WO2019056227A1 - 一种带有刃口的工具及其制造方法 - Google Patents

一种带有刃口的工具及其制造方法 Download PDF

Info

Publication number
WO2019056227A1
WO2019056227A1 PCT/CN2017/102517 CN2017102517W WO2019056227A1 WO 2019056227 A1 WO2019056227 A1 WO 2019056227A1 CN 2017102517 W CN2017102517 W CN 2017102517W WO 2019056227 A1 WO2019056227 A1 WO 2019056227A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting edge
tool
laser
manufacturing
carbide
Prior art date
Application number
PCT/CN2017/102517
Other languages
English (en)
French (fr)
Inventor
王伟毅
Original Assignee
杭州巨星科技股份有限公司
杭州巨星工具有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 杭州巨星科技股份有限公司, 杭州巨星工具有限公司 filed Critical 杭州巨星科技股份有限公司
Priority to PCT/CN2017/102517 priority Critical patent/WO2019056227A1/zh
Priority to US16/344,089 priority patent/US20200061747A1/en
Publication of WO2019056227A1 publication Critical patent/WO2019056227A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/34Laser welding for purposes other than joining
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • B23D61/12Straight saw blades; Strap saw blades
    • B23D61/127Straight saw blades; Strap saw blades of special material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D65/00Making tools for sawing machines or sawing devices for use in cutting any kind of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/0006Working by laser beam, e.g. welding, cutting or boring taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K31/00Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups
    • B23K31/02Processes relevant to this subclass, specially adapted for particular articles or purposes, but not covered by only one of the preceding main groups relating to soldering or welding
    • B23K31/025Connecting cutting edges or the like to tools; Attaching reinforcements to workpieces, e.g. wear-resisting zones to tableware
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/18Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for knives, scythes, scissors, or like hand cutting tools
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/24Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for saw blades
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C30/00Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
    • C23C30/005Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process on hard metal substrates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D29/00Hand-held metal-shearing or metal-cutting devices
    • B23D29/02Hand-operated metal-shearing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23DPLANING; SLOTTING; SHEARING; BROACHING; SAWING; FILING; SCRAPING; LIKE OPERATIONS FOR WORKING METAL BY REMOVING MATERIAL, NOT OTHERWISE PROVIDED FOR
    • B23D61/00Tools for sawing machines or sawing devices; Clamping devices for these tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2101/00Articles made by soldering, welding or cutting
    • B23K2101/20Tools
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/02Iron or ferrous alloys
    • B23K2103/04Steel or steel alloys
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/18Dissimilar materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/50Inorganic material, e.g. metals, not provided for in B23K2103/02 – B23K2103/26
    • B23K2103/52Ceramics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25BTOOLS OR BENCH DEVICES NOT OTHERWISE PROVIDED FOR, FOR FASTENING, CONNECTING, DISENGAGING OR HOLDING
    • B25B7/00Pliers; Other hand-held gripping tools with jaws on pivoted limbs; Details applicable generally to pivoted-limb hand tools
    • B25B7/22Pliers provided with auxiliary tool elements, e.g. cutting edges, nail extractors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B23/00Axes; Hatchets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B26HAND CUTTING TOOLS; CUTTING; SEVERING
    • B26BHAND-HELD CUTTING TOOLS NOT OTHERWISE PROVIDED FOR
    • B26B9/00Blades for hand knives
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/58Oils
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/56General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering characterised by the quenching agents
    • C21D1/613Gases; Liquefied or solidified normally gaseous material
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium

Definitions

  • the invention relates to a tool with a cutting edge, in particular to a tool obtained by forming a cladding layer on the surface of a cutting edge by laser cladding treatment, which realizes the high hardness and high wear resistance of the cutting edge of the tool. And the high toughness of the blade or other parts.
  • the invention also relates to a method of making such a tool with a cutting edge.
  • Tools with cutting edges are used to cut or cut objects, such as various tools, aerial shears, pliers with blades, and so on.
