WO2019056715A1 - 一种混合连接后张预应力装配砼框架体系及其施工方法 - Google Patents

一种混合连接后张预应力装配砼框架体系及其施工方法 Download PDF

Info

Publication number
WO2019056715A1
WO2019056715A1 PCT/CN2018/079971 CN2018079971W WO2019056715A1 WO 2019056715 A1 WO2019056715 A1 WO 2019056715A1 CN 2018079971 W CN2018079971 W CN 2018079971W WO 2019056715 A1 WO2019056715 A1 WO 2019056715A1
Authority
WO
WIPO (PCT)
Prior art keywords
frame
concrete
steel bar
layer
steel
Prior art date
Application number
PCT/CN2018/079971
Other languages
English (en)
French (fr)
Inventor
郭海山
李黎明
刘康
王冬雁
齐虎
田力达
耿娇
范昕
李明
李桐
谢永兰
Original Assignee
中国建筑股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国建筑股份有限公司 filed Critical 中国建筑股份有限公司
Publication of WO2019056715A1 publication Critical patent/WO2019056715A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/19Three-dimensional framework structures
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/66Sealings
    • E04B1/68Sealings of joints, e.g. expansion joints
    • E04B1/6806Waterstops
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the invention belongs to the field of fabricated concrete structure construction, in particular to a mixed connection post-tensioned prestressed assembly frame system and a construction method thereof.
  • the prestressing tendons usually run through multiple spans and are anchored only by the anchors at both ends. When one end anchor fails, the whole prestressed tendons will lose tension, and the crimping effect of the associated beam-column joints will cease to exist.
  • the structural robust performance is not high. 3.
  • the large-plate structure without secondary beams is usually used. When there is local concentrated load, the structure is complicated and the construction is difficult. 4.
  • the stiffness of the conventional pre-stressed dry-type pure frame system is weaker than that of the assembly. The applicable height in the high-intensity zone is limited according to the current specifications. 5.
  • the object of the present invention is to provide a hybrid pre-stressed prefabricated truss frame system and a construction method, which solves the problems of difficulty in transportation hoisting, low structural robustness, large wet work volume and complicated construction in the existing structural system.
  • the post-earthquake repair cost is high and the energy-consuming steel bars are placed in the beam with high cost and complicated technical problems.
  • the present invention adopts the following technical solutions.
  • a mixed connection post-tensioned prestressed assembly truss frame system comprising a foundation, a frame column, a frame beam and a floor slab; wherein the connection position of the corresponding frame column is pre-embedded with connecting steel bars;
  • the connecting reinforcement bar is L-shaped And comprising a vertical side and a lateral side connected to a bottom end of the vertical side; the lower part of the vertical side of the connecting reinforcing bar and the horizontal side are buried in the foundation, and the part of the connecting reinforcing bar buried in the foundation comprises a connecting reinforcing bar and a bonding
  • the connecting reinforcing bar has a bonding section on a lower side of the top surface of the foundation, a
  • the frame columns are arranged in a layered manner, and the bottom of the frame column is pre-buried with a steel connecting sleeve, and the top of the frame column is reserved with vertical reinforcing bars; wherein the reinforcing connecting sleeve at the bottom of the bottommost frame column is correspondingly tied at the top of the foundation Connected to the steel bar and connected by grouting; the vertical reinforcing bars between the upper and lower adjacent frame columns are connected to the steel connecting sleeve at the bottom of the upper frame column by the vertical reinforcing bar at the top of the lower frame column, and are left between the two frame columns a spacing; wherein the spacing is casted with a concrete connecting layer; the upper portion of the frame column is provided with a horizontal column prestressing hole near the top end;
  • the frame beam is attached to the frame column, on one side of the column prestressed channel, and the top surface of the frame beam extends beyond the top surface of the frame column and is flush with the top surface of the concrete connection layer at the top of the frame column;
  • a horizontal beam prestressing channel is disposed at a position of the lower portion of the beam and the corresponding column prestressing channel;
  • the frame beam and the frame column are connected by a prestressed steel wire bundle which is inserted in the beam prestressing channel and the column prestressing channel;
  • the prestressed steel wire bundle is a post-tensioned prestressed steel wire bundle, and the portion of the rear tensioned steel wire bundle located in the span of the frame beam is a pre-stressed steel wire bundle having a bonding section, and the prestressed steel wire bundle is located on both sides of the frame beam.
  • the stress steel wire bundle has no bonding section; wherein the prestressed steel wire bundle has a bonding section length of 2 m to 3 m.
  • the cross-sectional area of the unbonded section of the connecting steel bar connecting the steel bar is 20% smaller than the cross-sectional area of the steel bar having the bonded section of the connecting steel bar, and the outer side of the unbonded section of the connecting steel bar is provided with an outer layer.
  • the length of the bonded steel bar on the post-tensioned prestressed tendon segment is not less than 20 times the diameter of the connecting bar; the length of the vertical side of the connecting bar beyond the top portion of the base is 6 to the diameter of the vertical side of the connecting bar. 10 times.
  • the outermost part of the root of the lowermost frame column is provided with an outer steel plate; the height of the outer steel plate is 1 to 3 times of the long side of the horizontal section of the frame column, and the thickness of the outer steel plate is 10 mm to 30 mm.
  • the frame beam is a composite beam, comprising a precast concrete main beam and a main beam concrete laminated layer cast on the top of the precast concrete main beam; the top surface of the precast concrete main beam and the correspondingly connected frame The top surface of the column is flush; the thickness of the composite layer of the main beam concrete is adapted to the thickness of the concrete connecting layer at the top of the corresponding connected frame column; the beam prestressed channel length is set on the precast concrete main beam, corresponding column The location of the prestressed tunnel;
  • the floor slab is a laminated slab comprising a prefabricated hollow slab and a slab concrete laminated layer cast on top of the prefabricated hollow slab;
  • the prefabricated hollow slab is a prefabricated circular orifice plate or a prefabricated shaped orifice plate or SP plate;
  • the slab concrete The top surface of the laminated layer is flush with the top surface of the main beam concrete laminated layer, and the slab concrete laminated layer and the main beam concrete laminated layer are cast in one piece.
  • the floor slab is further provided with a slab structure steel bar and a plate additional steel bar, wherein the slab structure steel bar is a mesh steel bar, horizontally arranged in the slab concrete laminated layer, near the top position; the plate additional steel bars are disposed at The holes of the prefabricated hollow plate are disposed in the gap between the plates of the prefabricated hollow plate, wherein the two ends of the additional steel bars at the gap between the plates are respectively inserted into the holes of the prefabricated hollow plates on both sides, and are cast in the holes.
  • the slab structure steel bar is a mesh steel bar, horizontally arranged in the slab concrete laminated layer, near the top position
  • the plate additional steel bars are disposed at The holes of the prefabricated hollow plate are disposed in the gap between the plates of the prefabricated hollow plate, wherein the two ends of the additional steel bars at the gap between the plates are respectively inserted into the holes of the prefabricated hollow plates on both sides, and are cast in the holes.
  • the slab structure steel bar is a mesh steel bar, horizontally arranged in the slab concrete laminated
  • the concrete connecting layer is provided with horizontal energy-consuming steel bars and shear reinforcing steel bars; the energy-consuming steel bars are located at the top of the concrete connecting layer, and the two ends thereof respectively extend into the main beam concrete overlapping layers on both sides
  • the energy-consuming steel bar is composed of a consumable section of the energy-consuming steel bar and an unbonded section of the energy-consuming steel bar; wherein the unbonded section of the energy-consuming steel bar is disposed in the composite layer of the main beam concrete, close to the side of the concrete connecting layer or set In the concrete connecting layer; the area of the reinforcing bar in the unbonded section of the energy-consuming steel bar is smaller than the area of the reinforcing bar in the bonded section of the energy-consuming steel bar, and the length of the unbonded section of the energy-consuming steel bar is 3-20 in the diameter of the energy-consuming steel bar. Times
  • the shear reinforcement is located at the bottom of the concrete connection layer, and its two ends respectively extend into the main beam concrete laminate layers on both sides.
  • a construction method for a mixed connection post-tensioned prestressed assembly raft frame system comprising the following steps.
  • prefabricated components are produced in the factory, including the production of frame columns, precast concrete girder and precast hollow slabs.
  • Step 2 Install the frame column of the floor to be constructed.
  • temporary support legs are installed on the side of the frame column and at the bottom of the frame beam, and temporary support is installed below the position of the frame beam.
