WO2021129388A1 - 一种信号处理方法及相关装置 - Google Patents

一种信号处理方法及相关装置 Download PDF

Info

Publication number
WO2021129388A1
WO2021129388A1 PCT/CN2020/134717 CN2020134717W WO2021129388A1 WO 2021129388 A1 WO2021129388 A1 WO 2021129388A1 CN 2020134717 W CN2020134717 W CN 2020134717W WO 2021129388 A1 WO2021129388 A1 WO 2021129388A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
detection unit
unit group
detection
electrical signal
Prior art date
Application number
PCT/CN2020/134717
Other languages
English (en)
French (fr)
Inventor
吴小可
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2022539443A priority Critical patent/JP2023508481A/ja
Priority to EP20908243.7A priority patent/EP4071502A4/en
Publication of WO2021129388A1 publication Critical patent/WO2021129388A1/zh
Priority to US17/809,123 priority patent/US20220326362A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/4802Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • G01S7/4863Detector arrays, e.g. charge-transfer gates
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • G01S17/06Systems determining position data of a target
    • G01S17/08Systems determining position data of a target for measuring distance only
    • G01S17/10Systems determining position data of a target for measuring distance only using transmission of interrupted, pulse-modulated waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • G01S17/875Combinations of systems using electromagnetic waves other than radio waves for determining attitude
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4817Constructional features, e.g. arrangements of optical elements relating to scanning
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4861Circuits for detection, sampling, integration or read-out
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/487Extracting wanted echo signals, e.g. pulse detection
    • G01S7/4876Extracting wanted echo signals, e.g. pulse detection by removing unwanted signals
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/93Lidar systems specially adapted for specific applications for anti-collision purposes
    • G01S17/931Lidar systems specially adapted for specific applications for anti-collision purposes of land vehicles

