WO2020239084A1 - 一种多脉冲激光雷达系统抗干扰处理方法及装置 - Google Patents

一种多脉冲激光雷达系统抗干扰处理方法及装置 Download PDF

Info

Publication number
WO2020239084A1
WO2020239084A1 PCT/CN2020/093339 CN2020093339W WO2020239084A1 WO 2020239084 A1 WO2020239084 A1 WO 2020239084A1 CN 2020093339 W CN2020093339 W CN 2020093339W WO 2020239084 A1 WO2020239084 A1 WO 2020239084A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
laser
pulses
echo
detection
Prior art date
Application number
PCT/CN2020/093339
Other languages
English (en)
French (fr)
Inventor
罗斯特
刘夏
刘冬山
杨珺鹏
Original Assignee
深圳市速腾聚创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910468936.XA external-priority patent/CN112014824B/zh
Priority claimed from CN201910468384.2A external-priority patent/CN110174664A/zh
Application filed by 深圳市速腾聚创科技有限公司 filed Critical 深圳市速腾聚创科技有限公司
Priority to CN202080004309.1A priority Critical patent/CN112740066B/zh
Publication of WO2020239084A1 publication Critical patent/WO2020239084A1/zh
Priority to US17/356,443 priority patent/US20210333360A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/484Transmitters
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/499Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using polarisation effects