  • step four the precast concrete main beam is hoisted; the two ends of the precast concrete main beam are placed on the supporting bull's leg, and the mid-span of the precast concrete main beam is supported on the temporary support below.
  • Step 5 Set the temporary support at the bottom of the laminated floor and hoist the prefabricated hollow slab.
  • Step 6 strip the prestressed steel wire bundle in the prestressed steel wire bundle with the wire bundle casing outside the bonding section, remove the oil stain on the surface of the bonding section of the prestressed steel wire bundle, and penetrate the prestressed steel wire bundle into the beam prestressing The tunnel and the column are prestressed in the tunnel.
  • Step 7 Fill the joints of the beams and columns formed after the completion of the construction in step 4 with high-strength fiber mortar, and fill it with solid.
  • Step 8 After the high-strength fiber mortar reaches the design strength, the pre-stressed steel wire bundle is tensioned and anchored.
  • Step 9 Laying the reinforced concrete in the slab concrete laminate layer and the main beam concrete laminate layer.
  • Step 10 pouring the concrete of the slab concrete laminated layer and the concrete of the main beam concrete laminated layer.
  • Step 11 Inject high-strength grout into the pre-stressed tunnel and the pre-stressed tunnel of the prestressed steel wire.
  • Step 12 Repeat steps 2 to 11 for each layer until the construction of the prestressed assembly frame system is completed.
  • the steel connecting sleeve at the bottom of the bottom frame column is correspondingly sleeved on the connecting bar at the top of the foundation, and temporarily fixed to adjust the axial position and vertical of the frame column.
  • the steel connecting sleeve at the bottom of the upper frame column is correspondingly sleeved on the vertical steel bar at the top of the lower frame column, and then grouted in the space between the upper and lower frame columns to form Concrete connection layer.
  • the outer layer is sleeved on the outer side of the unbonded section of the connecting steel bar, and then the fixed connecting steel bar is tied and finally the foundation concrete is poured.
  • the hybridally connected post-tensioned prestressed concrete frame system according to the present invention is a system which is convenient for transportation and hoisting, has good robustness, high construction efficiency, good seismic performance and easy repair after earthquake; through frame column and frame
  • the selection of prefabricated components such as beams and slabs, the optimization and improvement of the connection structure, and the reasonable arrangement of the construction procedures have improved the construction speed and green construction level of the system.
  • the frame column of the invention is layered and manufactured, which greatly reduces the technical difficulty of transportation and lifting.
  • a prestressed tendon having a length of 2 m to 3 m is provided in the middle of each span of the frame beam, and in the extreme case, when a prestressed anchor fails, the entire prestressed tendon is not lost.
  • the node that loses the crimping force is limited to the span in which the failed anchor is located, thereby improving the ability of the structure to prevent continuous collapse.
  • the invention introduces a simply supported superimposed secondary beam between the frame beams, and solves the problem that the structural slab is complicated when the local concentrated load such as the partition wall and the girders on the beam is large.
  • the steel frame connected to the bottom of the frame column of the present invention adopts a local non-stick section and a section weakening treatment, which can improve the energy consumption capacity of the frame column foot joint under the large earthquake; and the post-tensioned prestressed steel wire that penetrates the beam-column joint The bundle can reduce the damage of the concrete structural members during the earthquake.
  • the invention aims to improve the seismic performance of the whole system by setting energy-consuming steel bars and energy consuming devices at reasonable positions of the frame beam-column joints, so as not to increase the difficulty of construction and construction.
  • the number of joints in the frame column is relatively small, thereby simplifying the construction of the joint, eliminating the need for costly and complicated construction of the energy-saving steel reserved groove in the frame beam, simplifying the prefabricated concrete joint structure;
  • the steel bar and the floor slab are constructed at the same time, and the connection relationship between the frame column and the laminated floor slab is fully considered, and the connection performance is good.
  • the prefabricated laminated hollow floor slab and the prestressed assembly construction method of the invention make the on-site construction convenient and quick, and only need to provide temporary support under the beam, which saves a lot of support compared with the traditional prefabricated assembly structure and improves the construction and construction efficiency.
  • additional steel bars are placed in the holes of the hollow floor or between the plates of the prefabricated hollow plates, and are placed in the cast-in-place laminated reinforced concrete layer, which ensures the rigid partition of the floor and simultaneously The setting of the cast-in-place layer enhances the waterproof performance of the floor.
  • FIG. 1 is a schematic view showing the composition of main components of the system of the present invention.
  • FIG. 2 is a schematic view of a frame column and a base and frame beam connection structure in the present invention.
  • FIG. 3 is a schematic view showing the structure of a frame column and a base connecting node in the present invention.
  • Figure 4 is a schematic view showing the structure of the energy-consuming steel bar in which the bonded section of the energy-consuming steel bar is located in the middle frame column, and the unbonded section of the energy-consuming steel bar is located in the frame beam.
  • Figure 5 is a schematic view showing the structure of the energy-consuming steel bar in which the bonded section of the energy-consuming steel bar is located in the side frame column, and the unbonded section of the energy-consuming steel bar is located in the frame beam.
  • Figure 6 is a cross-section of the energy-consuming steel bar in the frame beam in the present invention, the unbonded section of the energy-consuming steel bar is located in the middle frame column
  • Figure 7 is a schematic view showing the structure of the energy-consuming steel bar in which the bonded section of the energy-consuming steel bar is located in the frame beam, and the unbonded section of the energy-consuming steel bar is located in the side frame column.
  • Figure 8 is a schematic view showing the structure of a node in which the secondary force direction of the floor is connected to the frame beam in the present invention.
  • Figure 9 is a schematic view showing the structure of a node in which the main force direction of the floor slab is connected to the frame beam in the present invention.
  • Figure 10 is a schematic view showing the structure of a joint of a frame beam and a laminated secondary beam in the present invention.
  • the hybrid pre-tensioned pre-stressed truss frame system includes a foundation 1, a frame column 2, a frame beam 3 and a floor slab 4; and a design position of the corresponding frame column 2 in the foundation 1
  • the connecting reinforcing bar 5 is pre-embedded; the connecting reinforcing bar 5 is L-shaped, and includes a vertical side and a lateral side connected to one side of the bottom end of the vertical side; the lower side of the vertical side of the connecting reinforcing bar 5 and the horizontal side are buried in the base 1
  • the portion of the connecting reinforcing bar 5 buried in the foundation 1 comprises a connecting reinforcing bar having a bonding section 5.1 and a connecting reinforcing bar unbonding section 5.2; wherein the connecting reinforcing bar unbonding section 5.2 is located on the lower side of the top surface of the foundation 1 and close to the foundation On the vertical side of one end, and the length of the unreinforced joint section 5.2 of the
  • the frame columns 2 are arranged in layers, and the bottom of the frame columns 2 is pre-buried with a reinforcing steel connecting sleeve 17, and the top of the frame column 2 is reserved with vertical reinforcing bars 6; wherein the reinforcing connecting sleeves 17 at the bottom of the bottommost frame columns correspond to
  • the ferrule is attached to the connecting reinforcing bar 5 at the top of the foundation 1 and connected by grouting; the upper and lower adjacent two-layer frame columns 2 are inserted through the vertical reinforcing bars 6 at the top of the lower frame column and the reinforcing connecting sleeve 17 at the bottom of the upper frame column.
  • the connecting layer 7 is the same as the thickness of the main beam concrete overlapping layer 3.2, and the splicing position of the upper and lower frame columns 2 is generally located at the structural elevation of the floor;
  • the frame beam 3 is attached to the frame column 2, on one side of the column prestressing channel 8, and the top surface of the frame beam 3 extends beyond the top surface of the frame column 2 and to the concrete connection layer 7 at the top of the frame column 2.
  • the top surface is flush; a horizontal beam prestressing tunnel 10 is provided at a position of the lower portion of the frame beam 3 and the corresponding column prestressing tunnel 8; the frame beam 3 and the frame column 2 are passed through the beam prestressing tunnel 10
  • the prestressed steel wire bundle 9 is connected to the prestressed steel wire bundle 9 in the column prestressing tunnel 8; the prestressed steel wire bundle 9 should maintain an elastic state under rare earthquakes; this configuration makes the structural system have a certain self-recovering ability after the earthquake;