Definitions

  • This application relates to the field of signal processing technology, and in particular to a signal processing method and related devices.
  • Lidar is a distance measuring device that combines laser technology and photoelectric conversion technology. Its basic working principle is: the laser radar emits laser light to the detection area from the transmitting end of the laser radar, and the receiving end of the laser radar receives the light returned from the detection area. Signal, by measuring the round-trip time of the optical signal to determine the information of the detection area.
  • the radar imaging technology is a technology that expands the lidar to two dimensions through scanning or multi-element detection arrays to obtain images of the detection scene. Among them, scanning lidars have advantages such as strong information resolution, small size, and light weight. It is widely used in fields such as autonomous driving, unmanned aerial vehicles, and resource exploration.
  • the technology of receiving and sending paraxial is generally used, that is, adding a scanning reflection module with a variable angle at the transmitting end to expand the field of view, and using an array detector at the receiving end to receive the light signal returned in the field of view and convert it into electric signal.
  • the receiving end needs to cover the entire field of view under the scanning angle of the transmitting end, the receiving field of view is large, so that the echo information obtained is easily affected by irrelevant signals (such as sunlight, other lasers, current white noise, etc.), affecting the generation The accuracy of the echo information.
  • the embodiment of the present application discloses a signal processing method and related device, which can reduce the interference of irrelevant signals and improve the signal-to-noise ratio of the received signal.
  • an embodiment of the present application discloses a signal processing method, including:
  • At least one echo information of the detection area is determined according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group.
  • the preliminary target distance is estimated based on the signals collectively output by the detection unit, and the detection unit related to this detection is obtained in combination with the scanning angle, so that the signal output by the detection unit related to this detection is selected to confirm the detection area
  • the echo information reduces the interference of irrelevant signals, improves the effectiveness of the received signal, and improves the signal-to-noise ratio of the received signal.
  • each detection unit is one photoelectric conversion cell or a collection of multiple photoelectric conversion cells.
  • the signal value of a photoelectric conversion cell easily reaches saturation, the use of the electrical signal of a photoelectric conversion cell cannot accurately characterize the reflection intensity information of the detection area.
  • the signals output by the conversion cells in one detection unit can be connected in parallel and then output, so as to avoid over-saturation of the final output of an electrical signal. Subsequent echo information of the detection area determined based on this electrical signal is more accurate and easier to determine the reflection intensity information of the detection area.
  • the characteristic signal includes a peak signal, a leading edge signal, or a waveform centroid signal of the first summary electrical signal; the time information is used to indicate the receiving moment of the characteristic signal.
  • the characteristic signal in the first summary electrical signal can reflect the appearance of a relatively strong light signal, and in the lidar detection process, the strong light signal is usually emitted by the lidar, so when the characteristic signal appears There is a high probability that the lidar signal is received, so based on this characteristic signal, the echo information in the lidar detection can be obtained more accurately.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine a first characteristic signal.
  • the first detection unit group; said determining the echo information of the detection area according to the first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group includes:
  • At least one echo information of the detection area is determined according to the first electrical signal.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, therefore, based on the sub-signals of the output signal in the first detection unit group in the first time period, the first electrical signal obtained can more accurately reflect the laser signal reception situation, so according to the first The echo information obtained by the electrical signal is more accurate.
  • the sub-electric signal is used as the basic processing unit, which is convenient for decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine a first characteristic signal.
  • the first detection unit group; said determining the echo information of the detection area according to the first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group includes:
  • the first detection unit group is a detection unit group in the at least one detection unit group
  • the first electrical signal obtained by summarizing the multiple electrical sub-signals is used to determine at least one echo information of the detection area.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, so the electrical signal of the output signal in the first detection unit group during the first time period can more accurately reflect the laser signal reception situation. Therefore, multiple electrical sub-signals (or partial signals) in the electrical signals of the multiple detection unit groups are acquired, and the multiple electrical sub-signals are aggregated to obtain the first electrical signal, so that the echo obtained based on the first electrical signal The information is more accurate.
  • the first electrical signal may be obtained by using a summation or cross-correlation method for multiple sub-electric signals.
  • using the electrical sub-signal as the basic processing unit facilitates decoupling processing of characteristic signals generated in different time periods in the entire electrical signal.
  • the determining at least one detection unit group according to the at least one target distance and the first angle includes:
  • the detection unit group corresponding to the at least one target distance and the first angle is determined according to the first correspondence set. Wherein, there is a predefined correspondence between the at least one target distance, the first angle, and the detection unit.
  • the pre-stored correspondence relationship can be used to determine the detection unit group corresponding to the target distance and angle, which reduces the pressure of real-time calculation and improves the efficiency of data processing.
  • the at least one echo information of the detection area is used to characterize at least one of the reflection intensity or the distance of the detection area.
  • the method is applied to a lidar, and the lidar includes the scanning reflection module, a receiving lens, an array detector including the at least two detection units, and a homogenizer.
  • the optical device is arranged between the receiving lens and the array detector, and is used to homogenize the light signal passing through the receiving lens.
  • a homogenizer to homogenize the received light signal can disperse the signal that should have been concentrated on a photoelectric conversion cell to the surrounding photoelectric conversion cells, thereby avoiding individual detection in the array detector.
  • the signal oversaturation of the micro element is conducive to more accurate determination of the echo signal strength information.
  • an embodiment of the present application discloses a signal processing device, including:
  • the scanning control unit is configured to reflect the first laser light to the detection area through the scanning reflection module at a first angle
  • a summary unit configured to determine a first summary electrical signal according to at least two electrical signals from at least two detection units, where the first summary electrical signal includes at least one characteristic signal;
  • a distance determining unit configured to determine at least one target distance corresponding to the detection area according to the time information of the at least one characteristic signal, and the at least one characteristic signal corresponds to the at least one target distance;
  • the unit group determining unit is configured to determine at least one detection unit group according to the at least one target distance and the first angle, and the detection units included in each detection unit group in the at least one detection unit group belong to the at least two Detection unit;
  • the echo determination unit is configured to determine at least one echo information of the detection area according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group.
  • the signal processing device estimates the preliminary target distance based on the signals summarized and output by the detection unit, and combines the scanning angle to obtain the detection unit related to this detection, so as to select the signal output by the detection unit related to this detection for use Confirming the echo information in the detection area reduces the interference of irrelevant signals, improves the effectiveness of the received signal, and improves the signal-to-noise ratio of the received signal.
  • each detection unit is one photoelectric conversion cell or a collection of multiple photoelectric conversion cells.
  • the signal value of a photoelectric conversion cell easily reaches saturation, the use of the electrical signal of a photoelectric conversion cell cannot accurately characterize the reflection intensity information of the detection area.
  • the signals output by the conversion cells in one detection unit can be connected in parallel and then output, so as to avoid over-saturation of the final output of an electrical signal. Subsequent echo information of the detection area determined based on this electrical signal is more accurate and easier to determine the reflection intensity information of the detection area.
  • the characteristic signal includes a peak signal, a leading edge signal, or a waveform centroid signal of the first summary electrical signal; the time information is used to indicate the receiving moment of the characteristic signal.
  • the characteristic signal in the first summary electrical signal can reflect the appearance of a relatively strong light signal, and in the lidar detection process, the strong light signal is usually emitted by the lidar, so when the characteristic signal appears There is a high probability that the lidar signal is received, so based on this characteristic signal, the echo information in the lidar detection can be obtained more accurately.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine a first characteristic signal.
  • the first detection unit group in terms of determining the echo information of the detection area based on a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the echo is determined.
  • the unit is specifically used for:
  • At least one echo information of the detection area is determined according to the first electrical signal.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, therefore, based on the sub-signals of the output signal in the first detection unit group in the first time period, the first electrical signal obtained can more accurately reflect the laser signal reception situation, so according to the first The echo information obtained by the electrical signal is more accurate.
  • the sub-electric signal is used as the basic processing unit, which is convenient for decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine a first characteristic signal.
  • the first detection unit group in terms of determining the echo information of the detection area based on a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the echo is determined.
  • the unit is specifically used for:
  • the first detection unit group is a detection unit group in the at least one detection unit group
  • the first electrical signal obtained by summarizing the multiple electrical sub-signals is used to determine at least one echo information of the detection area.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, so the electrical signal of the output signal in the first detection unit group during the first time period can more accurately reflect the laser signal reception situation. Therefore, multiple electrical sub-signals (or partial signals) in the electrical signals of the multiple detection unit groups are acquired, and the multiple electrical sub-signals are aggregated to obtain the first electrical signal, so that the echo information obtained based on the first electrical signal more acurrate.
  • the first electrical signal may be obtained by using a summation or cross-correlation method for multiple sub-electric signals.
  • using the sub-electric signal as the basic processing unit facilitates decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the unit group determining unit is specifically configured to specifically:
  • the detection unit group corresponding to the at least one target distance and the first angle is determined according to the first correspondence set. Wherein, there is a predefined correspondence between the at least one target distance, the first angle, and the detection unit.
  • the pre-stored correspondence relationship can be used to determine the detection unit group corresponding to the target distance and angle, which reduces the pressure of real-time calculation and improves the efficiency of data processing.
  • the at least one echo information of the detection area is used to characterize at least one of the reflection intensity or the distance of the detection area.
  • the device further includes a receiving lens, an array detector including the at least two detection units, and a homogenizer, the homogenizer being placed on the receiving lens Between the array detector and the array detector, it is used to homogenize the light signal passing through the receiving lens.
  • a homogenizer to homogenize the received light signal can disperse the signal that should have been concentrated on a photoelectric conversion cell to the surrounding photoelectric conversion cells, thereby avoiding individual detection in the array detector.
  • the signal oversaturation of the micro element is conducive to more accurate determination of the echo signal strength information.
  • the embodiments of the present application disclose a laser radar, the laser radar includes a laser transmitter, a scanning transmitter module, an array detector, a memory, and a processor.
  • the laser transmitter is used to emit a first laser.
  • the array detector includes at least two detection units, a calculator program is stored in the memory, and the processor is used to call the computer program stored in the memory to perform the following operations:
  • At least one echo information of the detection area is determined according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group.
  • the lidar estimates the preliminary target distance based on the signals summarized and output by the detection unit, and combines the scanning angle to obtain the detection unit related to this detection, so as to select the signal output by the detection unit related to this detection for confirmation
  • the echo information in the detection area reduces the interference of irrelevant signals, improves the effectiveness of the received signal, and improves the signal-to-noise ratio of the received signal.
  • each detection unit is one photoelectric conversion cell or a collection of multiple photoelectric conversion cells.
  • the signal value of a photoelectric conversion cell easily reaches saturation, the use of the electrical signal of a photoelectric conversion cell cannot accurately characterize the reflection intensity information of the detection area.
  • the signals output by the conversion cells in one detection unit can be connected in parallel and then output, so as to avoid over-saturation of the final output of an electrical signal. Subsequent echo information of the detection area determined based on this electrical signal is more accurate and easier to determine the reflection intensity information of the detection area.
  • the characteristic signal includes a peak signal, a leading edge signal, or a waveform centroid signal of the first summary electrical signal; the time information is used to indicate the receiving moment of the characteristic signal.
  • the characteristic signal in the first summary electrical signal can reflect the appearance of a relatively strong light signal, and in the lidar detection process, the strong light signal is usually emitted by the lidar, so when the characteristic signal appears There is a high probability that the lidar signal is received, so based on this characteristic signal, the echo information in the lidar detection can be obtained more accurately.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine a first target distance.
  • the first detection unit group in terms of determining the echo information of the detection area according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the processor Specifically used for:
  • At least one echo information of the detection area is determined according to the first electrical signal.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, therefore, based on the sub-signals of the output signal in the first detection unit group in the first time period, the first electrical signal obtained can more accurately reflect the laser signal reception situation, so according to the first The echo information obtained by the electrical signal is more accurate.
  • the sub-electric signal is used as the basic processing unit, which is convenient for decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine a first target distance.
  • the first detection unit group in terms of determining the echo information of the detection area according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the processor Specifically used for:
  • the first detection unit group is a detection unit group in the at least one detection unit group
  • the first electrical signal obtained by summarizing the multiple electrical sub-signals is used to determine at least one echo information of the detection area.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, so the electrical signal of the output signal in the first detection unit group during the first time period can more accurately reflect the laser signal reception situation. Therefore, multiple electrical sub-signals (or partial signals) in the electrical signals of the multiple detection unit groups are acquired, and the multiple electrical sub-signals are aggregated to obtain the first electrical signal, so that the echo information obtained based on the first electrical signal more acurrate.
  • the first electrical signal may be obtained by using a summation or cross-correlation method for multiple sub-electric signals.
  • using the sub-electric signal as the basic processing unit facilitates decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the processor is specifically configured to:
  • the detection unit group corresponding to the at least one target distance and the first angle is determined according to the first correspondence set. Wherein, there is a predefined correspondence between the at least one target distance, the first angle, and the detection unit.
  • the pre-stored correspondence relationship can be used to determine the detection unit group corresponding to the target distance and angle, which reduces the pressure of real-time calculation and improves the efficiency of data processing.
  • the at least one echo information of the detection area is used to characterize at least one of the reflection intensity or the distance of the detection area.
  • the lidar further includes a homogenizer, and the homogenizer is placed between the receiving lens and the array detector for homogenizing the transmission The light signal of the receiving lens.
  • a homogenizer is used to homogenize the received light signal, and the signal that should be concentrated on a photoelectric conversion element can be dispersed. To the surrounding photoelectric conversion cells, so as to avoid the signal oversaturation of individual cells in the array detector, which is beneficial to more accurately determine the echo signal strength information.
  • the lidar further includes a data acquisition module, and the data acquisition module is used to collect the signal output by the array detector, and is also used to perform the measurement on the signal output by the array detector. Pretreatment.
  • an embodiment of the present application discloses a signal processing device, which includes a memory and a processor, and a computer program is stored in the memory.
  • the program When the program is calculated and runs on the processor, it executes The method as described in the first aspect or any one of the possible implementations of the first aspect.
  • the embodiments of the present application disclose a computer-readable storage medium in which a computer program is stored.
  • the computer program runs on one or more processors, it executes as described in the first
  • the method described in one aspect or any one of the possible implementations of the first aspect is not limited to any one of the possible implementations of the first aspect.
  • an embodiment of the present application discloses a sensor system.
  • the sensor system may include at least one sensor.
  • the sensor includes the signal processing device of the second aspect, or the laser radar of the third aspect, or the signal of the fourth aspect.
  • a processing device, and the sensor system is used to implement the first aspect or the method shown in any one of the possible implementations of the first aspect.
  • an embodiment of the present application discloses a vehicle, and the vehicle includes the sensor system of the sixth aspect.
  • an embodiment of the present application discloses a chip system that includes at least one processor, a memory, and an interface circuit.
  • the interface circuit shown is used for external devices (such as laser transmitters, scanning reflector modules, arrays, etc.).
  • the detector, etc. is connected to the processor, and a computer program is stored in the memory; when the computer program is executed by the processor, it is used to implement the first aspect or any one of the possible implementation manners of the first aspect The method shown.
  • the memory, the interface circuit, and the at least one processor may be interconnected by wires.
  • an embodiment of the present application discloses a terminal, and the terminal includes the laser radar described in the third aspect or any one of the possible implementation manners of the third aspect. Further, the terminal may be a mobile terminal or transportation tool that needs to perform target detection, such as a vehicle, a drone, a train, or a robot.
  • FIG. 1 is a schematic structural diagram of a lidar provided by an embodiment of the present application.
  • Fig. 2 is a flowchart of a signal processing method provided by an embodiment of the present application
  • FIG. 3 is a schematic structural diagram of an array detector provided by an embodiment of the present application.
  • Fig. 4 is a schematic diagram of an electrical signal from a detection unit provided by an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a method for summarizing signals provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a possible detection unit group provided by an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a method for determining a detection unit group provided by an embodiment of the present application.
  • Fig. 8 is a schematic diagram of an electrical signal from a detection unit provided by an embodiment of the present application.
  • FIG. 9 is a schematic diagram of another electrical signal from a detection unit provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of yet another electrical signal from a detection unit provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of another electrical signal from a detection unit provided by an embodiment of the present application.
  • FIG. 12 is a schematic diagram of a radar imaging scene provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a signal processing device provided by an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a signal processing device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a lidar 10 provided by an embodiment of the present application.
  • the lidar includes a laser transmitter 101, a scanning reflection module 102, a receiving lens 103, an array detector 104, and a data processing module 105 , Processor 106 and memory 107, where:
  • the laser transmitter 101 is a device for emitting laser light, and can emit laser pulses at preset time intervals.
  • the scanning reflection module 102 is a mirror that can swing (or rotate), and performs reciprocating motion in one or two dimensions to reflect laser light to different angles, so that the laser light is irradiated within the corresponding emission scanning field of view. It is a scanning mirror or a reflecting mirror.
  • Common scanning reflection modules 102 include mechanical mirrors, micro-electro-mechanical systems (MEMS) micro galvanometers, and the like. Among them, the mirror size of the MEMS micro galvanometer is usually a few millimeters, which has great advantages in terms of volume, power consumption and integration, and the MEMS micro galvanometer has a high swing frequency and also has an excellent performance in frame rate.
  • MEMS micro-electro-mechanical systems
  • the receiving lens 103 is a device for receiving optical signals, and may be one or more optical lenses in the shape of a concave lens, a convex lens, a meniscus lens, and a meniscus lens. In some possible implementation manners, the receiving lens may further include a filter and other devices that are conducive to receiving optical signals.
  • the array detector 104 is an array of detection units arranged in rows and columns, and includes at least two detection units (each square in the array detector 104 is a detection unit).
  • the array detector 104 can receive the optical signals converged by the receiving lens 103 and convert the optical signals into electrical signals.
  • the array detector 104 includes at least two detection units, and according to the difference of the photoelectric conversion cells in the detection unit, it can be divided into a semiconductor avalanche photodetector (APD) array and a single-photon avalanche diode (single-photon avalanche diode). , SPAD) array, etc.
  • APD semiconductor avalanche photodetector
  • SPAD single-photon avalanche diode
  • the detection unit it can be divided into 1 ⁇ 2 array, 2 ⁇ 2 array, 3 ⁇ 3 array, etc., which are not limited in this application.
  • the array detector may be arranged before the plane where the focal point of the receiving lens 103 is located, the plane where the focal point is located, or behind the plane where the focal point is located.
  • the data acquisition module 105 is used to collect the output signal of the detection unit in the array detector 104, and is also used to perform preprocessing such as signal amplification, shaping, or analog-to-digital conversion on the electrical signal in the array detector 104.