Definitions

  • This application belongs to the technical field of radar ranging, and in particular relates to a method and device for processing multi-pulse lidar anti-jamming signals.
  • the lidar receiver that adopts the TOF (Time of Flight, time of flight ranging method) principle is a photoelectric converter that converts optical signals into electrical signals.
  • TOF Time of Flight, time of flight ranging method
  • the detector will have dark count and background light noise in its work, and the dark count and background light noise will have no difference with the real signal, so it will be recognized as a real signal, causing the distance measurement interference of the coaxial lidar.
  • the pulse signal received by a lidar is not necessarily its own laser pulse, but may be the laser pulse emitted by other lidars.
  • the laser pulse emitted by radar A is irradiated by the target detection object.
  • radar B detects it, radar B will generate an echo signal.
  • the two types of echoes generated by radar A and B have exactly the same characteristics, which are difficult to distinguish, which affects the radar's detection performance and ranging effect.
  • the lidar cannot correctly distinguish which signal is the echo signal returned by the laser pulse when it meets the target object. This causes the lidar ranging results to be abnormal and interferes among multiple radars. problem.
  • the embodiments of the present invention provide a multi-pulse anti-jamming signal processing method and device, aiming to solve the problem of false echo signals in the ultrasonic radar ranging in the traditional technical solutions, which leads to the target echo signal.
  • the noise ratio is high, and the problem of mutual interference between multiple radars.
  • the first aspect of the embodiments of the present invention provides a multi-pulse anti-interference signal processing method, and the multi-pulse anti-interference signal processing method includes:
  • multiple detection pulses are sent to the detection target, wherein the time interval of the multiple detection pulses is a preset time.
  • the multiple echo pulses generated by the multiple detection pulses reflected at the detection target are captured.
  • the multiple echo pulses are delayed for the preset time to obtain multiple delayed echo pulses.
  • a second aspect of the embodiments of the present application provides a multi-pulse anti-interference signal processing device, the multi-pulse anti-interference signal processing device includes:
  • the detection pulse sending module is used to send multiple detection pulses to the detection target in one detection period, and the time interval of the multiple detection pulses is a preset time.
  • the echo pulse capture module is used to capture the multiple echo pulses generated by the multiple detection pulses reflected at the detection target.
  • the delayed echo pulse acquisition module is configured to delay the multiple echo pulses for the preset time to obtain multiple delayed echo pulses.
  • the target echo pulse acquisition module is configured to acquire the target echo pulse according to the multiple echo pulses and the multiple delayed echo pulses.
  • the third aspect of the embodiments of the present application provides a multi-pulse anti-interference signal processing device, which includes a memory, a processor, and a computer program stored in the memory and running on the processor, and the processor executes The computer program implements the steps of the multi-pulse anti-interference signal processing method described above.
  • multiple detection pulses are sent to the detection target within a preset time interval, and multiple echo pulses reflected by the multiple detection pulses at the detection target are captured and analog-to-digital conversion is performed.
  • the wave pulse is delayed for a preset time to obtain multiple delayed echo pulses, and the target echo pulse is obtained based on multiple echo pulses and multiple delayed echo pulses, which effectively removes false echo pulses caused by photoelectric conversion.
  • the interference echo pulse fed back by other radars improves the signal-to-noise ratio of the target echo pulse, effectively solves the problem of mutual interference between multiple radars, and improves the accuracy of radar ranging from laser pulses.
  • the fourth aspect of the embodiments of the present application provides a laser radar system, including: a laser emitting unit and a laser receiving unit;
  • the laser emitting unit is configured to emit at least two laser pulses to the target object at a preset emission interval within a period;
  • the laser receiving unit is used to receive multiple external signals in one cycle and obtain the receiving interval of any two external signals, and determine the echo corresponding to the emitted laser pulse from the multiple external signals according to the transmission interval and the reception interval signal.
  • the laser emitting unit includes a first laser transmitter and a laser delay light path
  • a first laser transmitter for emitting a first laser pulse
  • the laser delay optical path is used to receive the first emitted laser pulse, delay part of the laser in the first emitted laser pulse, and output at least two laser pulses with an emission interval.
  • the laser delay light path includes a laser beam splitting unit, a laser delay unit, and a laser combining unit;
  • the laser beam splitting unit is used to divide the first emitted laser pulse into a first laser pulse and a second laser pulse, and send the first laser pulse to the laser delay unit, and send the second laser pulse to the laser combining unit;
  • the laser delay unit is used to delay the received first laser pulse to obtain a third laser pulse, and there is a transmission interval between the third laser pulse and the second laser pulse;
  • the laser combining unit transmits the received second laser pulse and third laser pulse to the target object.
  • the laser beam splitting unit is a first polarizing beam splitter, and the laser combining unit is a second polarizing beam splitter;
  • the first polarization beam splitter is used to divide the first emitted laser pulse into the first laser pulse in the S polarization state and the second laser pulse in the P polarization state, and transmit the first laser pulse in the S polarization state to the laser delay unit and The second laser pulse in the P polarization state is transmitted to the second polarization beam splitter;
  • the second polarization beam splitter is used to receive the second laser pulse in the P polarization state, and transmit and output the second laser pulse in the P polarization state, and receive the third laser pulse in the S polarization state, and reflect and output the third laser pulse .
  • the laser delay unit includes a first total reflection prism and a second total reflection prism
  • the first total reflection prism is used to reflect the first laser pulse to the second total reflection prism
  • the second total reflection prism is used to reflect the received laser pulse to the second polarization beam splitter.
  • the distance of the optical path formed by the element in the laser delay unit and the element in the laser beam splitting unit is adjustable, and the length of the distance is related to the length of the emission interval.
  • the first laser transmitter is used to emit at least two laser pulses to the laser delay light path according to a preset emission interval in one cycle.
  • the laser emitting unit includes: a second laser transmitter, a third laser transmitter, and a laser combined optical path;
  • the second laser transmitter and the third laser transmitter emit the second emitting laser pulse and the third emitting laser pulse in a time-sharing period
  • the laser combined optical path is used to combine the second emitting laser pulse and the third emitting laser pulse, and emit the combined laser pulse to the target object.
  • the emission interval when the second laser transmitter and the third laser transmitter emit laser pulses is adjustable.
  • the second emitted laser pulse is in the S polarization state
  • the third emitted laser pulse is in the P polarization state
  • the laser combined optical path includes a third polarization beam splitter and a third total reflection prism
  • the third total reflection prism is used to reflect the second emitted laser pulse to the third polarization beam splitter;
  • the third polarization beam splitter is used for reflecting and outputting the laser pulse sent by the third total reflection prism, and transmitting and outputting the third emitted laser pulse.
  • the laser emitting unit emits at least two laser pulses to the target object according to a preset emission interval in one cycle
  • the laser receiving unit receives multiple external signals in one cycle and obtains the receiving interval of any two external signals, and determines the echo signal corresponding to the emitted laser pulse from the multiple external signals according to the transmitting interval and the receiving interval.
  • the laser emitting unit sends at least two laser pulses according to the preset emission interval in one cycle, the receiving interval between the at least two echo signals returned after the at least two laser pulses meet the same target object Matching with the transmission interval, and the interval of the interference signal received by the receiving circuit does not have a matching relationship with the transmission interval, so the laser receiving unit can determine the echo signal according to the above transmission interval and reception interval, so that the lidar system can avoid ranging
  • the result is abnormal, which improves the anti-jamming capability of the lidar system.
  • FIG. 1 is a schematic flowchart of a multi-pulse anti-interference signal processing method provided by an embodiment of the application;
  • FIG. 2 is a schematic diagram of another flow chart of a multi-pulse anti-interference signal processing method provided by an embodiment of the application;
  • FIG. 3 is a schematic diagram of another flow chart of a multi-pulse anti-interference signal processing method provided by an embodiment of the application;
  • Fig. 4 is a waveform diagram of two detection pulses corresponding to the method of multi-pulse anti-interference signal provided in Fig. 3;
  • Fig. 5 is a waveform diagram of two echo pulses corresponding to the method of multi-pulse anti-interference signal provided in Fig. 3;
  • Fig. 6 is a waveform diagram of two delayed echo pulses corresponding to the method of multi-pulse anti-interference signal provided in Fig. 3;
  • FIG. 7 is a waveform diagram of superimposed pulses corresponding to the method of multi-pulse anti-interference signal provided in FIG.
  • FIG. 8 is a waveform diagram of a reference pulse corresponding to a method of multi-pulse anti-interference signal provided in FIG. 3;
  • FIG. 9 is a waveform diagram of the target echo pulse corresponding to the multi-pulse anti-interference signal processing device provided in FIG. 3;
  • FIG. 10 is another schematic flow chart of a method for processing multi-pulse anti-interference signals according to an embodiment of the application.
  • FIG. 11 is a waveform diagram of three detection pulses corresponding to the multi-pulse anti-interference signal method provided in FIG. 10;
  • FIG. 12 is a waveform diagram of three echo pulses corresponding to a multi-pulse anti-interference signal method provided in FIG. 10;
  • FIG. 13 is a waveform diagram of three superimposed pulses corresponding to a multi-pulse anti-interference signal method provided in FIG. 10;
  • FIG. 14 is a waveform diagram of an average reference pulse corresponding to a multi-pulse anti-interference signal method provided in FIG. 10;
  • FIG. 15 is a waveform diagram of the target echo pulse corresponding to the multi-pulse anti-interference signal processing device provided in FIG. 10;
  • FIG. 16 is a schematic diagram of another flow chart of a multi-pulse anti-interference signal processing method according to an embodiment of the application.
  • FIG. 17 is a schematic diagram of a process for generating multiple detection pulses according to an embodiment of the application.
  • 18 is a schematic diagram of another process for generating multiple detection pulses according to an embodiment of the application.
  • FIG. 19 is a schematic structural diagram of a multi-pulse anti-interference signal processing device provided by an embodiment of the application.
  • 20 is a schematic diagram of another structure of a multi-pulse anti-interference signal processing device provided by an embodiment of the application;
  • 21 is a schematic diagram of another structure of a multi-pulse anti-interference signal processing device provided by an embodiment of the application.
  • 22 is a schematic structural diagram of a target echo pulse acquisition module of a multi-pulse anti-interference signal processing device provided by an embodiment of the application;
  • FIG. 23 is another schematic structural diagram of a target echo pulse acquisition module of a multi-pulse anti-interference signal processing device provided by an embodiment of the application;
  • FIG. 24 is a schematic diagram of another structure of a multi-pulse anti-interference signal processing device provided by an embodiment of the application.
  • Figure 25 is an application environment diagram of the lidar system in an embodiment
  • FIG. 26 is a schematic structural diagram of a lidar system in an embodiment
  • Fig. 27 is a schematic diagram of a pulse signal of a lidar system in an embodiment
  • Figure 28 is a schematic diagram of the structure of a lidar system in another embodiment
  • Fig. 29 is a schematic diagram of the structure of a laser emitting unit in an embodiment
  • Figure 30 is a schematic diagram of a pulse signal of a lidar system in another embodiment
  • Figure 31 is a schematic structural diagram of a lidar system in another embodiment
  • FIG. 32 is a schematic diagram of the structure of a laser emitting unit in an embodiment
  • Fig. 33 is a schematic flowchart of a method for determining a lidar echo signal in an embodiment.
  • Laser delay light path 121, laser beam splitting unit; 122, laser delay unit;
  • Laser combining unit 1211, first polarization beam splitter; 1231, second polarization beam splitter;
  • the third laser transmitter 15. The laser combined optical path; 151.
  • FIG. 1 is a schematic flowchart of a multi-pulse anti-interference signal processing method provided by an embodiment of the present application. For ease of description, only the parts related to this embodiment are shown, which are detailed as follows:
  • the first aspect of the embodiments of the present application provides a multi-pulse anti-interference signal processing method, including:
  • step S01 within a detection period, multiple detection pulses are sent to the detection target, wherein the time interval of the multiple detection pulses is a preset time.
  • the radar transmitter is a device for transmitting multiple detection pulses.
  • the semiconductor laser of the transmitter is controlled to emit at least one laser pulse in a detection period.
  • the time interval between multiple detection pulses emitted by the transmitter can be set freely.
  • the preset time interval is T, which constitutes a coding system for pulsed light sources in the time domain.
  • Step S02 a plurality of echo pulses generated by the reflection of the plurality of detection pulses at the detection target are captured.
  • Step S02 specifically includes capturing and analog-to-digital conversion of multiple echo pulses generated by reflection of multiple detection pulses at the detection target.
  • step S03 the multiple echo pulses are delayed for a preset time to obtain multiple delayed echo pulses.
  • step S04 the target echo pulse is acquired based on the multiple echo pulses and the multiple delayed echo pulses.
  • step S04 the method further includes:
  • step S05 the distance of the detection target is calculated according to the time difference between the target echo pulse and the multiple detection pulses.
  • step S01 Obtain the target echo pulse with high signal-to-noise ratio through step S01 to step S04, and then determine the detection target distance according to the target echo pulse with high signal-to-noise ratio through step S05, which improves the accuracy of radar using laser pulse to measure the distance of the target detection It eliminates the mutual interference between radars when multiple radars are used for ranging, and improves the performance of the radar and the accuracy of laser pulse ranging.
  • the multiple detection pulses are two detection pulses
  • the multiple echo pulses are two echo pulses.
  • Step S03 Delay the multiple echo pulses for a preset time To obtain multiple delayed echo pulses:
  • step S04 obtaining the target echo pulse according to the multiple echo pulses and the multiple delayed echo pulses includes:
  • step S041-1 two echo pulses and two delayed echo pulses are added to generate a superimposed pulse.
  • step S041-2 the absolute value of the difference between the two echo pulses and the two delayed echo pulses is used as the reference pulse.
  • step S041-3 the difference of the superimposed pulse minus the reference pulse is taken as the target echo pulse.
  • the radar transmitter part set the preset time to T, and send two detection pulses to the detection target according to the preset time interval T, as shown in Figure 4.
  • the radar receiver After traveling through a certain space, the radar receiver partly captures the two echo pulses generated by the reflection of the two detection pulses at the detection target.
  • the two echo pulses captured by the radar include the real target echo pulse, the false echo pulse generated by SiPM, and the other radar time interval reflected by the detected target as T'echo pulse, and then superimpose Gaussian noise and echo pulse As shown in Figure 5.
  • the two echo pulses be A
  • the two delayed echo pulses obtained by delaying according to the time interval T are B
  • the solid line in Fig. 6 is two echo pulses A
  • the dashed line in Fig. 6 is two delayed echo pulses B.
  • the two echo pulses A and two delayed echo pulses B are added (A+B) to obtain a superimposed pulse, as shown in Figure 7.
  • of the difference between the two echo pulses A and the two delayed echo pulses B is used as the reference pulse, as shown in FIG. 8.
  • is used as the target echo pulse, as shown in Figure 9. It can be seen that in Figure 9 there are only two superimposed echo pulses A, the superimposed two echo pulses A are the target echo pulses, and the amplitude of the target echo pulse is the sum of the amplitudes of the two echo pulses A , The false echo pulse generated by SiPM and other radar time interval T'echo pulses reflected by the detection target are completely eliminated.
  • the embodiment of the present application captures and converts the two echo pulses corresponding to the two echo pulses sent at a preset time interval by the detection target, and performs analog-to-digital conversion on the two echo pulses according to the preset time delay.
  • Number conversion to obtain two delayed echo pulses sum two echo pulses and two delayed echo pulses to obtain superimposed echo pulses, subtract two delayed echoes from the two echo pulses Pulse and calculate the absolute value to obtain the reference pulse, and then obtain the target echo pulse according to the difference between the superimposed pulse and the reference pulse, because the false echo pulse generated by SiPM and the mutual interference echo pulse feedback between multiple radars are effectively removed Therefore, the signal-to-noise ratio of the target echo pulse is improved, and the problem of mutual interference between multiple radars during ranging is solved.
  • the multiple detection pulses are three detection pulses
  • the multiple echo pulses are three echo pulses.
  • Step S03 Delay the multiple echo pulses for a preset time To obtain multiple delayed echo pulses:
  • step S04 obtaining the target echo pulse according to the multiple echo pulses and the multiple delayed echo pulses includes:
  • step S042-1 the three echo pulses, the first three delayed echo pulses, and the second three delayed echo pulses are added to generate three superimposed pulses.
  • step S042-2 the absolute value of the difference between the three echo pulses and the first three delayed echo pulses is used as the first reference pulse.
  • step S042-3 the absolute value of the difference between the three echo pulses and the second three delayed echo pulses is used as the second reference pulse.
  • step S042-4 the absolute value of the difference between the first three delayed echo pulses and the second three delayed echo pulses is used as the third reference pulse.
  • step S042-5 the average value of the sum of the first reference pulse, the second reference pulse, and the third reference pulse is used as the average reference pulse.
  • step S042-6 the difference of the three superimposed pulses minus the average reference pulse is used as the target echo pulse.
  • the radar transmitter section set the preset time to T, and transmit laser pulses to the detection target according to the preset time interval T.
  • the three The waveform of a probe pulse After a certain amount of space propagation, the radar receiver partly captures the three echo pulses generated by the reflection of the three detection pulses at the detection target. It is assumed that the three echo pulses captured by the radar include the true target echo pulse and SiPM The generated false echo pulses and other radar echo pulses with a time interval of T'reflected by the detection target are superimposed with Gaussian noise.
  • the three echo pulses are shown in Figure 12.
  • the time intervals of the three detection pulses sent by the radar transmitter are T and 2T
  • the three echo pulses be A
  • the first three delayed echo pulses obtained by the first preset time 2T delay are B
  • the second and third delayed echo pulses are obtained as C
  • the three echo pulses A and the first three delayed echo pulses are B
  • the second and third delayed echo pulses The wave pulse is C plus (A+B+C) to get three superimposed pulse D, as shown in Figure 13.
  • step S01 within a detection period, sending multiple detection pulses to the detection target, where the time interval of the multiple detection pulses before the preset time further includes:
  • step S00 a plurality of detection pulses are generated in one detection period.
  • Step S00: generating multiple detection pulses in one detection period includes:
  • step S01-A the laser pulses emitted by a laser source are collimated and polarized to obtain pulsed light splitting; the pulsed light splits are combined through different optical paths to obtain the first group of multiple detection pulses. or
  • step S01-B the laser pulses respectively emitted by the two laser sources are combined to obtain a second group of multiple detection pulses after passing through different optical paths.
  • step S01-A the laser pulse emitted by a laser source is collimated and polarized to obtain a pulse split; the pulse split is combined through different optical paths to obtain the first A set of multiple detection pulses includes:
  • step S01-A1 a laser source emits a first original laser pulse, and the first original laser pulse is collimated to obtain a collimated laser pulse.
  • step S01-A2 the first transmission polarization laser pulse and the first reflection polarization laser pulse are obtained after the collimated laser pulse undergoes the first polarization splitting treatment.
  • steps S01-A3 the first transmitted polarized laser pulse is subjected to the second polarization splitting process to obtain the first detection pulse.
  • step S01-A4 the first total reflection laser pulse is obtained after the first reflection polarization laser pulse undergoes the first total reflection treatment.
  • steps S01-A5 the first total emission laser pulse is processed by the second total reflection to obtain the second total reflection laser pulse.
  • steps S01-A6 the second total reflection laser pulse is subjected to the second polarization splitting processing to obtain the second detection pulse.
  • steps S01-A7 the first detection pulse and the second detection pulse are combined and output together.
  • the first detection pulse and the second detection pulse are combined into one beam and then output. Because the distance of the first reflected polarization laser pulse that generates the second detection pulse is greater than that of the first transmission polarization laser pulse that generates the first detection pulse Therefore, there is a time delay between the second detection pulse and the first detection pulse, and the delay time can be preset to achieve a design with a time delay of the order of nanoseconds (ns) or even picoseconds (ps).
  • the light source can also send two or more first original laser pulses, by setting the time interval of the original laser pulses, and adjusting the distance between the first polarization split and the first total reflection, and the second The distance between the sub-polarization beam splitting and the second total reflection makes the pulses of the above two paths appear alternately, generating two or more detection pulses with a certain time interval.
  • step S01-B the laser pulses respectively emitted by the two laser sources pass through different optical paths and then combine to obtain the second group of multiple detection pulses including:
  • step S01-B1 the first laser source emits a second original laser pulse, and the second original laser pulse obtains the first collimated laser pulse after the first collimation process.
  • step S01-B2 the first total reflection laser pulse is obtained after the first collimated laser pulse is processed for the first total reflection.
  • the first total reflection laser pulse is processed by the first polarization splitting to obtain the third detection pulse.
  • the second laser source emits a third original laser pulse
  • the third original laser pulse obtains a fourth detection pulse after the first polarization splitting process.
  • steps S01-B5 the third detection pulse and the fourth detection pulse are combined and output together.
  • the second original laser pulse can be emitted by the first light source, and the third original laser pulse can be emitted by the second light source.
  • the two light sources are controlled separately to emit laser pulses. Not only can the time delay reach the order of nanoseconds or even picoseconds Magnitude of design, and has better controllable characteristics.
  • the time delay between the start time of the third original laser pulse emitted by the second light source and the start time of the second original laser pulse emitted by the first light source can be set freely, so there is a gap between the third detection pulse and the fourth detection pulse
  • the delay time and jitter time can be freely controlled, so time jitter can be done between multiple pulses after synthesis.
  • Each lidar has an intrinsic time jitter characteristic, which is a special mark of a radar, which can be distinguished from the pulse characteristics of other lidars, so as to resist interference between different lidars.
  • an embodiment of the present application provides a multi-pulse anti-interference signal processing device 20.
  • the multi-pulse anti-interference signal processing device 20 includes a detection pulse sending module 102 and an echo The pulse acquisition module 103, the delayed echo pulse acquisition module 104, and the target echo pulse acquisition module 105.
  • the detection pulse sending module 102 is configured to send multiple detection pulses to a detection target in one detection period, wherein the time interval of the multiple detection pulses is a preset time.
  • the echo pulse capture module 103 is used to capture multiple echo pulses generated by the reflection of multiple detection pulses at the detection target. In specific implementation, the echo pulse capture module 103 captures and converts the multiple echo pulses generated by the multiple detection pulses at the detection target.
  • the delayed echo pulse obtaining module 104 is configured to delay multiple echo pulses for a preset time to obtain multiple delayed echo pulses.
  • the target echo pulse acquisition module 105 is configured to acquire target echo pulses according to multiple echo pulses and multiple delayed echo pulses.
  • the multi-pulse anti-interference signal processing device 20 further includes a detection target distance calculation module 106.
  • the detection target distance calculation module 106 is used to calculate the detection target distance according to the time difference between the target echo pulse and the multiple detection pulses.
  • the time difference between receiving the target echo pulse and sending multiple detection pulses is used to calculate the detection target distance.
  • the radar uses laser pulses to measure target detection. The accuracy of the distance between objects effectively solves the problem of mutual interference between radars when multiple radars are used for range measurement.
  • the multi-pulse anti-interference signal processing device 20 further includes a detection pulse generation module 101.
  • the detection pulse generation module 101 is used to generate multiple detection pulses in one detection period.
  • the detection pulse generation module 101 is arranged in the radar transmitter part.
  • the time interval of multiple detection pulses is preset as T, and the multiple detection pulses are sent to the detection target according to the preset time interval T.
  • different transmitters preset different time intervals.
  • the multiple detection pulses are two detection pulses
  • the multiple echo pulses are two echo pulses.
  • the target echo pulse acquisition module 105 includes a superimposed pulse generating unit 1051A, a reference pulse The generating unit 1052A and the target echo pulse acquiring unit 1053A.
  • the superimposed pulse generating unit 1051A is used to add two echo pulses and two delayed echo pulses to generate a superimposed pulse.
  • the reference pulse generating unit 1052A is configured to use the absolute value of the difference between the two echo pulses and the two delayed echo pulses as the reference pulse.
  • the target echo pulse acquisition unit 1053A is configured to use the difference of the superimposed pulse minus the reference pulse as the target echo pulse.
