WO2019056565A1 - 固态激光雷达及固态激光雷达控制方法 - Google Patents

固态激光雷达及固态激光雷达控制方法 Download PDF

Info

Publication number
WO2019056565A1
WO2019056565A1 PCT/CN2017/113377 CN2017113377W WO2019056565A1 WO 2019056565 A1 WO2019056565 A1 WO 2019056565A1 CN 2017113377 W CN2017113377 W CN 2017113377W WO 2019056565 A1 WO2019056565 A1 WO 2019056565A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
cylindrical lens
laser radar
state laser
line array
Prior art date
Application number
PCT/CN2017/113377
Other languages
English (en)
French (fr)
Inventor
邱纯鑫
刘乐天
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Publication of WO2019056565A1 publication Critical patent/WO2019056565A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4816Constructional features, e.g. arrangements of optical elements of receivers alone
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A90/00Technologies having an indirect contribution to adaptation to climate change
    • Y02A90/10Information and communication technologies [ICT] supporting adaptation to climate change, e.g. for weather forecasting or climate simulation

Definitions

  • the invention relates to the field of detection, in particular to a solid-state laser radar and a solid-state lidar control method.
  • Lidar is a radar system that emits a laser beam to detect the position and velocity of a target.
  • the working principle is to first transmit a probe laser beam to the target, and then compare the received signal reflected from the target with the transmitted signal. After proper processing, information about the target, such as target distance, azimuth, altitude, speed, attitude, and even shape, can be obtained.
  • the existing laser radar is divided into a hybrid solid-state laser radar and a solid-state laser radar.
  • the hybrid solid-state laser radar has a large volume and a low vertical resolution, and cannot meet the increasingly high demand.
  • Solid-state laser radars have higher vertical resolution and smaller size, so the application field is more and more extensive.
  • the solid-state laser radar includes a transmitting end and a receiving end, and the receiving end usually adopts an array type APD (Avalanche Photodiodes), that is, an array type receiver. Due to process and technology bottlenecks, the APD of the receiving end of the existing solid-state laser radar is mainly line array APD. At the receiving end of the solid-state laser radar, the line array APD is used with a conventional receiving lens to obtain a larger field of view in one direction, but the field of view is smaller in the other direction perpendicular to the above direction. If the angle of view is too small, it will affect the accuracy and distance of solid-state lidar detection. Existing solid-state laser radars cannot simultaneously acquire larger fields of view in both vertical directions.
  • APD Analog Photodiodes
  • a solid state laser radar that includes:
  • a focusing unit for concentrating the reflected laser light
  • a cylindrical lens disposed between the focusing unit and the receiver for concentrating the reflected laser light
  • the reflected laser light is a laser light emitted from the object to be measured by the emitted laser light emitted by the solid-state laser radar.
  • a solid state laser radar control method comprising:
  • the reflected laser light is concentrated, and the reflected laser light is a laser light emitted from the object to be measured by the emitted laser light emitted by the solid-state laser radar.
  • a cylindrical lens is arranged between the focusing unit and the receiver, and the cylindrical lens can condense and reflect the laser light, which is equivalent to reducing the focal length of the optical system of the solid-state laser radar receiving end, thereby expanding the solid-state laser
  • the field of view of the radar gives the solid state laser radar a large field of view.
  • FIG. 1 is a schematic diagram of a solid state laser radar of an embodiment