  • the processor 106 is used for controlling the laser transmitter 101 to emit laser light, controlling the scanning reflection module 102 to reflect the laser light at a preset angle, and processing electrical signals output by at least two detection units.
  • the processor 106 is a module that performs arithmetic operations and logical operations, and is the core of the calculation and control of the lidar. It can parse various instructions in the lidar and process various types of data.
  • the processor 106 may be one or more modules such as a central processing unit (CPU), a graphics processing unit (GPU), or a microprocessor (MPU).
  • the function of collecting electrical signals completed by the aforementioned data processing module 105 may also be completed by the processor 106.
  • the memory 107 is used to provide storage space and store data such as an operating system and computer programs.
  • the memory 107 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM).
  • the lidar further includes a collimating device 108, which is arranged between the laser transmitter 101 and the scanning reflection module 102, so that the laser beam emitted by the laser transmitter 101 is more concentrated and incident on the scanning On the reflection module 102, the transmission efficiency and the angular resolution of the lidar can be improved.
  • a collimating device 108 which is arranged between the laser transmitter 101 and the scanning reflection module 102, so that the laser beam emitted by the laser transmitter 101 is more concentrated and incident on the scanning On the reflection module 102, the transmission efficiency and the angular resolution of the lidar can be improved.
  • the lidar may further include a homogenizer 109, which is disposed between the receiving lens 103 and the array detector 104, and is used to homogenize the light signal passing through the receiving lens and avoid the detection unit
  • a homogenizer 109 which is disposed between the receiving lens 103 and the array detector 104, and is used to homogenize the light signal passing through the receiving lens and avoid the detection unit
  • the oversaturation of the optical signal occurs in the individual micro-elements in, which is conducive to accurately estimating the intensity information of the echo signal.
  • the light homogenizer can be a whole light homogenizer, which is laid in front of the array detector to cover all the detection units, or it can be multiple homogenizers. One of the multiple homogenizers is laid on Before one or more detection areas, it is used to homogenize the optical signal.
  • the processor 101 controls the laser transmitter 102 to emit the first laser light, and the scanning reflection module reflects the first laser light to the detection area.
  • the detection area reflects the light signal and irradiates the array detector 105.
  • the array detector 105 converts the received optical signal into an electrical signal.
  • the data processing module 107 is used to collect the electrical signals output by the detection unit in the array detector 105.
  • the processor 101 is configured to control the laser transmitter 102 to emit laser light, control the scanning reflection module to reflect the laser light at a preset angle, and process the electrical signals output by at least two detection units to obtain echo information of the detection area.
  • FIG. 2 is a schematic flowchart of a signal processing method provided by an embodiment of the present application.
  • the method can also be implemented based on the above-mentioned lidar.
  • the method includes but is not limited to the following steps:
  • Step S201 The lidar reflects the first laser light toward the detection area through the scanning reflection module at a first angle.
  • the first laser may be a certain laser beam emitted by a laser transmitter.
  • the laser transmitter emits laser pulses at a preset time interval, and the first laser is a certain laser pulse signal.
  • the scanning reflection module in the lidar can reflect laser light at a variety of angles, and the first angle here is one of the angles.
  • the first angle can be represented by one dimension or multiple dimensions, for example, can be represented in the form of [azimuth angle, elevation angle], where the azimuth angle can represent the angle in the horizontal direction, and the elevation angle can represent the angle in the vertical direction. angle.
  • Step S202 The lidar determines the first summary electrical signal according to the at least two electrical signals from the at least two detection units.
  • the detection unit may be one photoelectric conversion micro-element, or a collection of multiple photoelectric conversion micro-elements.
  • the photoelectric conversion micro-element is a device that can convert optical signals into electrical signals.
  • the photoelectric conversion micro-element can be a photomultiplier tube (PMT), or a silicon photomultiplier (SiPM), or a semiconductor avalanche.
  • PMT photomultiplier tube
  • SiPM silicon photomultiplier
  • One of the optoelectronic devices such as photodiode (avalanche photo detector, APD) or single-photon avalanche diode (single-photon avalanche diode, SPAD).
  • the photoelectric devices in the above-mentioned set of multiple conversion micro-elements may be different photoelectric conversion devices.
  • FIG. 3 is a schematic structural diagram of an array detector provided by an embodiment of the present application. There are multiple sub-regions (each square is a sub-region) in the array detector 104, and each sub-region represents A detection unit.
  • a detection unit is a collection of four photoelectric conversion micro-elements, that is, a detection unit is provided with four photoelectric conversion micro-elements.
  • the detection unit It includes a first photoelectric conversion micro element 301, a second photoelectric conversion micro element 302, a third photoelectric conversion micro element 303, and a fourth photoelectric conversion micro element 304.
  • the electrical signals of the first photoelectric conversion element 302, the second photoelectric conversion element 303, the third photoelectric conversion element 304, and the fourth photoelectric conversion element 305 can be output in parallel, and a total signal output in parallel is the output of the detection unit Of an electrical signal.
  • the detection unit can obtain the corresponding electrical signal according to the optical signal. It is understandable that when other optical signals within the detection band of the selected photoelectric detection unit are irradiated on the detection unit, they will also be converted into electrical signals. For example, when sunlight is irradiated on the detection unit, the detection unit will also Convert sunlight into electrical signals. For example, when light signals emitted by other equipment (such as other radar equipment) are reflected on the detection unit, they will also be converted into electrical signals. These irrelevant signals affect the light returned from the detection area. signal. In addition, the electrical signal output by the detection unit may also be affected by the current on other lines. These signals that are not related to the signal returned from the detection area form noise, interfere with the output signal, and reduce the echo received by the radar. The signal-to-noise ratio of the signal affects the effectiveness of the radar receiving signal.
  • FIG. 4 is a schematic diagram of an electrical signal from a detection unit according to an embodiment of the present application, in which the laser transmitter 101 emits laser light at a preset time interval, and the emitted laser pulse irradiates the corresponding detection unit.
  • the detection area corresponding to this laser pulse contains two objects, object 401 and object 402, respectively.
  • the laser transmitter 101 emits the first laser at t0 (0us), and the first laser irradiates the object 401 and the object 402 in.
  • a detection unit 403 of the array detector receives the optical signal returned by the object 401 at about t1 (5us), and obtains the electrical signal according to the returned optical signal, see area 404 Waveform information.
  • the detection unit 403 receives the optical signal returned by the object 402 at about t2 (8us), and obtains the electrical signal according to the returned optical signal.
  • the object 401 since sunlight irradiates the object 401, the object 401 reflects sunlight to the array detector 104, and the detection unit 403 receives the sunlight reflected by the object 401, and obtains electricity according to the sunlight.
  • Signal see the waveform information shown in area 406.
  • the laser pulse detection ends, and the laser transmitter emits the next pulse to start a new round of detection.
  • the method for determining the first aggregated electrical signal may be specifically: adding at least two electrical signals from at least two detection units to obtain the first aggregated electrical signal.
  • FIG. 5 is a schematic diagram of a possible method for summarizing signals provided in an embodiment of the present application.
  • the array detector 104 includes at least two detection units, specifically the detection unit CH1, the detection unit CH2, the detection unit CH3, and the detection unit CH3.
  • the lidar adds the electrical signals output by CH1, CH2, CH3, and CH4 point by point to obtain a summary electrical signal.
  • the electrical signals output by CH1, CH2, CH3, and CH4 are summed at the time t1 to obtain the summed electrical signals at the time t1.
  • the signals of the electrical signals output by CH1, CH2, CH3, and CH4 at time t5 are summed to obtain the signal of the aggregated electrical signals at time t5.
  • the first summary electrical signal includes at least one characteristic signal.
  • the characteristic signal may be a peak signal, a leading edge signal (or a rising edge signal), or a waveform centroid signal, and other signals indicating special waveform characteristics.
  • the characteristic signal can be determined through signal detection.
  • a detection threshold can be preset, and only signals with a signal value equal to or greater than the preset threshold can be detected as a characteristic signal.
  • the peak signal is the signal corresponding to the highest value of the signal value in a period of time
  • the leading edge signal is a signal whose signal value continues to increase in a period of time
  • the waveform centroid signal is a signal corresponding to the position of the centroid of the waveform information. For example, referring to FIG.
  • the signal in the area 501 is a characteristic signal.
  • the characteristic signal can reflect that there is a relatively strong light signal in the aggregated electrical signal.
  • the strong light signal is usually emitted by the lidar. Therefore, when the characteristic signal appears, the probability is very high.
  • the lidar signal is received, so based on the characteristic signal, the echo information in the lidar detection can be obtained more accurately.
  • a data acquisition module can be used to collect the electrical signals output by the detection unit in the array detector, and the data acquisition module can also be used to preprocess the electrical signals from the detection unit For example, the signal of the detection unit is amplified, reshaped, or analog-to-digital conversion, etc., to facilitate subsequent collection of the electrical signals output by the detection unit.
  • Step S203 The lidar determines the corresponding at least one target distance according to the time information of the at least one characteristic signal.
  • the characteristic signal corresponds to the received time information.
  • the time information of the peak signal is the time when the peak appears.
  • the time information waveform of the leading edge signal can be the middle moment of the rising edge.
  • the laser radar determining the at least one target distance corresponding to the detection area according to the time information of the at least one characteristic signal can be specifically: obtaining the laser flight time difference according to the time information of the characteristic signal and the time when the first laser is emitted, and then determining the time difference according to the speed of light and the time difference The target distance of the detection area.
  • the target distance can be used to characterize the distance between the lidar and the object in the detection area.
  • the laser transmitter emits laser light at time t0 and receives the characteristic signal 403 at time t1. Then, according to the time difference between time t1 and time t0, the flight time difference (t2-t1) of the laser can be obtained.
  • one characteristic signal can be used to determine a target distance of the detection area. For example, if characteristic signal 1 and characteristic signal 2 exist, then the target distance D1 can be obtained by performing the above operations based on characteristic signal 1 , The target distance D2 can be obtained by performing the above operation based on the characteristic signal 2.
  • Step S204 The lidar determines at least one detection unit group according to the at least one target distance and the first angle.
  • FIG. 6 is a schematic diagram of a possible detection unit group provided by an embodiment of the present application.
  • the laser transmitter 101 emits a first laser at a certain moment, and after being reflected by the scanning reflection module 102 at an angle ⁇ , it illuminates the detection area 601 in the object.
  • the light signal reflected by the object 601 is converged by the receiving lens 103 and irradiated on the detection units CH1 and CH2 of the array detector 104 to be converted into electrical signals.
  • the detection unit group corresponding to the object with the target distance d1 is the group CH1 and CH2. Since the positions and properties of the laser transmitter 101, the scanning reflection module 102, the receiving lens 103, and the array detector 104 (such as the focal length of the receiving lens) can be set in advance, the detection unit illuminated by the returned light signal from the detection area is different from the reflection There is a corresponding relationship between the angle of the laser and the distance of the object 601.
  • the lidar determines at least one detection unit group according to at least one target distance and the first angle, and there are several options as follows:
  • Solution 1 Predefine a corresponding relationship set including at least one set of corresponding relationships, and determine at least one detection unit group corresponding to the target distance and the first angle according to the corresponding relationship set.
  • the set of correspondence relationships may be pre-stored in the lidar, or may be pre-configured to the lidar.
  • the laser radar can consider a signal without a corresponding detection unit as a false alarm signal.
  • Table 1 illustrates a possible set of correspondence relations, which is used to describe at least one detection unit group corresponding to the target distance and the first angle, where [azimuth angle, pitch angle] can be used to represent The first angle.
  • the detection unit group determined by the lidar is the detection unit CH1, CH2, CH3, CH4, and
  • the azimuth angle is 60°
  • the elevation angle is 60°
  • the lidar system does not find the corresponding detection unit group from the corresponding relationship set, it is considered that the signal used to determine the target distance of 250m is a false alarm signal.
  • Solution 2 Determine the detection unit group corresponding to the target distance and the first angle through a preset algorithm. Further, the determination may be real-time.
  • the lidar can use the detection unit group corresponding to the pre-stored algorithm, or the lidar can obtain the corresponding detection unit group determined by the preset algorithm. For example, the lidar can send the target distance and the first angle to other equipment, and the other equipment To calculate and return the corresponding detection unit group through a preset algorithm.
  • the algorithm may be an algorithm based on model training, or may be an algorithm obtained by solving geometric relations, and the details are not limited. The following are examples of two possible ways to calculate the corresponding detection unit group:
  • the first method is to use a known angle to emit a laser to an object at a known distance, record the number of the detection unit that the array detector receives the return signal, and use the corresponding record as a sample, and obtain the identification of the detection unit group by accumulating sample data.
  • algorithm For example, at an angle ⁇ , the laser is irradiated on objects at different distances D n , and the number CH ij of the detection unit corresponding to the optical signal returned by the object is recorded.
  • i is the row number of the array detection unit
  • j is the column number of the array detection unit.
  • CH ij can represent the detection unit in the i-th row and the jth column.
  • CH 23 represents the detection unit in the second row and the third column.
  • other number forms can also be used to represent the detection unit number.
  • a digital subscript is used as the detection unit number, which is not limited here.
  • CH n represents the nth detection unit.
  • CH 12 represents the 10th detection unit.
  • a detection unit. Taking the distance D n , the scanning angle ⁇ , and the detection unit number CH ij as a piece of training sample data, an algorithm for determining the detection unit group can be obtained according to a preset number of training sample data. Based on this algorithm, with the target distance and scanning angle as input, the detection unit group corresponding to the input target distance and scanning angle can be obtained.
  • the second method is to calculate the geometric position of the detection unit irradiated by the light signal according to the geometric relationship to obtain the corresponding detection unit group. Because in the lidar, the positions and properties of the laser transmitter 101, the scanning reflection module 102, the receiving lens 103, and the array detector 104 (such as the focal length of the receiving lens) can be known in advance, and therefore the position parameters of each module are regarded as known The parameters, combined with the target distance and the first angle, can obtain the corresponding detection unit group by solving the geometric relationship. Referring to FIG. 7, FIG. 7 is a schematic diagram of a method for determining a detection unit group according to an embodiment of the present application.
  • the distance from the center of the scanning reflection module 102 (or scanning reflection mirror) to the detection area 701 is projected on the Z axis X 1 ,
  • the distance x from the position of the optical signal on the array detector from the detection area 701 to the receiving main optical axis satisfies the following geometric relationship:
  • ⁇ x represents the scanning angle in the x direction.
  • ⁇ x' is the angle between the projection of the line connecting the detection area 701 and the center of the receiving lens 103 on the XZ plane and the receiving main optical axis.
  • d x represents the projection of the distance from the center of the scanning reflection module 102 to the axis of the array detector 104 on the X axis
  • D x represents the projection of the distance from the center of the scanning reflection module 102 to the detection area 701 on the X axis
  • D x ' represents the distance from the detection area 701 to the center of the receiving lens 103 is projected on the XZ plane.
  • both D x and D x ′ can be regarded as target distances.
  • d z represents the projection of the distance from the center of the scanning reflection module 102 to the axis of the array detector 104 on the Z axis
  • x represents the distance from the detection position of the detection area 701 on the array detector to the main receiving optical axis.
  • each parameter can be positive or negative.
  • the lidar can determine the geometric relationship algorithm for calculating the distance from the optical signal position of the detection area 705 on the array detector to the center of the main optical axis through the above geometric relationship, and then determine the corresponding detection unit according to the distance from the optical signal position to the main optical axis group.
  • the lidar can use the above formula 1-5 as an algorithm to calculate the distance from the optical signal position of the detection area 705 on the array detector to the main optical axis of the receiving, and then determine the corresponding detection unit group according to the distance from the optical signal position to the main optical axis .
  • the corresponding relationship set in the first solution may be obtained by pre-calculation using the calculation method in the second solution.
  • Step S205 The lidar determines at least one echo information of the detection area according to the first electrical signal obtained from the at least one electrical signal of the first detection unit group in the at least one detection unit group.
  • the first detection unit group is a certain detection unit group in at least one detection unit group. There can be one detection unit or multiple detection units in the first detection unit group. The following descriptions are divided into situations:
  • the first detection unit group includes a detection unit, and the lidar acquires the sub-signal (or expressed as a local signal) of an electrical signal of the one detection unit in the first time period, and uses the sub-signal as the first electrical signal.
  • Signal the first electrical signal is used to determine at least one echo information of the detection area.
  • the target distance used to determine the first detection unit group is called the first target distance
  • the characteristic signal used to determine the first target distance is called the first characteristic signal
  • the first characteristic signal is the first characteristic signal.
  • the first time period may be determined by the lidar according to the time information of the first characteristic signal, and the time indicated (or indicated) by the time information of the first characteristic signal is within the first time period.
  • the length of the first time period is a preset time length or a time length determined according to corresponding rules.
  • FIG. 8 is a schematic diagram of a possible electrical signal from a detection unit provided by an embodiment of the present application.
  • the array detector 104 includes four detection units, namely, CH1, CH2, CH3, and CH4. .
  • the laser pulse is reflected to the detection area at the first angle (angle of elevation angle is x1, azimuth angle is y1).
  • the 4 detection units output 4 electrical signals respectively, and the lidar combines 4 electrical signals.
  • the characteristic signal as the peak signal as an example, the first summary electrical signal includes three characteristic signals, which are a characteristic signal S1, a characteristic signal S2, and a characteristic signal S3.
  • the lidar can determine three target distances based on the time information of the three characteristic signals.
  • the characteristic signal S2 in the area 801 can be used to determine the distance d2.
  • the corresponding detection unit group can be determined according to the target distance and angle. For example, according to d2 and the first angle (x1, y1) corresponding to the sub-pulse, it can be determined that the corresponding detection unit group includes a detection unit CH1.
  • the lidar determines a first time period that is a preset time length and includes the time corresponding to the characteristic signal S2, for example, the preset time period is a time period of 100 ns long.
  • the lidar may obtain the sub-signal (the signal shown in the area 802) of the electric signal output by the CH1 in the first time period as the first electric signal. Then, according to the first signal, an echo information of the detection area can be determined. It should be noted that the target distance determined according to the characteristic signal S1 is d1, and the target distance d1 and the first angle (x1, y1) do not have a corresponding detection unit group, so the lidar can determine that the characteristic signal S1 is a false alarm signal. Participate in the follow-up process.
  • FIG. 9 is a schematic diagram of a possible electrical signal from a detection unit provided by an embodiment of the present application.
  • the array detector 104 includes four detection units, namely CH1, CH2, CH3, and CH4.
  • the characteristic signal S3 in the area 901 can be used to determine the distance d3.
  • d3 and the first angle (x1, y1) it can be determined that the corresponding detection unit group includes one detection unit CH4.
  • the lidar determines a first time period that is a preset time length and includes the time corresponding to the characteristic signal S3, for example, the preset time period is a time period that is 100 ns long.
  • the lidar can obtain the sub-signal (such as area 903) of the electric signal output by CH4 in the first time period as the first electric signal. Due to the interference of the signal in the area 902, the determined first electrical signal includes two waveform signals (the signal in the area 904 and the signal in the area 905). In this case, the first electrical signal is used to determine two echo information (one segment of the waveform signal is used to determine one echo signal), or two segments of the waveform signal in the first electrical signal are used to jointly determine one echo. Wave information.
  • the first detection unit group includes multiple detection units, and the lidar acquires multiple sub-signals of the electrical signals of the multiple detection units in the first time period (the electrical signal of one detection unit is used to obtain the One sub-signal in the segment), the multiple sub-signals are aggregated to obtain a first electrical signal, and the first electrical signal is used to determine at least one echo information of the detection area.
  • summarizing the multiple sub-signals to obtain the first electrical signal may include performing summation or cross-correlation processing on the multiple sub-signals to obtain the first electrical signal. Among them, the summation is to add the value of the signal at a certain time in a segment of the signal.
  • Cross-correlation is a signal processing method.
  • a cross-correlation function is used to calculate a signal and another signal point by point. Each time a cross-correlation value is obtained, these cross-correlation values can reflect the relative position of the two signals. The degree of relevance. Therefore, the cross-correlation function is an important method to extract effective signals from noise signals, and is also called correlation filtering.
  • the cross-correlation function can have multiple definitions, and the calculation method of the cross-correlation function can also be customized. It is not limited here.
  • CH1 is calculated at time t1.
  • the value of the signal is multiplied by the value of the signal of CH2 at time t1, and the value of the resulting summary signal at time t1 can be expressed as S1 ⁇ S2.
  • the target distance used to determine the first detection unit group is called the first target distance