  • Conventional stainless steel tools (such as single-opening) mostly use integral martensitic stainless steel (including but not limited to the following 20Cr13, 30Cr13, 40Cr13, 50Cr15MoV, 68Cr17, 95Cr18, 90Cr18MoV, etc.) as the base body, and the overall heat treatment after blanking. Then open and assemble.
  • the single-blade is made of integral low-carbon martensitic stainless steel (such as 20Cr13, 30Cr13, etc.), then the single-blade base has good toughness, but the cutting edge hardness is low, the wear resistance is poor, and the actual cutting life of the overall cutting edge is low.
  • the single-blade is made of high-carbon martensitic stainless steel (such as 95Cr18, 90Cr18MoV, etc.)
  • the hardness and wear resistance of the cutting edge are improved, and the actual cutting life of the overall blade is improved, but the overall blade is brittle and easy to fall. Breaking, and the high raw material cost of high carbon martensitic stainless steel is relatively low, and the market competitiveness is poor.
  • Conventional air shears are mostly made of integral alloy structural steel, tool steel, spring steel (including but not limited to 50CrMo, 6CrW2Si, 60Si2Mn, 60Si2Cr, 60Si2CrV, 60CrMn, etc.), which are heat treated after hot forging, and then edge-cut and assembled.
  • the air shear obtained by this method has better impact resistance/toughness, but the wear resistance of the cutting edge is poor, and the actual shear life is low.
  • the selected material is between high hardness and high toughness, it can only obtain the balance between the toughness of the cutter or the air shear base and the hardness of the cutting edge, but neither of them achieves the best effect.
  • Other tooling with cutting edges also has similar drawbacks to tools and aviation shears.
  • the technical problem to be solved by the present invention is to provide a bladed tool having high cutting edge hardness and high wear resistance, high toughness in other parts, and long service life, and manufacturing thereof. method.
  • an aspect of the present invention provides a method of manufacturing a tool having a cutting edge: the bladed tool includes a base for supporting and a cladding layer for forming a cutting edge, and a transition region connecting the substrate and the cladding layer; the manufacturing method includes:
  • a second material is provided, the second material is cladding to the first side by laser cladding to form a cladding layer, and a transition region of the first material in combination with the metallurgical state of the second material is formed between the cladding layer and the substrate.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, zirconium oxide, or carbon, and four metals of tungsten, titanium, chromium, and vanadium. At least one of the monomers; the second material further comprising nickel and/or cobalt.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, zirconium oxide, or carbon, and four metal monomers of tungsten, titanium, chromium, and vanadium. At least one; the second material further includes nickel and cobalt.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and further includes carbon and four types of tungsten, titanium, chromium, and vanadium. At least one of the metal monomers further includes nickel and/or cobalt.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and further includes carbon and four metal monomers of tungsten, titanium, chromium, and vanadium. At least one of them also includes nickel and cobalt.
  • the carbon, the tungsten, the titanium, the chromium, and the vanadium are all in a powder form.
  • the first material is quench hardened steel.
  • the first material comprises one or more of martensitic stainless steel, alloy structural steel, tool steel, and spring steel.
  • the martensitic stainless steel is selected from the group consisting of 20Cr13, 30Cr13, 40Cr13, 50Cr15MoV, 68Cr17, 95Cr18, and 90Cr18MoV.
  • the first material is selected from the group consisting of 50CrMo, 6CrW2Si, 60Si2Mn, 60Si2Cr, 60Si2CrV, 60CrMn.
  • the laser cladding method refers to melting a substance in a second material whose melting point is lower than a laser temperature generated by a laser at a set laser power and a set moving speed of the laser head, and carrying a melting point higher than a laser temperature.
  • the substance is bonded to the first side to form a cladding layer; and the first side and the first material adjacent to the first side are melted by the laser temperature and combined with the second material metallurgical state near the first side to form a transition zone.
  • a substance having a melting point higher than a laser temperature in the second material is dispersed in the cladding layer.
  • the substance having a melting point higher than the laser temperature in the second material is uniformly distributed in the cladding layer.
  • the laser is a CO 2 gas laser, a YAG solid laser, a fiber laser or a DIODE semiconductor laser.