  • a superimposed pulse generating unit sums two echo pulses and two delayed echo pulses to obtain a superimposed echo pulse.
  • the reference pulse generating unit performs two echo pulses and two delayed echo pulses. Perform the difference and absolute value to obtain the reference pulse.
  • the target echo pulse acquisition unit then obtains the target echo pulse according to the difference between the superimposed pulse and the reference pulse.
  • the sum of the two echo pulses generated by the two detection pulses reflected by the detection target The two delayed echo pulses obtained by analog-to-digital conversion are performed on the two echo pulses with a preset time delay to obtain the target echo pulse, because the false echo pulse generated and the interference echo fed back between multiple radars are effectively removed. Therefore, the signal-to-noise ratio of the target echo pulse is improved, and the problem of mutual interference of multiple radars during ranging is solved.
  • the multiple detection pulses are three detection pulses
  • the multiple echo pulses are three echo pulses
  • the delayed echo pulse acquisition module 104 is specifically configured to analyze the three echo pulses.
  • the pulse is delayed according to the first preset time to obtain the first three delayed echo pulses
  • the three echo pulses are delayed according to the second preset time to obtain the second and third delayed echo pulses.
  • the target echo pulse acquisition module 105 includes a triple superimposed pulse generation unit 1051B, a first reference pulse generation unit 1052B, a second reference pulse generation unit 1053B, a third reference pulse generation unit 1054B, an average reference pulse generation unit 1055B, and a target echo pulse Acquisition unit 1056B.
  • the three-superimposed pulse generating unit 1051B is used to add three echo pulses, the first three delayed echo pulses, and the second three delayed echo pulses to generate a three-superimposed pulse.
  • the first reference pulse generating unit 1052B is configured to use the absolute value of the difference between the three echo pulses and the first three delayed echo pulses as the first reference pulse.
  • the second reference pulse generating unit 1053B is configured to use the absolute value of the difference between the three echo pulses and the second three delayed echo pulses as the second reference pulse.
  • the third reference pulse generating unit 1054B is configured to use the absolute value of the difference between the first three delayed echo pulses and the second three delayed echo pulses as the third reference pulse.
  • the average reference pulse generating unit 1055B is configured to use the average value of the sum of the first reference pulse, the second reference pulse, and the third reference pulse as the average reference pulse.
  • the target echo pulse acquisition unit 1056B is used to take the difference of the three superimposed pulses minus the average reference pulse as the target echo pulse.
  • the three echo pulses generated by the reflection of the three detection pulses by the detection target and the three echo pulses are delayed by two preset times and three preset times are obtained by analog-to-digital conversion.
  • the three delayed echo pulses and the second and third delayed echo pulses are used to obtain the target echo pulse. Since the false echo pulse generated and the interference echo pulse fed back between multiple radars are effectively removed, the target is improved.
  • the signal-to-noise ratio of the echo pulse solves the problem of mutual interference of multiple radars during ranging.
  • FIG. 24 is another schematic diagram of a multi-pulse anti-interference signal processing device 20 according to an embodiment of the present application.
  • the multi-pulse anti-jamming signal processing device 20 of this embodiment includes: a processor 21, a memory 22, and a computer program 23 stored in the memory 22 and running on the processor 21, such as multi-pulse anti-jamming Signal processing method program.
  • the processor 21 executes the computer program 23, the steps in the above embodiments of the multi-pulse anti-interference signal processing method are implemented, for example, steps S00 to S05 and step S01- shown in FIGS.
  • the computer program 23 may be divided into one or more modules/units, and the one or more modules/units are stored in the memory 22 and executed by the processor 21 to complete the application.
  • One or more modules/units may be a series of computer program instruction segments capable of completing specific functions, and the instruction segments are used to describe the execution process of the computer program 23 in the multi-pulse anti-interference signal processing device 20.
  • the computer program 23 may be divided into a detection pulse sending module 102, an echo pulse acquisition module 103, a delayed echo pulse acquisition module 104, and a target echo pulse acquisition module 105.
  • the detection pulse sending module 102 is configured to send multiple detection pulses to a detection target within a detection period, wherein the time interval of the multiple detection pulses is a preset time.
  • the echo pulse capture module 103 is used to capture multiple echo pulses generated by the reflection of multiple detection pulses at the detection target. In specific implementation, the echo pulse capture module 103 captures and converts the multiple echo pulses generated by the multiple detection pulses at the detection target.
  • the delayed echo pulse acquisition module 104 is configured to delay multiple echo pulses for a preset time to obtain multiple delayed echo pulses.
  • the target echo pulse acquisition module 105 is configured to acquire target echo pulses according to multiple echo pulses and multiple delayed echo pulses.
  • a multi-pulse anti-jamming signal processing device 20 may be radar or other detection equipment.
  • the multi-pulse anti-interference signal processing device 20 may include, but is not limited to, a processor 21 and a memory 22.
  • FIG. 24 is only an example of the multi-pulse anti-interference signal processing device 20, and does not constitute a limitation on the multi-pulse anti-interference signal processing device 20, and may include more or less components than shown in the figure. Or combine some components, or different components, for example, the device for mining associated applications may also include input and output devices, network access devices, buses, and so on.
  • the processor 21 can be a central processing unit (Central Processing Unit, CPU), other general-purpose processors, digital signal processors (Digital Signal Processor, DSP), application specific integrated circuits (Application Specific Integrated Circuit, ASIC), ready-made Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gates or transistor logic devices, discrete hardware components, etc.
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory 22 may be an internal storage unit of the multi-pulse anti-interference signal processing device 20, such as a hard disk or a memory of the multi-pulse anti-interference signal processing device 20.
  • the memory 22 may also be an external storage device of the multi-pulse anti-interference signal processing device 20, for example, a plug-in hard disk equipped on the multi-pulse anti-interference signal processing device 20, a smart media card (SMC), and a secure digital (Secure Digital). Digital, SD) card, flash card (Flash Card), etc.
  • the memory 22 may also include both an internal storage unit of the multi-pulse anti-interference signal processing device 20 and an external storage device.
  • the memory 22 is used to store computer programs and other programs and data required by the multi-pulse anti-interference signal processing device 20.
  • the memory 22 can also be used to temporarily store data that has been output or will be output.
  • the fourth aspect of the embodiments of the present application provides a computer-readable storage medium, which stores a computer program, and when the computer program is executed by a processor, the steps of the multi-pulse anti-interference signal processing method described above are implemented.
  • the lidar system provided in this application can be applied to unmanned driving scenarios, and can also be applied to other scenarios that require a lidar system.
  • the device 002 where the lidar is located can detect the distance between the target object 003 and the device through the lidar 001; the above-mentioned target object can be, but not limited to, road obstacles, vehicles, and Pedestrians etc.
  • FIG. 26 is a schematic structural diagram of a lidar system provided by an embodiment. As shown in FIG. 26, the laser transmitting unit 10 and the laser receiving unit 20 of the lidar system are shown. Among them, the laser emitting unit 10 is used to emit at least two laser pulses to the target object at a preset emission interval within one cycle; the laser receiving unit 20 is used to receive multiple external signals and obtain any two external signals within one cycle. The signal reception interval, and the echo signal corresponding to the emitted laser pulse is determined from a plurality of external signals according to the transmission interval and the reception interval.
  • the laser emitting unit 10 uses the flight time of the laser pulse between the target object and the lidar system to be multiplied by the speed of light to obtain the ranging distance.
  • the emission duration of the at least two laser pulses may be the same or different, which is not limited here.
  • the above-mentioned preset transmission interval can be a fixed time interval, or a time interval dynamically adjusted with the application scenario, which is not limited here; the above-mentioned period can be a fixed period size, or can be adjusted according to user instructions, here Not limited.
  • the laser emitting unit 10 when it emits at least two laser pulses to the target object according to the preset emission interval in one cycle, it may emit at least two laser pulses in one cycle through one laser light source, or through multiple laser pulses.
  • the laser light source emits different laser pulses at different times, which is not limited here.
  • the laser emitting unit 10 emits multiple laser pulses, the emission interval between two adjacent laser pulses may be the same or different, which is not limited here; for example, as shown in FIG. 27, the laser emitting unit 10 emits 3
  • the emission interval between pulse A and pulse B is S1
  • the emission interval between pulse B and pulse C is S2.
  • S1 and S2 constitute the laser emission The time jitter characteristics of the unit.
  • the laser receiving unit 20 can receive multiple external signals in one cycle, where the external signal may include the echo signal of the laser emitted by the laser emitting unit 10 when it encounters the target object, and may also include other nearby lidar emissions.
  • the laser receiving unit 20 can obtain the receiving interval of any two external signals, and then determine the echo signal corresponding to the emitted laser pulse according to the emission interval and the time interval.
  • the above-mentioned laser emitting unit 20 After the above-mentioned laser emitting unit 20 sends at least two laser pulses according to the preset emission interval in one cycle, the at least two laser pulses will return in turn after encountering the same target object, forming at least two echo signals.
  • the distance between the radar system and the target object does not change. Therefore, there is a correspondence between the receiving interval and the transmitting interval between at least two returned echo signals.
  • the above-mentioned laser emitting unit 20 may determine the external signal corresponding to the receiving interval matching the transmitting interval as the echo signal.
  • the difference between the transmitting interval and the receiving interval may be set to be within a preset error range, and the transmitting interval and The receiving interval is matched; in addition, the above-mentioned laser emitting unit 20 may determine the two external signals corresponding to the receiving interval as echo signals when the receiving interval is equal to the transmitting interval.
  • the above-mentioned laser emitting unit 20 can obtain the receiving interval between any two external signals among all external signals, and then determine the external signal matching the transmitting interval from the above-mentioned receiving intervals, and determine it as an echo signal;
  • the specific method for the transmitting unit 20 to determine the echo signal is not limited here.
  • the above-mentioned lidar system includes: a laser emitting unit and a laser receiving unit; a laser emitting unit for emitting at least two laser pulses to a target object at a preset emission interval within a period; a laser receiving unit for Receive multiple external signals and obtain the reception interval of any two external signals, and determine the echo signal corresponding to the emitted laser pulse from the multiple external signals according to the transmission interval and the reception interval.
  • the laser emitting unit sends at least two laser pulses according to the preset emission interval in one cycle, the receiving interval between the at least two echo signals returned after the at least two laser pulses meet the same target object Matching with the transmission interval, and the interval of the interference signal received by the receiving circuit does not have a matching relationship with the transmission interval, so the laser receiving unit can determine the echo signal according to the above transmission interval and reception interval, so that the lidar system can avoid ranging
  • the result is abnormal, which improves the anti-jamming capability of the lidar system.
  • FIG. 28 is a schematic structural diagram of a lidar system in another embodiment.
  • This embodiment relates to a laser emitting unit.
  • the laser emitting unit includes a first laser transmitter 11 and Laser delay optical path 12; wherein, the first laser transmitter 11 is used to emit the first emitted laser pulse; the laser delayed optical path 12 is used to receive the first emitted laser pulse and delay part of the laser in the first emitted laser pulse, At least two laser pulses with firing intervals are output.
  • the above-mentioned first laser transmitter 11 may be a solid laser transmitter or a semiconductor laser transmitter, which is not limited here.
  • the first laser transmitter 11 emits the first emitting laser pulse, the laser emitting period and the laser pulse width are not limited.
  • the above-mentioned first laser transmitter 11 may directly emit the first emitted laser pulse to the laser delay optical path 12, or may emit to the laser delay optical path 12 through a collimator, which is not limited herein.
  • the laser delay optical path 12 is used to receive the first emitted laser pulse, and then delay part of the laser in the first emitted laser pulse.
  • the part of the laser without delay may be emitted first, and after the emission interval corresponding to the delay After that, the delayed part of the laser is emitted, so that the laser delay optical path 12 can convert one laser pulse emitted by the first laser transmitter into two laser pulses with emission intervals.
  • the laser delay optical path 12 may be delayed by an optical fiber, or may be delayed by the distance between the optical elements in the laser delay optical path 12, and the configuration of the laser delay optical path 12 is not limited here.
  • the above-mentioned laser delay optical path 12 includes a laser beam splitting unit 121, a laser delay unit 122, and a laser combining unit 123; wherein, the laser beam splitting unit 121 is used to divide the first emitted laser pulse into a first laser pulse and a second laser pulse , And send the first laser pulse to the laser delay unit 122, and send the second laser pulse to the laser combining unit 123; the laser delay unit 122 is used to delay the received first laser pulse to obtain the third laser pulse, There is an emission interval between the third laser pulse and the second laser pulse; the laser combining unit 123 emits the received second laser pulse and the third laser pulse to the target object.
  • the above-mentioned laser beam splitting unit 121 is used to divide the first emitted laser pulse into a first laser pulse and a second laser pulse.
  • the first emitted laser pulse can be divided into the first laser pulse and the second laser pulse by a beam splitter, or it can be passed through a polarizer.
  • the type of the above-mentioned laser beam splitting unit 121 is not limited here.
  • the laser energy of the first laser pulse and the second laser pulse obtained by the laser beam splitting unit 121 may be the same or different.
  • the laser beam splitting unit 121 sends the second laser pulse to the laser combining unit 123, and then the laser beam combining unit 123 transmits to the target object; at the same time, the laser beam splitting unit 121 sends the first laser pulse to the laser delay unit 122.
  • the above-mentioned laser delay unit 122 is used to delay the received first laser pulse.
  • the propagation direction of the first laser pulse can be adjusted so that the second laser pulse reaches the laser combining unit 123 and after a certain period of time, the first laser pulse Only the laser pulse can reach the laser combining unit 123.
  • the laser combining unit 123 When the third laser pulse reaches the laser combining unit 123, its propagation direction may be different from that of the first laser pulse.
  • the laser combining unit 123 may adjust the propagation direction of the first laser pulse or the third laser pulse, and then The second laser pulse and the third laser pulse received at different times are emitted to the target through the same laser outlet.
  • the delay of part of the laser is adjusted by the laser delay optical path, so that the emission interval of another laser pulse emitted by the laser emitting unit until now is very small, so that the ranging range of the lidar system is larger and the lidar system is improved. Detection capability.
  • Fig. 29 is a schematic structural diagram of a laser emitting unit in another embodiment.
  • the laser beam splitting unit 121 is the first polarization beam splitter 1211
  • the laser combining unit 123 is the second polarization Beam splitter 1231; first polarization beam splitter 1211, used to split the first emitted laser pulse into a first laser pulse in S polarization state and a second laser pulse in P polarization state, and transmit the first laser pulse in S polarization state to
  • the second polarization beam splitter 1231 is used to receive the second laser pulse in the P polarization state and transfer the second laser pulse in the P polarization state.
  • the laser pulse is transmitted and output, and the third laser pulse in the S polarization state is received, and the third laser pulse is reflected and output.
  • the first polarization beam splitter 1211 can reflect the S-polarized light in the first emitted laser pulse while transmitting the P-polarized light in the first emitted laser pulse, thereby The first laser pulse in the S polarization state and the second laser pulse in the P polarization state are obtained.
  • a laser delay unit 122 is provided to delay the first laser pulse to obtain the third laser pulse; on the propagation path of the second laser pulse in the P polarization state, set There is a second polarization beam splitter 1231. Since the second laser pulse is in the P polarization state, the second polarization beam splitter 1231 can directly transmit and output the second laser pulse.
  • the laser delay unit 122 emits the generated third laser pulse to the second polarization beam splitter 1231. Since the third laser pulse is obtained by delaying the first laser pulse, the third laser pulse is also in the S polarization state, which can pass through the second polarization beam splitter 1231.
  • the polarization beam splitter 1231 reflects and outputs.
  • the above-mentioned laser delay unit 122 may include a first total reflection prism 1221 and a second total reflection prism 1222; a first total reflection prism 1221 for reflecting the first laser pulse to the second total reflection prism 1222; second The total reflection prism 1222 is used to reflect the received laser pulse to the second polarization beam splitter 1231.
  • the first total reflection prism 1221 is arranged on the propagation path of the first laser pulse in the S polarization state, and the distance from the first polarization beam splitter 1211 can be represented by L1, which can reflect the first laser pulse to the second total Reflecting prism 1222; after the second total reflection prism 1222 receives the first laser pulse emitted by the first total reflection prism 1221, it can be reflected to the second polarizing beam splitter 1231 to obtain a third laser pulse.
  • the time to reach the second polarization beam splitter 1231 is It is also different, so that the two laser pulses emitted by the second polarization beam splitter 1231 to the target object have an emission interval.
  • the distance of the optical path formed by the elements in the laser delay unit 122 and the elements in the laser beam splitting unit 121 is adjustable, and the length of the distance is related to the length of the emission interval.
  • the time interval between the two laser pulses received by the second polarization beam splitter 1231 also changes accordingly; for example, if the above distance L increases , Then the distance between the second total reflection prism 1222 and the second polarization beam splitter 1231 will be adjusted accordingly, and the emission interval of the two laser pulses emitted by the second polarization beam splitter 1231 to the target object will also be increased.
  • the laser signal is split and combined through the first polarization splitter and the second polarization splitter.
  • the propagation path of the first laser pulse is changed through two total reflection prisms, so that the propagation path is extended, so that the laser is emitted
  • the two channels emit two laser pulses with a firing interval in one cycle.
  • the first laser transmitter 11 may emit at least two laser pulses to the laser delay optical path 122 according to a preset emission interval in one cycle.
  • the two laser pulses emitted by the first laser transmitter 11 in one cycle are pulse E and pulse F, wherein the emission interval between pulse E and pulse F is T1; pulse E passes through the laser delay optical path 12 After that, pulse E1 and pulse E2 are output. After pulse F passes through laser delay light path 122, pulse F1 and pulse F2 are output.
  • the laser delay optical path 122 can sequentially output pulse E1, pulse E2, pulse F1, and pulse F2.
  • the interval between pulse E1 and pulse E2 is T2
  • the interval between pulse F1 and pulse F2 is T2
  • the above four laser pulses The transmission intervals between them are T2, T3, and T2, which constitute the time jitter characteristics of the lidar system.
  • the first laser transmitter when the first laser transmitter emits at least two laser pulses, a larger number of laser pulses can be obtained through the laser delay optical path 12, so that the time jitter characteristics of the laser pulses emitted by the laser radar system are more obvious, which is beneficial to Improve the anti-jamming capability of the lidar system.
  • the laser emitting unit includes a laser light source, and when the distance between the total optical elements of the laser delay circuit is used to adjust the emission interval of the laser pulse, the larger the distance between the optical elements causes the larger volume of the lidar system .
  • two laser light sources can be installed.
  • FIG. 31 is a schematic structural diagram of a lidar system in another embodiment.
  • the laser emitting unit 10 includes two laser light sources.
  • the laser emitting unit 10 includes: a second laser transmitter 13.
  • the optical path 15 is used for combining the second emitting laser pulse and the third emitting laser pulse, and emitting the combined laser pulse to the target object.
  • the second laser transmitter 13 and the third laser transmitter 14 may emit the second emitting laser pulse and the third emitting laser pulse to the laser combined optical path 15 in a period of time.
  • the above-mentioned second laser transmitter 13 and the third laser transmitter 14 may be the same or different, which is not limited here.
  • the second laser transmitter 13 and the third laser transmitter 14 can be controlled by a controller to respectively emit laser pulses in accordance with the emission instructions emitted by the controller, so that the second laser pulse and the third laser pulse It has a firing interval; in addition, after the second laser transmitter 13 emits the second laser pulse, it directly sends an instruction to the third laser transmitter 14, so that the third laser transmitter 14 can emit at certain intervals according to the instruction After the interval, the third laser pulse is emitted, which is not limited herein; further, the emission interval when the second laser transmitter 13 and the third laser transmitter 14 emit laser pulses is adjustable.
  • the position of the second laser transmitter 13 and the third laser transmitter 14 may be different.
  • the second laser pulse and the third laser pulse can be combined through the laser combining optical path 15, and the combined laser pulse is emitted To the target audience.
  • the above-mentioned laser combining optical path 15 may be composed of a laser transmission connection port and an optical fiber, or may be composed of an optical element such as a laser combiner, which is not limited here.
  • the above-mentioned lidar system by adjusting the emission interval of the two laser light sources, realizes the emission of two laser pulses with emission interval in one cycle, so that the distance between each optical element in the lidar system can be small, and the laser Miniaturization of the radar system; further, two laser pulses are emitted by two laser light sources, which can increase the emission energy of the laser pulse, increase the signal-to-noise ratio of the laser pulse, and enhance the detection capability of the laser radar system.
  • FIG. 32 is a schematic diagram of the structure of a laser emitting unit in another embodiment. This embodiment relates to a specific laser combining light path when the laser emitting unit includes two laser light sources. Based on the above embodiment, as shown in FIG. 8 As shown, the second emission laser pulse is in the S polarization state, and the third emission laser pulse is in the P polarization state.
  • the laser beam combining optical path 15 includes a third polarization beam splitter 151 and a third total reflection prism 152; a third total reflection prism 152, It is used to reflect the second emitted laser pulse to the third polarization beam splitter 151; the third polarization beam splitter 151 is used to reflect and output the laser pulse sent by the third total reflection prism 152, and transmit and output the third emitted laser pulse.
  • the above-mentioned lidar system uses the third total reflection prism and the third polarization beam splitter to form a laser combined optical path, so that the lidar system can use a small number of optical elements to transmit another laser pulse with a transmission interval in one cycle , To further reduce the volume of the lidar system.
  • a method for determining a lidar echo signal is provided, which is applied to the lidar system in the above embodiment.
  • the lidar system includes a laser transmitting unit and a laser receiving unit. As shown in FIG. 33, the above method includes :
  • the laser emitting unit emits at least two laser pulses to a target object according to a preset emission interval in one cycle.
  • the laser receiving unit receives multiple external signals in one cycle and obtains the receiving interval of any two external signals, and determines the echo signal corresponding to the emitted laser pulse from the multiple external signals according to the transmission interval and the reception interval .
  • the method for determining the echo signal of the lidar provided in this embodiment has implementation principles and technical effects similar to those of the foregoing method embodiment, and will not be repeated here.
  • the laser radar system shown in FIG. 26 includes a laser emitting unit 10 and a laser receiving unit 20.
  • the laser emitting unit 10 can adopt any of the methods shown in FIGS. 27-32. In one cycle, at least two laser pulses are emitted, and the laser receiving unit 20 can adopt any signal processing shown in FIGS. 1-16. Method to get distance information.
  • the laser emitting unit 10 when the laser emitting unit 10 emits two laser pulses to the target object at a preset emission interval in one cycle, it may emit two laser pulses in one cycle through a laser light source, or it may pass two laser pulses
  • the light source emits different laser pulses at different times, which is not limited here.
  • the laser emitting unit 10 when the laser emitting unit 10 emits two laser pulses, the emission interval between two adjacent laser pulses can be the same or different, which is not limited here; the laser receiving unit 20 can respond to the double pulses of the aforementioned laser emitting unit 10
  • the laser is processed.
  • the specific laser receiving unit 20 can capture two echo pulses generated by the reflection of multiple detection pulses at the detection target; delay the two echo pulses for a preset time to obtain two delays. Time echo pulse; Obtain the target echo pulse based on two echo pulses and two delayed echo pulses.
  • the laser emitting unit 10 transmits two laser pulses at a preset emission interval in one cycle, the laser light emitted from the laser unit 10 can be distinguished from the laser light emitted by other light sources. After encountering the same target object, the receiving interval between the two returned echo signals matches the transmitting interval, but the interference signal received by the receiving circuit does not have a matching relationship with the transmitting interval, so the laser receiving unit 20 can be based on The above transmission interval and reception interval are used to determine the echo signal, so that the lidar system can avoid abnormal ranging results and improve the anti-interference ability of the lidar system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

