱动电路、像素驱动方法和显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)显示器是当今显示器研究领域的热点之一,与液晶显示器(Liquid Crystal Display,简称LCD)相比,OLED显示器具有低能耗、生产成本低、自发光、宽视角及响应速度快等优点。
发明内容
根据本公开的一个方面,提供了一种用于驱动发光元件的像素驱动电路,包括:第一控制子电路,被配置成在第一信号控制端的控制下,向第一节点提供数据信号端的信号;第二控制子电路,被配置成在第三信号控制端的控制下,向第四节点提供第一电源端的信号,以及在第二信号控制端的控制下,向第二节点提供第四节点的信号;第三控制子电路,被配置成在第四信号控制端的控制下,向第三节点提供第二电源端的信号;储能子电路,被配置成存储第一节点和第二节点之间的电位差;以及驱动子电路,被配置成在第二节点控制下,从第四节点向第三节点发送用于驱动所述发光元件的驱动电流。
可选地,所述第一控制子电路包括:第一开关晶体管;所述第一开关晶体管的栅极与第一信号控制端连接,所述第一开关晶体管的第一极与数据信号端连接,所述第一开关晶体管的第二极与第一节点连接。
可选地,所述第二控制子电路包括:第二开关晶体管和第三开关晶体管;所述第二开关晶体管的栅极与第二信号控制端连接,所述第二开关晶体管的第一极与第二节点连接,所述第二开关晶体管的第二极与第四节点连接;以及所述第三开关晶体管的栅极与第三信 号控制端连接,所述第三开关晶体管的第一极与第一电源端连接,所述第三开关晶体管的第二极与第四节点连接。
可选地,所述第三控制子电路包括:第四开关晶体管;所述第四开关晶体管的栅极与第四信号控制端连接,所述第四开关晶体管的第一极与第三节点连接,所述第四开关晶体管的第二极与第二电源端连接。
可选地,所述储能子电路包括:电容;所述电容的一端与第一节点连接,所述电容的另一端与第二节点连接。
可选地,所述驱动子电路包括:驱动晶体管;所述驱动晶体管的栅极与第二节点连接,所述驱动晶体管的源极与第三节点连接,所述驱动晶体管的漏极与第四节点连接。
可选地,所述电容被配置成通过放电调节第二节点的电位,直至第二节点的电位为所述驱动晶体管的阈值电压为止。
可选地,所述发光元件为有机发光二极管。
可选地,第一开关晶体管、第二开关晶体管、第三开关晶体管、第四开关晶体管和驱动晶体管均为N型薄膜晶体管或者P型薄膜晶体管。
可选地,在重置阶段,所述第一信号控制端的输入信号、第二信号控制端的输入信号、第三信号控制端的输入信号和第四信号控制端的输入信号均为高电平;在阈值检测阶段,第一信号控制端的输入信号、第二信号控制端的输入信号和第四信号控制端的输入信号均为高电平;在写入阶段,第一信号控制端的输入信号和数字信号端的输入信号均为高电平;以及在发光阶段,第三信号控制端的输入信号为高电平。
根据本公开的另一个方面,提供了一种显示装置,包括上面所述的根据本公开的像素驱动电路。
根据本公开的又一个方面,提供了一种上述像素驱动电路的像素驱动方法,包括:
在重置阶段,第一控制子电路在第一信号控制端的控制下向第一节点提供数据信号端的信号;第二控制子电路在第三信号控制端的控制下,向第四节点提供第一电源端的信号,在第三信号控制端的控制下,向第二节点提供第四节点的信号;第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号;在阈值检测阶段,第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号;在储能子电路的作用下,检测驱动子电路的阈值电压;在写入阶段,第一控制子电路在第一信号端的控制下向 第一节点提供数据信号端的信号;以及在发光阶段,第二控制子电路根据第三信号控制端的控制向第四节点提供第一电源端的信号,驱动子电路在第二节点的控制下,从第四节点向第三节点提供用于驱动发光元件的驱动电流。
可选地,在储能子电路的作用下检测驱动子电路的阈值电压的步骤包括:储能子电路通过放电调节第二节点的电位,直至第二节点的电位为驱动子电路中驱动晶体管的阈值电压。