  • FIG. 2 is a schematic view of a cylindrical lens of an embodiment
  • Figure 3 is a schematic view of a conventional solid state laser radar field of view
  • FIG. 4 is a schematic view showing an angle of view of a solid state laser radar of an embodiment
  • FIG. 5 is a schematic view showing a spot of a solid-state laser radar according to an embodiment
  • Figure 6 is a schematic view of a spot of a conventional solid state laser radar
  • FIG. 7 is a schematic view showing a spot of a solid-state laser radar according to an embodiment
  • FIG. 8 is a schematic view showing a spot of a solid-state laser radar according to an embodiment.
  • the solid-state laser radar includes: a focusing unit 120 for condensing a reflected laser; a receiver 130 for receiving a reflected laser; and a cylindrical lens 110, disposed between the focusing unit 120 and the receiver 130, for collecting and reflecting the laser;
  • the reflected laser light is a laser light emitted from the object to be measured by the emitted laser light emitted by the solid-state laser radar.
  • the solid-state laser radar shown in FIG. 1 further includes a transmitter 140, a collimating unit 150, and a galvanometer 160.
  • the object to be measured 170 is further included in FIG.
  • the cylindrical lens 110 of the embodiment of the present invention is a flat-convex cylindrical lens, that is, a lens having one side and a convex lens.
  • the cylindrical lens 110 is convex toward the focusing unit 120.
  • the cylindrical lens 110 shown in FIG. 2 can converge light rays in one direction, which is referred to as a convergence direction 200, and the solid line direction in FIG. 2 indicates a convergence direction 200.
  • Figure 3 is a schematic diagram of the viewing angle of a conventional solid-state laser radar. As shown in Figure 3, ⁇ is the angle of view, d is the image plane width in that direction, that is, the length of the line array APD, and f is the focus of the solid-state laser radar. The focal length of unit 120.
  • FIG. 4 is a schematic view showing the field of view of the solid-state laser radar of the present invention.
  • a cylindrical lens 110 is inserted between the focusing unit 120 and the receiver 130.
  • the cylindrical lens 110 has a convergence effect on the light, which is equivalent to reducing.
  • the focal length of the optical system of the solid-state laser radar receiving end, at which the angle of view is ⁇ ', the focal length of the receiving end optical system is f, and d is the image plane width in the direction.
  • the solid state laser radar of the embodiment of the invention has a large field of view.
  • a cylindrical lens 110 is disposed between the focusing unit 120 and the receiver 130, and the cylindrical lens 110 can condense and reflect the laser light, which is equivalent to reducing the focal length of the optical system of the solid-state laser radar receiving end, thereby expanding
  • the field of view of the solid-state lidar makes the solid-state lidar have a larger field of view.
  • the angle of view is enlarged, but the focal length of the receiving lens does not need to be reduced, and the aperture of the receiving lens does not need to be reduced, so that the detection of the laser radar is not caused. The distance is reduced.
  • the receiver 130 of the solid-state laser radar is a line array APD, and the line array APD is horizontally placed.
  • Line array APDs work in two ways, one is simultaneous parallel and the other is timing triggered.
  • the convergence direction 200 of the cylindrical lens 110 is perpendicular to the horizontal plane.
  • Simultaneous parallelism means that all APD units in the line array APD simultaneously turn on reception when receiving, and jointly receive echo output signals, that is, receive reflected lasers together, and simultaneously work 1*N APD units at the same time.