一种多脉冲抗干扰信号处理装置,多脉冲抗干扰信号处理装置包括:探测脉冲发送单元(10)以及脉冲接收单元(20);探测脉冲发送单元(10),用于在一个周期内按照预设发射间隔向目标对象发射多个激光脉冲(S101);脉冲接收单元(20),用于在一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据发射间隔和接收间隔,从多个外部信号中确定与发射的激光脉冲对应的回波信号(S102)。该装置有效地去除光电转换导致的假回波脉冲和其他雷达反馈回来的干扰回波脉冲,提高了目标回波脉冲的信噪比,有效解决了多部雷达之间的相互干扰问题,提高了雷达利用激光脉冲测距的精确度。

Description

一种多脉冲激光雷达系统抗干扰处理方法及装置
本申请要求于2019年5月31日提交中国专利局,申请号为CN201910468936.X、申请名称为“双脉冲抗干扰信号处理方法”的中国专利申请的优先权,以及要求于2019年5月31日提交中国专利局,申请号为CN201910468384.2、申请名称为“激光雷达系统和激光雷达回波信号的确定方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请属于雷达测距技术领域,尤其涉及一种多脉冲激光雷达抗干扰信号处理方法及装置。
背景技术
目前,采用TOF(Time of flight,飞行时间测距法)原理的激光雷达接收机是将光信号转换为电信号的光电转换器,为提高雷达的探测距离,通常采用灵敏度较高的探测器,但是探测器在工作中会存在暗计数和背景光噪声,而暗计数和背景光噪声和真实信号没有差别,因而会被识别成真实信号,造成同轴激光雷达的测距干扰。当大量的车辆装备了激光雷达后,他们在同一个区域同时工作,相互之间也会产生干扰。也即,一激光雷达接受到的脉冲信号,不一定是自己发出的激光脉冲,而有可能是其他的激光雷达发出的激光脉冲,例如A雷达发射的激光脉冲在照射到目标探测物后,被B雷达探测到,B雷达就会产生一个回波信号,A雷达和B雷达产生的两种回波形态特性完全一样,难以区分,影响雷达的探测性能和测距效果。
因此,传统的技术方案中存在超声雷达测距时存在假回波信号,导致目标回波信号的信噪比高,和不同激光雷达在同一个区域同时工作时,激光雷达接收到的信号中还可能包含其余激光雷达所发出的激光脉冲信号,导致激光雷达不能正确分辨哪一个信号是激光脉冲遇到目标对象返回的回波信号,造成激光雷达测距结果异常,多部雷达之间相互干扰的问题。
申请内容
有鉴于此,本发明实施例提供了一种多脉冲抗干扰信号处理方法及装置,旨在解决传统的技术方案中存在的超声雷达测距时存在假回波信号,导致目标回波信号的信噪比高,多部雷达之间相互干扰的问题。
本发明实施例的第一方面提供了一种多脉冲抗干扰信号处理方法,所述多脉冲抗干扰信号处理方法包括:
在一个探测周期内,发送多个探测脉冲至探测目标,其中,所述多个探测脉冲的时间间隔为预设时间。
对所述多个探测脉冲在所述探测目标处反射而产生的多个回波脉冲进行捕获。
对所述多个回波脉冲进行所述预设时间的延时以获取多个延时回波脉冲。
根据所述多个回波脉冲和所述多个延时回波脉冲获取目标回波脉冲。
本申请实施例的第二方面提供了提供一种多脉冲抗干扰信号处理装置,所述多脉冲抗干扰信号处理装置包括:
探测脉冲发送模块,用于在一个探测周期内,发送多个探测脉冲至探测目标,所述多个探测脉冲的时间间隔为预设时间。
回波脉冲捕获模块,用于对所述多个探测脉冲在所述探测目标处反射而产生的多个回波脉冲进行捕获。
延时回波脉冲获取模块,用于对所述多个回波脉冲进行所述预设时间的延时以获取多个延时回波脉冲。
目标回波脉冲获取模块,用于根据所述多个回波脉冲和所述多个延时回波脉冲获取目标回波脉冲。
本申请实施例的第三方面提供了一种多脉冲抗干扰信号处理装置,包括存储器、处理 器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现如上述所述多脉冲抗干扰信号处理方法的步骤。
本申请实施例通过在预设的时间间隔内向探测目标发送多个探测脉冲,对多个探测脉冲在探测目标处反射回来的多个回波脉冲进行捕获并进行模数转换,对该多个回波脉冲进行预设时间的延时获取多个延时回波脉冲,根据多个回波脉冲和多个延时回波脉冲获取目标回波脉冲,由于有效地去除光电转换导致的假回波脉冲和其他雷达反馈回来的干扰回波脉冲,故提高了目标回波脉冲的信噪比,有效解决了多部雷达之间的相互干扰问题,提高雷达利用激光脉冲测距的精确度。
基于背景技术中的问题,本申请实施例的第四方面提供了一种激光雷达系统,包括:激光发射单元以及激光接收单元;
激光发射单元,用于在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲;
激光接收单元,用于在一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据发射间隔和接收间隔,从多个外部信号中确定与发射的激光脉冲对应的回波信号。
在其中一个实施例中,激光发射单元包括第一激光发射器和激光延迟光路;
第一激光发射器,用于发射第一发射激光脉冲;
激光延迟光路用于接收第一发射激光脉冲,并将第一发射激光脉冲中的部分激光产生延迟,输出至少两个具有发射间隔的激光脉冲。
在其中一个实施例中,激光延迟光路包括激光分光单元、激光延迟单元以及激光合路单元;
激光分光单元用于将第一发射激光脉冲分成第一激光脉冲和第二激光脉冲,并将第一激光脉冲发送给激光延迟单元,将第二激光脉冲发送给激光合路单元;
激光延迟单元用于对接收到的第一激光脉冲产生延迟,获得第三激光脉冲,第三激光脉冲与第二激光脉冲之间具有发射间隔;
激光合路单元将接收到的第二激光脉冲和第三激光脉冲发射至目标对象。
在其中一个实施例中,激光分光单元为第一偏振分光片,激光合路单元为第二偏振分光片;
第一偏振分光片,用于将第一发射激光脉冲分成S偏振态的第一激光脉冲和P偏振态的第二激光脉冲,并将S偏振态的第一激光脉冲传输至激光延迟单元以及将P偏振态的第二激光脉冲透射至第二偏振分光片;
第二偏振分光片,用于接收P偏振态的第二激光脉冲,并将P偏振态的第二激光脉冲透射输出,以及接收S偏振态的第三激光脉冲,并将第三激光脉冲反射输出。
在其中一个实施例中,激光延迟单元包括第一全反射棱镜和第二全反射棱镜;
第一全反射棱镜,用于将第一激光脉冲反射至第二全反射棱镜;
第二全反射棱镜,用于将接收到的激光脉冲反射至第二偏振分光片。
在其中一个实施例中,激光延迟单元中元件和激光分光单元中的元件组成的光路的距离可调,距离的长短与发射间隔的长短相关。
在其中一个实施例中,第一激光发射器用于在一个周期内,按照预设发射间隔向激光延迟光路发射至少两个激光脉冲。
在其中一个实施例中,激光发射单元包括:第二激光发射器、第三激光发射器以及激光合路光路;
第二激光发射器和第三激光发射器在一个周期内分时发射第二发射激光脉冲和第三发射激光脉冲;
激光合路光路用于将第二发射激光脉冲和第三发射激光脉冲合路,并将合路后的激光脉冲发射至目标对象。
在其中一个实施例中,第二激光发射器和第三激光发射器发射激光脉冲时的发射间隔可调。
在其中一个实施例中,第二发射激光脉冲为S偏振态,第三发射激光脉冲为P偏振态,激光合路光路包括第三偏振分光片和第三全反射棱镜;
第三全反射棱镜,用于将第二发射激光脉冲反射至第三偏振分光片;
第三偏振分光片,用于将第三全反射棱镜发送的激光脉冲反射输出,并将第三发射激光脉冲透射输出。
一种激光雷达回波信号的确定方法,应用于上述激光雷达系统,激光雷达系统包括激光发射单元以及激光接收单元;
激光发射单元在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲;
激光接收单元在一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据发射间隔和接收间隔,从多个外部信号中确定与发射的激光脉冲对应的回波信号。
由于激光发射单元在一个周期内按照预设发射间隔发送了至少两个激光脉冲,那么上述至少两个激光脉冲在遇到同一个目标对象后,返回的至少两个回波信号之间的接收间隔与发射间隔匹配,而接收电路接收到的干扰信号的间隔与发射间隔不存在匹配关系,因此激光接收单元可以根据上述发射间隔和接收间隔来确定出回波信号,使得激光雷达系统可以避免测距结果异常,提升激光雷达系统的抗干扰能力。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种多脉冲抗干扰信号处理方法的一种流程示意图;
图2为本申请实施例提供的一种多脉冲抗干扰信号处理方法的另一种流程示意图;
图3为本申请实施例提供的一种多脉冲抗干扰信号处理方法的另一种流程示意图;
图4为对应图3提供的一种多脉冲抗干扰信号方法的两个探测脉冲的波形图;
图5为对应图3提供的一种多脉冲抗干扰信号方法的两个回波脉冲的波形图;
图6为对应图3提供的一种多脉冲抗干扰信号方法的两个延时回波脉冲的波形图;
图7为对应图3提供的一种多脉冲抗干扰信号方法的叠加脉冲的波形图;
图8为对应图3提供的一种多脉冲抗干扰信号方法的参考脉冲的波形图;
图9为对应图3提供的一种多脉冲抗干扰信号处理装置的目标回波脉冲的波形图;
图10为本申请实施例提供的一种多脉冲抗干扰信号处理方法的另一种流程示意图;
图11为对应图10提供的一种多脉冲抗干扰信号方法的三个探测脉冲的波形图;
图12为对应图10提供的一种多脉冲抗干扰信号方法的三个回波脉冲的波形图;
图13为对应图10提供的一种多脉冲抗干扰信号方法的三叠加脉冲的波形图;
图14为对应图10提供的一种多脉冲抗干扰信号方法的平均参考脉冲的波形图;
图15为对应图10提供的一种多脉冲抗干扰信号处理装置的目标回波脉冲的波形图;
图16为本申请实施例提供的一种多脉冲抗干扰信号处理方法的另一种流程示意图;
图17为本申请实施例提供的一种产生多个探测脉冲产生的流程示意图;
图18为本申请实施例提供的另一种产生多个探测脉冲的流程示意图;
图19为本申请实施例提供的一种多脉冲抗干扰信号处理装置的一种结构示意图;
图20为本申请实施例提供的一种多脉冲抗干扰信号处理装置的另一种结构示意图;
图21为本申请实施例提供的一种多脉冲抗干扰信号处理装置的另一种结构示意图;
图22为本申请实施例提供的一种多脉冲抗干扰信号处理装置的目标回波脉冲获取模块的一种结构示意图;
图23为本申请实施例提供的一种多脉冲抗干扰信号处理装置的目标回波脉冲获取模块的另一种结构示意图;
图24为本申请实施例提供的一种多脉冲抗干扰信号处理装置的另一种结构示意图。
图25为一个实施例中激光雷达系统的应用环境图;
图26为一个实施例中激光雷达系统的结构示意图;
图27为一个实施例中激光雷达系统的脉冲信号示意图;
图28为另一个实施例中激光雷达系统的结构示意图;
图29为一个实施例中激光发射单元的结构示意图;
图30为另一个实施例中激光雷达系统的脉冲信号示意图;
图31为另一个实施例中激光雷达系统的结构示意图;
图32为一个实施例中激光发射单元的结构示意图;
图33为一个实施例中激光雷达回波信号的确定方法的流程示意图。
附图说明:
10、激光发射单元;20、激光接收单元;11、第一激光发射器;
12、激光延迟光路;121、激光分光单元;122、激光延迟单元;
123、激光合路单元;1211、第一偏振分光片;1231、第二偏振分光片;
1221、第一全反射棱镜;1222、第二全反射棱镜13、第二激光发射器;
14、第三激光发射器;15、激光合路光路;151、第三偏振分光片;
152、第三全反射棱镜。
具体实施方式
为了使本申请的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本申请进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本申请,并不用于限定本申请。需要说明的是,在不冲突的情况下,本申请的实施例及实施例中的特征可以相互组合。
在下面的描述中阐述了很多具体细节以便于充分理解本申请,但是,本申请还可以采用其他不同于在此描述的其他方式来实施,因此,本申请的保护范围并不受下面公开的具体实施例的限制。
请参阅图1,本申请实施例提供的一种多脉冲抗干扰信号处理方法的一种流程示意图,为了便于说明,仅示出了与本实施例相关的部分,详述如下:
本申请实施例的第一方面提供了一种多脉冲抗干扰信号处理方法,包括:
在步骤S01中,在一个探测周期内,发送多个探测脉冲至探测目标,其中,多个探测脉冲的时间间隔为预设时间。
具体实施中,雷达发射机是多个探测脉冲的发射装置,控制发射机的半导体激光器在一个探测周期内发出至少一个激光脉冲,发射机发射的多个探测脉冲之间的时间间隔可以自由设置,例如预设时间间隔为T,从而构成脉冲光源在时域上的编码体系。
在步骤S02中,对多个探测脉冲在探测目标处反射而产生的多个回波脉冲进行捕获。步骤S02具体为,对多个探测脉冲在探测目标处反射而产生的多个回波脉冲进行捕获和模数转换。
在步骤S03中,对多个回波脉冲进行预设时间的延时以获取多个延时回波脉冲。
在步骤S04中,根据多个回波脉冲和多个延时回波脉冲获取目标回波脉冲。
请参阅图2,在其中一个实施例中,在步骤S04之后还包括:
在步骤S05中,根据目标回波脉冲和多个探测脉冲的时间差计算探测目标的距离。
通过步骤S01至步骤S04获取高信噪比的目标回波脉冲,进而通过步骤S05根据高信噪比的目标回波脉冲确定探测目标的距离,提高了雷达利用激光脉冲测量目标探测物距离的精确度,去除了利用多个雷达测距时雷达之间的相互干扰,提高雷达的性能和其利用激光脉冲测距的精确度。
请参阅图3,在其中一个实施例中,多个探测脉冲为两个探测脉冲,多个回波脉冲为两个回波脉冲,步骤S03:对多个回波脉冲进行预设时间的延时以获取多个延时回波脉冲具体为:
对两个回波脉冲按照预设时间延时以获取两个延时回波脉冲。
在步骤S04中,根据多个回波脉冲和多个延时回波脉冲获取目标回波脉冲包括:
在步骤S041-1中,将两个回波脉冲和两个延时回波脉冲相加以生成叠加脉冲。
在步骤S041-2中,将两个回波脉冲和两个延时回波脉冲的差的绝对值作为参考脉冲。
在步骤S041-3中,将叠加脉冲减去参考脉冲的差作为目标回波脉冲。
具体实施中,请参阅图,4至图9,在雷达发射机部分,设置预设时间为T,按照预设的时间间隔T向探测目标发送两个探测脉冲,如图4所示。在经过一定的空间传播后,雷达接收机部分捕获两个探测脉冲在探测目标处反射而产生的两个回波脉冲。假设雷达捕获到的两个回波脉冲包括真实的目标回波脉冲、SiPM产生的假回波脉冲以及探测目标反射回来的其他雷达时间间隔为T’回波脉冲,再叠加高斯噪声,回波脉冲如图5所示。由于已知雷达发射机发送的两个探测脉冲的时间间隔为T,令两个回波脉冲为A,按照时间间隔T进行延迟得到的两个延时回波脉冲为B,如图6所示,图6中实线为两个回波脉冲A,图6中虚线为两个延时回波脉冲B。将两个回波脉冲A与两个延时回波脉冲B相加(A+B)得到叠加脉冲,如图7所示。将两个回波脉冲A和两个延时回波脉冲B的差的绝对值|A-B|作为参考脉冲,如图8所示。将叠加脉冲(A+B)减去参考脉冲|A-B|的差(A+B)-|A-B|作为目标回波脉冲,如图9所示。可见,图9中只有叠加的两个回波脉冲A,叠加的两个回波脉冲A即为目标回波脉冲,且目标回波脉冲的幅值为两个回波脉冲A的幅值之和,SiPM产生的假回波脉冲以及探测目标反射回来的其他雷达时间间隔为T’的回波脉冲被完全消除。
本申请实施例通过对预设时间间隔发送的两个探测脉冲经探测目标对应反射回来的两个回波脉冲进行捕获和模数转换,以及按照预设时间延时对两个回波脉冲进行模数转换以获得两个延时回波脉冲,对两个回波脉冲和两个延时回波脉冲进行求和以获取叠加回波脉冲,将两个回波脉冲减去两个延时回波脉冲并求绝对值以获取参考脉冲,再根据叠加脉冲和参考脉冲的差值获取目标回波脉冲,由于有效去除了SiPM产生的假回波脉冲和多部雷达之间反馈的相互干扰回波脉冲,故提高了目标回波脉冲的信噪比,解决多部雷达测距时相互之间干扰的问题。
请参阅图10,在其中一个实施例中,多个探测脉冲为三个探测脉冲,多个回波脉冲为三个回波脉冲,步骤S03:对多个回波脉冲进行预设时间的延时以获取多个延时回波脉冲具体为:
对三个回波脉冲按照第一预设时间延时以获取第一三个延时回波脉冲,以及对三个回波脉冲按照第二预设时间延时以获取第二三个延时回波脉冲。
在步骤S04中,根据多个回波脉冲和多个延时回波脉冲获取目标回波脉冲包括:
在步骤S042-1中,将三个回波脉冲和第一三个延时回波脉冲以及第二三个延时回波脉冲相加以生成三叠加脉冲。
在步骤S042-2中,将三个回波脉冲和第一三个延时回波脉冲的差的绝对值作为第一参考脉冲。
在步骤S042-3中,将三个回波脉冲和第二三个延时回波脉冲的差的绝对值作为第二参考脉冲。
在步骤S042-4中,将第一三个延时回波脉冲和第二三个延时回波脉冲的差的绝对值作为第三参考脉冲。
在步骤S042-5中,将第一参考脉冲和第二参考脉冲以及第三参考脉冲的和的平均值作为平均参考脉冲。
在步骤S042-6中,将三叠加脉冲减去平均参考脉冲的差作为目标回波脉冲。
具体实施中,请参阅图11至图15,在雷达发射机部分,设置预设时间为T,按照预设的时间间隔T向探测目标发射激光脉冲,如图11所示,为雷达发射的三个探测脉冲的波形。在经过一定的空间传播后,雷达接收机部分捕获三个探测脉冲在探测目标处反射而产生的三个回波脉冲,假设雷达捕获到的三个回波脉冲包括真实的目标回波脉冲、SiPM产生的假回波脉冲以及探测目标反射回来的其他雷达时间间隔为T’的回波脉冲,再叠加高斯噪声,三个回波脉冲如图12所示。由于已知雷达发射机发送的三个探测脉冲的时间间隔为T和2T,令三个回波脉冲为A,按照第一预设时间2T延时得到第一三个延时回波脉冲为B,按照第二预设时间3T延时得到第二三个延时回波脉冲为C,将三个回波脉冲A与第一三个延时回波脉冲为B以及第二三个延时回波脉冲为C相加(A+B+C)得到三叠加脉冲D,如 图13所示。将三个回波脉冲A和第一三个延时回波脉冲B的差的绝对值|A-B|作为第一参考脉冲;将三个回波脉冲A和第二三个延时回波脉冲C的差的绝对值|A-C|作为第二参考脉冲;将第一三个延时回波脉冲B和第二三个延时回波脉冲C的差的绝对值|B-C|作为第三参考脉冲;将第一参考脉冲|A-B|和第二参考脉冲|A-C|以及第三参考脉冲|B-C|的和的平均值[(|A-B|+|A-C|+|B-C|)]/2作为平均参考脉冲E,如图14所示。将三叠加脉冲D减去平均参考脉冲E的差D-E作为目标回波脉冲,也即由(A+B+C)-[(|A-B|+|A-C|+|B-C|)]/2得到目标回波脉冲,如图15所示。可见,图15中只有叠加放大的真实回波信号,SiPM产生的假回波脉冲以及探测目标反射回来的其他雷达时间间隔为T’的回波脉冲被完全消除。由于有效去除了SiPM产生的假回波脉冲和多部雷达之间反馈的相互干扰回波脉冲,故提高了目标回波脉冲的信噪比,解决多部雷达测距时相互之间干扰的问题。
请参阅图16,在其中一个实施例中,在步骤S01:在一个探测周期内,发送多个探测脉冲至探测目标,其中,多个探测脉冲的时间间隔为预设时间之前还包括:
在步骤S00中,在一个探测周期内生成多个探测脉冲。
步骤S00:在一个探测周期内生成多个探测脉冲包括:
在步骤S01-A中,一个激光源发射的激光脉冲经准直和偏振分光处理后获取脉冲分光;脉冲分光经不同的光路后再合束获取第一组多个探测脉冲。或者
在步骤S01-B中,两个激光源分别发射的激光脉冲经不同的光路后再合束获取第二组多个探测脉冲。
请参阅图17,在其中一个实施例中,在步骤S01-A中,一个激光源发射的激光脉冲经准直和偏振分光处理后获取脉冲分光;脉冲分光经不同的光路后再合束获取第一组多个探测脉冲包括:
在步骤S01-A1中,一个激光源发射第一原始激光脉冲,第一原始激光脉冲经准直处理后获取准直激光脉冲。
在步骤S01-A2中,准直激光脉冲经第一次偏振分光处理后获取第一透射偏振激光脉冲和第一反射偏振激光脉冲。
在步骤S01-A3中,第一透射偏振激光脉冲经第二次偏振分光处理后获取第一探测脉冲。
在步骤S01-A4中,第一反射偏振激光脉冲经第一次全反射处理后获取第一全反射激光脉冲。
在步骤S01-A5中,第一全放射激光脉冲经第二全反射处理后获取第二全反射激光脉冲。
在步骤S01-A6中,第二全反射激光脉冲经第二次偏振分光处理后获取第二探测脉冲。
在步骤S01-A7中,第一探测脉冲和第二探测脉冲经合束后统一输出。
具体实施中,第一探测脉冲和第二探测脉冲合成一个光束后输出,由于产生第二探测脉冲的第一反射偏振激光脉冲传播的距离大于产生第一探测脉冲的第一透射偏振激光脉冲传播的距离,因此第二探测脉冲和第一探测脉冲之间存在时间延迟,且延迟的时间可以预先设置,实现时间延迟达到纳秒(ns)量级甚至皮秒(ps)量级的设计。
可选的,还可以让光源发出两个甚至多个第一原始激光脉冲,通过设置发出的原始激光脉冲的时间间隔,以及调整发生第一次偏振分光与第一次全反射的距离、第二次偏振分光与第二全反射的距离,使得以上两种路径的脉冲交错出现,产生两个或者多个有一定时间间隔的探测脉冲。
请参阅图18,在其中一个实施例中,在步骤S01-B中,两个激光源分别发射的激光脉冲经不同的光路后再合束获取第二组多个探测脉冲包括:
在步骤S01-B1中,第一激光源发射第二原始激光脉冲,第二原始激光脉冲经第一次准直处理后获取第一准直激光脉冲。
在步骤S01-B2中,第一准直激光脉冲经第一次全反射处理后获取第一全反射激光脉冲。
在步骤S01-B3中,第一全反射激光脉冲经第一偏振分光处理后获取第三探测脉冲。
在步骤S01-B4中,第二激光源发射第三原始激光脉冲,第三原始激光脉冲经第一次偏振分光处理后获取第四探测脉冲。
在步骤S01-B5中,第三探测脉冲和第四探测脉冲经合束后统一输出。
具体实施中,第二原始激光脉冲可由第一光源发射,发射第三原始激光脉冲可由第二光源发射,两个光源分别控制,发出激光脉冲,不仅可以实现时间延迟达到纳秒量级甚至皮秒量级的设计,且具有更好的可控制特性。且第二光源发出的第三原始激光脉冲的起始时间与第一光源发出的第二原始激光脉冲的起始时间的时间延迟可以自由设置,因此第三探测脉冲和第四探测脉冲之间存在一定的时间抖动,在合成后输出光束中的脉冲时间序列中,延迟时间和抖动时间都可以自由控制,因此其合成后的多脉冲之间可以做时间抖动。每一台激光雷达都有本征的时间抖动特征,这种特征是一台雷达的特殊标识,可以和其他激光雷达的脉冲特征区分开,从而可以抵抗不同激光雷达之间的干扰。
请参阅图19,为了实现上述多脉冲抗干扰信号处理方法,本申请实施例提供了一种多脉冲抗干扰信号处理装置20,多脉冲抗干扰信号处理装置20包括探测脉冲发送模块102、回波脉冲捕获模块103、延时回波脉冲获取模块104以及目标回波脉冲获取模块105。
探测脉冲发送模块102,用于在一个探测周期内,发送多个探测脉冲至探测目标,其中,多个探测脉冲的时间间隔为预设时间。
回波脉冲捕获模块103,用于对多个探测脉冲在探测目标处反射而产生的多个回波脉冲进行捕获。具体实施中,回波脉冲捕获模块103对多个探测脉冲在探测目标处反射而产生的多个回波脉冲进行捕获和模数转换。
延时回波脉冲获取模块104,用于对多个回波脉冲进行预设时间的延时以获取多个延时回波脉冲。
目标回波脉冲获取模块105,用于根据多个回波脉冲和多个延时回波脉冲获取目标回波脉冲。
请参阅图20,在其中一个实施例中,多脉冲抗干扰信号处理装置20还包括探测目标距离计算模块106。
探测目标距离计算模块106,用于根据目标回波脉冲和多个探测脉冲的时间差计算探测目标的距离。
根据雷达激光测距原理,利用接收到目标回波脉冲和发送多个探测脉冲的时间差计算探测目标的距离,通过获取高信噪比的目标回波脉冲,从而提高了雷达利用激光脉冲测量目标探测物的距离的精确度,有效解决了利用多个雷达测距时雷达之间的相互干扰问题。
请参阅图21,在其中一个实施例中,多脉冲抗干扰信号处理装置20还包括探测脉冲生成模块101。
探测脉冲生成模块101,用于在一个探测周期内生成多个探测脉冲。
具体实施中,探测脉冲生成模块101设置于雷达发射机部分,在雷达发射机部分,预先设定多个探测脉冲的时间间隔为T,按照预设时间间隔T向探测目标发送多个探测脉冲,可选的,不同的发射机预设不同的时间间隔。
请参阅图22,在其中一个实施例中,多个探测脉冲为两个探测脉冲,多个回波脉冲为两个回波脉冲,目标回波脉冲获取模块105包括叠加脉冲生成单元1051A、参考脉冲生成单元1052A以及目标回波脉冲获取单元1053A。
叠加脉冲生成单元1051A,用于将两个回波脉冲和两个延时回波脉冲相加以生成叠加脉冲。
参考脉冲生成单元1052A,用于将两个回波脉冲和两个延时回波脉冲的差的绝对值作为参考脉冲。
目标回波脉冲获取单元1053A,用于将叠加脉冲减去参考脉冲的差作为目标回波脉冲。
本申请实施例通过叠加脉冲生成单元对两个回波脉冲和两个延时回波脉冲进行求和得到叠加回波脉冲,参考脉冲生成单元对两个回波脉冲和两个延时回波脉冲进行求差和绝对值得到参考脉冲,目标回波脉冲获取单元再根据叠加脉冲和参考脉冲求差获取目标回波脉冲,通过对两个探测脉冲经探测目标反射而产生的两个回波脉冲和对两个回波脉冲延时预 设时间进行模数转换获取的两个延时回波脉冲获取目标回波脉冲,由于有效去除产生的假回波脉冲和多部雷达之间反馈回来的干扰回波脉冲,故提高了目标回波脉冲的信噪比,解决了多个雷达测距时相互干扰的问题。
请参阅图23,在其中一个实施例中,多个探测脉冲为三个探测脉冲,多个回波脉冲为三个回波脉冲,延时回波脉冲获取模块104具体用于对三个回波脉冲按照第一预设时间延时以获取第一三个延时回波脉冲,以及对三个回波脉冲按照第二预设时间延时以获取第二三个延时回波脉冲。目标回波脉冲获取模块105包括三叠加脉冲生成单元1051B、第一参考脉冲生成单元1052B、第二参考脉冲生成单元1053B、第三参考脉冲生成单元1054B、平均参考脉冲生成单元1055B以及目标回波脉冲获取单元1056B。
三叠加脉冲生成单元1051B,用于将三个回波脉冲和第一三个延时回波脉冲以及第二三个延时回波脉冲相加以生成三叠加脉冲。
第一参考脉冲生成单元1052B,用于将三个回波脉冲和第一三个延时回波脉冲的差的绝对值作为第一参考脉冲。
第二参考脉冲生成单元1053B,用于将三个回波脉冲和第二三个延时回波脉冲的差的绝对值作为第二参考脉冲。
第三参考脉冲生成单元1054B,用于将第一三个延时回波脉冲和第二三个延时回波脉冲的差的绝对值作为第三参考脉冲。
平均参考脉冲生成单元1055B,用于将第一参考脉冲和第二参考脉冲以及第三参考脉冲的和的平均值作为平均参考脉冲。
目标回波脉冲获取单元1056B,用于将三叠加脉冲减去平均参考脉冲的差作为目标回波脉冲。
本申请实施例通过对三个探测脉冲经探测目标反射而产生的三个回波脉冲和对三个回波脉冲延时两个预设时间和三个预设时间进行模数转换获取的第一三个延时回波脉冲和第二三个延时回波脉冲获取目标回波脉冲,由于有效去除产生的假回波脉冲和多部雷达之间反馈回来的干扰回波脉冲,故提高了目标回波脉冲的信噪比,解决了多个雷达测距时相互干扰的问题。
请参阅图24,图24是本申请实施例提供的一种多脉冲抗干扰信号处理装置20的另一种示意图。如图24所示,该实施例的多脉冲抗干扰信号处理装置20包括:处理器21、存储器22以及存储在存储器22中并可在处理器21上运行的计算机程序23,例如多脉冲抗干扰信号处理方法的程序。处理器21执行计算机程序23时实现上述各个多脉冲抗干扰信号处理方法实施例中的步骤,例如图1至图3、图10以及图16至图18所示的步骤S00至S05和步骤S01-A1至S01-A7、步骤S01-B1至S01-B5、步骤S041-1至S041-3以及步骤S042-1至S042-6。或者,处理器21执行计算机程序23时实现上述各装置实施例中各模块/单元的功能,例如图19至图24所示模块101至106和单元1051A至1053A以及单元1051B至1056B的的功能。
示例性的,计算机程序23可以被分割成一个或多个模块/单元,一个或者多个模块/单元被存储在存储器22中,并由处理器21执行,以完成本申请。一个或多个模块/单元可以是能够完成特定功能的一系列计算机程序指令段,该指令段用于描述计算机程序23在多脉冲抗干扰信号处理装置20中的执行过程。例如,计算机程序23可以被分割成包括探测脉冲发送模块102、回波脉冲捕获模块103、延时回波脉冲获取模块104以及目标回波脉冲获取模块105。
探测脉冲发送模块102,用于在一个探测周期内,发送多个探测脉冲至探测目标,其中,多个探测脉冲的时间间隔为预设时间。
回波脉冲捕获模块103,用于对多个探测脉冲在探测目标处反射而产生的多个回波脉冲进行捕获。具体实施中,回波脉冲捕获模块103对多个探测脉冲在探测目标处反射而产生的多个回波脉冲进行捕获和模数转换。
延时回波脉冲获取模块104,用于对多个回波脉冲进行预设时间的延时以获取多个延时回波脉冲。
目标回波脉冲获取模块105,用于根据多个回波脉冲和多个延时回波脉冲获取目标回波脉冲。
一种多脉冲抗干扰信号处理装置20可以是雷达或其它探测设备。多脉冲抗干扰信号处理装置20可包括,处理器21、存储器22,但不仅限于。本领域技术人员可以理解,图24仅仅是多脉冲抗干扰信号处理装置20的示例,并不构成对多脉冲抗干扰信号处理装置20的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件,例如关联应用程序挖掘的装置还可以包括输入输出设备、网络接入设备、总线等。
处理器21可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field-Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
存储器22可以是多脉冲抗干扰信号处理装置20的内部存储单元,例如多脉冲抗干扰信号处理装置20的硬盘或内存。存储器22也可以是多脉冲抗干扰信号处理装置20的外部存储设备,例如多脉冲抗干扰信号处理装置20上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。进一步地,存储器22还可以既包括多脉冲抗干扰信号处理装置20的内部存储单元也包括外部存储设备。存储器22用于存储计算机程序以及多脉冲抗干扰信号处理装置20所需的其他程序和数据。存储器22还可以用于暂时地存储已经输出或者将要输出的数据。
本申请实施例的第四方面提供了一种计算机可读存储介质,计算机可读存储介质存储有计算机程序,计算机程序被处理器执行时实现如上述所述多脉冲抗干扰信号处理方法的步骤。
本申请提供的激光雷达系统可以应用于无人驾驶场景中,也可以应用于其它需要激光雷达系统的场景中。以无人驾驶场景为例,如图25所示,激光雷达所在设备002可以通过激光雷达001来探测目标对象003与设备之间的距离;上述目标对象可以但不限于是道路障碍物、车辆以及行人等。
图26为一个实施例提供的激光雷达系统的结构示意图,如图26所示激光雷达系统激光发射单元10以及激光接收单元20。其中,激光发射单元10,用于在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲;激光接收单元20,用于在一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据发射间隔和接收间隔,从多个外部信号中确定与发射的激光脉冲对应的回波信号。
其中,激光发射单元10采用通过激光脉冲在目标对象与激光雷达系统之间的飞行时间乘以光速就得到测距距离。激光发射单元在发射激光脉冲时,上述至少两个激光脉冲的发射时长可以相同,也可以不同,在此不做限定。上述预设的发射间隔可以是固定的时间间隔,也可以是随应用场景进行动态调整的时间间隔,在此不作限定;上述周期可以是固定的周期大小,也可以根据用户指令来调整,在此不做限定。
具体地,激光发射单元10在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲时,可以是通过一个激光光源在一个周期内发射至少两次激光脉冲,也可以是通过多个激光光源在不同时刻发射不同的激光脉冲,在此不做限定。激光发射单元10在发射多个激光脉冲时,相邻两个激光脉冲之间的发射间隔可以相同,也可以不同,在此不做限定;例如,如图27所示,激光发射单元10发射3个激光脉冲,分别为脉冲A、脉冲B和脉冲C,其中脉冲A和脉冲B之间的发射间隔为S1,脉冲B和脉冲C之间的发射间隔为S2,那么S1和S2构成了激光发射单元的时间抖动特征。