  • the characteristic signal used to determine the first target distance is called the first characteristic signal
  • the first characteristic signal is the first summary signal.
  • a characteristic signal in.
  • the first time period may be determined by the lidar according to the time information of the first characteristic signal, and the time indicated (or indicated) by the time information of the first characteristic signal is within the first time period.
  • the length of the first time period is a preset time length or a time length determined according to corresponding rules.
  • FIG. 10 is a schematic diagram of another possible electrical signal from a detection unit provided by an embodiment of the present application.
  • the array detector 104 includes four detection units, namely CH1, CH2, CH3, and CH4. Under a laser pulse, the laser pulse is reflected to the detection area at an angle [x2, y2] (that is, the elevation angle is x2, the azimuth angle is y2), and the 4 detection units output 4 electrical signals respectively, and the lidar will The four electrical signals are summed to obtain the first summary electrical signal.
  • the first summary electrical signal includes three characteristic signals, which are a characteristic signal S4, a characteristic signal S5, and a characteristic signal S6.
  • the lidar can determine three target distances based on the time information of the three characteristic signals.
  • the signal S5 in the area 1001 can be used to determine the distance d5
  • the corresponding detection unit group can be determined according to d5 and the angle (x2, y2) corresponding to the sub-pulse.
  • the detection unit group includes two detection units (ie, CH2, CH3).
  • the lidar determines a first time period that is a preset time length and includes the time corresponding to the characteristic signal S5, for example, the preset time period is a time period of 100 ns long. Lidar obtains the sub-signal of the electrical signal output by CH2 in the first time period.
  • the electrical signal in area 1002. obtain the sub-signal of the electrical signal output by CH3 in the first time period. See the sub-signal in area 1003.
  • two sub-signals are processed through addition or cross-correlation to obtain the first electrical signal, for example, the signal 1004 obtained through the addition, and then the signal 1005 obtained through the cross-correlation. Then, an echo information of the detection area is determined according to the first electrical signal of the lidar (signal 1004 or signal 1005).
  • FIG. 11 is a schematic diagram of a possible electrical signal from a detection unit provided by an embodiment of the present application.
  • the array detector 104 includes four detection units, namely CH1, CH2, CH3, and CH4.
  • the signal S6 in the area 1101 can be used to determine the distance d6. According to d6 and the angle (x2, y2), it can be determined that the corresponding detection unit group includes two detection units (ie, CH3, CH4).
  • the lidar determines a first time period that is a preset time length and includes the time corresponding to the characteristic signal S6, for example, the preset time period is a time period of 100 ns long.
  • Lidar obtains the sub-signal of the electrical signal output by CH3 in the first time period (see the electrical signal in area 1103) in the same way, and obtains the sub-signal of the electrical signal output by CH4 in the first time period (see the electrical signal in area 1104).
  • Electrical signal the two sub-signals are processed through addition or cross-correlation to obtain the first electrical signal (see the signal in the area 1105).
  • the determined first electrical signal includes two waveform signals. Refer to the electrical signal in the area 1106 and the electrical signal in the area 1107.
  • the lidar can use the first electrical signal to determine two echo information (the signal corresponding to a segment of the waveform signal is used to determine an echo signal), or use the two segments of the waveform in the first electrical signal
  • the signal is used to jointly determine an echo information.
  • the echo information of the detection area may be used to characterize the reflection intensity and/or distance of the detection area.
  • the reflection intensity information can be used to determine information such as the material of the detection area
  • the distance information can be used to determine the position of the detection area relative to the lidar
  • both the reflection intensity and distance can be used for radar imaging.
  • the information processing device reports the echo information to the imaging module for the imaging module to select one or more of the echo information as the detection result of the detection area at the angle. After multiple detections at multiple angles, the imaging module can form an image of the object field of view. Referring to FIG. 12, FIG. 12 is a schematic diagram of a possible radar imaging scene provided by an embodiment of the present application.
  • the transmitting end 1201 may include a laser transmitter and a scanning reflection module.
  • the laser transmitter of the transmitting end 1201 emits a laser pulse, which is reflected by the scanning reflection module into the detection area, for example, the area 1205 is the detection area corresponding to the scanning angle of this detection.
  • the detection area 1205 receives the laser light, a reflection phenomenon occurs, and a part of the returned light signal is irradiated into the array detector 1202 after passing through the receiving lens.
  • the detection unit in the array detector 1102 converts the optical signal into an electrical signal, and obtains at least one echo information through corresponding processing.
  • the at least one echo information is transmitted to the imaging module 1206, and the imaging module 1206 selects part or all of the echo information (for example, the echo information received first, or the echo information with the strongest signal strength, etc.) for this time. Detect the imaging of the corresponding detection area.
  • the lidar emits multiple pulsed laser signals and scans multiple detection areas of the object field of view at multiple scanning angles to form an image of the object field of view.
  • the array detector in the radar system receives the optical signal and outputs the electrical signal, it sends the electrical signal output by the detection unit to other equipment. After the corresponding other device obtains the electrical signal, it performs some or all of the steps in step S201 to step S205 on the electrical signal to process the electrical signal to obtain at least one echo information of the detection area.
  • the lidar estimates the preliminary target distance based on the signals summarized and output by the detection unit, and combines the scanning angle information to filter out the signals of the unrelated detection units, so as to obtain the relevant detection units for this detection. , And then select the signal output by the detection unit related to this detection to confirm the information of the detection area, reduce the interference of irrelevant signals, improve the effectiveness of the received signal, and improve the signal-to-noise ratio of the received signal.
  • FIG. 13 is a schematic structural diagram of a signal processing device 130 provided by an embodiment of the present application.
  • the signal processing device 130 may be the above-mentioned lidar or a device integrated in the above-mentioned lidar, such as a chip or an integrated circuit.
  • the signal processing device may include a scanning control unit 1301, a summary unit 1302, a distance determination unit 1303, a unit group determination unit 1304, and an echo determination unit 1305, wherein the description of each unit is as follows:
  • the scanning control unit 1301 is configured to reflect the first laser light to the detection area through the scanning reflection module at a first angle;
  • the summarizing unit 1302 determines a first summary electrical signal according to at least two electrical signals from at least two detection units, where the first summary electrical signal includes at least one characteristic signal;
  • the distance determining unit 1303 is configured to determine at least one target distance corresponding to the detection area according to the time information of the at least one characteristic signal, where the at least one characteristic signal corresponds to the at least one target distance;
  • the unit group determining unit 1304 is configured to determine at least one detection unit group according to the at least one target distance and the first angle, and the detection units included in each detection unit group in the at least one detection unit group belong to the at least one detection unit group. Two detection units;
  • the echo determination unit 1305 is configured to determine at least one echo information of the detection area according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group.
  • the signal processing device estimates the preliminary target distance based on the signals summarized and output by the detection unit, and combines the scanning angle to obtain the detection unit related to this detection, so as to select the signal output by the detection unit related to this detection for use Confirming the echo information in the detection area reduces the interference of irrelevant signals, improves the effectiveness of the received signal, and improves the signal-to-noise ratio of the received signal.
  • the above-mentioned division of multiple units is only a logical division based on functions, and is not intended to limit the specific structure of the signal processing device.
  • some of the functional modules may be subdivided into more small functional modules, and some functional modules may also be combined into one functional module, but regardless of whether these functional modules are subdivided or combined, the signal processing device is in progress.
  • the general flow of the signal processing is the same.
  • the above-mentioned multiple units can also be simplified into a reflection unit and a processing unit.
  • the reflection unit is used to realize the function of the scanning control unit 1301, and the processing unit is used to realize the summary unit 1302, the distance determination unit 1303, and the unit group determination unit.
  • each unit corresponds to its own program code (or program instruction), and when the program code corresponding to each of these units runs on the processor, the unit executes the corresponding process to realize the corresponding function.
  • each detection unit is one photoelectric conversion micro-unit or a collection of multiple photoelectric conversion micro-units.
  • the electrical signal of a photoelectric conversion cell cannot accurately characterize the reflection intensity information of the detection area.
  • the signals output by the conversion cells in one detection unit can be connected in parallel and then output, so as to avoid over-saturation of the final output of an electrical signal. Subsequent echo information of the detection area determined based on this electrical signal is more accurate and easier to determine the reflection intensity information of the detection area.
  • the characteristic signal includes a peak signal, a leading edge signal, or a waveform centroid signal of the first summary electrical signal; the time information is used to indicate the receiving moment of the characteristic signal.
  • the characteristic signal in the first summary electrical signal can reflect the appearance of a relatively strong light signal, and in the lidar detection process, the strong light signal is usually emitted by the lidar, so when the characteristic signal appears There is a high probability that the lidar signal is received, so based on this characteristic signal, the echo information in the lidar detection can be obtained more accurately.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine the first detection Unit group; in determining the echo information of the detection area according to the first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the echo determination unit 1305 specifically uses in:
  • At least one echo information of the detection area is determined according to the first electrical signal.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, therefore, based on the sub-signals of the output signal in the first detection unit group in the first time period, the first electrical signal obtained can more accurately reflect the laser signal reception situation, so according to the first The echo information obtained by the electrical signal is more accurate.
  • the sub-electric signal is used as the basic processing unit, which is convenient for decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine the first detection Unit group; in terms of determining the echo information of the detection area according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the echo determination unit 1305, Specifically used for:
  • the first detection unit group is a detection unit group in the at least one detection unit group
  • the first electrical signal obtained by summarizing the multiple electrical sub-signals is used to determine at least one echo information of the detection area.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, so the electrical signal of the output signal in the first detection unit group during the first time period can more accurately reflect the laser signal reception situation. Therefore, multiple electrical sub-signals (or partial signals) in the electrical signals of the multiple detection unit groups are acquired, and the multiple electrical sub-signals are aggregated to obtain the first electrical signal, so that the echo information obtained based on the first electrical signal more acurrate.
  • the first electrical signal may be obtained by using a summation or cross-correlation method for multiple sub-electric signals.
  • using the sub-electric signal as the basic processing unit facilitates decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the unit group determining unit 1304 is specifically configured to:
  • the detection unit group corresponding to the at least one target distance and the first angle is determined according to the first correspondence set. Wherein, there is a predefined correspondence between the at least one target distance, the first angle, and the detection unit.
  • the pre-stored correspondence relationship can be used to determine the detection unit group corresponding to the target distance and angle, which reduces the pressure of real-time calculation and improves the efficiency of data processing.
  • the at least one echo information of the detection area is used to characterize at least one of the reflection intensity or the distance of the detection area.
  • the device 130 may further include a receiving lens, an array detector including the at least two detection units, and a light homogenizer, where the light homogenizer is disposed between the receiving lens and the light homogenizer. Between the array detectors, it is used to homogenize the light signal passing through the receiving lens.
  • a homogenizer to homogenize the received light signal can disperse the signal that should have been concentrated on a photoelectric conversion cell to the surrounding photoelectric conversion cells, thereby avoiding individual detection in the array detector.
  • the signal oversaturation of the micro element is conducive to more accurate determination of the echo signal strength information.
  • each unit may also correspond to the corresponding description of the method embodiment shown in FIG. 2.
  • the preliminary target distance is estimated based on the signals summarized and output by the detection unit, and the detection unit related to this detection is obtained in combination with the scanning angle, so as to select the output of the detection unit related to this detection.
  • the signal is used to confirm the echo information of the detection area, which reduces the interference of irrelevant signals, improves the effectiveness of the received signal, and improves the signal-to-noise ratio of the received signal.
  • FIG. 14 is a schematic structural diagram of a signal processing device 140 provided by an embodiment of the present application.
  • the signal processing device 140 may be the above-mentioned lidar or a device integrated in the above-mentioned lidar, such as a chip or an integrated circuit.
  • the signal processing apparatus may include a memory 1401, a processor 1402, and a bus 1403, where the memory 1401 and the processor 1402 are connected through the bus 1403.
  • the memory 1401 is used to provide storage space, and the storage space can store data such as an operating system and a computer program.
  • the memory 1401 includes, but is not limited to, random access memory (RAM), read-only memory (ROM), erasable programmable read-only memory (EPROM), or Portable read-only memory (compact disc read-only memory, CD-ROM).
  • the processor 1402 is a module that performs arithmetic operations and logical operations, and can be a processing module such as a central processing unit (CPU), a graphics processing unit (GPU), or a microprocessor (MPU) One or a combination of more.
  • a processing module such as a central processing unit (CPU), a graphics processing unit (GPU), or a microprocessor (MPU) One or a combination of more.
  • a computer program is stored in the memory 1401, and the processor 1402 calls the computer program stored in the memory 1401 to perform the following operations:
  • At least one echo information of the detection area is determined according to a first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group.
  • the signal processing device 140 estimates the preliminary target distance based on the signals collectively output by the detection unit, and combines the scanning angle to obtain the detection unit related to this detection, so as to select the signal output by the detection unit related to this detection. To confirm the echo information of the detection area, the interference of irrelevant signals is reduced, the effectiveness of the received signal is improved, and the signal-to-noise ratio of the received signal is improved.
  • each detection unit is one photoelectric conversion micro-unit or a collection of multiple photoelectric conversion micro-units.
  • the signal value of a photoelectric conversion cell easily reaches saturation, the use of the electrical signal of a photoelectric conversion cell cannot accurately characterize the reflection intensity information of the detection area.
  • the signals output by the conversion cells in one detection unit can be connected in parallel and then output, so as to avoid over-saturation of the final output of an electrical signal. Subsequent echo information of the detection area determined based on this electrical signal is more accurate and easier to determine the reflection intensity information of the detection area.
  • the characteristic signal includes a peak signal, a leading edge signal, or a waveform centroid signal of the first summary electrical signal; the time information is used to indicate the receiving moment of the characteristic signal.
  • the characteristic signal in the first summary electrical signal can reflect the appearance of a relatively strong light signal, and in the lidar detection process, the strong light signal is usually emitted by the lidar, so when the characteristic signal appears There is a high probability that the lidar signal is received, so based on this characteristic signal, the echo information in the lidar detection can be obtained more accurately.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine the first detection Unit group; in terms of determining the echo information of the detection area according to the first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the processor 1402 is specifically configured to :
  • At least one echo information of the detection area is determined according to the first electrical signal.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The relevant detection unit group, therefore, based on the sub-signals of the output signal in the first detection unit group in the first time period, the first electrical signal obtained can more accurately reflect the laser signal reception situation, so according to the first The echo information obtained by the electrical signal is more accurate.
  • the sub-electric signal is used as the basic processing unit, which is convenient for decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the at least one characteristic signal includes a first characteristic signal, the first characteristic signal is used to determine a first target distance, and the first target distance is used to determine the first detection Unit group; in terms of determining the echo information of the detection area according to the first electrical signal obtained from at least one electrical signal of the first detection unit group in the at least one detection unit group, the processor 1402 is specifically configured to :
  • the first detection unit group is a detection unit group in the at least one detection unit group
  • the first electrical signal obtained by summarizing the multiple electrical sub-signals is used to determine at least one echo information of the detection area.
  • the first characteristic signal can reflect the received laser signal with a high probability
  • the first time period is the time period when the laser signal is received with a high probability.
  • the first detection unit group is the real The related detection unit group, so the electrical signal of the output signal in the first detection unit group during the first time period can more accurately reflect the laser signal reception situation. Therefore, multiple electrical sub-signals (or partial signals) in the electrical signals of the multiple detection unit groups are acquired, and the multiple electrical sub-signals are aggregated to obtain the first electrical signal, so that the echo obtained based on the first electrical signal The information is more accurate.
  • the first electrical signal may be obtained by using a summation or cross-correlation method for multiple sub-electric signals.
  • using the sub-electric signal as the basic processing unit facilitates decoupling processing of characteristic signals generated in different time periods in the entire electric signal.
  • the processor 1402 is specifically configured to:
  • the detection unit group corresponding to the at least one target distance and the first angle is determined according to the first correspondence set. Wherein, there is a predefined correspondence between the at least one target distance, the first angle, and the detection unit.
  • the pre-stored correspondence relationship can be used to determine the detection unit group corresponding to the target distance and angle, which reduces the pressure of real-time calculation and improves the efficiency of data processing.
  • the at least one echo information of the detection area is used to characterize at least one of the reflection intensity or the distance of the detection area.
  • the signal processing device may also be externally connected with a scanning reflection module, a receiving lens, an array detector including the at least two detection units, and a homogenizer.
  • the homogenizer It is placed between the receiving lens and the array detector, and is used to homogenize the light signal passing through the receiving lens.
  • a homogenizer to homogenize the received light signal can disperse the signal that should have been concentrated on a photoelectric conversion cell to the surrounding photoelectric conversion cells, thereby avoiding individual detection in the array detector.
  • the signal oversaturation of the micro element is conducive to more accurate determination of the echo signal strength information.
  • the signal processing device 140 described in FIG. 14 can estimate the preliminary target distance based on the signals summarized and output by the detection unit, and combine the scanning angle to obtain the detection unit related to this detection, so as to select the output of the detection unit related to this detection.
  • the signal is used to confirm the echo information of the detection area, which reduces the interference of irrelevant signals, improves the effectiveness of the received signal, and improves the signal-to-noise ratio of the received signal.
  • the embodiment of the present application also provides a computer-readable storage medium, and the computer-readable storage medium stores a computer program.
  • the computer program runs on one or more processors, the computer program shown in FIG. 2 can be implemented. Signal processing method.
  • the embodiments of the present application also provide a computer program product.
  • the computer program product runs on a processor, the signal processing method shown in FIG. 2 can be implemented.
  • An embodiment of the present application also provides a sensor system, which includes at least one sensor.
  • the sensor may include at least one laser radar, and the laser radar may include the signal processing device shown in FIG. 13 or the signal processing device shown in FIG. 14, or the laser radar may be the laser radar 10 shown in FIG. 1.
  • the sensor system may further include at least one of the following: at least one camera, at least one millimeter wave radar, at least one ultrasonic radar, and at least one infrared sensor.
  • An embodiment of the present application also provides a vehicle, and the vehicle may include the above-mentioned sensor system.
  • the embodiment of the present invention also provides a chip system, the chip system includes at least one processor, a memory and an interface circuit, the interface circuit shown is used for external equipment (such as laser transmitter, scanning reflector module, array detector, etc.) Connected to the processor, a computer program is stored in the memory; when the computer program is executed by the processor, the method flow shown in FIG. 2 is implemented. Further, the memory, the interface circuit, and the at least one processor may be interconnected by wires.
  • An embodiment of the present application also provides a terminal.
  • the terminal includes a lidar as shown in FIG. 1 or the terminal includes a signal processing device as shown in FIG. 14.
  • the terminal may be a mobile terminal or transportation tool that needs to perform target detection, such as a vehicle, a drone, a train, or a robot.
  • the preliminary target distance can be estimated based on the signals collected and output by the detection unit, and combined with the scanning angle information to calculate the detection unit related to this detection, which can accurately screen out irrelevant detections.
  • the signal of the unit, and the signal output by the detection unit related to this detection is selected to confirm the information of the detection area, which reduces the interference of irrelevant signals and improves the effectiveness of the received signal.
  • the computer program can be stored in a computer readable storage medium.
  • the computer program During execution, it may include the processes of the foregoing method embodiments.
  • the aforementioned storage media include: ROM or random storage RAM, magnetic disks or optical discs and other media that can store computer program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)
  • Measurement Of Optical Distance (AREA)