  • the linear array APDs are simultaneously parallel, since the cylindrical lens 110 is employed, the reflected light in the central field of view is concentrated in advance, and the horizontal spot is linear, as shown in FIG. The spot is still linear and can be received by the line array APD, and the energy loss is extremely small, so the detection distance of the solid-state laser radar is guaranteed.
  • the convergence direction 200 of the cylindrical lens 110 is perpendicular to the horizontal plane.
  • Triggering by time means that each APD unit on the line array APD sequentially turns on the received signal in a certain time sequence.
  • the line array APD is disposed on the horizontal focal plane of the receiving end optical system, and then the detecting surface is a vertical line.
  • the detection surface is a circular spot, as shown in Fig. 6, then the spot will disappear rapidly as the angle of view increases to a certain extent.
  • the shape of the spot is a line. As shown in FIG. 7, even if the center of the image has left the effective imaging surface of the line array APD, some energy can enter the effective imaging surface, so the column is used.
  • the field of view of the solid state laser radar of lens 110 increases in the vertical direction.
  • the convergence direction 200 of the cylindrical lens 110 may also be a horizontal plane, and the spot on the line array APD is a vertical line as shown in FIG.
  • the solid-state laser radar of the embodiment of the invention adopts a cylindrical lens 110 to converge the reflected laser in advance, which can increase the field of view of the solid-state laser radar.
  • an embodiment of the present invention further provides a solid-state lidar control method, including:
  • the reflected laser light is concentrated, and the reflected laser light is a laser light emitted from the object to be measured by the emitted laser light emitted by the solid-state laser radar.
  • the cylindrical lens is a plano-convex cylindrical lens, and the cylindrical lens has a convex surface facing the focusing unit.
  • the receiver of the solid-state laser radar is a line array APD, and the line array APD is horizontally placed.
  • the convergence direction of the cylindrical lens is perpendicular to the horizontal plane.
  • the convergence direction of the cylindrical lens is parallel to the horizontal plane.
  • the line array APD is disposed on a focal plane of the cylindrical lens.
  • a cylindrical lens is adopted, and the reflected laser is concentrated in advance, and the field of view of the solid-state laser radar can be increased.
  • a solid-state laser radar and a solid-state laser radar control method are disclosed.
  • a cylindrical lens is arranged between the focusing unit and the receiver, and the cylindrical lens can condense and reflect the laser, which is equivalent to reducing the receiving end of the solid-state laser radar.
  • the focal length of the optical system can therefore expand the field of view of the solid-state lidar, giving the solid-state lidar a larger field of view.
  • the angle of view is enlarged, but the focal length of the receiving lens does not need to be reduced, and the aperture of the receiving lens does not need to be reduced, so that the detection of the laser radar is not caused. The distance is reduced.
  • the technology in the embodiments of the present invention can be implemented by means of software plus necessary general hardware including general-purpose integrated circuits, general-purpose CPUs, general-purpose memories, general-purpose components, and the like. It can be implemented by dedicated hardware including an application specific integrated circuit, a dedicated CPU, a dedicated memory, a dedicated component, etc., but in many cases the former is a better implementation. Based on such understanding, the technical solution in the embodiments of the present invention may be embodied in the form of a software product in essence or in the form of a software product, which may be stored in a storage medium such as a read-only memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • CD Compact Disc