可选地,在阈值检测阶段,所述第四节点的电位等于所述第二节点的电位。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为传统像素驱动电路的等效电路图;
图2为本公开实施例提供的像素驱动电路的结构框图;
图3为根据本公开的一些实施例的像素驱动电路的工作时序图;
图4为根据本公开的一些实施例的像素驱动电路的等效电路图;
图5A为根据本公开的一些实施例的像素驱动电路在第一阶段的工作状态图;
图5B为根据本公开的一些实施例的像素驱动电路在第二阶段的工作状态图;
图5C为根据本公开的一些实施例的像素驱动电路在第三阶段的工作状态图;
图5D为根据本公开的一些实施例的像素驱动电路在第四阶段的工作状态图;
图6为根据本公开的一些实施例的像素驱动方法的流程图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
本领域技术人员可以理解,本申请所有实施例中采用的开关晶体管和驱动晶体管均可以为薄膜晶体管或场效应管或其他特性相同的器件。优选地,本公开实施例中使用的薄膜晶体管可以是氧化物半导体晶体管。由于这里采用的开关晶体管的源极、漏极是对称的, 所以其源极、漏极可以互换。在本公开实施例中,为区分开关晶体管除栅极之外的两极,将其中一个电极称为第一极,另一电极称为第二极,第一极可以为源极或者漏极,第二极可以为漏极或源极。
像素驱动电路是OLED显示器的核心技术,在OLED显示器中,像素驱动电路需要检测驱动晶体管的阈值电压,以输出稳定的电流来控制OLED发光。
经发明人研究发现,现有的像素驱动电路由于忽略OLED的寄生电容的存在使得驱动晶体管的阈值电压的检测结果准确性不高且检测时间过长。
图1为传统像素驱动电路的等效电路图,如图1所示,传统的像素驱动电路采用2T1C,即1个驱动晶体管D,1个开关晶体管T和1个电容C组成,用于驱动有机发光二极管OLED,其中,驱动晶体管D的漏极与第一电源端VDD连接,源极与第二节点B连接,栅极与第一节点A连接,开关晶体管T的栅极与信号控制端G1连接,第一极与数据信号端Data连接,第二极与第一节点A连接,电容C的一端与第一节点A连接,另一端与第二节点B连接,有机发光二极管OLED的一端与第二节点B连接,另一端与第二电源端VSS连接。
其具体工作过程包括:在信号控制端G1的控制下,开关晶体管T导通,向第一节点A提供数据信号端Data的信号,此时,第一节点A的电位为V A=V ref;在阈值检测阶段,在信号控制端G1的控制下,开关晶体管T截止,此时,电容C放电,直至使得第二节点B的电位为V B=V A-V th,在写入阶段,向第一节点A提供数据信号端Data的信号,此时,第一节点A的电位为V A=V data;此时,驱动晶体管D的栅源电压差V GS=V A-V B=V data-V ref+V th大于驱动晶体管D的阈值电压V th,因此,驱动晶体管D导通,从而有电流流过有机发光二极管OLED使得有机发光二极管OLED发光。
经发明人研究发现,这一过程中由于有机发光二极管OLED存在寄生电容,当在阈值检测阶段时,驱动晶体管D的源极电压,即V B一直升高的时候,会同时对有机发光二极管OLED的寄生电容充电,从而使得驱动晶体管的阈值检测结果准确性不高,且检测时间过长。
为此,本公开实施例提供了一种像素驱动电路、像素驱动方法和显示装置。
根据本公开的一些实施例提供的像素驱动电路,包括:用于在第一信号控制端的控制下,向第一节点提供数据信号端的信号的第一控制子电路、用于在第三信号控制端的控制下,向第四节点提供第一电源端的信号,还用于在第二信号控制端的控制下,向第二节点 提供第四节点的信号的第二控制子电路、用于在第四信号控制端的控制下,向第三节点提供第二电源端的信号的第三控制子电路、用于存储第一节点和第二节点之间的电位的储能子电路和用于在第二节点和第四节点的控制下,向第三节点发送用于驱动发光元件的驱动电流的驱动子电路,本公开实施例通过第三控制子电路在阈值检测阶段向第三节点提供第二电源端的信号,将发光元件短路,消除了由发光元件的寄生电容带来的阈值电压检测结果准确性不好且检测时间过长的技术问题,提高了阈值检测结果的准确性,并降低了阈值电压检测所需的时间。