上述激光接收单元20在一个周期内可以接收到多个外部信号,其中,上述外部信号可以包括激光发射单元10发射的激光遇到目标对象返回的回波信号,也可以包括附近其他的激光雷达发射的干扰激光信号,或者目标对象以及其它对象等返回的干扰回波信号。激光接收单元20可以获取任意两个外部信号的接收间隔,然后根据发射间隔和时间间隔来确定与发射的激光脉冲对应的回波信号。
上述激光发射单元20在一个周期内按照预设发射间隔发送了至少两个激光脉冲之后,至少两个激光脉冲在遇到同一个目标对象之后会依次返回,形成至少两个回波信号,由于激光雷达系统与目标对象的距离不变,因此,返回的至少两个回波信号之间的接收间隔与发射间隔之间存在对应关系。上述激光发射单元20可以将与发射间隔匹配的接收间隔对应的外部信号确定为回波信号,例如,可以设定发射间隔和接收间隔的差值在预设的误差范围内,则认为发射间隔和接收间隔匹配;另外,上述激光发射单元20可以在接收间隔与发射间隔相等时,将接收间隔对应的两个外部信号确定为回波信号。
上述激光发射单元20可以获取所有外部信号中任意两个外部信号之间的接收间隔,然后从上述各接收间隔中确定出与发射间隔匹配的外部信号,将其确定为回波信号;对于上述激光发射单元20确定回波信号的具体方式在此不做限定。
上述激光雷达系统包括:激光发射单元以及与激光接收单元;激光发射单元,用于在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲;激光接收单元,用于在一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据发射间隔和接收间隔,从多个外部信号中确定与发射的激光脉冲对应的回波信号。由于激光发射单元在一个周期内按照预设发射间隔发送了至少两个激光脉冲,那么上述至少两个激光脉冲在遇到同一个目标对象后,返回的至少两个回波信号之间的接收间隔与发射间隔匹配,而接收电路接收到的干扰信号的间隔与发射间隔不存在匹配关系,因此激光接收单元可以根据上述发射间隔和接收间隔来确定出回波信号,使得激光雷达系统可以避免测距结果异常,提升激光雷达系统的抗干扰能力。
在一个周期内,激光发射单元10发射的至少两个激光脉冲光之间的发射间隔越小,那么激光雷达系统在测量目标对象的距离时,所能测到的最大距离就越大;然而,对于一个激光光源来说,在间隔很短的时间内发射两个激光脉冲是很难实现的。因此,可以在激光光源发射一个激光脉冲的情况下,通过调整激光光路来实现在一个周期内输出至少两个具有发射间隔的激光脉冲。
图28为另一个实施例中激光雷达系统的结构示意图,本实施例涉及一种激光发射单元,在上述实施例的基础上,如图28所示,激光发射单元包括第一激光发射器11和激光延迟光路12;其中,第一激光发射器11,用于发射第一发射激光脉冲;激光延迟光路12用于接收第一发射激光脉冲,并将第一发射激光脉冲中的部分激光产生延迟,输出至少两个具有发射间隔的激光脉冲。
具体地,上述第一激光发射器11可以是固体激光发射器,也可以是半导体激光发射器,在此不做限定。上述第一激光发射器11发射第一发射激光脉冲时,激光发射周期,以及激光脉冲宽度均不做限定。上述第一激光发射器11可以直接将第一发射激光脉冲发射至激光延迟光路12,也可以通过通过准直镜发射至激光延迟光路12,在此不做限定。
上述激光延迟光路12用于接收上述第一发射激光脉冲,然后将第一发射激光脉冲中的部分激光产生延时,可以先发射未产生延迟的部分激光,在经过与上述延时对应的发射间隔之后,再将产生了延迟的部分激光发射出去,使得激光延迟光路12可以将第一激光发射器发射的一个激光脉冲,转换为两个具有发射间隔的激光脉冲。上述激光延迟光路12可以通过光纤产生延迟,也可以通过激光延迟光路12中的光元件之间的距离产生延迟,对于上述激光延迟光路12的构成方式在此不做限定。
可选的,上述激光延迟光路12包括激光分光单元121、激光延迟单元122以及激光合路单元123;其中,激光分光单元121用于将第一发射激光脉冲分成第一激光脉冲和第二激光脉冲,并将第一激光脉冲发送给激光延迟单元122,将第二激光脉冲发送给激光合路单元123;激光延迟单元122用于对接收到的第一激光脉冲产生延迟,获得第三激光脉冲,第三激光脉冲与第二激光脉冲之间具有发射间隔;激光合路单元123将接收到的第二激光脉冲和第三激光脉冲发射至目标对象。
上述激光分光单元121用于将第一发射激光脉冲分成第一激光脉冲和第二激光脉冲,可以通过分光器将第一发射激光脉冲分成第一激光脉冲和第二激光脉冲,也可以通过偏振片实现,对于上述激光分光单元121的类型在此不做限定。激光分光单元121获得的第一 激光脉冲和第二激光脉冲的激光能量可以相同,也可以不同。激光分光单元121将第二激光脉冲发送给激光合路单元123,然后通过激光合路单元123发射至目标对象;同时,激光分光单元121将第一激光脉冲发送给激光延迟单元122。
上述激光延迟单元122用于对接收到的第一激光脉冲产生延迟,例如,可以通过调整第一激光脉冲的传播方向,使得第二激光脉冲到达激光合路单元123并间隔一定时长之后,第一激光脉冲才能到达激光合路单元123。
上述第三激光脉冲到达激光合路单元123时,其传播方向与第一激光脉冲的传播方向可以不同,上述激光合路单元123可以调整第一激光脉冲或者第三激光脉冲的传播方向,然后将不同时刻接收到的第二激光脉冲和第三激光脉冲,通过同一个激光出口发射至目标对象。
上述激光雷达系统,通过激光延迟光路调整部分激光的延迟,可以使激光发射单元发射的另个激光脉冲至今的发射间隔很小,从而使激光雷达系统的测距范围更大,提升激光雷达系统的探测能力。
图29为另一个实施例中激光发射单元的结构示意图,在上述实施例的基础上,如图29所示,激光分光单元121为第一偏振分光片1211,激光合路单元123为第二偏振分光片1231;第一偏振分光片1211,用于将第一发射激光脉冲分成S偏振态的第一激光脉冲和P偏振态的第二激光脉冲,并将S偏振态的第一激光脉冲传输至激光延迟单元122以及将P偏振态的第二激光脉冲透射至第二偏振分光片1231;第二偏振分光片1231,用于接收P偏振态的第二激光脉冲,并将P偏振态的第二激光脉冲透射输出,以及接收S偏振态的第三激光脉冲,并将第三激光脉冲反射输出。
具体地,第一发射激光脉冲到达第一偏振分光片1211之后,第一偏振分光片1211可以反射第一发射激光脉冲中的S偏振光,同时透射第一发射激光脉冲中的P偏振光,从而获得S偏振态的第一激光脉冲和P偏振态的第二激光脉冲。在S偏振态的第一激光脉冲的传播路径上,设置有激光延迟单元122,对第一激光脉冲产生延迟,获得第三激光脉冲;在P偏振态的第二激光脉冲的传播路径上,设置有第二偏振分光片1231,由于第二激光脉冲为P偏振态,因此第二偏振分光片1231可以直接将第二激光脉冲透射输出。
激光延迟单元122将生成的第三激光脉冲发射至第二偏振分光片1231,由于第三激光脉冲是由第一激光脉冲延迟得到的,因此第三激光脉冲也是S偏振态,从而可以经第二偏振分光片1231反射输出。
可选地,上述激光延迟单元122可以包括第一全反射棱镜1221和第二全反射棱镜1222;第一全反射棱镜1221,用于将第一激光脉冲反射至第二全反射棱镜1222;第二全反射棱镜1222,用于将接收到的激光脉冲反射至第二偏振分光片1231。
其中,第一全反射棱镜1221设置在S偏振态的第一激光脉冲的传播路径上,与第一偏振分光片1211之间的距离可以用L1表示,可以将第一激光脉冲反射至第二全反射棱镜1222;在第二全反射棱镜1222接收到上述第一全反射棱镜1221发射的第一激光脉冲之后,可以将其反射至第二偏振分光片1231,获得第三激光脉冲。也就是说,在第一偏振分光片1211将第一发射激光脉冲分为第一激光脉冲和第二激光脉冲之后,由于两个激光脉冲的传播路径不同,因此到达第二偏振分光片1231的时间也是不同的,从而使第二偏振分光片1231向目标对象发射的两个激光脉冲具有发射间隔。
在上述激光发射单元中,激光延迟单元122中元件和激光分光单元121中的元件组成的光路的距离可调,距离的长短与发射间隔的长短相关。
当第一全反射棱镜1221与第一偏振分光片1211之间的距离L变化时,第二偏振分光片1231接收到的两个激光脉冲的时间间隔也相应变化;例如,如果上述距离L增大,那么第二全反射棱镜1222与第二偏振分光片1231的距离也会随之调整,那么第二偏振分光片1231向目标对象发射的两个激光脉冲的发射间隔也会变大。
上述激光雷达系统,通过第一偏振分光片和第二偏振分光片实现激光信号的分光和合路,同时通过两个全反射棱镜改变第一激光脉冲的传播路径,使传播路径延长,从而使激光发射两路实现在一个周期内发射具有发射间隔的两个激光脉冲。
激光发射单元10发射的激光脉冲的数量越多,那么多个激光脉冲之间的时间间隔所构成的时间抖动特征就越明显,从而使激光接收单元20能更准确地从多个外部信号中确定该激光雷达系统发射的激光脉冲对应的回波信号。
在一个实施例中,在上述激光雷达系统的基础上,第一激光发射器11可以在一个周期内,按照预设发射间隔向激光延迟光路122发射至少两个激光脉冲。
如图30所示,第一激光发射器11在一个周期内发射的两个激光脉冲为脉冲E和脉冲F,其中脉冲E和脉冲F之间的发射间隔为T1;脉冲E经过激光延迟光路12之后,输出脉冲E1和脉冲E2,脉冲F经过激光延迟光路122之后,输出脉冲F1和脉冲F2。通过调整激光延迟光路12的延迟T2,可以使激光延迟光路122依次输出脉冲E1、脉冲E2、脉冲F1和脉冲F2。如图30中,脉冲E1与脉冲E2之间的间隔为T2,脉冲E2和脉冲F1之间的间隔为T3=T1-T2,脉冲F1和脉冲F2之间的间隔为T2,上述四个激光脉冲之间的发射间隔分别为T2、T3、T2,构成了激光雷达系统的时间抖动特征。
上述激光雷达系统,第一激光发射器发射至少两个激光脉冲时,通过激光延迟光路12可以获得数量更多的激光脉冲,使得激光雷达系统所发射的激光脉冲的时间抖动特征更明显,有利于提升激光雷达系统的抗干扰能力。
激光雷达系统中,激光发射单元包括一个激光光源,并通过激光延迟电路总光元件之间的距离调整激光脉冲的发射间距时,由于光元件之间的距离变大导致激光雷达系统的体积比较大。为了实现激光雷达系统的小型化,可以设置两个激光光源。
图31为另一个实施例中激光雷达系统的结构示意图,本实施例涉及激光发射单元10包括两个激光光源的情况,在上述实施例的基础上,激光发射单元10包括:第二激光发射器13、第三激光发射器14以及激光合路光路15;第二激光发射器13和第三激光发射器14在一个周期内分时发射第二发射激光脉冲和第三发射激光脉冲;激光合路光路15用于将第二发射激光脉冲和第三发射激光脉冲合路,并将合路后的激光脉冲发射至目标对象。
具体地,第二激光发射器13和第三激光发射器14可以在一个周期内,分时向激光合路光路15发射第二发射激光脉冲和第三发射激光脉冲。上述第二激光发射器13和第三激光发射器14可以相同,也可以不同,在此不做限定。上述第二激光发射器13和第三激光发射器14可以在一个控制器的控制下,分别按照控制器发射的发射指令来发射激光脉冲,使得第二发射激光脉冲和第三发射激光脉冲之间具有发射间隔;另外,也可以是第二激光发射器13发射第二发射激光脉冲之后,直接向第三激光发射器14发送指令,使得第三激光发射器14可以根据指令,在间隔一定的发射间隔之后,再发射第三发射激光脉冲,在此不作限定;进一步地,上述第二激光发射器13和第三激光发射器14发射激光脉冲时的发射间隔可调。
上述第二激光发射器13与第三激光发射器14所在位置可以不同,可以通过激光合路光路15将第二发射激光脉冲和第三发射激光脉冲合路,并将合路后的激光脉冲发射至目标对象。上述激光合路光路15可以由激光传输连接端口与光纤构成,也可以由激光合路器等光元件构成,在此不做限定。
上述激光雷达系统,通过调整两个激光光源的发射间隔,来实现在一个周期内发射具有发射间隔的两个激光脉冲,使得激光雷达系统中的各个光元件之间的距离可以很小,实现激光雷达系统的小型化;进一步地,通过两个激光光源发射两个激光脉冲,可以提升激光脉冲的发射能量,提高激光脉冲的信噪比,增强激光雷达系统的探测能力。
图32为另一个实施例中激光发射单元的结构示意图,本实施例涉及激光发射单元中包含两个激光光源时,一种具体的激光合路光路,在上述实施例的基础上,如图8所示,第二发射激光脉冲为S偏振态,第三发射激光脉冲为P偏振态,激光合路光路15包括第三偏振分光片151和第三全反射棱镜152;第三全反射棱镜152,用于将第二发射激光脉冲反射至第三偏振分光片151;第三偏振分光片151,用于将第三全反射棱镜152发送的激光脉冲反射输出,并将第三发射激光脉冲透射输出。
上述激光雷达系统,通过第三全反射棱镜和第三偏振分光片构成激光合路光路,使得激光雷达系统可以通过数量较少的光元件,实现在一个周期中发射具有发射间隔的另个激 光脉冲,进一步缩小激光雷达系统的体积。
在一个实施例中,提供一种激光雷达回波信号的确定方法,应用于上述实施例中的激光雷达系统,激光雷达系统包括激光发射单元以及激光接收单元,如图33所示,上述方法包括:
S101、激光发射单元在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲。
S102、激光接收单元在一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据发射间隔和接收间隔,从多个外部信号中确定与发射的激光脉冲对应的回波信号。
本实施例提供的激光雷达回波信号的确定方法,其实现原理和技术效果与上述方法实施例类似,在此不再赘述。
图26所示的激光雷达系统包括激光发射单元10以及激光接收单元20。其中,激光发射单元10,可采用如图27-32所示任一方式,在一个周期内,发射至少两个激光脉冲,激光接收单元20可采用如图1-16所示的任一信号处理方法,得到距离信息。
示例性的,激光发射单元10在一个周期内按照预设发射间隔向目标对象发射两个激光脉冲时,可以是通过一个激光光源在一个周期内发射两次激光脉冲,也可以是通过两个激光光源在不同时刻发射不同的激光脉冲,在此不做限定。激光发射单元10在发射两个激光脉冲时,相邻两个激光脉冲之间的发射间隔可以相同,也可以不同,在此不做限定;激光接收单元20可以对前述激光发射单元10的双脉冲激光进行处理,具体的激光接收单元20可以对多个探测脉冲在探测目标处反射而产生的两个回波脉冲进行捕获;对两个回波脉冲进行预设时间的延时以获取两个延时回波脉冲;根据两个回波脉冲和两个延时回波脉冲获取目标回波脉冲。
由于激光发射单元10在一个周期内按照预设发射间隔发送了两个激光脉冲,从而可以把从该激光单元10发射出的激光与其他光源发射出的激光相区别,当上述两个激光脉冲在遇到同一个目标对象后,返回的两个回波信号之间的接收间隔与发射间隔匹配,而接收电路接收到的干扰信号的间隔与发射间隔不存在匹配关系,因此激光接收单元20可以根据上述发射间隔和接收间隔来确定出回波信号,使得激光雷达系统可以避免测距结果异常,提升激光雷达系统的抗干扰能力。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。实施例中的各功能单元、模块可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中,上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。另外,各功能单元、模块的具体名称也只是为了便于相互区分,并不用于限制本申请的保护范围。上述系统中单元、模块的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在上述实施例中,对各个实施例的描述都各有侧重,某个实施例中没有详述或记载的部分,可以参见其它实施例的相关描述。
以上仅为本申请的可选实施例而已,并不用以限制本申请,凡在本申请的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本申请的保护范围之内。