  • the laser power is ⁇ 1000 W
  • the moving speed of the laser head during cladding is 2.0 to 15.0 mm/s.
  • the manufacturing method further includes:
  • the tool blank After laser cladding, the tool blank is vacuum quenched, the quenching temperature is 850 ⁇ 1250 ° C, and the quenching medium is quenching oil or inert gas;
  • the tool blank is vacuum tempered, the tempering temperature is 200-600 ° C, and the holding time is 2-8 hours.
  • the manufacturing method further includes:
  • the tool blank Before the laser cladding, the tool blank is vacuum quenched, the quenching temperature is 850 ⁇ 1250 ° C, and the quenching medium is quenching oil or inert gas;
  • the tool blank is vacuum tempered, the tempering temperature is 200-600 ° C, and the holding time is 2-8 hours.
  • the manufacturing method further includes:
  • the tool blank After laser cladding, quenching, and tempering, the tool blank is ground to the cutting edge;
  • the hardness of the cladding layer is higher than the hardness of the substrate by 10 HRC or more.
  • Another aspect of the present invention provides a tool having a cutting edge, comprising a base for supporting and a cladding layer for forming a cutting edge, and a transition region connecting the base and the cladding layer;
  • the base body is composed of a first material, the first material is quench hardened steel and has a first side;
  • the cladding layer is composed of a second material including at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, or carbon and tungsten, titanium, chromium, and vanadium. At least one of the metal monomers; the second material further comprising nickel and/or cobalt;
  • the transition zone is a region where the first material formed between the cladding layer and the substrate is combined with the metallurgical state of the second material while the second material is clad on the first side by laser cladding to form a cladding layer.
  • the carbon, the tungsten, the titanium, the chromium, and the vanadium are all in a powder form.
  • the depth of the cladding layer is 0.2 to 6.0 mm, preferably 1.0 to 3.0 mm.
  • the cladding layer has a first edge for cutting or shearing, the first edge being smooth or zigzag.
  • the tool with the cutting edge is manufactured by the manufacturing method of the tool with a cutting edge as described above.
  • the tool with the cutting edge is a cutter, a saw, an axe, an aerial shear or a pliers with a cutting edge.
  • the second material further comprises nickel and cobalt.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and further includes carbon and four types of tungsten, titanium, chromium, and vanadium. At least one of metal monomers.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and further includes carbon and four types of tungsten, titanium, chromium, and vanadium. At least one of the metal monomers further includes nickel and cobalt.
  • the first material includes one or more of martensitic stainless steel, alloy structural steel, tool steel, and spring steel.
  • the laser cladding method refers to melting a substance in a second material whose melting point is lower than a laser temperature generated by a laser at a set laser power and a set moving speed of the laser head, and carrying a melting point higher than a laser temperature.
  • the substance is bonded to the first side to form a cladding layer; and the first side and the first material adjacent to the first side are melted under the action of the laser temperature and combined with the metallurgical state of the second material adjacent to the first side to form a transition zone;
  • the substances in the two materials whose melting point is higher than the laser temperature are dispersed in the cladding layer.
  • the hardness of the cladding layer is higher than the hardness of the substrate by 10 HRC or more.
  • the bladed tool of the present invention has a good toughness for supporting the base, and the cladding layer for forming the cutting edge has high hardness and high wear resistance.
  • the obtained cladding layer, the transition region, and the metallographic structure of the matrix near the transition region have no pores, which indicates that the laser cladding effect and the connection effect are both Good, so the transition zone has high strength and is not easy to break; at the same time, the strong tensile strength of the matrix is retained; and the cladding layer is distributed with carbide particles of high hardness and high wear resistance, which improves the hardness and resistance of the cutting edge. Grindability, making the edge more durable.
  • the tool with the cutting edge has a blade hardness of 48-54HRC, a cutting edge hardness of 60-70HRC, and the hardness of the cladding layer is increased by 10HRC or more than the substrate, and the average is improved. 15HRC. It has high toughness of the support part and high hardness and high wear resistance of the cutting edge part, and its durability is more than 240mm, which greatly improves the service life of the tool.