当然,实施本公开的任一产品或方法并不一定需要同时达到以上所述的所有优点。本公开的其它特征和优点将在随后的说明书实施例中阐述,并且,部分地从说明书实施例中变得显而易见,或者通过实施本公开而了解。本公开实施例的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
图2为本公开实施例提供的像素驱动电路的结构示意图,如图2所示,本公开实施例提供的像素驱动电路,用于驱动发光元件,包括:第一控制子电路、第二控制子电路、第三控制子电路、储能子电路和驱动子电路。
在本实施例中,第一控制子电路,分别与数据信号端Data、第一信号控制端V1和第一节点a连接,用于在第一信号控制端V1的控制下,向第一节点a提供数据信号端Data的信号;第二控制子电路,分别与第二节点b、第四节点d、第二信号控制端V2、第三信号控制端V3和第一电源端VDD连接,用于在第三信号控制端V3的控制下,向第四节点d提供第一电源端VDD的信号,还用于在第二信号控制端V2的控制下,向第二节点b提供第四节点d的信号;第三控制子电路,分别与第三节点c、第四信号控制端V4和第二电源端VSS连接,用于在第四信号控制端V4的控制下,向第三节点c提供第二电源端VSS的信号;储能子电路,分别与第一节点a和第二节点b连接,用于存储第一节点a和第二节点b之间的电位;驱动子电路,分别与第二节点b、第三节点c和第四节点d连接,用于在第二节点b的控制下,从第四节点d向第三节点c发送用于驱动发光元件的驱动电流。
在本实施例中,发光元件可以为有机发光二极管OLED,其阳极与第三节点c连接,阴极与第二电源端VSS连接。
需要说明的是,第一电源端VDD的电位V dd持续为高电平,第二电源端VSS的电位V ss持续为低电平,第一电源端VDD的电位可以为5V或者5V以上,第二电源端VSS的 电位小于第一电源端VDD的电位。
图4为根据本公开的一些实施例的像素驱动电路的等效电路图,图4中具体示出了第一控制子电路、第二控制子电路、第三控制子电路、储能子电路和驱动子电路的示例性结构。本领域技术人员容易理解是,以上各子电路的实现方式不限于此,只要能够实现其各自的功能即可。
如图4所示,在根据本公开实施例的像素驱动电路中,第一控制子电路,包括:第一开关晶体管T1;第一开关晶体管T1的栅极与第一信号控制端V1连接,第一极与数据信号端Data连接,第二极与第一节点a连接。
第二控制子电路,包括:第二开关晶体管T2和第三开关晶体管T3;第二开关晶体管T2的栅极与第二信号控制端V2连接,第一极与第二节点b连接,第二极与第四节点d连接;第三开关晶体管T3的栅极与第三信号控制端V3连接,第一极与第一电源端VDD连接,第二极与第四节点d连接。
第三控制子电路,包括:第四开关晶体管T4;第四开关晶体管T4的栅极与第四信号控制端V4连接,第一极与第三节点c连接,第二极与第二电源端VSS连接。
储能子电路,包括:电容Cs;电容Cs的一端与第一节点a连接,另一端与第二节点b连接。
驱动子电路,包括:驱动晶体管DTFT;驱动晶体管DTFT的栅极与第二节点b连接,源极与第三节点c连接,漏极与第四节点d连接。
在本实施例中,电容Cs,具体用于通过放电调节第二节点b的电位,直至第二节点b的电位为驱动晶体管DTFT的阈值电压V th
具体的,在重置阶段,第一信号控制端V1的输入信号、第二信号控制端V2的输入信号、第三信号控制端V3的输入信号和第四信号控制端V4的输入信号均为高电平;在阈值检测阶段,第一信号控制端V1的输入信号、第二信号控制端V2的输入信号和第四信号控制端V4的输入信号均为高电平;在写入阶段,第一信号控制端V1的输入信号和数字信号端的输入信号均为高电平;在发光阶段,第三信号控制端V3的输入信号为高电平。
需要说明的是,在本实施例中,驱动晶体管DTFT、第一开关晶体管T1、第二开关晶体管T2、第三开关晶体管T3和第四开关晶体管T4均可以为N型薄膜晶体管或者P型薄膜晶体管,可以统一工艺流程,能够减少OLED显示器的工艺制程,有助于提高产品的良 率。