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种固态激光雷达及其控制方法,其中该固态激光雷达包括:聚焦单元(120),用于会聚反射激光;接收器(130),用于接收反射激光;柱透镜(110),设置于聚焦单元(120)与接收器(130)之间,用于会聚反射激光;该反射激光是固态激光雷达发射的出射激光由被测物体(170)反射后的激光。该固态激光雷达及固态激光雷达控制方法,在聚焦单元与接收器之间设置了柱透镜,相当于缩小了固态激光雷达接收端光学系统的焦距,因此可以扩大固态激光雷达的视场角,使固态激光雷达具有较大的视场角。

Description

固态激光雷达及固态激光雷达控制方法 技术领域
本发明涉及检测领域,特别涉及一种固态激光雷达及固态激光雷达控制方法。
背景技术
激光雷达是以发射激光光束来探测目标的位置、速度等特征量的雷达系统,其工作原理是先向目标发射探测激光光束,然后将接收到的从目标反射回来的信号与发射信号进行比较,作适当处理后,就可获得目标的有关信息,例如目标距离、方位、高度、速度、姿态、甚至形状等参数。
现有的激光雷达分为混合固态激光雷达以及固态激光雷达,混合固态激光雷达的体积大,垂直分辨率较低,无法满足越来越高的需求。固态激光雷达的垂直分辨率较高,且体积较小,因此应用领域越来越广泛。
固态激光雷达包括发射端以及接收端,且接收端通常采用阵列式APD(Avalanche Photodiodes,雪崩光电二极管),即阵列式接收器。由于工艺、技术等瓶颈,现有的固态激光雷达的接收端的APD以线阵APD为主。在固态激光雷达的接收端,线阵APD配合传统的接收镜头使用,在其中一个方向上能获得较大的视场角,但在与上述方向垂直的另一个方向上视场角则较小。视场角过小,会影响固态激光雷达探测的精确度和距离,现有的固态激光雷达还无法同时在两个垂直方向上同时获取较大的视场角。
发明内容
基于此,有必要提供一种具有较大视场角的固态激光雷达及固态激光雷达控制方法。
一种固态激光雷达,包括:
聚焦单元,用于会聚反射激光;
接收器,用于接收反射激光;
柱透镜,设置于聚焦单元与接收器之间,用于会聚反射激光;
所述反射激光是固态激光雷达发射的出射激光由被测物体反射后的激光。
一种固态激光雷达控制方法,包括:
会聚反射激光,所述反射激光是固态激光雷达发射的出射激光由被测物体反射后的激光。
上述固态激光雷达及固态激光雷达控制方法,在聚焦单元与接收器之间设置了柱透镜,柱透镜可以会聚反射激光,相当于缩小了固态激光雷达接收端光学系统的焦距,因此可以扩大固态激光雷达的视场角,使固态激光雷达具有较大的视场角。
本发明的一个或多个实施例的细节在下面的附图和描述中提出。本发明的其它特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1所示为一实施例的固态激光雷达的示意图;
图2所示为一实施例的柱透镜的示意图;
图3所示为传统的固态激光雷达视场角的示意图;
图4所示为一实施例固态激光雷达视场角的示意图;
图5所示为一实施例的固态激光雷达的光斑示意图;
图6所示为传统的固态激光雷达的光斑示意图;
图7所示为一实施例的固态激光雷达的光斑示意图;
图8所示为一实施例的固态激光雷达的光斑示意图。
具体实施方式
为了便于理解本发明,下面将参照相关附图对本发明进行更全面的描述。附图中给出了本发明的较佳实施例。但是,本发明可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本发明的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于发明的技术领域的技术人员通常理解的含义相同。本文中在发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在限制本发明。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
图1所示为本发明实施例固态激光雷达的示意图,如图1所示,所述固态激光雷达包括:聚焦单元120,用于会聚反射激光;接收器130,用于接收反射激光;柱透镜110,设置于聚焦单元120与接收器130之间,用于会聚反射激光;
所述反射激光是固态激光雷达发射的出射激光由被测物体反射后的激光。
图1所示的固态激光雷达中,还包括发射器140,准直单元150,振镜160,图1中还包括被测物体170。
图2所示为本发明实施例的柱透镜110的示意图,如图2所示,本发明实施例的柱透镜110为平-凸型柱透镜,即一面是平面,另一面是凸透镜的透镜。
本发明实施例中,所述柱透镜110凸面朝向所述聚焦单元120。
图2所示的柱透镜110可以对一个方向的光线进行会聚,该方向称为会聚方向200,图2中的实线方向表示会聚方向200。
图3所示为传统固态激光雷达视场角的示意图,如图3所示,θ为视场角,d为该方向上的像面宽度,即线阵APD的长度,f为固态激光雷达聚焦单元120的焦距。