  • the prestressed steel wire bundle 9 is a post-tensioned prestressed steel wire bundle, and the post-tensioned prestressed steel wire bundle is located in the span of the frame beam 3, the prestressed steel wire bundle has a bonding section 9.1, and the prestressed steel wire bundle 9 is located in the frame beam 3
  • the side part is the pre-stressed steel wire bundle non-bonding section 9.2; wherein the prestressed steel wire bundle has the bonding section 9.1 length of 2m ⁇ 3m, in the extreme case, when a certain prestressed anchor fails, the whole root is not caused
  • the prestressed steel wire bundle 9 loses its tension, and the node that loses the crimping force is limited to the span in which the failed anchor is located, and the structure has a good ability to prevent continuous collapse.
  • the cross-sectional area of the unbonded section 5.2 of the connecting reinforcing bar 5 is less than 20% of the cross-sectional area of the reinforcing bar having the bonded section 5.1, and the outer side of the unbonded section 5.2 of the connecting reinforcing bar is provided.
  • the connecting reinforcing bar 5 is buried on the vertical side of the base 1 and the length of the bonding section 5.1 is not less than 20 times the diameter of the connecting reinforcing bar 5; the vertical side of the connecting reinforcing bar 5 is beyond the top surface of the base 1
  • the length of the part is 6 to 10 times the diameter of the vertical side of the connecting bar 5 .
  • the outer side of the root of the lowermost frame column is provided with an outer steel plate 12; the height of the outer steel plate 12 is 1 to 3 times the long side of the horizontal section of the frame column 2, and the thickness of the outer steel plate 12 is 10 mm to 30 mm. .
  • the lowermost frame column is connected to the pre-embedded reinforcing bar 5 in the foundation 1 by sleeve grouting.
  • the unbonded section 5.2 of the connecting bar is partially weakened and wrapped with plastic or casing to carry out the foundation. Pouring of concrete.
  • the frame beam 3 is a laminated beam, comprising a precast concrete main beam 3.1 and a main beam concrete superposed layer 3.2 cast on the top of the precast concrete main beam 3.1; the precast concrete main beam 3.1 The top surface is flush with the top surface of the correspondingly connected frame column 2; the thickness of the main beam concrete laminate layer 3.2 is adapted to the thickness of the concrete connection layer 7 at the top of the correspondingly connected frame column 2; the beam prestressing channel 10 The length is set on the precast concrete main beam 3.1 at the position corresponding to the column prestressing tunnel 8;
  • the floor slab 4 is a laminated slab comprising a prefabricated hollow slab 4.1 and a slab concrete laminated layer cast on top of the prefabricated hollow slab 4.1.
  • the prefabricated hollow slab 4.1 is a prefabricated circular orifice plate or a prefabricated shaped orifice plate or SP plate.
  • the top surface of the slab concrete laminate layer 4.2 is flush with the top surface of the main beam concrete laminate layer 3.2, and the slab concrete laminate layer 4.2 is cast-integrated with the main beam concrete laminate layer 3.2.
  • a superimposed secondary beam 19 is disposed between two adjacent frame beams 3; the superimposed secondary beam 19 includes a precast concrete secondary beam 19.1, a secondary beam concrete laminated layer 19.2, and a secondary beam laminated layer Reinforcement 19.3; the top of the precast concrete secondary beam 19.1 is flush with the top of the precast concrete main beam 3.1; the secondary beam concrete composite layer 19.2 is placed on top of the precast concrete secondary beam 19.1, adjacent to the two laminated slabs 5
  • the thickness of the secondary beam concrete laminate layer 19.2 is adapted to the thickness of the main beam concrete laminate layer 3.2; the secondary beam laminate layer reinforcement 19.3 is placed on top of the secondary beam concrete laminate layer 19.2, both ends They are anchored in the main beam concrete superposed layer 3.2 on both sides.
  • the floor slab 4 is further provided with a slab structure steel bar 13 and a plate additional steel bar 14, wherein the slab structure steel bar 13 is a mesh steel bar, which is horizontally arranged in the floor slab concrete layer 4.2, near the top position.
  • the additional steel bars 14 are inserted in the holes of the prefabricated hollow plate 4.1 or at the gaps between the plates of the prefabricated hollow plate 4.1, wherein the two ends of the additional steel bars 14 at the gaps between the plates are respectively prefabricated on both sides.
  • concrete is cast in the hole, which ensures the rigid partition of the floor, and the setting of the cast-in-place layer enhances the waterproof performance of the floor.
  • the concrete connecting layer 7 a horizontal energy-consuming steel bar 15 and a shear-resistant steel bar 16 are disposed; the energy-consuming steel bar 15 is located at the top of the concrete connecting layer 7, and its two ends respectively extend into the main beam concrete superposed layer 3.2 on both sides;
  • the energy-consuming steel bar 15 is composed of a consumable steel bar with a bonding section 15.1 and an energy-consuming steel bar unbonded section 15.2; wherein the energy-consuming steel bar unbonded section 15.2 is arranged in the main beam concrete superposed layer 3.2, close to the concrete connecting layer 7 Side or set in coagulation In the soil connecting layer 7; the area of the reinforcing bar of the unbonded section of the energy-consuming steel bar 15.2 is smaller than the area of the reinforcing bar having the bonding section 15.1, and the length of the energy-free steel unbonded section 15.2 is the diameter of the energy-consuming steel bar 15 3 to 20 times;
  • the shear reinforcement 16 is located at the bottom of the concrete connection layer 7, and its two ends extend into the main beam concrete laminate layer 3.2 on both sides.
  • the energy-consuming steel bar having the bonding section 15.1 may be located in the frame column 2 or in the frame beam 3. As shown in FIG. 4, the energy-consuming steel bar has a bonding section 15.1 located in the middle frame column, and the ends are consumed.
  • the reinforcing steel unbonded section 15.2 is located in the frame beam 3;
  • the energy-consuming steel bar has a bonding section 15.1 located in the side frame column, and the energy-consuming steel bar unbonded section 15.2 is located in the frame beam 3.
  • the energy-consuming steel bar has a bonding section 15.1 located in the frame beam 3, and the energy-consuming steel bar unbonded section 15.2 is located in the middle frame column.
  • the energy-consuming steel bar has a bonding section 15.1 located in the frame beam 3, and the energy-consuming steel bar unbonded section 15.2 is located in the side frame column.
  • the construction method of the mixed pre-stressed pre-stressed truss frame system includes the following steps.
  • the prefabricated components are produced in the factory, including the production of the frame column 2, the precast concrete main beam 3.1 and the prefabricated hollow plate 4.1.
  • Step 2 Install the frame column 2 of the floor to be constructed; when constructing the bottom frame column, tie the steel connecting sleeve at the bottom of the bottom frame column to the connecting bar 5 at the top of the foundation 1 and temporarily fix it. The axial position and the perpendicularity of the frame column 2, and then the grouting of the joint of the lowermost frame column 2 and the foundation 1 is connected with the foundation 1,
  • the steel connecting sleeve 17 at the bottom of the upper frame column is correspondingly sleeved on the vertical reinforcing bar 6 at the top of the lower frame column, and then in the space between the upper and lower frame columns.
  • Grouting forms a concrete joint layer 7.
  • Step 3 installing a temporary supporting bull 18 on the side of the frame column 2 and the bottom surface of the frame beam 3, and installing a temporary support below the position of the span of the frame beam 3, the temporary support is to reduce the prefabricated frame beam
  • the mid-span deformation of 3 is generally supported on the top of the upper or lower beam and is removed after the construction is completed.
  • the precast concrete main beam 3.1 is hoisted; the two ends of the precast concrete main beam 3.1 are placed on the supporting bullet 18, and the mid-span of the precast concrete main beam 3.1 is supported on the temporary support below.
  • Step 5 Set the temporary support at the bottom of the laminated floor 4 and hoist the prefabricated hollow plate 4.1.
  • Step 6 peeling the prestressed steel wire bundle in the prestressed steel wire bundle 9 with the wire bundle casing outside the bonding section 9.1, removing the oil stain on the surface of the bonding section 9.1 of the prestressed steel wire bundle, and wearing the prestressed steel wire bundle 9 Into the beam prestressed tunnel 10 and the column prestressed tunnel 8.
  • Step 7 Fill the joints of the beams and columns formed after the completion of the construction in step 4 with high-strength fiber mortar, and fill it with solid.
  • Step 8 After the high-strength fiber mortar reaches the design strength, the pre-stressed steel wire bundle 9 is tensioned and anchored.
  • Step 9 Laying the slab concrete composite layer 4.2, the main beam concrete superposed layer 3.2 and the secondary main beam concrete superposed layer 6.2.
  • Step 10 Casting the concrete of the slab concrete composite layer 4.2, the concrete of the main beam concrete superposed layer 3.2 and the concrete of the sub-main girder concrete superposed layer 6.2.
  • Step 11 High-strength grouting is poured into the beam pre-stressing channel 10 and the column pre-stressing channel 8 through which the pre-stressed wire bundle 9 passes.
  • Step 12 Repeat steps 2 to 11 for each layer until the construction of the prestressed assembly frame system is completed.
  • the outer layer 11 is sleeved on the outer side of the unreinforced joint portion 5.2 of the connecting steel bar, and then the fixed connecting steel bar 5 is bundled, and finally the pouring of the foundation concrete is performed; 11 is a plastic sleeve.