下面通过像素驱动电路的工作过程进一步说明本公开实施例的技术方案。
图3为本公开实施例提供的像素驱动电路的工作时序图;图5A为本公开实施例提供的像素驱动电路在第一阶段的工作状态图;图5B为本公开实施例提供的像素驱动电路在第二阶段的工作状态图;图5C为本公开实施例提供的像素驱动电路在第三阶段的工作状态图;图5D为本公开实施例提供的像素驱动电路在第四阶段的工作状态图;如图3和4所示,本公开实施例提供的像素驱动电路包括:4个开关晶体管(T1~T4),1个驱动晶体管(DTFT)、1个电容单元(Cs),7个输入端(Data、VDD、VSS、V1、V2、V3和V4),其工作过程包括:
第一阶段S1,即重置阶段:第一信号控制端V1的输入信号、第二信号控制端V2的输入信号、第三信号控制端V3的输入信号和第四信号控制端V4的输入信号均为高电平。
如图5A所示,第一开关晶体管T1、第二开关晶体管T2、第三开关晶体管T3和第四开关晶体管T4导通,在第一信号控制端V1的控制下,向第一节点a提供数据信号端Data的信号,此时,第一节点a的电位V a=0;在第三信号控制端V3的控制下,向第四节点d提供第一电源端VDD的信号,此时,第四节点的电位V d=V dd;在第二信号控制端V2的控制下,向第二节点b提供第四节点的信号,此时,第二节点b的电位V b=V d=V dd;在第四信号控制端V4的控制下,向第三节点c提供第二电源端VSS的信号,此时,第三节点的电位V c=V ss,之后,电容Cs保持第一节点a和第二节点b的电位之差,由于V b为高电平使得驱动晶体管DTFT导通,并且由于电容Cs能保持第一节点a和第二节点b的电位之差使得下一阶段一开始驱动晶体管DTFT就处于导通状态,为进行阈值检测做准备。
在本阶段中,第四开关晶体管T4导通,将有机发光二极管OLED短路,即使第三开关晶体管T3和驱动晶体管DTFT导通,有机发光二极管OLED也不会发光。
第二阶段S2,即阈值检测阶段:第一信号控制端V1的输入信号、第二信号控制端V2的输入信号和第四信号控制端V4的输入信号均为高电平。
如图5B所示,第一开关晶体管T1、第二开关晶体管T2和第四开关晶体管T4导通,第三开关晶体管T3截止。在第一信号控制端V1的控制下,向第一节点a提供数据信号端Data的信号,此时,第一节点a的电位V a=0;在第四信号控制端V4的控制下,向第三节点c提供第二电源端VSS的信号,此时,第三节点的电位V c=V ss;在该阶段,电容Cs开始放电,直至第二节点b的电位V b=V th,由于第二开关晶体管T2导通,第四节点d 的电位V d=V b=V th,此时,驱动晶体管DTFT截止。
在本阶段中,在电容Cs放电的过程中,由于第四开关晶体管T4导通,将有机发光二极管OLED短路,提高了电容的放电速度并保证了阈值电压检测的准确性。
第三阶段S3,即写入阶段:第一信号控制端V1的输入信号和数字信号端Data的输入信号均为高电平。
如图5C所示,第二开关晶体管T2、第三开关晶体管T3和第四开关晶体管T4截止,第一开关晶体管T1导通,在数字信号端Data的控制下,第一节点a的电位跳变至V a=V data,在电容Cs的自举作用下,第二节点b的电位跳变至V b=V th+V data,此时,第三节点c的电位V c=V b=V th+V data
第四阶段S4,即发光阶段:第三信号控制端V3的输入信号为高电平。
如图5D所示,第一开关晶体管T1、第二开关晶体管T2和第四晶体管T4截止,第三开关晶体管T3导通,驱动晶体管DTFT在第二节点b的作用下导通,在第三信号控制端V3的控制下,从第四节点d向第三节点c发送用于驱动有机发光二极管OLED的驱动电流。
在本阶段中,驱动晶体管DTFT的栅极电压V G=V b=V th+V data,源极电压V s等于第三节点c的电位,即有机发光二极管OLED的阳极电位V OLED
根据驱动晶体管DTFT得到饱和时的电流公式可以得到流经发光元件的驱动电流I OLED满足