视场角与焦距f,像面宽度d之间满足
Figure PCTCN2017113377-appb-000001
图4所示为本发明固态激光雷达视场角的示意图,如图4所示,在聚焦单元120和接收器130之间插入柱透镜110,柱透镜110对光线有会聚作用,相当于减小了固态激光雷达接收端光学系统的焦距,此时视场角为θ′,接收端光学系统焦距为f,d为该方向上的像面宽度,则
Figure PCTCN2017113377-appb-000002
由于f′<f,因此,θ′>θ。
可见,本发明实施例的固态激光雷达具有较大的视场角。
本发明公开的固态激光雷达中,在聚焦单元120与接收器130之间设置了柱透镜110,柱透镜110可以会聚反射激光,相当于缩小了固态激光雷达接收端光学系统的焦距,因此可以扩大固态激光雷达的视场角,使固态激光雷达具有较大的视场角。此外,本发明实施例的固态激光雷达及固态激光雷达的控制方法中,扩大了视场角,但是无需减小接收镜头的焦距,无需减小接收镜头的口径,从而不会使激光雷达的探测距离减小。
请继续参考图1,本发明实施例中,固态激光雷达的接收器130为线阵APD,所述线阵APD水平放置。
线阵APD有两种工作方式,一种是同时并行,另一种是按时序触发。
本发明实施例中,若所述线阵APD的工作方式为同时并行,则所述柱透镜110的会聚方向200垂直于水平面。
同时并行的意思是,线阵APD中的所有APD单元在接收时同时开启接收,共同接收回波输出信号,即共同接收反射激光,在同一时间1*N个APD单元同时工作。在线阵APD同时并行时,由于采用了柱透镜110,对于中心视场范围内的反射光线提前会聚,水平方向上的光斑为线状,如图5所示。光斑为线状依然能够被线阵APD所接收到,能量损失极小,所以固态激光雷达的探测距离得以保证。
本发明实施例中,若所述线阵APD的工作方式为按时序触发,则所述柱透镜110的会聚方向200垂直于水平面。
按时序触发的意思是线阵APD上的每个APD单元按照一定的时间顺序依次打开接收信号。线阵APD设置于接收端光学系统的水平方向焦面上,那么探测面上是一条垂直线。
按照传统做法,若不使用柱透镜110,则探测面上是一个圆形光斑,如图6所示,那么随着视场角增大到一定程度,光斑会快速消失。
而采用了柱透镜110之后,光斑的形状是一条线,如图7所示,即使图像中心已经离开了线阵APD的有效成像面,但是还是会有部分能量能够进入有效成像面,所以使用柱透镜110的固态激光雷达在垂直方向上的视场角增大。
在线阵APD按时序触发时,柱透镜110的会聚方向200也可以是水平面,此时线阵APD上的光斑为垂直线状,如图8所示。
本发明实施例的固态激光雷达,采用了柱透镜110,对反射激光提前会聚,可以增加固态激光雷达的视场角。
和上述固态激光雷达相对应,本发明实施例还提供了一种固态激光雷达控制方法,包括:
会聚反射激光,所述反射激光是固态激光雷达发射的出射激光由被测物体反射后的激光。
本发明实施例中,所述柱透镜为平-凸型柱透镜,且所述柱透镜凸面朝向所述聚焦单元。
本发明实施例中,所述固态激光雷达的接收器为线阵APD,所述线阵APD水平放置。
优选的,若线阵APD的工作方式为同时并行,则所述柱透镜的会聚方向垂直于水平面。
优选的,若所述线阵APD的工作方式为按时序触发,则所述柱透镜的会聚方向平行于水平面。
优选的,所述线阵APD设置于所述柱透镜的焦平面上。
本发明实施例的固态激光雷达的控制方法中,采用了柱透镜,对反射激光提前会聚,可以增加固态激光雷达的视场角。
本发明的实施例中公开了一种固态激光雷达及固态激光雷达的控制方法,在聚焦单元与接收器之间设置了柱透镜,柱透镜可以会聚反射激光,相当于缩小了固态激光雷达接收端光学系统的焦距,因此可以扩大固态激光雷达的视场角,使固态激光雷达具有较大的视场角。此外,本发明实施例的固态激光雷达及固态激光雷达的控制方法中,扩大了视场角,但是无需减小接收镜头的焦距,无需减小接收镜头的口径,从而不会使激光雷达的探测距离减小。
本领域的技术人员可以清楚地了解到本发明实施例中的技术可借助软件加必需的通用硬件的方式来实现,通用硬件包括通用集成电路、通用CPU、通用存储器、通用元器件等,当然也可以通过专用硬件包括专用集成电路、专用CPU、专用存储器、专用元器件等来实现,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明实施例中的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品可以存储在存储介质中,如只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟、光盘等,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例或者实施例的某些部分所述的方法。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围 应以所附权利要求为准。