Abstract

一种混合连接后张预应力装配砼框架体系及施工方法,该框架体系包括基础(1),框架柱(2),框架梁(3)和楼板(4);基础(1)中对应框架柱(2)的设计位置处预埋有连接钢筋(5);连接钢筋(5)呈L形,包括有竖边和连接在竖边底端一侧的横边;连接钢筋(5)的竖边下部和横边埋在基础(1)中,并且连接钢筋(5)被埋基础(1)中的部分包括有连接钢筋有粘结段(5.1)和连接钢筋无粘结段(5.2);连接钢筋无粘结段(5.2)位于基础(1)顶面下侧、靠近基础(1)一端的竖边上,且连接钢筋无粘结段(5.2)的长度为连接钢筋(5)直径的3~20倍,连接钢筋有粘结段(5.1)位于基础(1)顶面下侧、靠近横边一端的竖边上以及连接钢筋(5)的横边上。该结构体系及施工方法解决了现有结构体系中的运输吊装难度大、结构鲁棒性能不高、湿作业量大和柱脚震后修复成本高的技术问题。

Description

一种混合连接后张预应力装配砼框架体系及其施工方法 技术领域
本发明属于装配式混凝土结构建筑领域,特别是一种混合连接后张预应力装配砼框架体系及其施工方法。
背景技术
目前,国内民用建筑领域应用的装配式混凝土结构大多为装配整体式结构体系,主要包括装配整体式框架结构、装配整体式框架-现浇剪力墙结构和装配整体式剪力墙结构体系等。这些体系在梁柱节点区域现浇,现场湿作业量大,施工效率不高。美国和日本近年来研发了几种可在民用建筑中应用的预制预应力框架干式连接节点和体系,但仍存在一些问题有待改进:1、通常采用柱贯通多层的预制构件拆分形式,框架柱较长、较重,运输和吊装技术难度较大。2、预应力筋通常贯穿多跨,仅靠两端的锚具进行锚固,当一端锚具失效时,整根预应力筋将失去张力,与之相关的梁柱节点的压接作用将不复存在,结构鲁棒性能不高。3、通常采用无次梁的大板结构,当有局部集中荷载时构造复杂、施工困难。4、常规预制预应力干式纯构架体系刚度较装配整体式有所减弱,按现行规范在高烈度区的适用高度受到限制。5、虽然在地震作用下能够形成强柱弱梁的良好抗震体系,但是在强震下与基础相连的柱脚在地震中容易破坏,且修复成本高。6、梁柱节点区在梁的上下部均设置耗能钢筋,节点施工复杂,尤其是梁下部的耗能钢筋,安装不便。7、在梁柱连接节点区域在梁的上下部均不设置耗能钢筋,仅通过单根或两根后张预应力钢筋连接,结构的耗能性能差,抗震性能不理想。因此,为了满足高烈度区、更高的建筑应用需求,需要一种梁、柱、板、节点快速施工连接,水暖电等设备管线预埋,减少施工支撑和脚手架等非实体物资消耗的装配式混凝土框架体系。
发明内容
本发明的目的是提供一种混合连接后张预应力装配砼框架体系及施工方法,解决现有结构体系中存在的运输吊装难度大、结构鲁棒性能不高、湿作业量大、施工复杂、柱脚震后修复成本高以及耗能钢筋设置于梁内成本高、制作复杂的技术问题。
为实现上述目的,本发明采用如下技术方案。
一种混合连接后张预应力装配砼框架体系,包括有基础,框架柱,框架梁和楼板;所述基础中、对应框架柱的设计位置处预埋有连接钢筋;所述连接钢筋呈L形,包括有竖边和连接在竖边底端一侧的横边;所述连接钢筋的竖边下部和横边埋在基础中,并且连接钢 筋被埋基础中的部分包括有连接钢筋有粘结段和连接钢筋无粘结段;其中,连接钢筋无粘结段位于基础顶面下侧、靠近基础一端的竖边上,且连接钢筋无粘结段的长度为连接钢筋直径的3~20倍,连接钢筋有粘结段位于基础顶面下侧、靠近横边一端的竖边上以及连接钢筋的横边上;所述连接钢筋的竖边上部超出基础的顶面;
所述框架柱分层布置,并且框架柱的底部预埋有钢筋连接套筒,框架柱的顶部预留有竖向钢筋;其中最底层框架柱底部的钢筋连接套筒对应套结在基础顶部的连接钢筋上,并通过灌浆连接;上下相邻两层框架柱之间通过下层框架柱顶部的竖向钢筋与上层框架柱底部的钢筋连接套筒插接连接,且在两层框架柱之间留有间距;所述间距中现浇有混凝土连接层;所述框架柱的上部、靠近顶端位置处设有水平的柱预应力孔道;
所述框架梁连接在框架柱上、设有柱预应力孔道的一侧,并且框架梁的顶面超出框架柱的顶面、并与该框架柱顶部的混凝土连接层顶面平齐;在框架梁的下部、对应柱预应力孔道的位置处设有水平的梁预应力孔道;所述框架梁与框架柱之间通过穿在梁预应力孔道和柱预应力孔道中的预应力钢丝束连接;
所述预应力钢丝束为后张预应力钢丝束,后张预应力钢丝束位于框架梁跨中的部分为预应力钢丝束有粘接段,预应力钢丝束位于框架梁两侧的部分为预应力钢丝束无粘接段;其中预应力钢丝束有粘接段的长度为2m~3m。
优选的,所述连接钢筋上连接钢筋无粘结段的横截面积比连接钢筋有粘结段钢筋的横截面积小20%,且连接钢筋无粘结段的外侧设有外包层。
优选的,所述后张预应力筋段上连接钢筋有粘结段的长度不小于连接钢筋直径的20倍;连接钢筋的竖边超出基础顶面部分的长度为连接钢筋竖边直径的6~10倍。
优选的,最下层的框架柱的根部外侧设有外包钢板;所述外包钢板的高度为框架柱水平切面的长边的1~3倍,外包钢板的厚度为10mm~30mm。
优选的,所述所述框架梁为叠合梁,包括有预制混凝土主梁和浇筑在预制混凝土主梁顶部的主梁混凝土叠合层;所述预制混凝土主梁的顶面与对应连接的框架柱的顶面平齐;所述主梁混凝土叠合层的厚度与对应连接的框架柱顶部的混凝土连接层厚度相适应;所述梁预应力孔道通长设置在预制混凝土主梁上、对应柱预应力孔道的位置处;
所述楼板为叠合楼板,包括有预制空心板和现浇在预制空心板顶部的楼板混凝土叠合层所述预制空心板为预制圆孔板或者预制异形孔板或者SP板;所述楼板混凝土叠合层的顶面与主梁混凝土叠合层的顶面平齐,且楼板混凝土叠合层与主梁混凝土叠合层现浇成整体。
优选的,所述楼板内还设有板面构造钢筋和板附加钢筋,其中板面构造钢筋为网状 钢筋,水平布置在楼板混凝土叠合层中,靠近顶部位置处;板附加钢筋穿设在预制空心板的孔洞中或者设置在预制空心板的板间缝隙处,其中位于板间缝隙处的板附加钢筋的两端分别插接在两侧的预制空心板的孔洞中,在孔洞中现浇有混凝土。
优选的,所述混凝土连接层中设有水平的耗能钢筋和抗剪钢筋;所述耗能钢筋位于混凝土连接层的顶部,且其两端分别伸入两侧的主梁混凝土叠合层中;所述耗能钢筋由耗能钢筋有粘结段和耗能钢筋无粘结段组成;其中耗能钢筋无粘结段设置在主梁混凝土叠合层中、靠近混凝土连接层一侧或者设置在混凝土连接层中;所述耗能钢筋无粘结段部位的钢筋面积小于耗能钢筋有粘结段部位的钢筋面积,耗能钢筋无粘结段的长度为耗能钢筋直径的3~20倍;
所述抗剪钢筋位于混凝土连接层的底部,且其两端分别伸入两侧的主梁混凝土叠合层中。
一种混合连接后张预应力装配砼框架体系的施工方法,包括步骤如下。
步骤一,在工厂中生产预制构件,包括生产框架柱、预制混凝土主梁和预制空心板。
步骤二,安装待施工楼层的框架柱。
步骤三,在框架柱的侧面上、框架梁底面的位置处安装临时的支撑牛腿,并且在框架梁跨中位置的下方安装临时支撑。
步骤四,吊装预制混凝土主梁;使预制混凝土主梁的两端落于支撑牛腿上,预制混凝土主梁的跨中部位支撑在下方的临时支撑上。
步骤五,设置叠合楼板底部的临时支撑,并吊装预制空心板。
步骤六,将预应力钢丝束中的预应力钢丝束有粘接段外侧的钢丝束套管剥去,清除预应力钢丝束有粘接段表面的油渍,把预应力钢丝束穿入梁预应力孔道和柱预应力孔道内。
步骤七:在步骤四施工完成后形成的梁柱接缝内灌入高强纤维砂浆,充满灌实。
步骤八:待高强纤维砂浆达到设计强度后,进行预应力钢丝束进行张拉、锚固。
步骤九:铺设楼板混凝土叠合层和主梁混凝土叠合层内的钢筋。
步骤十:浇筑楼板混凝土叠合层的混凝土和主梁混凝土叠合层的混凝土。
步骤十一:在预应力钢丝束穿过的梁预应力孔道和柱预应力孔道内灌入高强灌浆料。
步骤十二:每层重复步骤二~步骤十一,直至该张预应力装配砼框架体系施工完毕。
优选的,步骤二中,当施工最底层框架柱时,将最底层框架柱底部的钢筋连接套筒对应套结在基础顶部的连接钢筋上,并作临时固定,调整框架柱的轴线位置及垂直度,后进 行最下层框架柱与基础的接缝处灌浆与基础相连接,
当施工最底层框架柱上方的框架柱时,将上层框架柱底部的钢筋连接套筒对应套接在下层框架柱顶部的竖向钢筋上,然后在上下层框架柱之间的间距中灌浆,形成混凝土连接层。
优选的,所述基础中的连接钢筋施工时,在连接钢筋无粘结段外侧套上外包层,之后绑扎固定连接钢筋,最后进行基础混凝土的浇注。
本发明的有益效果是。
1.本发明所述的混合连接的后张预应力装配混凝土框架体系是一种便于运输吊装、鲁棒性好、施工高效、抗震性能良好以及震后易修复的体系;通过对框架柱、框架梁、楼板等预制构件的选型、连接构造的优化改进,以及对施工工序的合理安排,提高了该体系的施工建造速度和绿色施工水平。
2.本发明中的框架柱分层制作,大大降低了运输和吊装的技术难度。
3.本发明中每跨框架梁的中部设置长度为2m~3m的预应力筋有粘接段,在极端情况下发生某个预应力锚具失效时,不会导致整根预应力筋失去张力,失去压接力的节点仅限于失效锚具所在的跨内,从而提高了结构防连续倒塌的能力。
4.本发明在框架梁之间引入了构造简单的简支叠合次梁,解决了隔墙、梁上起柱等局部集中荷载较大时楼板构造复杂的问题。
5.本发明的最底层框架柱与基础相连的钢筋采用了局部无粘段和截面削弱处理,可提高大震下框架柱脚节点的耗能能力;配合贯穿梁柱节点的后张预应力钢丝束,可使混凝土结构构件在地震中损伤减小。
6.本发明通过在框架梁柱节点的合理位置设置耗能钢筋和耗能器,从而达到不增加施工建造难度的条件下,提高整个体系抗震性能的目的。
7.本发明中框架柱内的接头相对较少,从而简化了节点施工,无需在框架梁内设成本高昂且施工复杂的耗能钢筋预留槽,简化了预制装配混凝土节点连接构造;耗能钢筋与楼板同时施工,全面考虑了框架柱与叠合楼板的连接关系,连接性能较好。
8.本发明中预制叠合空心楼板和预应力组装的施工方式,使现场施工方便、快捷,只需在梁下设置临时支撑,较传统预制装配结构节省大量支撑,提升了施工建造效率。