Abstract

一种信号处理方法及相关装置,尤其涉及激光雷达。该方法包括:以第一角度通过扫描反射模块向探测区域反射第一激光(S201);根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号(S202),该第一汇总电信号包含至少一个特征信号;根据至少一个特征信号的时间信息确定对应探测区域的至少一个目标距离(S203);根据至少一个目标距离和第一角度确定至少一个探测单元组(S204),该至少一个探测单元组中的探测单元组包含的探测单元属于至少两个探测单元;根据来自至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定探测区域的至少一个回波信息(S205)。该方法和装置能降低雷达回波信息中无关信号的干扰、提高接收信号信噪比。

Description

一种信号处理方法及相关装置
本申请要求于2019年12月28日提交中国专利局、申请号为201911403974.3、申请名称为“一种信号处理方法及相关装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信号处理技术领域,尤其涉及一种信号处理方法及相关装置。
背景技术
激光雷达是一种将激光技术与光电转换技术相结合的测距装置,其基本工作原理是:由激光雷达的发射端向探测区域发射激光,由激光雷达的接收端接收由探测区域返回的光信号,通过测量光信号的往返时间来确定探测区域的信息。而雷达成像技术是将激光雷达通过扫描或多元探测阵列的形式拓展到二维,从而获得探测场景的图像的技术,其中,扫描型激光雷达由于信息分辨率强、体积小及重量轻等优势,被广泛应用于自动驾驶、无人机、资源勘探等领域。扫描型激光雷达中,普遍采用收发旁轴的技术,即在发射端添加角度可变的扫描反射模块对视野范围进行扩充,在接收端使用阵列探测器接收视野范围内返回的光信号并转换为电信号。但由于接收端需要覆盖发射端扫描角度下的全部视野,使得接收视野范围大,使得到的回波信息很容易受到无关信号(例如太阳光、其他激光、电流白噪声等)的影响,影响生成的回波信息的准确性。
因此,如何降低雷达回波信息中的无关信号的干扰、提高接收信号的信噪比,是本领域技术人员正在研究的技术问题。
发明内容
本申请实施例公开了一种信号处理方法及相关装置,能够降低无关信号的干扰、提高接收信号的信噪比。
第一方面,本申请实施例公开了一种信号处理方法,包括:
以第一角度通过扫描反射模块向探测区域反射第一激光;
根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
本申请实施例中,根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度得出本次探测相关的探测单元,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的回波信息,降低了无关信号的干扰,提高了接收信号的有效性,提高了接收信号的信噪比。
在第一方面的一种可能的实施方式中,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
由于一个光电转换微元的信号值容易达到饱和,使用一个光电转换微元的电信号不能准确表征探测区域的反射强度信息。本申请实施例中,在第一探测单元包含多个光电转换微元的情况下,一个探测单元内的转换微元输出的信号可以进行并联后输出,从而避免最终输出一个电信号过饱和,因此后续基于这个电信号确定的探测区域的回波信息更准确,更易于确定探测区域的反射强度信息。
在第一方面的又一种可能的实施方式中,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
可以看出,第一汇总电信号中的特征信号能够反映有相对较强的光信号出现,而在激光雷达探测过程中,较强的光信号通常是由激光雷达发出的,因此当出现特征信号时很大概率是接收到了激光雷达信号,因此基于该特征信号能够更准确地得到激光雷达探测中的回波信息。
在第一方面的又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;所述根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息,包括:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的时接收时刻在所述第一时间段内;
获取来自第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
根据所述第一电信号确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,因此基于该第一探测单元组中的输出信号在该第一时间段内的子信号,得到的第一电信号能够更准确的反映激光信号的接收情况,因此根据第一电信号得到的回波信息更准确。同时以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在第一方面的又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;所述根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息,包括:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
获取来自第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,所以该第一探测单元组中的输出信号在该第一时间段内的电信号能够更准确的反映激光信号的接收情况。因此,获取该多个探测单元组的电信号中的多个子电信号(或者可以说局部信号),将多个子电信号汇总得到第一电信号,从而使得基于该第一电信号得到的回波信息更准确。其中,第一电信号可以是将多个子电信号使用加和或者互相关的汇总方法得到的。此外,以子电信号作为基本处理单元,更便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在第一方面的又一种可能的实施方式中,所述根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,包括:
根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。其中,所述至少一个目标距离、所述第一角度以及所述探测单元之间存在预先定义的对应关系。
可以看出,可以使用预先存储的对应关系来确定目标距离和角度对应的探测单元组,减少了实时计算的压力,提高了数据处理效率。
在第一方面的又一种可能的实施方式中,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
在第一方面的又一种可能的实施方式中,所述方法应用于激光雷达,所述激光雷达包括所述扫描反射模块、接收镜头、包含所述至少两个探测单元的阵列探测器和匀光器,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
可以看出,采用匀光器对接收光信号进行匀化处理,可以将本应集中在一个光电转换微元上的信号分散到周围的光电转换微元上,可以从而避免阵列探测器中的个别微元出现信号过饱和的情况,有利于更准确地确定回波信号强度信息。
第二方面,本申请实施例公开了一种信号处理装置,包括:
扫描控制单元,用于以第一角度通过扫描反射模块向探测区域反射第一激光;
汇总单元,用于根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
距离确定单元,用于根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
单元组确定单元,用于根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
回波确定单元,用于根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
本申请实施例中,信号处理装置根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度得出本次探测相关的探测单元,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的回波信息,降低了无关信号的干扰,提高了接收信号的有效性,提高了接收信号的信噪比。
在第二方面的一种可能的实施方式中,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
由于一个光电转换微元的信号值容易达到饱和,使用一个光电转换微元的电信号不能准确表征探测区域的反射强度信息。本申请实施例中,在第一探测单元包含多个光电转换微元的情况下,一个探测单元内的转换微元输出的信号可以进行并联后输出,从而避免最终输出一个电信号过饱和,因此后续基于这个电信号确定的探测区域的回波信息更准确,更易于确定探测区域的反射强度信息。
在第二方面的又一种可能的实施方式中,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
可以看出,第一汇总电信号中的特征信号能够反映有相对较强的光信号出现,而在激光雷达探测过程中,较强的光信号通常是由激光雷达发出的,因此当出现特征信号时很大概率是接收到了激光雷达信号,因此基于该特征信号能够更准确地得到激光雷达探测中的回波信息。
在第二方面的又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,该回波确定单元具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号接收时刻在所述第一时间段内;
获取来自第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
根据所述第一电信号确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,因此基于该第一探测单元组中的输出信号在该第一时间段内的子信号,得到的第一电信号能够更准确的反映激光信号的接收情况,因此根据第一电信号得到的回波信息更准确。同时以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在第二方面的又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,该回波确定单元具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
获取来自第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,所以该第一探测单元组中的输出信号在该第一时间段内的电信号能够更准确的反映激光信号的接收情况。因此,获取该多个探测单元组的电信号中的多个子电信号(或者可以说局部信号),将多个子电信号汇总得到第一电信号,从而使得基于第一电信号得到的回波信息更准确。其中,第一电信号可以是将多个子电信号使用加和或者互相关的汇总方法得到的。此外,以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在第二方面的又一种可能的实施方式中,在根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组方面,所述单元组确定单元具体用于具体:
根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。其中,所述至少一个目标距离、所述第一角度以及所述探测单元之间存在预先定义的对应关系。
可以看出,可以使用预先存储的对应关系来确定目标距离和角度对应的探测单元组,减少了实时计算的压力,提高了数据处理效率。
在第二方面的又一种可能的实施方式中,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
在第二方面的又一种可能的实施方式中,所述装置还包括接收镜头、包含所述至少两个探测单元的阵列探测器和匀光器,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
可以看出,采用匀光器对接收光信号进行匀化处理,可以将本应集中在一个光电转换微元上的信号分散到周围的光电转换微元上,可以从而避免阵列探测器中的个别微元出现信号过饱和的情况,有利于更准确地确定回波信号强度信息。
第三方面,本申请实施例公开了一种激光雷达,所述激光雷达包括激光发射器、扫描发射模块、阵列探测器、存储器、处理器,所述激光发射器用于发射第一激光,所述阵列探测器包括至少两个探测单元,所述存储器中存储有计算器程序,所述处理器用于调用所述存储器中存储的计算机程序,以执行以下操作:
以第一角度通过所述扫描反射模块向探测区域反射所述第一激光;
根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
本申请实施例中,激光雷达根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度得出本次探测相关的探测单元,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的回波信息,降低了无关信号的干扰,提高了接收信号的有效性,提高了接收信号的信噪比。
在第三方面的一种可能的实施方式中,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
由于一个光电转换微元的信号值容易达到饱和,使用一个光电转换微元的电信号不能准确表征探测区域的反射强度信息。本申请实施例中,在第一探测单元包含多个光电转换微元的情况下,一个探测单元内的转换微元输出的信号可以进行并联后输出,从而避免最终输出一个电信号过饱和,因此后续基于这个电信号确定的探测区域的回波信息更准确,更易于确定探测区域的反射强度信息。
在第三方面的又一种可能的实施方式中,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
可以看出,第一汇总电信号中的特征信号能够反映有相对较强的光信号出现,而在激光雷达探测过程中,较强的光信号通常是由激光雷达发出的,因此当出现特征信号时很大概率是接收到了激光雷达信号,因此基于该特征信号能够更准确地得到激光雷达探测中的回波信息。
在第三方面的又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述处理器具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号接收时刻在所述第一时间段内;
获取来自第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
根据所述第一电信号确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,因此基于该第一探测单元组中的输出信号在该第一时间段内的子信号,得到的第一电信号能够更准确的反映激光信号的接收情况,因此根据第一电信号得到的回波信息更准确。同时以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在第三方面的又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述处理器具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
获取来自第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,所以该第一探测单元组中的输出信号在该第一时间段内的电信号能够更准确的反映激光信号的接收情况。因此,获取该多个探测单元组的电信号中的多个子电信号(或者可以说局部信号),将多个子电信号汇总得到第一电信号,从而使得基于第一电信号得到的回波信息更准确。其中,第一电信号可以是将多个子电信号使用加和或者互相关的汇总方法得到的。此外,以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在第三方面的又一种可能的实施方式中,在根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组方面,所述处理器具体用于:
根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。其中,所述至少一个目标距离、所述第一角度以及所述探测单元之间存在预先定义的对应关系。
可以看出,可以使用预先存储的对应关系来确定目标距离和角度对应的探测单元组,减少了实时计算的压力,提高了数据处理效率。
在第三方面的又一种可能的实施方式中,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
在第三方面的又一种可能的实施方式中,所述激光雷达还包括匀光器,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
可以看出,为了避免探测单元中的一个光电转换微元输出的信号值达到饱和,采用匀光器对接收光信号进行匀化处理,将本应集中在一个光电转换微元上的信号可以分散到周围的光电转换微元上,从而避免阵列探测器中的个别微元出现信号过饱和的情况,有利于更准确地确定回波信号强度信息。
在第三方面的又一种可能的实施方式中,所述激光雷达还包括数据采集模块,所述数据采集模块用于采集阵列探测器输出的信号,还用于对阵列探测器输出的信号进行预处理。
第四方面,本申请实施例公开了一种信号处理设备,该信号处理设备包括存储器和处理器,所述存储器中存储有计算机程序,当所处计算成程序在所述处理器上运行时,执行如第一方面或者第一方面的任意一种可能的实施方式中所述的方法。
第五方面,本申请实施例公开了一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在一个或多个处理器上运行时,执行如第一方面或者第一方面的任意一种可能的实施方式中所述的方法。
第六方面,本申请实施例公开了一种传感器系统,该传感器系统可以包括至少一个传 感器,所述传感器包括第二方面的信号处理装置、或者第三方面的激光雷达、或者第四方面的信号处理设备,该传感器系统用于实现第一方面或者第一方面的任意一种可能实施方式中所示的方法。
第七方面,本申请实施例公开了一种车辆,所述车辆包括第六方面的传感器系统。
第八方面,本申请实施例公开了一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所示接口电路用于供外接设备(如激光发射器、扫描反射模块、阵列探测器等)连接到所述处理器,所述存储器中存储有计算机程序;所述计算机程序被所述处理器执行时,用于实现第一方面或者第一方面的任意一种可能实施方式中所示的方法。进一步的,所述存储器、所述接口电路和所述至少一个处理器可以通过线路互联。
第九方面,本申请实施例公开了一种终端,所述终端包含第三方面或者第三方面的任意一种可能的实施方式中所描述的激光雷达。进一步的,所述终端可以为车辆、无人机、火车或者机器人等需要进行目标探测的移动终端或者运输工具。
附图说明
以下对本申请实施例用到的附图进行介绍。
图1是本申请实施例提供的一种激光雷达的结构示意图;
图2是本申请实施例提供的一种信号处理方法的流程图;
图3是本申请实施例提供的一种阵列探测器的结构示意图;
图4是本申请实施例提供的一种来自探测单元的电信号的示意图;
图5是本申请实施例提供的一种汇总信号的方法示意图;
图6是本申请实施例提供的一种可能的探测单元组的示意图;
图7是本申请实施例提供的一种确定探测单元组的方法示意图;
图8是本申请实施例提供的一种来自探测单元的电信号的示意图;
图9是本申请实施例提供的又一种来自探测单元的电信号的示意图;
图10是本申请实施例提供的又一种来自探测单元的电信号的示意图;
图11是本申请实施例提供的又一种来自探测单元的电信号的示意图;
图12是本申请实施例提供的一种雷达成像的场景示意图;
图13是本申请实施例提供的一种信号处理装置的结构示意图;
图14是本申请实施例提供的一种信号处理设备的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
请参见图1,图1是本申请实施例提供的一种激光雷达10的结构示意图,该激光雷达包括激光发射器101、扫描反射模块102、接收镜头103、阵列探测器104、数据处理模块105、处理器106和存储器107,其中:
激光发射器101是用于发射激光的装置,可以按照预设时间间隔发射激光脉冲。