  • the simultaneous use of nickel and cobalt in the second material is advantageous for solid-liquid bonding.
  • a substance having a melting point lower than the laser temperature in the second material is melted into a liquid state, and a substance having a melting point higher than the laser temperature maintains a solid powdery structure. If the substance melted into a liquid state and the unmelted solid powder particles are better combined, it is advantageous in that the unmelted solid powder particles having high hardness and high wear resistance in the cladding layer are uniformly distributed.
  • nickel and cobalt are different metal elements, their melting points are lower than the laser temperature. When melted into a liquid, the mixture is easier to wet the solid than a single liquid, ie, the resulting wetting angle is smaller, wetting. The smaller the angle, the better the solid-liquid combination, which makes the solid-liquid bonding better.
  • the second material comprises carbon and at least one of four metal monomers of tungsten, titanium, chromium and vanadium, which is also advantageous for uniformly distributing or diffusing the powder having high hardness and high wear resistance in the cladding layer. Therefore, the hardness and wear resistance of the cutting edge are improved as a whole.
  • the uniform distribution of high hardness and high wear resistance is restricted by two conditions: one is the particle size; the other is the mixing condition. The larger the particle, the less likely it is to distribute evenly. If a carbide is reacted with a metal monomer to form a carbide during laser cladding (for example, carbon powder and tungsten powder react to form tungsten carbide during melting), carbides are formed at the molecular level, resulting in smaller carbide particles.
  • the second material includes at least one of carbon and four metal monomers of tungsten, titanium, chromium, and vanadium, and the reaction forms a carbide by a laser cladding process, so that the carbide distribution in the second material can be made more uniform.
  • Figure 1 is a schematic view showing the structure of a preferred embodiment of the present invention, which is specifically a single-opening knife.
  • FIG. 2 is a schematic cross-sectional view of FIG. 1 taken along AA.
  • FIG. 3 is a schematic structural view of another embodiment of the present invention, which is specifically an aviation shear.
  • Fig. 4 is a schematic view showing the structure of still another embodiment of the present invention, which is specifically a knife with a cutting edge.
  • Figure 5 is a metallographic view of an embodiment of the edged tool of the present invention showing the metallurgical structure of the substrate, transition zone and cladding layer at a magnification of 100 times.
  • Fig. 6 is a metallographic diagram in which the magnification of a region in Fig. 5 is 400 times.
  • the bladed tool of the present invention is used for cutting and/or shearing an object, including a substrate, a cladding layer, and a transition zone connecting the substrate to the cladding layer.
  • the base serves to support the cutting edge portion; the cutting edge portion can be used for cutting and/or shearing, and the grinding edge is formed by the heat treatment of the cladding layer.
  • Figure 1 shows an embodiment of the invention which is a single open knife.
  • Figure 2 shows a schematic view of the single-cutting knife taken along line AA.
  • the single-blade has a base 1 for supporting, a cladding layer 2 for forming a cutting edge, and a transition zone 3 connecting the base 1 and the cladding layer 2.
  • the base body 1 is made of a first material and has a first side.
  • the cladding layer 2 is made of a second material and is formed by cladding the second material onto the first side by laser cladding.
  • Also formed at the same time is a transition zone 3 between the cladding layer 2 and the substrate 1.
  • the transition zone 3 is a combination of the first material and the second material in a metallurgical state.
  • the depth of the cladding layer 2 is between 0.2 and 6.0 mm, preferably between 1.0 and 3.0 mm.
  • the bladed tool of the present invention can have a variety of shapes and configurations, such as an aviation shear as shown in Figure 3, and a cutting edge as shown in Figure 4. pliers.
  • the bladed tool of the present invention may also be other cutters, saws, and axes, and will not be described herein.
  • the cladding layer has a first edge for cutting or shearing, the first edge being smooth or zigzag. For example, when the blade is a single blade, the first edge is smooth; when it is a saw, the first edge is zigzag.
  • the first material is quench-hardened steel, preferably one having a higher toughness, such as one or more of martensitic stainless steel, alloy structural steel, tool steel, and spring steel.