9、本发明中在空心楼板的孔洞内或预制空心板的板间缝隙处设置附加钢筋,并浇筑在现浇叠合钢筋混凝土层之中,这种构造保证了楼板的刚性隔板作用,同时现浇层的设置增强了楼板的防水性能。
附图说明
图1是本发明中体系的主要构件组成示意图。
图2是本发明中的框架柱与基础、框架梁连接结构的示意图。
图3是本发明中框架柱与基础连接节点结构示意图。
图4是本发明中耗能钢筋有粘结段位于中框架柱中,耗能钢筋无粘结段位于框架梁中的结构示意图。
图5是本发明中耗能钢筋有粘结段位于边框架柱中,耗能钢筋无粘结段位于框架梁中的结构示意图。
图6是本发明中耗能钢筋有粘结段位于框架梁中,耗能钢筋无粘结段位于中框架柱中的
结构示意图。
图7是本发明中耗能钢筋有粘结段位于框架梁中,耗能钢筋无粘结段位于边框架柱中的结构示意图。
图8是本发明中楼板次受力方向与框架梁连接的节点结构示意图。
图9是本发明中楼板主受力方向与框架梁连接的节点结构示意图。
图10是本发明中框架梁与叠合次梁连接的节点结构示意图。
附图标记:1—基础、2—框架柱、3—框架梁、3.1—预制混凝土梁、3.2—主梁混凝土叠合层、4—楼板、4.1—预制空心板、4.2—楼板混凝土叠合层、5—连接钢筋、5.1—连接钢筋有粘结段,5.2—连接钢筋无粘结段、6—竖向钢筋、7—混凝土连接层、8—柱预应力孔道、9—预应力钢丝束、9.1—预应力钢丝束有粘接段、9.2—预应力钢丝束无粘接段、10—梁预应力孔道、11—外包层、12—外包钢板、13—板面构造钢筋、14—板附加钢筋、15—耗能钢筋、15.1—耗能钢筋有粘结段、15.2—耗能钢筋无粘结段、16—抗剪钢筋、17—钢筋连接套筒、18—支撑牛腿、19—叠合次梁、19.1—预制混凝土次梁、19.2—次主梁混凝土叠合层、19.3—次梁钢筋。
具体实施方式
如图1-10所示,这种混合连接后张预应力装配砼框架体系,包括有基础1,框架柱2,框架梁3和楼板4;所述基础1中、对应框架柱2的设计位置处预埋有连接钢筋5;所述连接钢筋5呈L形,包括有竖边和连接在竖边底端一侧的横边;所述连接钢筋5的竖边下部和横边埋在基础1中,并且连接钢筋5被埋基础1中的部分包括有连接钢筋有粘结段5.1和连接钢筋无粘结段5.2;其中,连接钢筋无粘结段5.2位于基础1顶面下侧、靠近基础一端的竖边上,且连接钢筋无粘结段5.2的长度为连接钢筋5直径的3~20倍,连接钢筋有粘结 段5.1位于基础1顶面下侧、靠近横边一端的竖边上以及连接钢筋5的横边上;所述连接钢筋5的竖边上部超出基础1的顶面;
所述框架柱2分层布置,并且框架柱2的底部预埋有钢筋连接套筒17,框架柱2的顶部预留有竖向钢筋6;其中最底层框架柱底部的钢筋连接套筒17对应套结在基础1顶部的连接钢筋5上,并通过灌浆连接;上下相邻两层框架柱2之间通过下层框架柱顶部的竖向钢筋6与上层框架柱底部的钢筋连接套筒17插接连接,且在两层框架柱2之间留有间距;所述间距中现浇有混凝土连接层7;所述框架柱2的上部、靠近顶端位置处设有水平的柱预应力孔道8;混凝土连接层7与主梁混凝土叠合层3.2厚度的相同,上下层框架柱2的拼接位置一般位于楼层的结构标高处;
所述框架梁3连接在框架柱2上、设有柱预应力孔道8的一侧,并且框架梁3的顶面超出框架柱2的顶面、并与该框架柱2顶部的混凝土连接层7顶面平齐;在框架梁3的下部、对应柱预应力孔道8的位置处设有水平的梁预应力孔道10;所述框架梁3与框架柱2之间通过穿在梁预应力孔道10和柱预应力孔道8中的预应力钢丝束9连接;预应力钢丝束9在罕遇地震下应保持弹性状态;这种构造使得结构体系在震后具有一定的自恢复能力;
所述预应力钢丝束9为后张预应力钢丝束,后张预应力钢丝束位于框架梁3跨中的部分为预应力钢丝束有粘接段9.1,预应力钢丝束9位于框架梁3两侧的部分为预应力钢丝束无粘接段9.2;其中预应力钢丝束有粘接段9.1的长度为2m~3m,在极端情况下发生某个预应力锚具失效时,不会导致整根预应力钢丝束9失去张力,失去压接力的节点仅限于失效锚具所在的跨内,结构的防连续倒塌能力较好。
本实施例中,所述连接钢筋5上连接钢筋无粘结段5.2的横截面积比连接钢筋有粘结段5.1钢筋的横截面积小20%,且连接钢筋无粘结段5.2的外侧设有外包层11。
本实施例中,所述连接钢筋5被埋基础1中的竖边上的连接钢筋有粘结段5.1的长度不小于连接钢筋5直径的20倍;连接钢筋5的竖边超出基础1顶面部分的长度为连接钢筋5竖边直径的6~10倍。
本实施例中,最下层的框架柱的根部外侧设有外包钢板12;所述外包钢板12的高度为框架柱2水平切面的长边的1~3倍,外包钢板12的厚度为10mm~30mm。最下层的框架柱与基础1中预埋的连接钢筋5之间通过套筒灌浆连接在一起,本实施实例中连接钢筋无粘结段5.2进行局部削弱处理,并用塑料或者套管包裹后进行基础混凝土的浇注。
本实施例中,所述所述框架梁3为叠合梁,包括有预制混凝土主梁3.1和浇筑在预制混凝土主梁3.1顶部的主梁混凝土叠合层3.2;所述预制混凝土主梁3.1的顶面与对应连接的 框架柱2的顶面平齐;所述主梁混凝土叠合层3.2的厚度与对应连接的框架柱2顶部的混凝土连接层7厚度相适应;所述梁预应力孔道10通长设置在预制混凝土主梁3.1上、对应柱预应力孔道8的位置处;
所述楼板4为叠合楼板,包括有预制空心板4.1和现浇在预制空心板4.1顶部的楼板混凝土叠合层4.2所述预制空心板4.1为预制圆孔板或者预制异形孔板或者SP板;所述楼板混凝土叠合层4.2的顶面与主梁混凝土叠合层3.2的顶面平齐,且楼板混凝土叠合层4.2与主梁混凝土叠合层3.2现浇成整体。
本实施例中,相邻两根框架梁3之间设置有叠合次梁19;所述叠合次梁19包括有预制混凝土次梁19.1、次梁混凝土叠合层19.2以及次梁叠合层钢筋19.3;所述预制混凝土次梁19.1的顶部与预制混凝土主梁3.1的顶部平齐;所述次梁混凝土叠合层19.2浇筑在预制混凝土次梁19.1的顶部、相邻两块叠合楼板5之间,且次梁混凝土叠合层19.2的厚度与主梁混凝土叠合层3.2的厚度相适应;所述次梁叠合层钢筋19.3布置在次梁混凝土叠合层19.2的顶部,其两端分别锚固在两侧的主梁混凝土叠合层3.2中。
本实施例中,所述楼板4内还设有板面构造钢筋13和板附加钢筋14,其中板面构造钢筋13为网状钢筋,水平布置在楼板混凝土叠合层4.2中,靠近顶部位置处;板附加钢筋14穿设在预制空心板4.1的孔洞中或者设置在预制空心板4.1的板间缝隙处,其中位于板间缝隙处的板附加钢筋14的两端分别插接在两侧的预制空心板4.1的孔洞中,在孔洞中现浇有混凝土,这种构造保证了楼板的刚性隔板作用,同时现浇层的设置增强了楼板的防水性能本实施例中,所述混凝土连接层7中设有水平的耗能钢筋15和抗剪钢筋16;所述耗能钢筋15位于混凝土连接层7的顶部,且其两端分别伸入两侧的主梁混凝土叠合层3.2中;所述耗能钢筋15由耗能钢筋有粘结段15.1和耗能钢筋无粘结段15.2组成;其中耗能钢筋无粘结段15.2设置在主梁混凝土叠合层3.2中、靠近混凝土连接层7一侧或者设置在混凝土连接层7中;所述耗能钢筋无粘结段15.2部位的钢筋面积小于耗能钢筋有粘结段15.1部位的钢筋面积,耗能钢筋无粘结段15.2的长度为耗能钢筋15直径的3~20倍;
所述抗剪钢筋16位于混凝土连接层7的底部,且其两端分别伸入两侧的主梁混凝土叠合层3.2中。
本实施例中,耗能钢筋有粘结段15.1可以位于框架柱2中也可以位于框架梁3中,如图4所示,耗能钢筋有粘结段15.1位于中框架柱中,两端的耗能钢筋无粘结段15.2位于框架梁3中;
如图5所示,耗能钢筋有粘结段15.1位于边框架柱中,耗能钢筋无粘结段15.2位于框架梁 3中。
如图6所示,耗能钢筋有粘结段15.1位于框架梁3中,耗能钢筋无粘结段15.2位于中框架柱中。
如图6所示,耗能钢筋有粘结段15.1位于框架梁3中,耗能钢筋无粘结段15.2位于边框架柱中。
这种混合连接后张预应力装配砼框架体系的施工方法,包括步骤如下。
步骤一,在工厂中生产预制构件,包括生产框架柱2、预制混凝土主梁3.1和预制空心板4.1。
步骤二,安装待施工楼层的框架柱2;在施工最底层框架柱时,将最底层框架柱底部的钢筋连接套筒对应套结在基础1顶部的连接钢筋5上,并作临时固定,调整框架柱2的轴线位置及垂直度,后进行最下层框架柱2与基础1的接缝处灌浆与基础1相连接,
在施工最底层框架柱上方的框架柱2时,将上层框架柱底部的钢筋连接套筒17对应套接在下层框架柱顶部的竖向钢筋6上,然后在上下层框架柱之间的间距中灌浆,形成混凝土连接层7。
步骤三,在框架柱2的侧面上、框架梁3底面的位置处安装临时的支撑牛腿18,并且在框架梁3跨中位置的下方安装临时支撑,该临时支撑的作用是降低预制框架梁3的跨中变形,一般支撑在上或下层梁顶,施工完成后拆除。
步骤四,吊装预制混凝土主梁3.1;使预制混凝土主梁3.1的两端落于支撑牛腿18上,预制混凝土主梁3.1的跨中部位支撑在下方的临时支撑上。
步骤五,设置叠合楼板4底部的临时支撑,并吊装预制空心板4.1。
步骤六,将预应力钢丝束9中的预应力钢丝束有粘接段9.1外侧的钢丝束套管剥去,清除预应力钢丝束有粘接段9.1表面的油渍,把预应力钢丝束9穿入梁预应力孔道10和柱预应力孔道8内。
步骤七:在步骤四施工完成后形成的梁柱接缝内灌入高强纤维砂浆,充满灌实。
步骤八:待高强纤维砂浆达到设计强度后,进行预应力钢丝束9进行张拉、锚固。
步骤九:铺设楼板混凝土叠合层4.2、主梁混凝土叠合层3.2以及次主梁混凝土叠合层6.2内的钢筋。
步骤十:浇筑楼板混凝土叠合层4.2的混凝土、主梁混凝土叠合层3.2的混凝土以及次主梁混凝土叠合层6.2的混凝土。
步骤十一:在预应力钢丝束9穿过的梁预应力孔道10和柱预应力孔道8内灌入高强 灌浆料。
步骤十二:每层重复步骤二~步骤十一,直至该张预应力装配砼框架体系施工完毕。
本实施例中,所述基础1中的连接钢筋5施工时,在连接钢筋无粘结段5.2外侧套上外包层11,之后绑扎固定连接钢筋5,最后进行基础混凝土的浇注;所述外包层11为塑料套管。
以上结合附图对本发明的原理和特征详细描述,所举实例只用于解释本发明,并非用于限定本发明的范围。