扫描反射模块102是可以进行摆动(或者说转动)的反射镜,在一维或二维进行往复 运动从而分别向不同角度反射激光,使得激光照射在对应的发射扫描视场范围内,也可以称为扫描镜或反射镜。常见的扫描反射模块102有机械镜、微机电系统(micro-electro-mechanicalsystem,MEMS)微振镜等。其中,MEMS微振镜的镜面尺寸通常为数毫米,在体积、功耗和集成性上都有很大优势,且MEMS微振镜的摆动频率较高,在帧率上也有出色的表现。
接收镜头103是用于接收光信号的器件,可以是一个或者多个凹透镜、凸透镜、凹凸透镜、弯月透镜等形状的光学镜头。在一些可能的实施方式中,接收镜头还可以包括滤光片等利于接收光信号的器件。
阵列探测器104是按照行列排布的探测单元阵列,包括至少两个探测单元(阵列探测器104中的每个方格为一个探测单元)。阵列探测器104可以接收经过接收镜头103汇聚的光信号,并将光信号转换为电信号。阵列探测器104包括至少两个探测单元,而根据探测单元中的光电转换微元的不同,可以分为半导体雪崩光电二极管(avalanche photo detector,APD)阵列、单光子雪崩二极管(single-photon avalanche diode,SPAD)阵列等。根据探测单元的排布规律,可以分为1×2阵列、2×2阵列、3×3阵列等规格的阵列,本申请对此不做限定。所述阵列探测器可以设置在接收镜头103的焦点所在的平面之前、焦点所在的平面或者焦点所在的平面之后。
数据采集模块105用于采集阵列探测器104中探测单元的输出的信号,还用于对阵列探测器104中的电信号进行信号放大、整形或者模数转换等预处理。
处理器106用于控制激光发射器101发射激光、控制扫描反射模块102以预设角度反射激光和处理至少两个探测单元输出的电信号。处理器106是进行算术运算和逻辑运算的模块,是激光雷达计算核心以及控制核心,可以解析激光雷达内的各类指令以及处理各类数据。具体的,处理器106可以是一个或多个中央处理器(central processing unit,CPU)、显卡处理器(graphics processing unit,GPU)或微处理器(microprocessor unit,MPU)等模块。可选的,上述数据处理模块105所完成的收集电信号的功能也可以由处理器106完成。
存储器107用于提供存储空间,存储操作系统和计算机程序等数据。存储器107包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。
可选的,该激光雷达还包括准直装置108,该准直装置108设置于激光发射器101和扫描反射模块102之间,可以使得激光发射器101发射出来的激光束更加集中的入射到扫描反射模块102上,可以提高发射效率和激光雷达的角度分辨率。
可选的,该激光雷达还可以包括匀光器109,该匀光器109设置于接收镜头103与阵列探测器104之间,用于匀化透过所述接收镜头的光信号,避免探测单元中的个别微元出现光信号过饱和的情况,有利于准确估计回波信号强度信息。可选的,匀光器可以是整块匀光片,铺设在阵列探测器前方,覆盖所有的探测单元,也可以是多个匀光片,多个匀光片中的一个匀光片铺设在一个或多个探测区域前,用于匀化光信号。
在激光雷达的一次探测过程中,处理器101控制激光发射器102发射第一激光,扫描 反射模块反射第一激光到探测区域。探测区域反射光信号,照射到阵列探测器105上。相应的,阵列探测器105将接收到的光信号转换为电信号。所述数据处理模块107用于收集阵列探测器105中探测单元的输出的电信号。处理器101用于控制激光发射器102发射激光、控制扫描反射模块以预设角度反射激光和处理至少两个探测单元输出的电信号,得到探测区域的回波信息。
请参见图2,图2是本申请实施例提供的一种信号处理方法的流程示意图,该方法还可以基于上述激光雷达来实现,该方法包括但不限于如下步骤:
步骤S201:激光雷达以第一角度通过扫描反射模块向探测区域反射第一激光。
具体地,该第一激光可以是激光发射器发射的某一束激光,例如,该激光发射器按照预设时间间隔发射激光脉冲,该第一激光即为其中的某一个激光脉冲信号。
该激光雷达中的扫描反射模块能够以多种角度反射激光,此处的第一角度为其中某一个角度。可选的,该第一角度可以通过一个维度或者多个维度来表示,例如可以表示为[方位角,仰角]的形式,其中,方位角可以表示水平方向的角度,仰角可以表示垂直方向上的角度。
步骤S202:激光雷达根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号。
具体地,探测单元可以是一个光电转换微元,也可以是多个光电转换微元的集合。其中,光电转换微元是可以将光信号转换为电信号的器件,例如,光电转换微元可以为光电倍增管(photomultipliertube,PMT)、或者硅光电倍增管(silicon photomultiplier,SiPM)、或者半导体雪崩光电二极管(avalanche photo detector,APD)、或者单光子雪崩二极管(single-photon avalanche diode,SPAD)等光电器件中的一个。可选的,上述多个转换微元的集合中的光电器件可以是不同的光电转换器件。
在一个探测单元中包括多个光电转换微元的情况下,探测单元内的光电转换微元输出的信号可以进行并联,最终输出一个电信号。例如,参见图3,图3是本申请实施例提供的一种阵列探测器的结构示意图,阵列探测器104中存在有多个子区域(每个方格为一个子区域),每一个子区域代表一个探测单元。在图3所示的阵列探测器104中,一个探测单元为四个光电转换微元的集合,即一个探测单元内设置有四个光电转换微元,以其中一个探测单元为例,该探测单元包括第一光电转换微元301、第二光电转换微元302、第三光电转换微元303和第四光电转换微元304。第一光电转换微元302、第二光电转换微元303、第三光电转换微元304和第四光电转换微元305的电信号可以并联输出,并联输出的一个总信号即为该探测单元输出的一个电信号。
探测单元根据光信号可以得到相应的电信号。可以理解的是,当其他在所选用的光电探测单元探测波段范围内的光信号照射到该探测单元上时也会被转换为电信号,例如,太阳光照射到探测单元上,探测单元也会将太阳光转换为电信号,再如,其他设备(例如其他雷达设备)发射的光信号被反射到探测单元上时,也会被转换为电信号,这些无关的信号影响了探测区域返回的光信号。此外,探测单元输出的电信号还可能受到了其他线路上的电流的影响,这些与探测区域返回的信号无关的信号,形成了噪声,对输出的信号造成 了干扰,降低了雷达接受的回波信号的信噪比,影响了雷达接收信号的有效性。
参见图4,图4是本申请实施例示意的一种来自探测单元的电信号的示意图,其中激光发射器101按照预设时间间隔发射激光,其中,发射的一束激光脉冲照射到对应的探测区域上,该次激光脉冲对应的探测区域中包含两个物体,分别为物体401和物体402。参见图4中的(a)部分,以预设的时间间隔为10微秒(us)为例,激光发射器101在t0(0us)时发射第一激光,第一激光照射到物体401和物体402中。参见图4中的(b)部分,阵列探测器的一个探测单元403在t1(5us)时刻左右接收到物体401返回的光信号,并根据返回的光信号得到电信号,参见区域404所示的波形信息。参见图4中的(c)部分,探测单元403在t2(8us)时刻左右接收到物体402返回的光信号,并根据返回的光信号得到电信号,参见区域405所示的波形信息。参见图4中的(d)部分,由于太阳光照射到物体401上,物体401反射太阳光到阵列探测器104上,探测单元403接收到物体401反射的太阳光,并根据该太阳光得到电信号,参见区域406所示的波形信息。在10us时,该次激光脉冲探测结束,激光发射器发射下一个脉冲,开始新一轮探测。
本申请实施例中,确定第一汇总电信号的方式可以具体为:将来自至少两个探测单元的至少两个电信号加和得到第一汇总电信号。参见图5,图5是本申请实施例中提供的一种可能的汇总信号的方法示意图,该阵列探测器104包括至少两个探测单元,具体指探测单元CH1、探测单元CH2、探测单元CH3和探测单元CH4,激光雷达将CH1、CH2、CH3、CH4输出的电信号进行逐点加和得到汇总电信号。例如,将CH1、CH2、CH3、CH4输出的电信号在t1时刻的信号进行加和,得到汇总电信号在t1时刻的信号。再如,将CH1、CH2、CH3、CH4输出的电信号在t5时刻的信号进行加和,得到汇总电信号在t5时刻的信号。
在第一汇总电信号中,包括至少一个特征信号,该特征信号可以为峰值信号、或者前沿信号(或者说上升沿信号),或者波形质心信号等表明特殊波形特征的信号。可选的,特征信号的确定可以通过信号检测得到特征信号,在进行信号检测时,可以预先设置检出阈值,只有信号值等于或大于预设阈值的信号才可以被检测为特征信号。其中,峰值信号为一段时间内信号值的最高值对应的信号,前沿信号为一段时间内信号值持续增加的一段信号,波形质心信号为一个波形信息的质心位置对应的信号。例如,参见图5,区域501中的信号即为一个特征信号。特征信号能够反映有在汇总电信号中有相对较强的光信号出现,而在激光雷达探测过程中,较强的光信号通常是由激光雷达发出的,因此当出现特征信号时很大概率是接收到了激光雷达信号,因此基于该特征信号能够更准确地得到激光雷达探测中的回波信息。
可选的,在确定第一汇总电信号之前,可以使用数据采集模块来采集阵列探测器中的探测单元输出的电信号,该数据采集模块还可以用于对来自探测单元的电信号进行预处理,例如,对探测单元的信号进行放大、整形、或模数转换等,便于后续对探测单元输出的电信号进行汇总。
步骤S203:激光雷达根据至少一个特征信号的时间信息确定对应的至少一个目标距离。
具体的,特征信号对应有接收的时间信息,例如,以特征信号为峰值信号为例,峰值信号的时间信息为峰值出现的时刻。再如,以特征信号为前沿信号为例,前沿信号的时间 信息波形可以为上升沿的中间时刻。
激光雷达根据至少一个特征信号的时间信息确定对应该探测区域的至少一个目标距离可以具体为:根据特征信号的时间信息和发射第一激光的时间得到激光飞行时间差,然后根据光速与该时间差可以确定探测区域的目标距离。其中,目标距离可以用于表征激光雷达与探测区域中的物体之间的距离。以图4所示场景为例,激光发射器在t0时刻发射了激光,在t1时刻接收有特征信号403,那么根据t1时刻与t0时刻的时间差,可以得到激光的飞行时间差(t2-t1)。根据光速与该时间差可以确定探测区域的目标距离D,即D=(t2-t1)*c/2(其中c为激光的光速)。在第一汇总信号的至少一个特征信号中,一个特征信号可以用于确定探测区域的一个目标距离,例如,存在特征信号1和特征信号2,那么基于特征信号1执行上述操作可以得到目标距离D1,基于特征信号2执行上述操作可以得到目标距离D2。
步骤S204:激光雷达根据至少一个目标距离和第一角度确定至少一个探测单元组。
具体的,根据探测区域的距离和扫描反射模块的角度与探测单元存在对应关系,为了方便描述,将与目标距离和第一角度对应的一个或多个探测单元称为一个探测单元组。参见图6,图6是本申请实施例提供的一种可能的探测单元组的示意图,激光发射器101在某时刻发射第一激光,以角度θ经过扫描反射模块102反射后,照射到探测区域中的物体601上。物体601反射光信号,经过接受镜头103汇聚后,照射到阵列探测器104的探测单元CH1和CH2上,被转换为电信号,因此,以物体603对应的距离为d1为例,在角度θ下,目标距离为d1的物体对应的探测单元组为CH1和CH2这一组。由于激光发射器101、扫描反射模块102、接收镜头103和阵列探测器104的位置和性质(如接收镜头的焦距)可以预先设置,因此探测区域的返回的光信号所照射的探测单元,与反射激光的角度和物体601的距离存在对应关系。
激光雷达根据至少一个目标距离和第一角度确定至少一个探测单元组,有以下几种可选方案:
方案一,预先定义包含至少一组对应关系的对应关系集合,根据对应关系集合确定至少一个目标距离和第一角度对应的探测单元组。具体的,该对应关系集合可以预先存储在激光雷达中,也可以预先配置给所述激光雷达。其中,由于无关信号的干扰,存在与目标距离和第一角度没有对应的探测单元组,激光雷达可以认为没有对应的探测单元的信号为虚警信号。参见表1,表1示意了一种可能的对应关系集合,该对应关系集合用于描述至少一个目标距离和第一角度对应的探测单元组,其中,可以使用[方位角,俯仰角]来表示第一角度。可以看出,在目标距离为100米(m),方位角为30°,俯仰角为30°的情况下,激光雷达确定出的探测单元组为探测单元CH1、CH2、CH3、CH4,而在目标距离为250m,方位角为60°,俯仰角为60°的情况下,激光雷达系统从对应关系集合中没有找到对应的探测单元组,则认为用于确定目标距离为250m的信号为虚警信号。
表1 对应关系集合
距离(m) 角度(°) 探测单元组
100 [30,30] CH1、CH2、CH3、CH4
120 [30,30] CH1、CH2、CH3
140 [30,30] CH1、CH2、CH3
160 [30,30] CH2、CH3
180 [30,30] CH2
250 [60,60]
方案二,通过预设算法确定目标距离和第一角度对应的探测单元组。进一步,该确定可以是实时的。激光雷达可以通过预先存储的算法对应的探测单元组,或者激光雷达获取通过预设算法确定的对应的探测单元组,例如激光雷达可以通过将目标距离和第一角度发送给其他设备,由其他设备来通过预设算法计算并返回对应的探测单元组。其中,该算法可以是基于模型训练得出的算法,也可以是通过求解几何关系得到的算法,具体不做限定。下面例举计算对应的探测单元组的两种可能的方式:
方式一,通过已知角度,向已知距离的物体发射激光,对阵列探测器接收到返回信号的探测单元的编号进行记录,将对应的记录作为样本,通过积累样本数据得到确定探测单元组的算法。例如,在一个角度θ下,使得激光照射到不同距离D n的物体上,记录物体返回的光信号对应的探测单元的编号CH ij。其中,i为阵列探测单元的行编号,j为阵列探测单元的列编号,则CH ij可以表示第i行第j列的探测单元,例如,CH 23表示第2行第3列的探测单元。可选的,还可以使用其他编号形式来表示探测单元编号,例如,数字角标作为探测单元编号,在这里不做限定,例如CH n表示第n个探测单元,此时,CH 12表示第10个探测单元。将距离D n、扫描角度θ、和探测单元编号CH ij作为一条训练样本数据,根据预设数量的训练样本数据可以的得到确定探测单元组的算法。基于该算法,以目标距离和扫描角度作为输入,可以得到输入的目标距离和扫描角度对应的探测单元组。
方式二,根据几何关系计算光信号照射到探测单元的几何位置,得到对应的探测单元组。由于激光雷达中,激光发射器101、扫描反射模块102、接收镜头103和阵列探测器104的位置和性质(如接收镜头的焦距)可以预先得知,并因此将各个模块的位置参数作为已知参数,结合目标距离和第一角度,通过求解几何关系可以得到对应的探测单元组。参见图7,图7是本申请实施例提供的一种确定探测单元组的方法示意图,扫描反射模块102(或者说扫描反射镜)中心到探测区域701的距离在Z轴上的投影X 1,和探测区域701在阵列探测器上的光信号位置到接收主光轴的距离x,满足如下几何关系:
Figure PCTCN2020134717-appb-000001
Figure PCTCN2020134717-appb-000002
Figure PCTCN2020134717-appb-000003
其中,θx表示x方向的扫描角度。θx'为探测区域701与接收镜头103中心连线在X-Z平面的投影与接收主光轴的夹角,当Dx远大于d x时,可认为θx'≈θx。d x表示扫描反射模块102中心到阵列探测器104轴心的距离在X轴上的投影,D x表示扫描反射模块102中心到探测区域701的距离在X轴上的投影,D x'表示,探测区域701到接收镜头103中心的距离在X-Z平面上的投影,由于激光雷达的大小通常远小于激光雷达到探测区域的距离,因 此D x和D x'均可以看作是目标距离。d z表示扫描反射模块102中心到阵列探测器104轴心的距离在Z轴上的投影,x表示探测区域701在阵列探测器上的探测位置到接收主光轴的距离。其中,各个参数可以是正数也可以是负数。激光雷达通过上述几何关系,可以确定计算探测区域705在阵列探测器上的光信号位置到主光轴中心的距离的几何关系算法,进而根据光信号位置到主光轴的距离确定对应的探测单元组。
例如,将Dx=Dx′,θx'=θx代入公式1-1、公式1-2和公式1-3中可以解得:
Figure PCTCN2020134717-appb-000004
Figure PCTCN2020134717-appb-000005
激光雷达可以将上述公式1-5作为计算探测区域705在阵列探测器上的光信号位置到接收主光轴的距离的算法,进而根据光信号位置到主光轴的距离确定对应的探测单元组。
可选的,方案一中的对应关系集合可以是采用上述方案二中的计算方式预先计算得到的。
步骤S205:激光雷达根据来自至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定探测区域的至少一个回波信息。
具体的,第一探测单元组是至少一个探测单元组中的某一个探测单元组。第一探测单元组中可以有一个探测单元,也可以有多个探测单元,下面分情况进行说明:
情况一,第一探测单元组中包括一个探测单元,激光雷达获取该一个探测单元的一个电信号在第一时间段内的子信号(或者表述为局部信号),将该子信号作为第一电信号,该第一电信号用于确定探测区域的至少一个回波信息。其中,为了方便描述,将用于确定第一探测单元组的目标距离称为第一目标距离,将用于确定第一目标距离的特征信号称为第一特征信号,第一特征信号为第一汇总信号中的一个特征信号。第一时间段可以是激光雷达根据该第一特征信号的时间信息确定的,所述第一特征信号的时间信息指示(或者表示)的时刻在所述第一时间段内。可选的,该第一时间段的长度为预设的时间长度或者根据相应规则确定出的时间长度。
例如,参见图8,图8是本申请实施例提供的一种可能的来自探测单元的电信号的示意图,阵列探测器104包括四个探测单元,即CH1、CH2、CH3、CH4四个探测单元。在一次激光脉冲下,该次激光脉冲以第一角度(俯仰角为x1,方位角为y1的角度)反射到探测区域,4个探测单元分别输出4个电信号,激光雷达将4个电信号进行汇总,得到第一汇总电信号。以特征信号为峰值信号为例,第一汇总电信号中包括3个特征信号,分别为特征信号S1、特征信号S2和特征信号S3。将特征信号的峰值对应的时刻作为特征信号的时间信息,则激光雷达根据3个特征信号的时间信息可以确定3个目标距离。例如,区域801中的特征信号S2可以用于确定距离d2。根据目标距离和角度可以确定对应的探测单元组,例如根据d2和该次脉冲对应的第一角度(x1,y1)可以确定对应的探测单元组包 括一个探测单元CH1。激光雷达确定一个为长度预设的时间长度且包含该特征信号S2对应的时刻的第一时间段,例如,预设的时间段长度为100ns长的时间段。激光雷达可以获取CH1输出的电信号在该第一时间段内的子信号(如区域802所示的信号),作为第一电信号。之后根据该第一信号可以确定探测区域的一个回波信息。需要说明的是,根据特征信号S1确定的目标距离为d1,而目标距离d1和第一角度(x1,y1)没有对应的探测单元组,因此激光雷达可以确定特征信号S1为虚警信号,不参与后续处理过程。
再如,参见图9,图9是本申请实施例提供的一种可能的来自探测单元的电信号的示意图,阵列探测器104包括四个探测单元,即CH1、CH2、CH3、CH4。区域901中的特征信号S3可以用于确定距离d3。而根据d3和第一角度(x1,y1)可以确定对应的探测单元组包括一个探测单元CH4。激光雷达确定一个为长度预设的时间长度且包含该特征信号S3对应的时刻的第一时间段,例如,预设的时间段长度为100ns长的时间段。激光雷达可以获取CH4输出的电信号在该第一时间段内的子信号(如区域903),作为第一电信号。由于区域902中的信号的干扰,使得确定的第一电信号中包括两段波形信号(区域904中的信号和区域905中的信号)。这种情况下,该第一电信号用于确定两个回波信息(其中一段波形信号用于确定一个回波信号),或者将第一电信号中的两段波形信号用于共同确定一个回波信息。
情况二,第一探测单元组中包括多个探测单元,激光雷达获取该多个探测单元的电信号在第一时间段内的多个子信号(一个探测单元的电信号用于得到在第一时间段内的一个子信号),将多个子信号汇总得到第一电信号,该第一电信号用于确定探测区域的至少一个回波信息。可选的,将所述多个子信号汇总得到第一电信号,可以包括将所述多个子信号通过加和或者互相关处理得到所述第一电信号。其中,加和为将一段信号中某一时刻的信号的值进行相加,例如,CH1在t1时刻的信号的值为S1,CH2在t1时刻的信号的值为S2,将CH1和CH2的信号进行加和,得到的汇总信号在t1时刻的值可以表示为S1+S2。互相关是一种信号处理方法,通过互相关函数将一段信号与另一段信号进行逐点计算,每次计算都得到一个互相关的值,这些互相关的值可以反映两段信号在相对位置的相关的程度。因此,互相关函数是在噪声信号中提取有效信号的重要办法,也称为相关滤波。其中,互相关函数可以有多种定义,也可以自定义互相关函数的计算方法,在这里不做限定,例如,将互相关函数定义为两段信号的乘积,则计算时将CH1在t1时刻的信号的值与CH2在t1时刻的信号的值相乘,得到的汇总信号在t1时刻的值可以表示为S1×S2。为了方便描述,将用于确定第一探测单元组的目标距离称为第一目标距离,将用于确定第一目标距离的特征信号称为第一特征信号,第一特征信号为第一汇总信号中的一个特征信号。第一时间段可以是激光雷达根据该第一特征信号的时间信息确定的,所述第一特征信号的时间信息指示(或者表示)的时刻在所述第一时间段内。可选的,该第一时间段的长度为预设的时间长度或者根据相应规则确定出的时间长度。