Claims (24)

  1. 一种多脉冲抗干扰信号处理方法,其特征在于,所述多脉冲抗干扰信号处理方法包括:
    在一个探测周期内,发送多个探测脉冲至探测目标,其中,所述多个探测脉冲的时间间隔为预设时间;
    对所述多个探测脉冲在所述探测目标处反射而产生的多个回波脉冲进行捕获;
    对所述多个回波脉冲进行所述预设时间的延时以获取多个延时回波脉冲;
    根据所述多个回波脉冲和所述多个延时回波脉冲获取目标回波脉冲。
  2. 如权利要求1所述的多脉冲抗干扰信号处理方法,其特征在于,所述根据所述多个回波脉冲和所述多个延时回波脉冲获取目标回波脉冲之后还包括:
    根据所述目标回波脉冲和所述多个探测脉冲的时间差计算所述探测目标的距离。
  3. 如权利要求1所述的多脉冲抗干扰信号处理方法,其特征在于,所述对所述多个探测脉冲在所述探测目标处反射而产生的多个回波脉冲进行捕获具体为:
    对所述多个探测脉冲在所述探测目标处反射而产生的多个回波脉冲进行捕获和模数转换。
  4. 如权利要求1所述的多脉冲抗干扰信号处理方法,其特征在于,所述多个探测脉冲为两个探测脉冲,所述多个回波脉冲为两个回波脉冲,所述对所述多个回波脉冲进行所述预设时间的延时以获取多个延时回波脉冲具体为:
    对所述两个回波脉冲按照所述预设时间延时以获取两个延时回波脉冲。
  5. 如权利要求4所述的多脉冲抗干扰信号处理方法,其特征在于,所述根据所述多个回波脉冲和所述多个延时回波脉冲获取目标回波脉冲包括:
    将所述两个回波脉冲和所述两个延时回波脉冲相加以生成叠加脉冲;
    将所述两个回波脉冲和所述两个延时回波脉冲的差的绝对值作为参考脉冲;
    将所述叠加脉冲减去所述参考脉冲的差作为所述目标回波脉冲。
  6. 如权利要求1所述的多脉冲抗干扰信号处理方法,其特征在于,所述多个探测脉冲为三个探测脉冲,所述多个回波脉冲为三个回波脉冲,所述对所述多个回波脉冲进行所述预设时间的延时以获取多个延时回波脉冲具体为:
    对所述三个回波脉冲按照第一预设时间延时以获取第一三个延时回波脉冲,以及对所述三个回波脉冲按照第二预设时间延时以获取第二三个延时回波脉冲。
  7. 如权利要求6所述的多脉冲抗干扰信号处理方法,其特征在于,所述根据所述多个回波脉冲和所述多个延时回波脉冲获取目标回波脉冲包括:
    将所述三个回波脉冲和所述第一三个延时回波脉冲以及所述第二三个延时回波脉冲相加以生成三叠加脉冲;
    将所述三个回波脉冲和所述第一三个延时回波脉冲的差的绝对值作为第一参考脉冲;
    将所述三个回波脉冲和所述第二三个延时回波脉冲的差的绝对值作为第二参考脉冲;
    将所述第一三个延时回波脉冲和所述第二三个延时回波脉冲的差的绝对值作为第三参考脉冲;
    将所述第一参考脉冲和所述第二参考脉冲以及所述第三参考脉冲的和的平均值作为平均参考脉冲;
    将所述三叠加脉冲减去所述平均参考脉冲的差作为所述目标回波脉冲。
  8. 如权利要求1所述的多脉冲抗干扰信号处理方法,其特征在于,所述在一个探测周期内,发送多个探测脉冲至探测目标,其中,所述多个探测脉冲的时间间隔为预设时间之前还包括:
    在一个探测周期内生成多个探测脉冲;
    所述在一个探测周期内生成多个探测脉冲包括:
    一个激光源发射的激光脉冲经准直和偏振分光处理后获取脉冲分光;
    所述脉冲分光经不同的光路后再合束获取第一组多个探测脉冲;或者
    两个激光源分别发射的激光脉冲经不同的光路后再合束获取第二组多个探测脉冲。
  9. 如权利要求8所述的多脉冲抗干扰信号处理方法,其特征在于,所述一个激光源发射的激光脉冲经准直和偏振分光处理后获取脉冲分光;所述脉冲分光经不同的光路后再合束以获取第一组多个探测脉冲包括:
    所述一个激光源发射第一原始激光脉冲,所述第一原始激光脉冲经准直处理后获取准直激光脉冲;
    所述准直激光脉冲经第一次偏振分光处理后获取第一透射偏振激光脉冲和第一反射偏振激光脉冲;
    所述第一透射偏振激光脉冲经第二次偏振分光处理后获取第一探测脉冲;
    所述第一反射偏振激光脉冲经第一次全反射处理后获取第一全反射激光脉冲;
    所述第一全放射激光脉冲经第二全反射处理后获取第二全反射激光脉冲;
    所述第二全反射激光脉冲经第二次偏振分光处理后获取第二探测脉冲;
    所述第一探测脉冲和所述第二探测脉冲经合束后统一输出。
  10. 如权利要求8所述的多脉冲抗干扰信号处理方法,其特征在于,所述两个激光源分别发射的激光脉冲经不同的光路后再合束获取第二组多个探测脉冲包括:
    第一激光源发射第二原始激光脉冲,所述第二原始激光脉冲经第一次准直处理后获取第一准直激光脉冲;
    所述第一准直激光脉冲经第一次全反射处理后获取第一全反射激光脉冲;
    所述第一全反射激光脉冲经第一偏振分光处理后获取第三探测脉冲;
    第二激光源发射第三原始激光脉冲,所述第三原始激光脉冲经第一次偏振分光处理后获取第四探测脉冲;
    所述第三探测脉冲和所述第四探测脉冲经合束后统一输出。
  11. 一种多脉冲抗干扰信号处理装置,其特征在于,所述多脉冲抗干扰信号处理装置包括:
    探测脉冲发送模块,用于在一个探测周期内,发送多个探测脉冲至探测目标,其中,所述多个探测脉冲的时间间隔为预设时间;
    回波脉冲捕获模块,用于对所述多个探测脉冲在所述探测目标处反射而产生的多个回波脉冲进行捕获;
    延时回波脉冲获取模块,用于对所述多个回波脉冲进行所述预设时间的延时以获取多个延时回波脉冲;
    目标回波脉冲获取模块,用于根据所述多个回波脉冲和所述多个延时回波脉冲获取目标回波脉冲。
  12. 如权利要求11所述的多脉冲抗干扰信号处理装置,其特征在于,所述多脉冲抗干扰信号处理装置还包括:
    探测目标距离计算模块,用于根据所述目标回波脉冲和所述多个探测脉冲的时间差计算所述探测目标的距离。
  13. 如权利要求11所述的多脉冲抗干扰信号处理装置,其特征在于,所述多脉冲抗干扰信号处理装置还包括:
    探测脉冲生成模块,用于在一个探测周期内生成多个探测脉冲。
  14. 一种多脉冲抗干扰信号处理装置,包括存储器、处理器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至10任一项所述多脉冲抗干扰信号处理方法的步骤。
  15. 一种激光雷达系统,其特征在于,包括:激光发射单元以及激光接收单元;
    所述激光发射单元,用于在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲;
    所述激光接收单元,用于在所述一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据所述发射间隔和所述接收间隔,从所述多个外部信号中确定与所述发射的激光脉冲对应的回波信号。
  16. 如权利要求15所述的系统,其特征在于,所述激光发射单元包括第一激光发射器和激光延迟光路;
    所述第一激光发射器,用于发射第一发射激光脉冲;
    所述激光延迟光路用于接收所述第一发射激光脉冲,并将所述第一发射激光脉冲中的部分激光产生延迟,输出至少两个具有发射间隔的激光脉冲。
  17. 如权利要求16所述的系统,其特征在于,所述激光延迟光路包括激光分光单元、激光延迟单元以及激光合路单元;
    所述激光分光单元用于将所述第一发射激光脉冲分成第一激光脉冲和第二激光脉冲,并将所述第一激光脉冲发送给所述激光延迟单元,将所述第二激光脉冲发送给所述激光合路单元;
    所述激光延迟单元用于对接收到的第一激光脉冲产生延迟,获得第三激光脉冲,所述第三激光脉冲与所述第二激光脉冲之间具有发射间隔;
    所述激光合路单元将接收到的所述第二激光脉冲和所述第三激光脉冲发射至目标对象。
  18. 如权利要求17所述的系统,其特征在于,所述激光分光单元为第一偏振分光片,所述激光合路单元为第二偏振分光片;
    所述第一偏振分光片,用于将所述第一发射激光脉冲分成S偏振态的第一激光脉冲和P偏振态的第二激光脉冲,并将所述S偏振态的第一激光脉冲传输至所述激光延迟单元以及将所述P偏振态的第二激光脉冲透射至所述第二偏振分光片;
    所述第二偏振分光片,用于接收所述P偏振态的第二激光脉冲,并将所述P偏振态的第二激光脉冲透射输出,以及接收S偏振态的第三激光脉冲,并将所述第三激光脉冲反射输出。
  19. 如权利要求18所述的系统,其特征在于,所述激光延迟单元包括第一全反射棱镜和第二全反射棱镜;
    所述第一全反射棱镜,用于将所述第一激光脉冲反射至所述第二全反射棱镜;
    所述第二全反射棱镜,用于将接收到的激光脉冲反射至所述第二偏振分光片。
  20. 如权利要求19所述的系统,其特征在于,所述激光延迟单元中元件和所述激光分光单元中的元件组成的光路的距离可调,所述距离的长短与所述发射间隔的长短相关。
  21. 根据权利要求15所述的系统,其特征在于,所述激光发射单元包括:第二激光发射器、第三激光发射器以及激光合路光路;
    所述第二激光发射器和所述第三激光发射器在所述一个周期内分时发射第二发射激光脉冲和第三发射激光脉冲;
    所述激光合路光路用于将所述第二发射激光脉冲和所述第三发射激光脉冲合路,并将合路后的激光脉冲发射至目标对象。
  22. 如权利要求21所述的系统,其特征在于,所述第二激光发射器和所述第三激光发射器发射激光脉冲时的发射间隔可调。
  23. 如权利要求22所述的系统,其特征在于,所述第二发射激光脉冲为S偏振态,所述第三发射激光脉冲为P偏振态,所述激光合路光路包括第三偏振分光片和第三全反射棱镜;
    所述第三全反射棱镜,用于将所述第二发射激光脉冲反射至所述第三偏振分光片;
    所述第三偏振分光片,用于将所述第三全反射棱镜发送的激光脉冲反射输出,并将所述第三发射激光脉冲透射输出。
  24. 一种激光雷达回波信号的确定方法,其特征在于,应用于权利要求15-23任一项的激光雷达系统,所述激光雷达系统包括激光发射单元以及激光接收单元;
    所述激光发射单元在一个周期内按照预设发射间隔向目标对象发射至少两个激光脉冲;
    所述激光接收单元在所述一个周期内接收多个外部信号并获取任意两个外部信号的接收间隔,以及根据所述发射间隔和所述接收间隔,从所述多个外部信号中确定与所述发射的激光脉冲对应的回波信号。
PCT/CN2020/093339 2019-05-31 2020-05-29 一种多脉冲激光雷达系统抗干扰处理方法及装置 WO2020239084A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202080004309.1A CN112740066B (zh) 2019-05-31 2020-05-29 一种多脉冲激光雷达系统抗干扰处理方法及装置
US17/356,443 US20210333360A1 (en) 2019-05-31 2021-06-23 Anti-interference processing method and apparatus for multi-pulse laser radar system