I OLED=K(V GS–V th) 2
=K(V th+V data–V OLED–V th) 2
=K(V data-V OLED) 2
其中,K为与驱动晶体管DTFT的工艺参数和几何尺寸有关的固定常数,V GS为驱动晶体管DFTF的栅源电压差,V th为驱动晶体管DFTF的阈值电压。
根据本公开实施例提供的像素驱动电路工作原理的描述可知,在重置阶段,由于第四开关晶体管T4导通,使得第三节点c能够准确的重置到第二电源端VSS的低电平上,在阈值检测阶段,由于第四开关晶体管T4导通,将有机发光二极管短路,提高了放电速度,并还保证了阈值电压检测的准确性。
由上述电流公式的推导结果可以看出,在发光阶段,驱动晶体管DTFT输出的驱动电 流已经不受驱动晶体管DTFT的阈值电压和有机发光二极管OLED的阳极电压的影响,只与数据信号端上的信号有关,从而消除了驱动晶体管DTFT的阈值电压对驱动电流的影响,进而确保了显示装置的显示亮度均匀,提高了整个显示装置的显示效果。
在本实施例中,在重置阶段,第一信号控制端V1的输入信号、第二信号控制端V2的输入信号、第三信号控制端V3的输入信号、第四信号控制端V4的输入信号和第一电源端VDD的输入信号均为高电平,数据信号端Data的输入信号和第二电源端VSS的输入信号均为低电平;在阈值检测阶段,第一信号控制端V1的输入信号、第二信号控制端V2的输入信号、第四信号控制端V4的输入信号和第一电源端VDD的输入信号均为高电平,第三信号控制端V3的输入信号、数据信号端Data的输入信号和第二电源端VSS的输入信号均为低电平;在写入阶段,第一信号控制端V1的输入信号、数据信号端Data的输入信号和第一电源端VDD的输入信号均为高电平,第二信号控制端V2的输入信号、第三信号控制端V3的输入信号、第四信号控制端V4的输入信号和第二电源端VSS的输入信号均为低电平;在发光阶段,第三信号控制端V3的输入信号和第一电源端VDD的输入信号均为高电平,第一信号控制端V1的输入信号、第二信号控制端V2的输入信号、第四信号控制端V4的输入信号、数据信号端Data的输入信号和第二电源端VSS的输入信号均为低电平。
本公开实施例提供的像素驱动电路,包括:第一控制子电路、第二控制子电路、第三控制子电路、储能子电路和驱动子电路;发光元件,分别与第三节点和第二电源端连接;第一控制子电路,分别与数据信号端、第一信号控制端和第一节点连接,用于在第一信号控制端的控制下,向第一节点提供数据信号端的信号;第二控制子电路,分别与第二节点、第四节点、第二信号控制端、第三信号控制端和第一电源端连接,用于在第三信号控制端的控制下,向第四节点提供第一电源端的信号,还用于在第二信号控制端的控制下,向第二节点提供第四节点的信号;第三控制子电路,分别与第三节点、第四信号控制端和第二电源端连接,用于在第四信号控制端的控制下,向第三节点提供第二电源端的信号;储能子电路,分别与第一节点和第二节点连接,用于存储第一节点和第二节点之间的电位差;驱动子电路,分别与第二节点、第三节点和第四节点连接,用于在第二节点的控制下,从第四节点向第三节点发送用于驱动发光元件的驱动电流,本公开实施例通过第三控制子电路在阈值检测阶段向第三节点提供第二电源端的信号,将发光元件短路,消除了由发光元件的寄生电容带来的阈值电压检测结果准确性不好且检测时间过长的技术问题,提高了阈值检测结果的准确性,并降低了阈值电压检测所需的时间。
基于上述实施例的公开构思,图6为本公开实施例提供的像素驱动方法的流程图,如图6所示,本公开实施例提供的像素驱动方法,采用本公开的实施例提供的上述像素驱动电路实现,具体包括以下步骤:
步骤100、在重置阶段,第一控制子电路在第一信号控制端的控制下向第一节点提供数据信号端的信号;第二控制子电路在第三信号控制端的控制下,向第四节点提供第一电源端的信号,在第三信号控制端的控制下,向第二节点提供第四节点的信号;第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号。