例如,参见图10,图10是本申请实施例提供的又一种可能的来自探测单元的电信号的示意图,阵列探测器104包括四个探测单元,即CH1、CH2、CH3、CH4。在一次激光脉冲下,该次激光脉冲以角度[x2,y2](即俯仰角为x2,方位角为y2的角度)反射到探测区域,4个探测单元分别输出4个电信号,激光雷达将4个电信号汇总得到第一汇总电信号。 以特征信号为峰值信号为例,第一汇总电信号中包括3个特征信号,分别为特征信号S4、特征信号S5和特征信号S6。将特征信号的峰值对应的时刻作为特征信号的时间信息,则激光雷达根据3个特征信号的时间信息可以确定3个目标距离。例如,区域1001中的信号S5可以用于确定距离d5,根据d5和该次脉冲对应的角度(x2,y2)可以确定对应的探测单元组,该探测单元组包括两个探测单元(即CH2、CH3)。激光雷达确定一个为长度预设的时间长度且包含该特征信号S5对应的时刻的第一时间段,例如,预设的时间段长度为100ns长的时间段。激光雷达获取CH2输出的电信号在第一时间段内的子信号,参见区域1002中的电信号,同理,获取CH3输出的电信号在第一时间段内的子信号,参见区域1003中的电信号,将两个子信号通过加和或者互相关处理得到第一电信号,例如经过加和得到的信号1004,再如经过互相关得到的信号1005。之后根据激光雷达第一电信号(信号1004或信号1005)确定探测区域的一个回波信息。
再如,参见图11,图11是本申请实施例提供的一种可能的来自探测单元的电信号的示意图,阵列探测器104包括四个探测单元,即CH1、CH2、CH3、CH4。区域1101中的信号S6可以用于确定距离d6,根据d6和角度(x2,y2)可以确定对应的探测单元组包括两个探测单元(即CH3、CH4)。激光雷达确定一个为长度预设的时间长度且包含该特征信号S6对应的时刻的第一时间段,例如,预设的时间段长度为100ns长的时间段。激光雷达获取CH3输出的电信号在第一时间段内的子信号(参见区域1103中的电信号)同理,获取CH4输出的电信号在第一时间段内的子信号(参见区域1104中的电信号),将两个子信号通过加和或者互相关处理得到第一电信号(参见区域1105中的信号)。而由于区域1102中的信号的干扰,使得确定的第一电信号中包括两段波形信号,参见区域1106中的电信号和区域1107中的电信号。这种情况下,激光雷达可以将该第一电信号用于确定两个回波信息(其中一段波形信号对应的信号用于确定一个回波信号),或者将第一电信号中的两段波形信号用于共同确定一个回波信息。
可选的,探测区域的回波信息可以用于表征所述探测区域的反射强度和/或距离。其中,反射强度信息可以用于确定该探测区域的材质等信息,距离信息可以用于确定探测区域相对激光雷达的位置,反射强度和距离均可以用于雷达成像。例如,信息处理设备将回波信息上报给成像模块,用于成像模块选取其中一个或多个回波信息作为该角度下的探测区域的探测结果。成像模块经过多个角度的多个探测,可以形成物方视场的图像。参见图12,图12是本申请实施例提供的一种可能的雷达成像的场景示意图,发射端1201可以包括激光发射器和扫描反射模块。其中,发射端1201的激光发射器发射一束激光脉冲,经过扫描反射模块反射到探测区域中,例如,区域1205即该次探测的扫描角度对应的探测区域。探测区域1205接收到激光后产生反射现象,其中一部分返回的光信号经接收镜头后,照射到阵列探测器1202中。相应的,阵列探测器1102中的探测单元将光信号转化为电信号,经过相应处理得到至少一个回波信息。该至少一个回波信息被传送给成像模块1206,成像模块1206选择其中部分或全部回波信息(例如最先接受的回波信息,或者信号强度最强的回波信息等),用于该次探测对应的探测区域的成像。激光雷达经过发射多个脉冲激光信号、在多个扫描角度下对物方视场的多个探测区域进行扫描,形成物方视场的图像。
在一种可选的方案中,雷达系统中的阵列探测器接收光信号输出电信号后之后,将探 测单元输出的电信号发送给其他设备。相应的其他设备获取电信号后,对电信号进行如步骤S201至步骤S205中的部分或全部步骤,对电信号进行处理,得到探测区域的至少一个回波信息。
在图2所描述的方法中,激光雷达根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度信息能筛除不相关的探测单元的信号,从而得出本次探测相关的探测单元,然后选取本次探测相关的探测单元输出的信号用于确认探测区域的信息,降低了无关信号的干扰,提高了接收信号的有效性,提升了接收信号的信噪比。
上述详细阐述了本申请实施例的方法,下面提供本申请实施例的装置。
请参见图13,图13是本申请实施例提供的一种信号处理装置130的结构示意图,该信号处理装置130可以为上述激光雷达或者上述激光雷达中集成的器件,例如芯片或者集成电路等,该信号处理装置可以包括扫描控制单元1301、汇总单元1302、距离确定单元1303、单元组确定单元1304和回波确定单元1305,其中,各个单元的描述如下:
扫描控制单元1301,用于以第一角度通过扫描反射模块向探测区域反射第一激光;
汇总单元1302,根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
距离确定单元1303,用于根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
单元组确定单元1304,用于根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
回波确定单元1305,用于根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
本申请实施例中,信号处理装置根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度得出本次探测相关的探测单元,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的回波信息,降低了无关信号的干扰,提高了接收信号的有效性,提高了接收信号的信噪比。
这里需要说明的是,上述多个单元的划分仅是一种根据功能进行的逻辑划分,不作为对信号处理装置具体的结构的限定。在具体实现中,其中部分功能模块可能被细分为更多细小的功能模块,部分功能模块也可能组合成一个功能模块,但无论这些功能模块是进行了细分还是组合,信号处理装置在进行信号处理的过程中所执行的大致流程是相同的。例如,上述多个单元也可以简化为反射单元以及处理单元,所述反射单元用于实现扫描控制单元1301的功能,所述处理单元用于实现汇总单元1302、距离确定单元1303、单元组确定单元1304以及回波确定单元1305中的一个或多个的功能。通常,每个单元都对应有各自的程序代码(或者说程序指令),这些单元各自对应的程序代码在处理器上运行时,使得该单元执行相应的流程从而实现相应功能。在一种可能的实施方式中,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
由于一个光电转换微元的信号值容易达到饱和,使用一个光电转换微元的电信号不能 准确表征探测区域的反射强度信息。本申请实施例中,在第一探测单元包含多个光电转换微元的情况下,一个探测单元内的转换微元输出的信号可以进行并联后输出,从而避免最终输出一个电信号过饱和,因此后续基于这个电信号确定的探测区域的回波信息更准确,更易于确定探测区域的反射强度信息。
在又一种可能的实施方式中,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
可以看出,第一汇总电信号中的特征信号能够反映有相对较强的光信号出现,而在激光雷达探测过程中,较强的光信号通常是由激光雷达发出的,因此当出现特征信号时很大概率是接收到了激光雷达信号,因此基于该特征信号能够更准确地得到激光雷达探测中的回波信息。
在又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息,所述回波确定单元1305具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
获取来自第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
根据所述第一电信号确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,因此基于该第一探测单元组中的输出信号在该第一时间段内的子信号,得到的第一电信号能够更准确的反映激光信号的接收情况,因此根据第一电信号得到的回波信息更准确。同时以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述回波确定单元1305,具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的时间信息指示的时间在所述第一时间段内;
获取来自第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,所以该第一探测单元组中的输出信号在该第一时间段内的电信号能够更准确的反映激光信号的接收情况。因此,获取该多个探测单元组的电信号中的多个子电信 号(或者可以说局部信号),将多个子电信号汇总得到第一电信号,从而使得基于第一电信号得到的回波信息更准确。其中,第一电信号可以是将多个子电信号使用加和或者互相关的汇总方法得到的。此外,以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在又一种可能的实施方式中,在根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组方面,所述单元组确定单元1304,具体用于:
根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。其中,所述至少一个目标距离、所述第一角度以及所述探测单元之间存在预先定义的对应关系。
可以看出,可以使用预先存储的对应关系来确定目标距离和角度对应的探测单元组,减少了实时计算的压力,提高了数据处理效率。
在又一种可能的实施方式中,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
在又一种可能的实施方式中,所述装置130还可以包括接收镜头、包含所述至少两个探测单元的阵列探测器和匀光器,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
可以看出,采用匀光器对接收光信号进行匀化处理,可以将本应集中在一个光电转换微元上的信号分散到周围的光电转换微元上,可以从而避免阵列探测器中的个别微元出现信号过饱和的情况,有利于更准确地确定回波信号强度信息。
需要说明的是,各个单元的实现还可以对应参照图2所示的方法实施例的相应描述。
在图13所描述的信号处理装置130中,根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度得出本次探测相关的探测单元,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的回波信息,降低了无关信号的干扰,提高了接收信号的有效性,提高了接收信号的信噪比。
请参见图14,图14是本申请实施例提供的一种信号处理设备140的结构示意图,该信号处理设备140可以为上述激光雷达或者上述激光雷达中集成的器件,例如芯片或者集成电路等,该信号处理装置可以包括存储器1401、处理器1402和总线1403,其中,存储器1401和处理器1402通过总线1403相连。
其中,存储器1401用于提供存储空间,存储空间中可以存储操作系统和计算机程序等数据。存储器1401包括但不限于是随机存储记忆体(random access memory,RAM)、只读存储器(read-only memory,ROM)、可擦除可编程只读存储器(erasable programmable read only memory,EPROM)、或便携式只读存储器(compact disc read-only memory,CD-ROM)。
处理器1402是进行算术运算和逻辑运算的模块,可以是中央处理器(central processing unit,CPU)、显卡处理器(graphics processing unit,GPU)或微处理器(microprocessor unit,MPU)等处理模块中的一种或者多种的组合。
存储器1401中存储有计算机程序,处理器1402调用存储器1401中存储的计算机程序,以执行以下操作:
以第一角度通过扫描反射模块向探测区域反射第一激光;
根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
本申请实施例中,信号处理设备140根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度得出本次探测相关的探测单元,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的回波信息,降低了无关信号的干扰,提高了接收信号的有效性,提高了接收信号的信噪比。
在一种可能的实施方式中,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
由于一个光电转换微元的信号值容易达到饱和,使用一个光电转换微元的电信号不能准确表征探测区域的反射强度信息。本申请实施例中,在第一探测单元包含多个光电转换微元的情况下,一个探测单元内的转换微元输出的信号可以进行并联后输出,从而避免最终输出一个电信号过饱和,因此后续基于这个电信号确定的探测区域的回波信息更准确,更易于确定探测区域的反射强度信息。
在又一种可能的实施方式中,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
可以看出,第一汇总电信号中的特征信号能够反映有相对较强的光信号出现,而在激光雷达探测过程中,较强的光信号通常是由激光雷达发出的,因此当出现特征信号时很大概率是接收到了激光雷达信号,因此基于该特征信号能够更准确地得到激光雷达探测中的回波信息。
在又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述处理器1402具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的时接收时刻在所述第一时间段内;
获取来自第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
根据所述第一电信号确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,因此基于该第一探测单元组中的输出信号在该第一时间段内的子信号, 得到的第一电信号能够更准确的反映激光信号的接收情况,因此根据第一电信号得到的回波信息更准确。同时以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在又一种可能的实施方式中,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述处理器1402具体用于:
根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
获取来自第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
可以看出,由于第一特征信号能够很大概率的反映接收到了激光信号,因此第一时间段为很大概率接收到了激光信号的时间段,另外,由于第一探测单元组是筛选出的真正相关的探测单元组,所以该第一探测单元组中的输出信号在该第一时间段内的电信号能够更准确的反映激光信号的接收情况。因此,获取该多个探测单元组的电信号中的多个子电信号(或者可以说局部信号),将多个子电信号汇总得到第一电信号,从而使得基于该第一电信号得到的回波信息更准确。其中,第一电信号可以是将多个子电信号使用加和或者互相关的汇总方法得到的。此外,以子电信号作为基本处理单元,便于对整个电信号中的不同时间段产生的特征信号解耦处理。
在又一种可能的实施方式中,在根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组方面,所述处理器1402具体用于:
根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。其中,所述至少一个目标距离、所述第一角度以及所述探测单元之间存在预先定义的对应关系。
可以看出,可以使用预先存储的对应关系来确定目标距离和角度对应的探测单元组,减少了实时计算的压力,提高了数据处理效率。
在第一方面的又一种可能的实施方式中,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
在又一种可能的实施方式中,所述信号处理设备还可以外接有扫描反射模块、接收镜头、包含所述至少两个探测单元的阵列探测器和匀光器等器件,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
可以看出,采用匀光器对接收光信号进行匀化处理,可以将本应集中在一个光电转换微元上的信号分散到周围的光电转换微元上,可以从而避免阵列探测器中的个别微元出现信号过饱和的情况,有利于更准确地确定回波信号强度信息。
需要说明的是,信号处理设备的具体实现还可以对应参照图2所示的方法实施例的相应描述。
在图14所描述的信号处理设备140,可以根据探测单元汇总输出的信号估计初步的目 标距离,并结合扫描角度得出本次探测相关的探测单元,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的回波信息,降低了无关信号的干扰,提高了接收信号的有效性,提高了接收信号的信噪比。
本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在一个或多个处理器上运行时,可以实现图2所示的信号处理方法。
本申请实施例还提供一种计算机程序产品,当所述计算机程序产品在处理器上运行时,可以实现图2所示的信号处理方法。
本申请实施例还提供一种传感器系统,该传感器系统包含至少一个传感器。所述传感器可以包含至少一个激光雷达,所述激光雷达可以包括图13所示的信号处理装置,或者图14所示的信号处理设备,或者所述激光雷达为图1所示的激光雷达10。进一步可选的,所述传感器系统还可以包含以下中的至少一个:至少一个摄像头,至少一个毫米波雷达、至少一个超声波雷达、至少一个红外传感器。
本申请实施例还提供一种车辆,所述车辆可以包含上述传感器系统。
本发明实施例还提供一种芯片系统,所述芯片系统包括至少一个处理器,存储器和接口电路,所示接口电路用于供外接设备(如激光发射器、扫描反射模块、阵列探测器等)连接到所述处理器,所述存储器中存储有计算机程序;所述计算机程序被所述处理器执行时,实现图2所示的方法流程。进一步的,所述存储器、所述接口电路和所述至少一个处理器可以通过线路互联。
本申请实施例还提供一种终端,所述终端包含如图1所示的激光雷达,或者所述终端包含如图14所示的信号处理设备。可选的,所述终端可以为车辆、无人机、火车或者机器人等需要进行目标探测的移动终端或者运输工具。
综上所述,通过实施本申请实施例,可以根据探测单元汇总输出的信号估计初步的目标距离,并结合扫描角度信息推算出本次探测相关的探测单元,能精确的筛除不相关的探测单元的信号,从而选取本次探测相关的探测单元输出的信号用于确认探测区域的信息,降低了无关信号的干扰,提高了接收信号的有效性。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,该流程可以由计算机程序来计算机程序相关的硬件完成,该计算机程序可存储于计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法实施例的流程。而前述的存储介质包括:ROM或随机存储记忆体RAM、磁碟或者光盘等各种可存储计算机程序代码的介质。