Claims (10)

  1. 一种混合连接后张预应力装配砼框架体系,包括有基础(1),框架柱(2),框架梁(3)和楼板(4);其特征在于:
    所述基础(1)中、对应框架柱(2)的设计位置处预埋有连接钢筋(5);所述连接钢筋(5)呈L形,包括有竖边和连接在竖边底端一侧的横边;所述连接钢筋(5)的竖边下部和横边埋在基础(1)中,并且连接钢筋(5)被埋基础(1)中的部分包括有连接钢筋有粘结段(5.1)和连接钢筋无粘结段(5.2);其中,连接钢筋无粘结段(5.2)位于基础(1)顶面下侧、靠近基础一端的竖边上,且连接钢筋无粘结段(5.2)的长度为连接钢筋(5)直径的3~20倍,连接钢筋有粘结段(5.1)位于基础(1)顶面下侧、靠近横边一端的竖边上以及连接钢筋(5)的横边上;所述连接钢筋(5)的竖边上部超出基础(1)的顶面;
    所述框架柱(2)分层布置,并且框架柱(2)的底部预埋有钢筋连接套筒(17),框架柱(2)的顶部预留有竖向钢筋(6);其中最底层框架柱底部的钢筋连接套筒(17)对应套结在基础(1)顶部的连接钢筋(5)上,并通过灌浆连接;上下相邻两层框架柱(2)之间通过下层框架柱顶部的竖向钢筋(6)与上层框架柱底部的钢筋连接套筒(17)插接连接,且在两层框架柱(2)之间留有间距;所述间距中现浇有混凝土连接层(7);所述框架柱(2)的上部、靠近顶端位置处设有水平的柱预应力孔道(8);
    所述框架梁(3)连接在框架柱(2)上、设有柱预应力孔道(8)的一侧,并且框架梁(3)的顶面超出框架柱(2)的顶面、并与该框架柱(2)顶部的混凝土连接层(7)顶面平齐;在框架梁(3)的下部、对应柱预应力孔道(8)的位置处设有水平的梁预应力孔道(10);所述框架梁(3)与框架柱(2)之间通过穿在梁预应力孔道(10)和柱预应力孔道(8)中的预应力钢丝束(9)连接;
    所述预应力钢丝束(9)为后张预应力钢丝束,后张预应力钢丝束位于框架梁(3)跨中的部分为预应力钢丝束有粘接段(9.1),预应力钢丝束(9)位于框架梁(3)两侧的部分为预应力钢丝束无粘接段(9.2);其中预应力钢丝束有粘接段(9.1)的长度为2m~3m。
  2. 根据权利要求1所述的混合连接后张预应力装配砼框架体系,其特征在于:所述连接钢筋(5)上连接钢筋无粘结段(5.2)的横截面积比连接钢筋有粘结段(5.1)钢筋的横截面积小20%,且连接钢筋无粘结段(5.2)的外侧设有外包层(11)。
  3. 根据权利要求2所述的混合连接后张预应力装配砼框架体系,其特征在于:所述连接钢筋有粘结段(5.1)的长度不小于连接钢筋(5)直径的20倍;连接钢筋(5)的竖边超出基础(1)顶面部分的长度为连接钢筋(5)竖边直径的6~10倍。
  4. 根据权利要求3所述的混合连接后张预应力装配砼框架体系,其特征在于:最下层的框 架柱的根部外侧设有外包钢板(12);所述外包钢板(12)的高度为框架柱(2)水平切面的长边的1~3倍,外包钢板(12)的厚度为10mm~30mm。
  5. 根据权利要求4所述的混合连接后张预应力装配砼框架体系,其特征在于:所述所述框架梁(3)为叠合梁,包括有预制混凝土主梁(3.1)和浇筑在预制混凝土主梁(3.1)顶部的主梁混凝土叠合层(3.2);所述预制混凝土主梁(3.1)的顶面与对应连接的框架柱(2)的顶面平齐;所述主梁混凝土叠合层(3.2)的厚度与对应连接的框架柱(2)顶部的混凝土连接层(7)厚度相适应;所述梁预应力孔道(10)通长设置在预制混凝土主梁(3.1)上、对应柱预应力孔道(8)的位置处;
    所述楼板(4)为叠合楼板,包括有预制空心板(4.1)和现浇在预制空心板(4.1)顶部的楼板混凝土叠合层(4.2)所述预制空心板(4.1)为预制圆孔板或者预制异形孔板或者SP板;所述楼板混凝土叠合层(4.2)的顶面与主梁混凝土叠合层(3.2)的顶面平齐,且楼板混凝土叠合层(4.2)与主梁混凝土叠合层(3.2)现浇成整体。
  6. 根据权利要求5所述的混合连接后张预应力装配砼框架体系,其特征在于:所述楼板(4)内还设有板面构造钢筋(13)和板附加钢筋(14),其中板面构造钢筋(13)为网状钢筋,水平布置在楼板混凝土叠合层(4.2)中,靠近顶部位置处;板附加钢筋(14)穿设在预制空心板(4.1)的孔洞中或者设置在预制空心板(4.1)的板间缝隙处,其中位于板间缝隙处的板附加钢筋(14)的两端分别插接在两侧的预制空心板(4.1)的孔洞中,在孔洞中现浇有混凝土。
  7. 根据权利要求6所述的混合连接后张预应力装配砼框架体系,其特征在于:所述混凝土连接层(7)中设有水平的耗能钢筋(15)和抗剪钢筋(16);所述耗能钢筋(15)位于混凝土连接层(7)的顶部,且其两端分别伸入两侧的主梁混凝土叠合层(3.2)中;所述耗能钢筋(15)由耗能钢筋有粘结段(15.1)和耗能钢筋无粘结段(15.2)组成;其中耗能钢筋无粘结段(15.2)设置在主梁混凝土叠合层(3.2)中、靠近混凝土连接层(7)一侧或者设置在混凝土连接层(7)中;所述耗能钢筋无粘结段(15.2)部位的钢筋面积小于耗能钢筋有粘结段(15.1)部位的钢筋面积,耗能钢筋无粘结段(15.2)的长度为耗能钢筋(15)直径的3~20倍;
    所述抗剪钢筋(16)位于混凝土连接层(7)的底部,且其两端分别伸入两侧的主梁混凝土叠合层(3.2)中。
  8. 一种权利要求7中所述的混合连接后张预应力装配砼框架体系的施工方法,其特征在于,包括步骤如下:
    步骤一,在工厂中生产预制构件,包括生产框架柱(2)、预制混凝土主梁(3.1)和预制空心板(4.1);
    步骤二,安装待施工楼层的框架柱(2);
    步骤三,在框架柱(2)的侧面上、框架梁(3)底面的位置处安装临时的支撑牛腿(18),并且在框架梁(3)跨中位置的下方安装临时支撑;
    步骤四,吊装预制混凝土主梁(3.1);使预制混凝土主梁(3.1)的两端落于支撑牛腿(18)上,预制混凝土主梁(3.1)的跨中部位支撑在下方的临时支撑上;
    步骤五,设置叠合楼板(4)底部的临时支撑,并吊装预制空心板(4.1);
    步骤六,将预应力钢丝束(9)中的预应力钢丝束有粘接段(9.1)外侧的钢丝束套管剥去,清除预应力钢丝束有粘接段(9.1)表面的油渍,把预应力钢丝束(9)穿入梁预应力孔道(10)和柱预应力孔道(8)内;
    步骤七:在步骤四施工完成后形成的梁柱接缝内灌入高强纤维砂浆,充满灌实;
    步骤八:待高强纤维砂浆达到设计强度后,进行预应力钢丝束(9)进行张拉、锚固;
    步骤九:铺设楼板混凝土叠合层(4.2)和主梁混凝土叠合层(3.2)内的钢筋;
    步骤十:浇筑楼板混凝土叠合层(4.2)的混凝土和主梁混凝土叠合层(3.2)的混凝土;
    步骤十一:在预应力钢丝束(9)穿过的梁预应力孔道(10)和柱预应力孔道(8)内灌入高强灌浆料;
    步骤十二:每层重复步骤二~步骤十一,直至该张预应力装配砼框架体系施工完毕。
  9. 根据权利要求8所述的混合连接后张预应力装配砼框架体系的施工方法,其特征在于:
    步骤二中,当施工最底层框架柱时,将最底层框架柱底部的钢筋连接套筒对应套结在基础(1)顶部的连接钢筋(5)上,并作临时固定,调整框架柱(2)的轴线位置及垂直度,后进行最下层框架柱(2)与基础(1)的接缝处灌浆与基础(1)相连接,
    当施工最底层框架柱上方的框架柱(2)时,将上层框架柱底部的钢筋连接套筒(17)对应套接在下层框架柱顶部的竖向钢筋(6)上,然后在上下层框架柱之间的间距中灌浆,形成混凝土连接层(7)。
  10. 根据权利要求9所述的混合连接后张预应力装配砼框架体系的施工方法,其特征在于:所述基础(1)中的连接钢筋(5)施工时,在连接钢筋无粘结段(5.2)外侧套上外包层(11),之后绑扎固定连接钢筋(5),最后进行基础混凝土的浇注。
PCT/CN2018/079971 2017-09-20 2018-03-22 一种混合连接后张预应力装配砼框架体系及其施工方法 WO2019056715A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710851976.3A CN107700653B (zh) 2017-09-20 2017-09-20 一种混合连接后张预应力装配砼框架体系及其施工方法
CN201710851976.3 2017-09-20