在本阶段,第一信号控制端的输入信号、第二信号控制端的输入信号、第三信号控制端的输入信号和第四信号控制端的输入信号均为高电平,数据信号端的输入信号为低电平,可选地,该低电平可以为0。
步骤200、在阈值检测阶段,第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号;在储能子电路的作用下,检测驱动子电路的阈值电压。
具体的,在储能子电路的作用下,检测驱动子电路的阈值电压,具体包括:储能子电路通过放电调节第二节点的电位,直至第二节点的电位为驱动子电路中驱动晶体管的阈值电压。
在本阶段,第一信号控制端的输入信号、第二信号控制端的输入信号、第四信号控制端的输入信号均为高电平,第三信号控制端的输入信号和数据信号端的输入信号均为低电平。需要说明的是,在本阶段中,第四节点的电位等于所述第二节点的电位。
步骤300、在写入阶段,第一控制子电路在第一信号端的控制下向第一节点提供数据信号端的信号,在储能子电路的作用下,第二节点的电位发生跳变。
在本阶段,第一信号控制端的输入信号、数据信号端的输入信号均为高电平,第二信号控制端的输入信号、第三信号控制端的输入信号和第四信号控制端的输入信号均为低电平。
步骤400、在发光阶段,第二控制子电路根据第三信号控制端的控制向第四节点提供第一电源端的信号,驱动子电路在第二节点的控制下,从第一节点向第三节点提供用于驱动发光元件的驱动电流。
在本阶段,第三信号控制端的输入信号为高电平,第一信号控制端的输入信号、第二信号控制端的输入信号、第四信号控制端的输入信号和数据信号端的输入信号均为低电平。
本公开实施例提供的像素驱动方法,具体包括:在重置阶段,第一控制子电路在第一信号控制端的控制下向第一节点提供数据信号端的信号;第二控制子电路在第三信号控制端的控制下,向第四节点提供第一电源端的信号,在第三信号控制端的控制下,向第二节点提供第四节点的信号;第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号;在阈值检测阶段,第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号;在储能子电路的作用下,检测驱动子电路的阈值电压;在写入阶段,第一控制子电路在第一信号端的控制下向第一节点提供数据信号端的信号,在储能子电路的作用下,第二节点的电位发生跳变;在发光阶段,第二控制子电路根据第三信号控制端的控制向第四节点提供第一电源端的信号,驱动子电路在第二节点的控制下,从第四节点向第三节点提供用于驱动发光元件的驱动电流,本公开实施例通过第三控制子电路在阈值检测阶段向第三节点提供第二电源端的信号,实现了将发光元件短路,消除了由发光元件的寄生电容带来的阈值电压检测结果准确性不好且检测时间过长的技术问题,提高了阈值检测结果的准确性,并降低了阈值电压检测所需的时间。
基于上述公开构思,本公开实施例还提供了一种显示装置,包括像素驱动电路。
其中,像素驱动电路为根据本公开的实施例提供的像素驱动电路,其实现原理和实现效果类似,在此不再赘述。
显示装置可以包括显示基板,像素驱动电路可以设置于显示基板上。优选地,该显示装置可以为:OLED面板、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
在根据本公开的一些实施例中,显示装置的显示基板可以采用低温多晶硅技术(Low Temperature Poly-silicon,简称LTPS)制程,这种多个晶体管和多个电容的设计,不会影响到模组的开口率。
需要说明的是根据本公开的一些实施例,显示装置的显示基板也可采用非晶硅工艺。需指出的是,根据本公开的一些实施例,像素驱动电路可采用非晶硅、多晶硅、氧化物等工艺的薄膜晶体管。
根据本公开的一些实施例,像素驱动电路采用的薄膜晶体管的类型可以根据实际需要更换。而且,尽管上述实施例中以有源矩阵有机发光二极管为例进行了说明,然而本公开不限于使用有源矩阵有机发光二极管的显示基板,也可以应用于使用其他各种发光二极管的显示基板。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (14)