Claims (18)

  1. 一种固态激光雷达,包括:
    聚焦单元,用于会聚反射激光;
    接收器,用于接收反射激光;
    柱透镜,设置于聚焦单元与接收器之间,用于会聚反射激光;
    所述反射激光是固态激光雷达发射的出射激光由被测物体反射后的激光。
  2. 根据权利要求1所述的固态激光雷达,其特征在于,所述柱透镜为平-凸型柱透镜。
  3. 根据权利要求2所述的固态激光雷达,其特征在于,所述平-凸型柱透镜的一面是平面,另一面是凸透镜。
  4. 根据权利要求3所述的固态激光雷达,其特征在于,所述凸透镜朝向所述聚焦单元。
  5. 根据权利要求1所述的固态激光雷达,其特征在于,所述接收器为线阵APD。
  6. 根据权利要求5所述的固态激光雷达,其特征在于,所述线阵APD水平放置。
  7. 根据权利要求5所述的固态激光雷达,其特征在于,所述线阵APD设置于所述柱透镜的焦平面上。
  8. 根据权利要求5所述的固态激光雷达,其特征在于,所述线阵APD的工作方式为同时并行,所述柱透镜的会聚方向垂直于水平面。
  9. 根据权利要求5所述的固态激光雷达,其特征在于,所述线阵APD的工作方式为按时序触发,所述柱透镜的会聚方向平行于水平面。
  10. 一种固态激光雷达控制方法,应用于固态激光雷达,所述固态激光雷达包括柱透镜,且所述柱透镜设置于聚焦单元与接收器之间,所述方法包括:
    会聚反射激光,所述反射激光是固态激光雷达发射的出射激光由被测物 体反射后的激光。
  11. 根据权利要求10所述的方法,其特征在于,所述柱透镜为平-凸型柱透镜。
  12. 根据权利要求11所述的方法,其特征在于,所述平-凸型柱透镜的一面是平面,另一面是凸透镜。
  13. 根据权利要求12所述的方法,其特征在于,所述凸透镜朝向所述聚焦单元。
  14. 根据权利要求10所述的方法,其特征在于,所述接收器为线阵APD。
  15. 根据权利要求14所述的方法,其特征在于,所述线阵APD水平放置。
  16. 根据权利要求14所述的方法,其特征在于,所述线阵APD设置于所述柱透镜的焦平面上。
  17. 根据权利要求14所述的方法,其特征在于,所述线阵APD的工作方式为同时并行,所述柱透镜的会聚方向垂直于水平面。
  18. 根据权利要求14所述的方法,其特征在于,所述线阵APD的工作方式为按时序触发,所述柱透镜的会聚方向平行于水平面。
PCT/CN2017/113377 2017-09-19 2017-11-28 固态激光雷达及固态激光雷达控制方法 WO2019056565A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710844939.X 2017-09-19
CN201710844939.XA CN107664760B (zh) 2017-09-19 2017-09-19 固态激光雷达及固态激光雷达控制方法

Publications (1)

Publication Number Publication Date
WO2019056565A1 true WO2019056565A1 (zh) 2019-03-28

Family

ID=61098326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/113377 WO2019056565A1 (zh) 2017-09-19 2017-11-28 固态激光雷达及固态激光雷达控制方法

Country Status (2)

Country Link
CN (2) CN107664760B (zh)
WO (1) WO2019056565A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109188401A (zh) * 2018-11-09 2019-01-11 深圳市速腾聚创科技有限公司 激光雷达光学系统及激光雷达
CN115267742A (zh) * 2018-12-27 2022-11-01 深圳市速腾聚创科技有限公司 激光雷达接收系统
CN109782299B (zh) * 2019-02-14 2021-11-02 深圳市迈测科技股份有限公司 一种固态激光雷达装置
CN110471071B (zh) * 2019-08-30 2021-12-14 天津大学 一种多线状光型全固态激光雷达
CN115113181A (zh) * 2021-03-22 2022-09-27 华为技术有限公司 一种激光雷达及回波光信号接收方法
CN113466829A (zh) * 2021-05-14 2021-10-01 图达通智能科技(苏州)有限公司 一种通过外置反射镜灵活配置现有激光雷达视场角的方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2779424Y (zh) * 2005-03-24 2006-05-10 南京德朔实业有限公司 测距装置
CN101451826A (zh) * 2008-12-17 2009-06-10 中国科学院上海光学精密机械研究所 物体三维轮廓测量装置及测量方法
CN104020474A (zh) * 2014-05-06 2014-09-03 南京大学 一种激光三维成像光学收发系统
CN205642350U (zh) * 2015-11-18 2016-10-12 南京华研科贸实业有限公司 一种激光测距装置
CN106569221A (zh) * 2016-11-04 2017-04-19 深圳量旌科技有限公司 一种固态激光雷达及其测距方法
CN206114893U (zh) * 2016-10-31 2017-04-19 上海博未传感技术有限公司 一种固态激光雷达系统
CN207352155U (zh) * 2017-09-19 2018-05-11 深圳市速腾聚创科技有限公司 固态激光雷达