Publications (1)

Publication Number Publication Date
WO2019056715A1 true WO2019056715A1 (zh) 2019-03-28

Family

ID=61172987

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079971 WO2019056715A1 (zh) 2017-09-20 2018-03-22 一种混合连接后张预应力装配砼框架体系及其施工方法

Country Status (2)

Country Link
CN (1) CN107700653B (zh)
WO (1) WO2019056715A1 (zh)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109869020A (zh) * 2019-04-02 2019-06-11 中交铁道设计研究总院有限公司 现浇预应力清水混凝土高架站波纹窗格外墙结构以及高架站
CN110284516A (zh) * 2019-06-25 2019-09-27 中国电力工程顾问集团西北电力设计院有限公司 一种轻型化预制装配式混凝土板柱基础及其施工方法
CN110397273A (zh) * 2019-07-12 2019-11-01 广西建工集团第五建筑工程有限责任公司 一种竖向pc构件高压注浆拼缝封堵装置及其封堵施工方法
CN111089035A (zh) * 2020-01-17 2020-05-01 重庆大学 一种风电机组体内预应力单层钢板-混凝土组合塔筒
CN111395656A (zh) * 2020-04-14 2020-07-10 江苏扬建集团有限公司 一种用于装配式建筑转换层竖向结构外露连接钢筋预埋施工的定位装置及其定位方法
CN111979903A (zh) * 2020-09-21 2020-11-24 华侨大学 套管耗能自复位空心桥墩及其施工方法
EP3799443A1 (en) 2019-09-24 2021-03-31 Sonova AG Hearing device comprising an active vent and method for its operation
CN112627016A (zh) * 2021-01-11 2021-04-09 深圳市天健(集团)股份有限公司 一种具备自复位与强耗能的装配式桥墩及其施工方法
CN112696023A (zh) * 2020-12-24 2021-04-23 中建四局第六建设有限公司 一种装配式整体框架结构现浇梁免开孔及免支模架施工方法
CN113152671A (zh) * 2021-04-19 2021-07-23 中国石油大学(华东) 一种具有防落梁耗能装置的装配式rc框架节点
CN113152668A (zh) * 2021-02-07 2021-07-23 广州地铁设计研究院股份有限公司 一种预应力装配式梁柱节点
CN113309349A (zh) * 2021-06-21 2021-08-27 中冶天工集团有限公司 一种用于剪力墙根部模板加固装置及施工方法
EP3890355A1 (en) 2020-03-30 2021-10-06 Sonova AG Hearing device configured for audio classification comprising an active vent, and method of its operation
CN113700176A (zh) * 2021-07-20 2021-11-26 中国矿业大学 一种开洞预制隔墙板分部预应力拼装方法
CN114062151A (zh) * 2021-11-18 2022-02-18 中冶建筑研究总院有限公司 预应力混凝土框架梁塑性阶段次弯矩的测量方法
CN114491892A (zh) * 2022-02-17 2022-05-13 中国建筑第二工程局有限公司 预应力管道安装方法、装置、终端设备以及存储介质
CN114775700A (zh) * 2022-04-29 2022-07-22 山东电力工程咨询院有限公司 垃圾池底板与卸料平台框架柱基础沉降差处理系统及方法
EP4044623A1 (en) 2021-02-11 2022-08-17 Sonova AG Hearing device comprising a vent and an acoustic valve
EP4057643A1 (en) 2021-03-12 2022-09-14 Sonova AG Hearing device comprising a slidable member and method for operating that hearing aid
CN115095066A (zh) * 2022-06-25 2022-09-23 长沙巨星轻质建材股份有限公司 装配式自承力预应力肋型构件
CN115341658A (zh) * 2022-10-07 2022-11-15 青岛理工大学 一种韧性装配式多元耗能限位防倒塌梁柱节点
CN115369979A (zh) * 2022-09-09 2022-11-22 中国二十冶集团有限公司 受限空间大直径排水管线施工装置及施工方法
CN115506589A (zh) * 2022-10-25 2022-12-23 南京工业大学 一种装配式无粘结预应力3d打印混凝土梁及其施工工艺

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107700653B (zh) * 2017-09-20 2023-08-01 中国建筑股份有限公司 一种混合连接后张预应力装配砼框架体系及其施工方法
CN109469202B (zh) * 2018-12-12 2020-07-07 中国建筑技术集团有限公司 一种预应力装配整体式混凝土框架结构体系及其施工方法
CN111779160A (zh) * 2020-07-27 2020-10-16 中国建筑技术集团有限公司 一种预应力装配式混凝土剪力墙体系及其施工方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096263A (ja) * 1996-06-06 1998-04-14 R Johann Hashihoran Simanjuntakk I プレキャストコンクリート支柱及びスラブの組立方法
CN104612246A (zh) * 2015-01-30 2015-05-13 柳忠东 一种装配整体式混凝土大跨度框架结构体系及其装配方法
CN106245755A (zh) * 2016-09-30 2016-12-21 华东建筑设计研究院有限公司 斜撑增强型钢框架‑剪力墙装配式大空间住宅体系
CN106499051A (zh) * 2016-11-21 2017-03-15 中国建筑股份有限公司 一种柱贯通装配式预应力混凝土框架体系及其施工方法
CN107165272A (zh) * 2017-06-22 2017-09-15 中国建筑股份有限公司 预应力装配式混凝土框架节点连接结构及其施工方法
CN107700653A (zh) * 2017-09-20 2018-02-16 中国建筑股份有限公司 一种混合连接后张预应力装配砼框架体系及其施工方法
CN207348216U (zh) * 2017-09-20 2018-05-11 中国建筑股份有限公司 一种混合连接后张预应力装配砼框架体系