Claims (27)

  1. 一种信号处理的方法,其特征在于,包括:
    以第一角度通过扫描反射模块向探测区域反射第一激光;
    根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
    根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
    根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
    根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
  2. 根据权利要求1中所述的方法,其特征在于,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
  3. 根据权利要求1或2中所述的方法,其特征在于,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
  4. 根据权利要求1-3中任一项所述的方法,其特征在于,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;所述根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息,包括:
    根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
    获取来自所述第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
    根据所述第一电信号确定所述探测区域的至少一个回波信息。
  5. 根据权利要求1-3中任一项所述的方法,其特征在于,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;所述根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息,包括:
    根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
    获取来自所述第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子 电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,包括:
    根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。
  7. 根据权利要求1-6中任一项所述的方法,其特征在于,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
  8. 根据权利要求1-7中任一项所述的方法,其特征在于,所述方法应用于激光雷达,所述激光雷达包括所扫描反射模块、接收镜头、包含所述至少两个探测单元的阵列探测器和匀光器,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
  9. 一种信号处理装置,其特征在于,所述装置包括:
    扫描控制单元,用于以第一角度通过扫描反射模块向探测区域反射第一激光;
    汇总单元,用于根据来自至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
    距离确定单元,用于根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
    单元组确定单元,用于根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
    回波确定单元,用于根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
  10. 根据权利要求9中所述的装置,其特征在于,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
  11. 根据权利要求9或10中所述的装置,其特征在于,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
  12. 根据权利要求9-11中任一项所述的装置,其特征在于,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一 个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述回波确定单元具体用于:
    根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
    获取来自所述第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
    根据所述第一电信号确定所述探测区域的至少一个回波信息。
  13. 根据权利要求9-11中任一项所述的装置,其特征在于,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述回波确定单元具体用于:
    根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
    获取来自所述第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
  14. 根据权利要求9-13中任一项所述的装置,其特征在于,在根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组方面,所述回波确定单元具体用于:
    根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。
  15. 根据权利要求9-14中任一项所述的装置,其特征在于,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
  16. 根据权利要求9-15中任一项所述的装置,其特征在于,所述装置还包括接收镜头、包含所述至少两个探测单元的阵列探测器和匀光器,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
  17. 一种激光雷达,其特征在于,所述激光雷达包括激光发射器、扫描反射模块、阵列探测器、存储器和处理器,所述激光发射器用于发射第一激光,所述阵列探测器包括至少两个探测单元,所述存储器中存储有计算器程序,所述处理器调用所述存储器中存储的计算机程序,用于执行以下操作:
    以第一角度通过所述扫描反射模块向探测区域反射所述第一激光;
    根据来自所述至少两个探测单元的至少两个电信号确定第一汇总电信号,所述第一汇总电信号包含至少一个特征信号;
    根据所述至少一个特征信号的时间信息确定对应所述探测区域的至少一个目标距离,所述至少一个特征信号对应所述至少一个目标距离;
    根据所述至少一个目标距离和所述第一角度确定至少一个探测单元组,所述至少一个探测单元组中的每个探测单元组包含的探测单元属于所述至少两个探测单元;
    根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的至少一个回波信息。
  18. 根据权利要求17中所述的激光雷达,其特征在于,每个所述探测单元为一个光电转换微元或者多个光电转换微元的集合。
  19. 根据权利要求17或18中所述的激光雷达,其特征在于,所述特征信号包括第一汇总电信号的峰值信号、前沿信号或者波形质心信号;所述时间信息用于指示所述特征信号的接收时刻。
  20. 根据权利要求17-19中任一项所述的激光雷达,其特征在于,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述处理器具体用于:
    根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
    获取来自所述第一探测单元组的一个电信号在所述第一时间段内的子电信号,得到所述第一电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;
    根据所述第一电信号确定所述探测区域的至少一个回波信息。
  21. 根据权利要求17-19中任一项所述的激光雷达,其特征在于,所述至少一个特征信号包括第一特征信号,所述第一特征信号用于确定第一目标距离,所述第一目标距离用于确定所述第一探测单元组;在根据来自所述至少一个探测单元组中的第一探测单元组的至少一个电信号得到的第一电信号确定所述探测区域的回波信息方面,所述处理器具体用于:
    根据所述第一特征信号的时间信息确定第一时间段,其中,所述第一特征信号的接收时刻在所述第一时间段内;
    获取来自所述第一探测单元组的多个电信号在所述第一时间段内的信号,得到多个子电信号,所述第一探测单元组为所述至少一个探测单元组中的一个探测单元组;其中,通过所述多个子电信号汇总得到的所述第一电信号用于确定所述探测区域的至少一个回波信息。
  22. 根据权利要求17-21中任一项所述的激光雷达,其特征在于,在根据所述至少一 个目标距离和所述第一角度确定至少一个探测单元组方面,所述处理器具体用于:
    根据第一对应关系集合确定所述至少一个目标距离和所述第一角度对应的探测单元组。
  23. 根据权利要求17-22中任一项所述的激光雷达,其特征在于,所述探测区域的至少一个回波信息用于表征所述探测区域的反射强度或距离中的至少一个。
  24. 根据权利要求17-23中任一项所述的激光雷达,其特征在于,所述激光雷达还包括接受镜头和匀光器,所述匀光器置于所述接收镜头与所述阵列探测器之间,用于匀化透过所述接收镜头的光信号。
  25. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有计算机程序,当所述计算机程序在一个或多个处理器上运行时,执行如权利要求1-8中任一项所述的方法。
  26. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器、存储器和接口电路,所述接口电路用于为所述处理器提供输入/输出,所述存储器中存储有计算机程序;所述处理器用于调用所述计算机程序,以实现如权利要求1-8中任一项所述的方法。
  27. 一种终端,其特征在于,所述终端包含如所述权利要求14-24中任一项所述的激光雷达。
PCT/CN2020/134717 2019-12-28 2020-12-09 一种信号处理方法及相关装置 WO2021129388A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022539443A JP2023508481A (ja) 2019-12-28 2020-12-09 信号処理方法及び関連する装置
EP20908243.7A EP4071502A4 (en) 2019-12-28 2020-12-09 SIGNAL PROCESSING METHOD AND RELATED DEVICE
US17/809,123 US20220326362A1 (en) 2019-12-28 2022-06-27 Signal Processing Method and Related Apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911403974.3A CN113126064B (zh) 2019-12-28 2019-12-28 一种信号处理方法及相关装置
CN201911403974.3 2019-12-28

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/809,123 Continuation US20220326362A1 (en) 2019-12-28 2022-06-27 Signal Processing Method and Related Apparatus

Publications (1)

Publication Number Publication Date
WO2021129388A1 true WO2021129388A1 (zh) 2021-07-01

Family

ID=76572942

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/134717 WO2021129388A1 (zh) 2019-12-28 2020-12-09 一种信号处理方法及相关装置

Country Status (5)

Country Link
US (1) US20220326362A1 (zh)
EP (1) EP4071502A4 (zh)
JP (1) JP2023508481A (zh)
CN (1) CN113126064B (zh)
WO (1) WO2021129388A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116008949A (zh) * 2021-10-22 2023-04-25 深圳市速腾聚创科技有限公司 一种雷达数据处理方法、终端设备及计算机可读存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114325741B (zh) * 2021-12-31 2023-04-07 探维科技(北京)有限公司 探测模组及激光测距系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182159A1 (de) * 2015-12-15 2017-06-21 Riegl Laser Measurement Systems GmbH Vorrichtung zur entfernungsmessung
CN108152830A (zh) * 2017-12-26 2018-06-12 苏州镭图光电科技有限公司 一种激光雷达扫描成像系统及其测量方法
CN109313256A (zh) * 2016-02-18 2019-02-05 艾耶股份有限公司 自适应激光雷达接收器
CN109425869A (zh) * 2017-08-30 2019-03-05 赫克斯冈技术中心 具有扫描功能和接收器的可设定接收范围的测量装置
CN110187360A (zh) * 2018-02-23 2019-08-30 株式会社电装 用于光学地测量距离的方法和设备
CN110596723A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 动态直方图绘制飞行时间距离测量方法及测量系统
CN110596721A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 双重共享tdc电路的飞行时间距离测量系统及测量方法
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3427809B2 (ja) * 2000-03-09 2003-07-22 株式会社デンソー 車両用道路形状認識方法及び装置、記録媒体
JP6730150B2 (ja) * 2016-09-16 2020-07-29 株式会社東芝 光検出器、及び距離測定装置
EP3428683B1 (en) * 2017-07-11 2019-08-28 Sick Ag Optoelectronic sensor and method for measuring a distance

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182159A1 (de) * 2015-12-15 2017-06-21 Riegl Laser Measurement Systems GmbH Vorrichtung zur entfernungsmessung
CN109313256A (zh) * 2016-02-18 2019-02-05 艾耶股份有限公司 自适应激光雷达接收器
CN109425869A (zh) * 2017-08-30 2019-03-05 赫克斯冈技术中心 具有扫描功能和接收器的可设定接收范围的测量装置
CN108152830A (zh) * 2017-12-26 2018-06-12 苏州镭图光电科技有限公司 一种激光雷达扫描成像系统及其测量方法
CN110187360A (zh) * 2018-02-23 2019-08-30 株式会社电装 用于光学地测量距离的方法和设备
CN110596723A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 动态直方图绘制飞行时间距离测量方法及测量系统
CN110596721A (zh) * 2019-09-19 2019-12-20 深圳奥锐达科技有限公司 双重共享tdc电路的飞行时间距离测量系统及测量方法
CN110609293A (zh) * 2019-09-19 2019-12-24 深圳奥锐达科技有限公司 一种基于飞行时间的距离探测系统和方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4071502A4

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116008949A (zh) * 2021-10-22 2023-04-25 深圳市速腾聚创科技有限公司 一种雷达数据处理方法、终端设备及计算机可读存储介质
CN116008949B (zh) * 2021-10-22 2024-02-27 深圳市速腾聚创科技有限公司 一种雷达数据处理方法、终端设备及计算机可读存储介质

Also Published As

Publication number Publication date
CN113126064B (zh) 2024-06-11
EP4071502A4 (en) 2022-12-21
US20220326362A1 (en) 2022-10-13
CN113126064A (zh) 2021-07-16
EP4071502A1 (en) 2022-10-12
JP2023508481A (ja) 2023-03-02

Similar Documents

Publication Publication Date Title
US10670719B2 (en) Light detection system having multiple lens-receiver units
US10739445B2 (en) Parallel photon counting
WO2020216143A1 (zh) 激光雷达的接收装置、激光雷达及其回波处理方法
CN107643516A (zh) 一种基于mems微镜的三维扫描激光雷达
US20220326362A1 (en) Signal Processing Method and Related Apparatus
CN107238842B (zh) 一种面阵目标搜索扫描成像装置及方法
JP2022539706A (ja) 適応型多重パルスlidarシステム
CN207833020U (zh) 一种激光雷达扫描成像系统
EP3709050B1 (en) Distance measuring device, distance measuring method, and signal processing method
CN111965658B (zh) 一种距离测量系统、方法及计算机可读存储介质
WO2021195831A1 (zh) 反射率的实时测量方法、装置、可移动平台和计算机可读存储介质
CN111965659B (zh) 一种距离测量系统、方法及计算机可读存储介质
CN207318708U (zh) 一种基于mems微镜的三维扫描激光雷达
CN111638525A (zh) 一种激光测距装置及激光测距方法
WO2020215252A1 (zh) 测距装置点云滤噪的方法、测距装置和移动平台
US20210255289A1 (en) Light detection method, light detection device, and mobile platform
WO2022001219A1 (zh) 光接收装置及激光雷达系统
CN110333500B (zh) 一种多波束激光雷达
WO2020237663A1 (zh) 一种多通道激光雷达点云插值的方法和测距装置
US20220365219A1 (en) Pixel Mapping Solid-State LIDAR Transmitter System and Method
CN213986839U (zh) 一种激光雷达
CN113050119B (zh) 一种适用于光学flash三维成像雷达干扰的判决方法
CN212872898U (zh) 一种激光测距装置及接触网检测设备
CN110346779B (zh) 一种用于多波束激光雷达的时间通道复用的测量方法
CN210347920U (zh) 一种激光接收装置以及激光雷达系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20908243

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022539443

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2020908243

Country of ref document: EP

Effective date: 20220708

NENP Non-entry into the national phase

Ref country code: DE