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5845003B2 (ja) * 1973-09-07 1983-10-06 富士写真フイルム株式会社 レ−ザコウヘンコウコウカクソウチ
JPH0497374U (zh) * 1990-07-16 1992-08-24
JP2001100145A (ja) * 1999-09-29 2001-04-13 Sunx Ltd レーザマーカ
CN101614820A (zh) * 2009-05-25 2009-12-30 南昌航空大学 一种基于改进型f-p标准具的信号增强激光雷达系统
CN101621176A (zh) * 2009-08-11 2010-01-06 山东华光光电子有限公司 半导体激光器to管座封装光束压缩工艺
JP5683648B2 (ja) * 2013-03-27 2015-03-11 オムロンオートモーティブエレクトロニクス株式会社 レーザレーダ装置
CN105403877B (zh) * 2015-11-12 2017-11-10 中国科学院上海光学精密机械研究所 大动态范围光学分视场探测激光雷达
CN106291509B (zh) * 2016-10-12 2019-05-17 北京万集科技股份有限公司 激光雷达光学系统
CN106443634A (zh) * 2016-10-31 2017-02-22 上海博未传感技术有限公司 一种固态激光雷达系统
CN106707297B (zh) * 2016-11-08 2023-09-01 上海禾赛科技有限公司 大视场车载激光雷达及车辆
CN106707259B (zh) * 2016-12-06 2020-07-14 深圳市速腾聚创科技有限公司 激光雷达与激光雷达控制方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2779424Y (zh) * 2005-03-24 2006-05-10 南京德朔实业有限公司 测距装置
CN101451826A (zh) * 2008-12-17 2009-06-10 中国科学院上海光学精密机械研究所 物体三维轮廓测量装置及测量方法
CN104020474A (zh) * 2014-05-06 2014-09-03 南京大学 一种激光三维成像光学收发系统
CN205642350U (zh) * 2015-11-18 2016-10-12 南京华研科贸实业有限公司 一种激光测距装置
CN206114893U (zh) * 2016-10-31 2017-04-19 上海博未传感技术有限公司 一种固态激光雷达系统
CN106569221A (zh) * 2016-11-04 2017-04-19 深圳量旌科技有限公司 一种固态激光雷达及其测距方法
CN207352155U (zh) * 2017-09-19 2018-05-11 深圳市速腾聚创科技有限公司 固态激光雷达

Also Published As

Publication number Publication date
CN112526480B (zh) 2023-06-30
CN107664760B (zh) 2020-11-27
CN107664760A (zh) 2018-02-06
CN112526480A (zh) 2021-03-19

Similar Documents

Publication Publication Date Title
WO2019056565A1 (zh) 固态激光雷达及固态激光雷达控制方法
CN109164430B (zh) 利用激光回波与光斑探测目标位置与姿态的系统及方法
US11860280B2 (en) Integrated illumination and detection for LIDAR based 3-D imaging
CN204044359U (zh) 一种二维扫描式激光测距装置
CN106569224B (zh) 一种扫描型激光雷达光学系统
TWI649578B (zh) 用於遠端感測接收器之中程光學系統
KR102135177B1 (ko) 능동형 이미징 시스템 구현 방법 및 장치
WO2018082200A1 (zh) 一种二维扫描装置及具有该二维扫描装置的激光雷达装置
WO2020239084A1 (zh) 一种多脉冲激光雷达系统抗干扰处理方法及装置
US10078137B2 (en) LIDAR device and method for clear and degraded environmental viewing conditions
CN106767543A (zh) 一种基于四象限探测器的光斑对准方法
JP6233606B2 (ja) 目標識別レーザ観測システム
CN105277931A (zh) 一种激光雷达用多光束准直发射与接收系统及其镜头
US20210341610A1 (en) Ranging device
CN110275177A (zh) 固态激光雷达、结构及其控制方法
CN103645745A (zh) 一种双轴激光云高仪收发光学系统光轴平行调整方法及装置
CN111257910A (zh) 激光雷达系统和激光雷达探测方法
CN104991258A (zh) 红外激光匀光照明探测系统
CN108152822B (zh) 激光雷达及激光雷达控制方法
WO2020062256A1 (zh) 一种光束扫描系统、距离探测装置及电子设备
CN207352155U (zh) 固态激光雷达
WO2021129388A1 (zh) 一种信号处理方法及相关装置
KR20220039623A (ko) 레이더 고도각 측정
US20220091254A1 (en) Radar elevation angle validation
US20200096617A1 (en) Lidar device and control method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925972

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 24/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 17925972

Country of ref document: EP

Kind code of ref document: A1