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103088920B (zh) * 2013-02-21 2014-12-24 华汇工程设计集团股份有限公司 一种先张法预应力叠合梁结构体系及其施工方法
CN203097016U (zh) * 2013-03-08 2013-07-31 沈阳建筑大学建筑设计研究院 装配式混凝土框架剪力墙结构
CN103741958B (zh) * 2013-12-30 2016-07-06 北京工业大学 一种外设装配式子结构加固已有建筑物的方法
CN205875395U (zh) * 2016-08-02 2017-01-11 北京市建筑工程研究院有限责任公司 一种预应力自复位装配式混凝土框架梁柱节点

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1096263A (ja) * 1996-06-06 1998-04-14 R Johann Hashihoran Simanjuntakk I プレキャストコンクリート支柱及びスラブの組立方法
CN104612246A (zh) * 2015-01-30 2015-05-13 柳忠东 一种装配整体式混凝土大跨度框架结构体系及其装配方法
CN106245755A (zh) * 2016-09-30 2016-12-21 华东建筑设计研究院有限公司 斜撑增强型钢框架‑剪力墙装配式大空间住宅体系
CN106499051A (zh) * 2016-11-21 2017-03-15 中国建筑股份有限公司 一种柱贯通装配式预应力混凝土框架体系及其施工方法
CN107165272A (zh) * 2017-06-22 2017-09-15 中国建筑股份有限公司 预应力装配式混凝土框架节点连接结构及其施工方法
CN107700653A (zh) * 2017-09-20 2018-02-16 中国建筑股份有限公司 一种混合连接后张预应力装配砼框架体系及其施工方法
CN207348216U (zh) * 2017-09-20 2018-05-11 中国建筑股份有限公司 一种混合连接后张预应力装配砼框架体系

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109869020A (zh) * 2019-04-02 2019-06-11 中交铁道设计研究总院有限公司 现浇预应力清水混凝土高架站波纹窗格外墙结构以及高架站
CN109869020B (zh) * 2019-04-02 2023-10-31 中交铁道设计研究总院有限公司 现浇预应力清水混凝土高架站波纹窗格外墙结构以及高架站
CN110284516A (zh) * 2019-06-25 2019-09-27 中国电力工程顾问集团西北电力设计院有限公司 一种轻型化预制装配式混凝土板柱基础及其施工方法
CN110284516B (zh) * 2019-06-25 2024-02-06 中国电力工程顾问集团西北电力设计院有限公司 一种轻型化预制装配式混凝土板柱基础及其施工方法
CN110397273A (zh) * 2019-07-12 2019-11-01 广西建工集团第五建筑工程有限责任公司 一种竖向pc构件高压注浆拼缝封堵装置及其封堵施工方法
EP3799443A1 (en) 2019-09-24 2021-03-31 Sonova AG Hearing device comprising an active vent and method for its operation
CN111089035A (zh) * 2020-01-17 2020-05-01 重庆大学 一种风电机组体内预应力单层钢板-混凝土组合塔筒
EP3890355A1 (en) 2020-03-30 2021-10-06 Sonova AG Hearing device configured for audio classification comprising an active vent, and method of its operation
CN111395656A (zh) * 2020-04-14 2020-07-10 江苏扬建集团有限公司 一种用于装配式建筑转换层竖向结构外露连接钢筋预埋施工的定位装置及其定位方法
CN111979903A (zh) * 2020-09-21 2020-11-24 华侨大学 套管耗能自复位空心桥墩及其施工方法
CN112696023A (zh) * 2020-12-24 2021-04-23 中建四局第六建设有限公司 一种装配式整体框架结构现浇梁免开孔及免支模架施工方法
CN112627016A (zh) * 2021-01-11 2021-04-09 深圳市天健(集团)股份有限公司 一种具备自复位与强耗能的装配式桥墩及其施工方法
CN112627016B (zh) * 2021-01-11 2023-01-10 深圳市天健(集团)股份有限公司 一种具备自复位与强耗能的装配式桥墩及其施工方法
CN113152668A (zh) * 2021-02-07 2021-07-23 广州地铁设计研究院股份有限公司 一种预应力装配式梁柱节点
EP4044623A1 (en) 2021-02-11 2022-08-17 Sonova AG Hearing device comprising a vent and an acoustic valve
US11792564B2 (en) 2021-02-11 2023-10-17 Sonova Ag Hearing device comprising a vent and an acoustic valve
EP4057643A1 (en) 2021-03-12 2022-09-14 Sonova AG Hearing device comprising a slidable member and method for operating that hearing aid
US11832064B2 (en) 2021-03-12 2023-11-28 Sonova Ag Hearing device comprising a slidable member
CN113152671B (zh) * 2021-04-19 2022-05-13 中国石油大学(华东) 一种具有防落梁耗能装置的装配式rc框架节点
CN113152671A (zh) * 2021-04-19 2021-07-23 中国石油大学(华东) 一种具有防落梁耗能装置的装配式rc框架节点
CN113309349A (zh) * 2021-06-21 2021-08-27 中冶天工集团有限公司 一种用于剪力墙根部模板加固装置及施工方法
CN113700176B (zh) * 2021-07-20 2022-04-22 中国矿业大学 一种开洞预制隔墙板分部预应力拼装方法
CN113700176A (zh) * 2021-07-20 2021-11-26 中国矿业大学 一种开洞预制隔墙板分部预应力拼装方法
CN114062151A (zh) * 2021-11-18 2022-02-18 中冶建筑研究总院有限公司 预应力混凝土框架梁塑性阶段次弯矩的测量方法
CN114062151B (zh) * 2021-11-18 2023-07-04 中冶建筑研究总院有限公司 预应力混凝土框架梁塑性阶段次弯矩的测量方法
CN114491892A (zh) * 2022-02-17 2022-05-13 中国建筑第二工程局有限公司 预应力管道安装方法、装置、终端设备以及存储介质
CN114491892B (zh) * 2022-02-17 2023-11-24 中国建筑第二工程局有限公司 预应力管道安装方法、装置、终端设备以及存储介质
CN114775700A (zh) * 2022-04-29 2022-07-22 山东电力工程咨询院有限公司 垃圾池底板与卸料平台框架柱基础沉降差处理系统及方法
CN115095066A (zh) * 2022-06-25 2022-09-23 长沙巨星轻质建材股份有限公司 装配式自承力预应力肋型构件
CN115369979A (zh) * 2022-09-09 2022-11-22 中国二十冶集团有限公司 受限空间大直径排水管线施工装置及施工方法
CN115341658B (zh) * 2022-10-07 2023-05-16 青岛理工大学 一种韧性装配式多元耗能限位防倒塌梁柱节点
CN115341658A (zh) * 2022-10-07 2022-11-15 青岛理工大学 一种韧性装配式多元耗能限位防倒塌梁柱节点
CN115506589A (zh) * 2022-10-25 2022-12-23 南京工业大学 一种装配式无粘结预应力3d打印混凝土梁及其施工工艺
CN115506589B (zh) * 2022-10-25 2023-08-25 南京工业大学 一种装配式无粘结预应力3d打印混凝土梁及其施工工艺

Also Published As

Publication number Publication date
CN107700653A (zh) 2018-02-16
CN107700653B (zh) 2023-08-01

Similar Documents

Publication Publication Date Title
WO2019056715A1 (zh) 一种混合连接后张预应力装配砼框架体系及其施工方法
WO2019056717A1 (zh) 一种后张预应力装配砼框架抗震耗能构件体系及施工方法
CN107165272B (zh) 预应力装配式混凝土框架节点连接结构及其施工方法
WO2019056716A1 (zh) 全装配式预应力砼框架抗震耗能构件体系及施工方法
CN108060746B (zh) 一种装配式预应力混凝土大跨度框架体系及其施工方法
CN106836479B (zh) 一种装配式预应力混凝土框架结构
CN107476476B (zh) 一种大跨钢筋桁架楼承板与钢筋混凝土梁组合施工方法
CN106677339A (zh) 节点干湿混合连接装配整体式混凝土框架结构及施工方法
TWM522974U (zh) 雙向連續雙樑構成的三維輕鋼構架
CN102418387B (zh) 一种后张法体外预应力钢梁和先张法预应力叠合梁结合的房屋结构体系及其施工工艺
KR20180012809A (ko) 조립식 기둥 및 빔 유형 구조
CN108005304B (zh) 一种装配式预应力混凝土框架体系及其施工方法
CN110805144B (zh) 全装配式高层/超高层混凝土框支结构体系及其施工方法
CN110670723A (zh) 大跨度预应力混凝土装配式建筑框架体系
CN114232867A (zh) 单向叠合板后浇带节点构造及其施工方法
CN201826392U (zh) 配筋砌块钢筋混凝土结构及其隔震、减震体系
CN110258788B (zh) 一种框架梁与柱的半干式连接节点及其施工方法
CN202248526U (zh) 装配式房屋建筑用预制钢筋砼结构梁
CN207538558U (zh) 全装配式预应力砼框架抗震耗能构件体系
CN107023078B (zh) 装配现浇组合式叠合箱网梁楼盖及施工方法
CN110005110A (zh) 一种免支撑的预应力叠合楼板施工方法
CN210529929U (zh) 一种耗能钢棒可更换的梁柱连接节点
CN207348216U (zh) 一种混合连接后张预应力装配砼框架体系
CN210421403U (zh) 一种框架梁与柱的半干式连接节点
CN211572181U (zh) 一种钢空腔肋的预制底板、叠合板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18858086

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18858086

Country of ref document: EP

Kind code of ref document: A1