  • the martensitic stainless steel is selected from the group consisting of the following grades (Chinese grade) of standardized martensitic stainless steel, 20Cr13, 30Cr13, 40Cr13, 50Cr15MoV, 68Cr17, 95Cr18, 90Cr18MoV, and the like.
  • the first material is selected from the group consisting of 50CrMo, 6CrW2Si, 60Si2Mn, 60Si2Cr, 60Si2CrV, 60CrMn.
  • the second material has a higher hardness and/or wear resistance.
  • the second material is selected from at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, alumina, and zirconia, while the second material further includes nickel or cobalt.
  • the second material is selected from at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, alumina, zirconia, and the second material further includes nickel and cobalt.
  • the second material comprises carbon and at least one of four metal monomers of tungsten, titanium, chromium, vanadium, and the second material further comprises nickel or cobalt.
  • the second material comprises carbon and at least one of four metal monomers of tungsten, titanium, chromium, vanadium, and the second material further comprises nickel and cobalt.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and further includes carbon and tungsten, titanium, chromium, and vanadium. At least one of the metal monomers further includes nickel or cobalt.
  • the second material comprises at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and further includes carbon and tungsten, titanium, chromium, and vanadium. At least one of the metal monomers further includes nickel and cobalt. All of the materials in the above second material are in the form of granules (powder when it is fine particles).
  • the manufacturing method comprises the steps of: 1) cutting a first material according to a tool size, obtaining a belt a base body of the first side; 2) laser cladding, the second material is clad to the first side to form a cladding layer composed of a second material, and a first material is formed between the cladding layer and the substrate Transition zone combined with metallurgical state of the second material; 3) quenching and tempering; 4) grinding blade; 5) assembly and packaging.
  • the first material is blanked and cut into a shape that substantially corresponds to the base of the finished tool with the cutting edge.
  • the cutting can be carried out using wire cutting or high speed punching, or by other cutting methods conventionally used in the art.
  • the cut first material has a relatively flat first side.
  • a laser cladding operation is performed using a CO 2 gas laser, a YAG solid laser, a fiber laser, or a DIODE semiconductor laser.
  • the laser power is not less than 1000W, and the laser beam moving at a speed of 2.0 ⁇ 15.0mm/s during the cladding process is coated with a second material on the first side of the cut first material to form a cladding layer.
  • a transition zone comprising both the first material and the second material is formed between the cladding layer and the substrate. In the transition zone, the first material and the second material are fused together, ie in a metallurgical state.
  • the tool blank after laser cladding is subjected to integral quenching and overall tempering. Both quenching and tempering are carried out in a vacuum furnace.
  • the quenching temperature is between 850 and 1250 ° C.
  • the quenching medium can be quenching oil or inert gas. As a preferred item, the quenching medium is nitrogen.
  • the tool blank is vacuum tempered in a vacuum furnace, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • the size and shape of the tool blank after quenching and tempering is ground, in particular the edge is ground. Grinding can be carried out by methods conventionally used in the art, such as by using a grinding machine.
  • the method further comprises quenching and tempering the substrate formed in the first step prior to the laser cladding operation.
  • the remaining steps are the same as the previous embodiment, and are not described here.
  • the method further comprises: after blanking the first material according to the tool size, obtaining a shape of the substrate having the first side by hot forging.
  • the remaining steps are the same as the previous embodiment, and are not described here.
  • the obtained base body 1, the cladding layer 2, and the transition zone 3 have substantially no holes in the metallographic structure (as shown in FIGS. 5 and 6), which indicates a specific embodiment.
  • the laser cladding method can combine the first material and the second material well, which not only ensures the high toughness of the substrate, but also ensures the high hardness and high wear resistance of the cladding layer, and ensures the transition zone.
  • the substrate and the cladding layer are tightly joined.
  • the hardness of the substrate is 48-54HRC. Such hardness gives the matrix a good toughness, so that the matrix is not easily broken.
  • the hardness of the cladding layer is 60-70 HRC, which gives the cladding layer good wear resistance, resulting in a longer service life of the cutting edge.