  1. 一种用于驱动发光元件的像素驱动电路,包括:
    第一控制子电路,被配置成在第一信号控制端的控制下,向第一节点提供数据信号端的信号;
    第二控制子电路,被配置成在第三信号控制端的控制下,向第四节点提供第一电源端的信号,以及在第二信号控制端的控制下,向第二节点提供第四节点的信号;
    第三控制子电路,被配置成在第四信号控制端的控制下,向第三节点提供第二电源端的信号;
    储能子电路,被配置成存储第一节点和第二节点之间的电位差;
    驱动子电路,被配置成在第二节点控制下,从第四节点向第三节点发送用于驱动所述发光元件的驱动电流。
  2. 根据权利要求1所述的像素驱动电路,其中所述第一控制子电路包括:第一开关晶体管;
    所述第一开关晶体管的栅极与第一信号控制端连接,所述第一开关晶体管的第一极与数据信号端连接,所述第一开关晶体管的第二极与第一节点连接。
  3. 根据权利要求2所述的像素驱动电路,其中所述第二控制子电路包括:第二开关晶体管和第三开关晶体管;
    所述第二开关晶体管的栅极与第二信号控制端连接,所述第二开关晶体管的第一极与第二节点连接,所述第二开关晶体管的第二极与第四节点连接;
    所述第三开关晶体管的栅极与第三信号控制端连接,所述第三开关晶体管的第一极与第一电源端连接,所述第三开关晶体管的第二极与第四节点连接。
  4. 根据权利要求3所述的像素驱动电路,其中所述第三控制子电路包括:第四开关晶体管;
    所述第四开关晶体管的栅极与第四信号控制端连接,所述第四开关晶体管的第一极与第三节点连接,所述第四开关晶体管的第二极与第二电源端连接。
  5. 根据权利要求4所述的像素驱动电路,其中所述储能子电路包括:电容;
    所述电容的一端与第一节点连接,所述电容的另一端与第二节点连接。
  6. 根据权利要求5所述的像素驱动电路,其中所述驱动子电路包括:驱动晶体管;
    所述驱动晶体管的栅极与第二节点连接,所述驱动晶体管的源极与第三节点连接,所述驱动晶体管的漏极与第四节点连接。
  7. 根据权利要求6所述的像素驱动电路,其中所述电容被配置成通过放电调节第二节点的电位,直至第二节点的电位为所述驱动晶体管的阈值电压为止。
  8. 根据权利要求1-7中任一项所述的像素驱动电路,其中所述发光元件为有机发光二极管。
  9. 根据权利要求6所述的像素驱动电路,其中第一开关晶体管、第二开关晶体管、第三开关晶体管、第四开关晶体管和驱动晶体管均为N型薄膜晶体管或者P型薄膜晶体管。
  10. 根据权利要求1所述的像素驱动电路,其中在重置阶段,所述第一信号控制端的输入信号、第二信号控制端的输入信号、第三信号控制端的输入信号和第四信号控制端的输入信号均为高电平;在阈值检测阶段,第一信号控制端的输入信号、第二信号控制端的输入信号和第四信号控制端的输入信号均为高电平;在写入阶段,第一信号控制端的输入信号和数字信号端的输入信号均为高电平;在发光阶段,第三信号控制端的输入信号为高电平。
  11. 一种显示装置,包括如权利要求1-10任一项所述的像素驱动电路。
  12. 一种如权利要求1-10中任一所述的像素驱动电路的像素驱动方法,,包括:
    在重置阶段,第一控制子电路在第一信号控制端的控制下向第一节点提供数据信号端的信号;第二控制子电路在第三信号控制端的控制下,向第四节点提供第一电源端的信号,在第三信号控制端的控制下,向第二节点提供第四节点的信号;第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号;
    在阈值检测阶段,第三控制子电路在第四信号控制端的控制下,向第三节点提供第二电源端的信号;在储能子电路的作用下,检测驱动子电路的阈值电压;
    在写入阶段,第一控制子电路在第一信号端的控制下向第一节点提供数据信号端的信号;
    在发光阶段,第二控制子电路根据第三信号控制端的控制向第四节点提供第一电源端 的信号,驱动子电路在第二节点的控制下,从第四节点向第三节点提供用于驱动发光元件的驱动电流。
  13. 根据权利要求12所述的方法,其中在储能子电路的作用下检测驱动子电路的阈值电压的步骤包括:
    储能子电路通过放电调节第二节点的电位,直至第二节点的电位为驱动子电路中驱动晶体管的阈值电压。
  14. 根据权利要求13所述的方法,其中在阈值检测阶段,所述第四节点的电位等于所述第二节点的电位。
PCT/CN2018/092300 2017-09-21 2018-06-22 一种像素驱动电路、像素驱动方法和显示装置 WO2019056818A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/328,936 US11094257B2 (en) 2017-09-21 2018-06-22 Pixel driving circuit, pixel driving method and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710860876.7 2017-09-21
CN201710860876.7A CN107507564B (zh) 2017-09-21 2017-09-21 一种像素驱动电路、像素驱动方法和显示装置