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910468384.2 2019-05-31
CN201910468936.XA CN112014824B (zh) 2019-05-31 2019-05-31 一种多脉冲抗干扰信号处理方法及装置
CN201910468384.2A CN110174664A (zh) 2019-05-31 2019-05-31 激光雷达系统和激光雷达回波信号的确定方法
CN201910468936.X 2019-05-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/356,443 Continuation US20210333360A1 (en) 2019-05-31 2021-06-23 Anti-interference processing method and apparatus for multi-pulse laser radar system

Publications (1)

Publication Number Publication Date
WO2020239084A1 true WO2020239084A1 (zh) 2020-12-03

Family

ID=73553500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093339 WO2020239084A1 (zh) 2019-05-31 2020-05-29 一种多脉冲激光雷达系统抗干扰处理方法及装置

Country Status (3)

Country Link
US (1) US20210333360A1 (zh)
CN (1) CN112740066B (zh)
WO (1) WO2020239084A1 (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654879A (zh) * 2020-12-11 2021-04-13 华为技术有限公司 基于车载毫米波雷达的防干扰方法、装置、系统及车辆
CN113614564A (zh) * 2021-07-09 2021-11-05 华为技术有限公司 一种探测控制方法及装置
CN114325722A (zh) * 2021-12-29 2022-04-12 南京世海声学科技有限公司 基于水下声信标信号多脉冲累积的高增益检测方法和系统
CN115015875A (zh) * 2022-08-08 2022-09-06 探维科技(北京)有限公司 一种点云数据的处理方法、装置及电子设备
CN116774164A (zh) * 2023-08-15 2023-09-19 西安电子科技大学 基于阵元-脉冲-脉内三重编码的mimo雷达抗干扰方法
WO2023230763A1 (en) * 2022-05-30 2023-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for estimating time delay between excitation signal and stimulated signal

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115902835B (zh) * 2021-09-30 2024-02-27 深圳市速腾聚创科技有限公司 一种雷达数据收发装置、测距方法及激光雷达
CN113759340B (zh) * 2021-11-10 2022-02-18 北京一径科技有限公司 回波信号处理方法及装置、激光雷达及存储介质
CN116413699A (zh) * 2021-12-30 2023-07-11 武汉万集光电技术有限公司 激光雷达的信号处理方法、装置及存储介质
CN115390018B (zh) * 2022-07-26 2024-04-30 西安电子工程研究所 一种雷达脉冲式干扰的定向方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176004A (zh) * 2011-02-22 2011-09-07 南京理工大学 基于多通道时延估计的激光飞行时间测量装置及其方法
CN103885065A (zh) * 2014-03-21 2014-06-25 中国科学院上海光学精密机械研究所 双波长双脉冲的无模糊激光测距装置
CN104765040A (zh) * 2014-12-31 2015-07-08 西南技术物理研究所 单脉冲波形识别提取方法
CN106546993A (zh) * 2016-11-04 2017-03-29 武汉万集信息技术有限公司 一种提高脉冲式激光测距精度的测距装置及测距方法
WO2018224234A1 (de) * 2017-06-08 2018-12-13 Robert Bosch Gmbh Betriebsverfahren und steuereinheit für ein lidar-system, lidar-system und arbeitsvorrichtung
CN110174664A (zh) * 2019-05-31 2019-08-27 深圳市速腾聚创科技有限公司 激光雷达系统和激光雷达回波信号的确定方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102269908B (zh) * 2011-07-12 2012-12-12 南昌航空大学 连续泵浦合束镜前置的受激布里渊散射发生装置及方法
CN107884780B (zh) * 2016-09-30 2021-03-26 比亚迪股份有限公司 测距方法、激光雷达及车辆
CN106932767B (zh) * 2017-04-17 2023-08-11 浙江神州量子网络科技有限公司 基于压缩光的量子雷达以及雷达探测方法
CN109683171A (zh) * 2017-10-19 2019-04-26 上海禾赛光电科技有限公司 激光雷达及其测距方法
CN109799512A (zh) * 2019-01-07 2019-05-24 北京工业大学 脉冲激光测距仪

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102176004A (zh) * 2011-02-22 2011-09-07 南京理工大学 基于多通道时延估计的激光飞行时间测量装置及其方法
CN103885065A (zh) * 2014-03-21 2014-06-25 中国科学院上海光学精密机械研究所 双波长双脉冲的无模糊激光测距装置
CN104765040A (zh) * 2014-12-31 2015-07-08 西南技术物理研究所 单脉冲波形识别提取方法
CN106546993A (zh) * 2016-11-04 2017-03-29 武汉万集信息技术有限公司 一种提高脉冲式激光测距精度的测距装置及测距方法
WO2018224234A1 (de) * 2017-06-08 2018-12-13 Robert Bosch Gmbh Betriebsverfahren und steuereinheit für ein lidar-system, lidar-system und arbeitsvorrichtung
CN110174664A (zh) * 2019-05-31 2019-08-27 深圳市速腾聚创科技有限公司 激光雷达系统和激光雷达回波信号的确定方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654879A (zh) * 2020-12-11 2021-04-13 华为技术有限公司 基于车载毫米波雷达的防干扰方法、装置、系统及车辆
CN113614564A (zh) * 2021-07-09 2021-11-05 华为技术有限公司 一种探测控制方法及装置
CN114325722A (zh) * 2021-12-29 2022-04-12 南京世海声学科技有限公司 基于水下声信标信号多脉冲累积的高增益检测方法和系统
CN114325722B (zh) * 2021-12-29 2024-04-12 南京世海声学科技有限公司 基于水下声信标信号多脉冲累积的高增益检测方法和系统
WO2023230763A1 (en) * 2022-05-30 2023-12-07 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for estimating time delay between excitation signal and stimulated signal
CN115015875A (zh) * 2022-08-08 2022-09-06 探维科技(北京)有限公司 一种点云数据的处理方法、装置及电子设备
CN116774164A (zh) * 2023-08-15 2023-09-19 西安电子科技大学 基于阵元-脉冲-脉内三重编码的mimo雷达抗干扰方法
CN116774164B (zh) * 2023-08-15 2023-11-24 西安电子科技大学 基于阵元-脉冲-脉内三重编码的mimo雷达抗干扰方法

Also Published As

Publication number Publication date
US20210333360A1 (en) 2021-10-28
CN112740066B (zh) 2023-08-04
CN112740066A (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
WO2020239084A1 (zh) 一种多脉冲激光雷达系统抗干扰处理方法及装置
US10345434B2 (en) Time-of-flight measurement apparatus and time-of-flight measurement method with ambiguity resolution in real time
CN112014824B (zh) 一种多脉冲抗干扰信号处理方法及装置
US20160377721A1 (en) Beat signal bandwidth compression method, apparatus, and applications
CN110174664A (zh) 激光雷达系统和激光雷达回波信号的确定方法
CN107290755B (zh) 基于4d成像光子计数激光雷达系统实现的目标距离和目标强度的获取方法
US20210333377A1 (en) Methods and systems for increasing the range of time-of-flight systems by unambiguous range toggling
CN110716207A (zh) 一种基于单光子调制频谱测量的激光测距系统
WO2019056565A1 (zh) 固态激光雷达及固态激光雷达控制方法
WO2020113559A1 (zh) 一种测距系统及移动平台
CN206696429U (zh) 一体化光纤式伪随机码幅度调制误差校正装置
WO2021243612A1 (zh) 测距方法、测距装置和可移动平台
WO2020237765A1 (zh) 激光雷达的接收机装置及激光雷达
CN112654894B (zh) 一种雷达探测方法及相关装置
KR102289669B1 (ko) 임펄스의 상관관계 이용한 거리측정 장치 및 방법
US20230273304A1 (en) Efficient Fault Detection For Lidar Sensors
WO2022000333A1 (zh) 一种雷达探测方法及相关装置
WO2020259193A1 (zh) 激光探测的装置、方法及系统
WO2020142948A1 (zh) 一种激光雷达设备、专用集成电路及测距装置
US20210302588A1 (en) Time of flight ranging system using multi-valued signals
WO2022160622A1 (zh) 一种距离测量方法、装置及系统
CN209590275U (zh) 脉冲式激光测距系统
WO2022089464A1 (zh) 一种探测方法及探测系统
CN111164379A (zh) 用于激光测距的方法和装置
WO2021179292A1 (zh) 雷达系统、信号处理方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20813388

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20813388

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 18/03/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20813388

Country of ref document: EP

Kind code of ref document: A1