Publications (1)

Publication Number Publication Date
WO2019056818A1 true WO2019056818A1 (zh) 2019-03-28

Family

ID=60698520

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/092300 WO2019056818A1 (zh) 2017-09-21 2018-06-22 一种像素驱动电路、像素驱动方法和显示装置

Country Status (3)

Country Link
US (1) US11094257B2 (zh)
CN (1) CN107507564B (zh)
WO (1) WO2019056818A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107507564B (zh) * 2017-09-21 2019-05-07 京东方科技集团股份有限公司 一种像素驱动电路、像素驱动方法和显示装置
CN111402782B (zh) 2018-12-14 2021-09-03 成都辰显光电有限公司 一种数字驱动像素电路及数字驱动像素的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927990A (zh) * 2014-04-23 2014-07-16 上海天马有机发光显示技术有限公司 有机发光显示器的像素电路及驱动方法、有机发光显示器
CN104599638A (zh) * 2015-02-12 2015-05-06 京东方科技集团股份有限公司 一种像素电路及其驱动方法和显示装置
CN104933993A (zh) * 2015-07-17 2015-09-23 合肥鑫晟光电科技有限公司 像素驱动电路及其驱动方法、显示装置
CN204808833U (zh) * 2015-07-15 2015-11-25 京东方科技集团股份有限公司 一种像素电路、显示面板和显示装置
US20160379553A1 (en) * 2015-06-24 2016-12-29 Samsung Electronics Co., Ltd. Pixel circuit and driving method thereof, and organic light emitting display
CN206021875U (zh) * 2016-09-14 2017-03-15 合肥鑫晟光电科技有限公司 像素驱动电路、阵列基板以及显示装置
CN107507564A (zh) * 2017-09-21 2017-12-22 京东方科技集团股份有限公司 一种像素驱动电路、像素驱动方法和显示装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102088683B1 (ko) * 2015-09-04 2020-03-13 삼성전자주식회사 영상표시장치 및 영상표시장치의 구동 방법

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103927990A (zh) * 2014-04-23 2014-07-16 上海天马有机发光显示技术有限公司 有机发光显示器的像素电路及驱动方法、有机发光显示器
CN104599638A (zh) * 2015-02-12 2015-05-06 京东方科技集团股份有限公司 一种像素电路及其驱动方法和显示装置
US20160379553A1 (en) * 2015-06-24 2016-12-29 Samsung Electronics Co., Ltd. Pixel circuit and driving method thereof, and organic light emitting display
CN204808833U (zh) * 2015-07-15 2015-11-25 京东方科技集团股份有限公司 一种像素电路、显示面板和显示装置
CN104933993A (zh) * 2015-07-17 2015-09-23 合肥鑫晟光电科技有限公司 像素驱动电路及其驱动方法、显示装置
CN206021875U (zh) * 2016-09-14 2017-03-15 合肥鑫晟光电科技有限公司 像素驱动电路、阵列基板以及显示装置
CN107507564A (zh) * 2017-09-21 2017-12-22 京东方科技集团股份有限公司 一种像素驱动电路、像素驱动方法和显示装置

Also Published As

Publication number Publication date
CN107507564B (zh) 2019-05-07
US11094257B2 (en) 2021-08-17
US20200410925A1 (en) 2020-12-31
CN107507564A (zh) 2017-12-22

Similar Documents

Publication Publication Date Title
US10083658B2 (en) Pixel circuits with a compensation module and drive methods thereof, and related devices
WO2017031909A1 (zh) 像素电路及其驱动方法、阵列基板、显示面板及显示装置
US11393397B2 (en) Pixel driving circuit, pixel unit and driving method, array substrate, and display device
US10909925B2 (en) Pixel circuit and driving method thereof, display panel and display device
US9799268B2 (en) Active matrix organic light-emitting diode (AMOLED) pixel driving circuit, array substrate and display apparatus
US10964261B2 (en) Pixel circuitry, driving method thereof and display device
WO2018076719A1 (zh) 像素驱动电路及其驱动方法、显示面板和显示装置
TWI459352B (zh) 顯示器
US10283042B2 (en) Pixel driving circuit, pixel driving method, and display device
US20160035276A1 (en) Oled pixel circuit, driving method of the same, and display device
WO2016070477A1 (zh) 有机发光显示器像素驱动电路
US20160358546A1 (en) Pixel compensating circuits, related display apparatus and method for driving the same
WO2016023311A1 (zh) 像素驱动电路及其驱动方法和显示装置
US10867549B2 (en) Compensation method of pixel circuit in organic light-emitting diode display panel and related devices
US20190228708A1 (en) Pixel circuit, pixel driving method and display device
TWI417843B (zh) 對偶畫素單元及對偶驅動電路
US20190180681A1 (en) Pixel circuit and method of driving the same, display device
US11295668B2 (en) Pixel circuit, display panel, display device and pixel driving method
WO2022022146A1 (zh) 像素电路及其驱动方法、显示基板和显示装置
US20210383753A1 (en) Pixel Drive Circuit and Drive Method Thereof, and Display Device
US11935444B2 (en) Detection circuit, driving circuit, and display panel and driving method therefor
WO2019019622A1 (zh) 像素电路及其驱动方法、显示面板和显示装置
TWI653616B (zh) 畫素電路
WO2019056818A1 (zh) 一种像素驱动电路、像素驱动方法和显示装置
CN109979395B (zh) 像素驱动电路及显示面板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857505

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18857505

Country of ref document: EP

Kind code of ref document: A1