  • Embodiment 1 A single knife
  • the first material is cut according to the size of the tool to obtain a substrate with the first side.
  • the first material is martensitic stainless steel.
  • the first quenching and the first tempering were carried out in a vacuum furnace.
  • the quenching temperature is between 850 and 1250 ° C, and the quenching medium is nitrogen.
  • tempering is carried out, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • the laser power is not less than 1000W, and the laser head moving speed is between 2.0 ⁇ 15.0mm/s during laser cladding.
  • a second material is clad to the first side to form a cladding layer of the second material while forming a transition zone between the cladding layer and the substrate that bonds the first material to the metallurgical state of the second material.
  • the second material includes carbon and at least one of four metal monomers of tungsten, titanium, chromium, and vanadium, and the second material further includes nickel and cobalt.
  • the substances in the second material are all in powder form.
  • the quenching temperature is between 850 and 1250 ° C, and the quenching medium is nitrogen.
  • tempering is carried out, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • Example 1 Assembly and packaging, and the single-opening of Example 1 was obtained.
  • the second material in step 2) includes only nickel and does not include cobalt except for carbon and at least one of four metal monomers of tungsten, titanium, chromium, and vanadium.
  • Example 3 The second material in the step 2) includes only carbon and at least one of the four metal monomers of tungsten, titanium, chromium, and vanadium, and includes only cobalt.
  • Example 4 The second material in the step 2) is at least one compound including tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and includes both nickel and cobalt.
  • the second material in step 2) is at least one compound including tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, zirconium oxide, and only nickel does not include cobalt.
  • Example 6 The second material in the step 2) is at least one compound including tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and includes only cobalt and does not include nickel.
  • Embodiment 7 A single open knife
  • the first material is cut according to the size of the tool to obtain a substrate with the first side.
  • the first material is martensitic stainless steel.
  • the laser power is not less than 1000W, and the laser head moving speed is between 2.0 ⁇ 15.0mm/s during laser cladding.
  • a second material is clad to the first side to form a cladding layer of the second material while forming a transition zone between the cladding layer and the substrate that bonds the first material to the metallurgical state of the second material.
  • the second material includes at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and the second material further includes nickel and cobalt.
  • the substances in the second material are all in powder form.
  • the quenching temperature is between 850 and 1250 ° C, and the quenching medium is quenched. After quenching is completed, tempering is carried out, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • Example 7 Assembled and packaged, the single-opening of Example 7 was obtained.
  • Example 8 The second material in the step 2) is at least one of carbon, and four metal monomers of tungsten, titanium, chromium, and vanadium, including nickel and cobalt.
  • Example 9 The second material in step 2) is at least one of carbon and four metal monomers of tungsten, titanium, chromium, vanadium, and only nickel does not include cobalt.
  • Example 10 The second material in step 2) is at least one of carbon and four metal monomers of tungsten, titanium, chromium, vanadium, and only cobalt does not include nickel.
  • Example 11 The second material in the step 2) includes only nickel and does not include cobalt except for at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide.
  • Example 12 The second material in the step 2) includes only cobalt and does not include nickel except for at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide.
  • Example 13 An aviation shear
  • the first material is cut according to the tool size and hot forged to obtain a substrate with the first side.
  • the first material is alloy structural steel, tool steel, spring steel raw materials: bar stock.
  • the first quenching and the first tempering were carried out in a vacuum furnace.
  • the quenching temperature is between 850 and 1250 ° C, and the quenching medium is nitrogen.
  • tempering is carried out, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • the laser power is not less than 1000W, and the laser head moving speed is between 2.0 ⁇ 15.0mm/s during laser cladding.
  • a second material is clad to the first side to form a cladding layer of the second material while forming a transition zone between the cladding layer and the substrate that bonds the first material to the metallurgical state of the second material.
  • the second material includes at least one of tungsten carbide, titanium carbide, chromium carbide, vanadium carbide, aluminum oxide, and zirconium oxide, and the second material further includes nickel and cobalt.
  • the quenching temperature is between 850 and 1250 ° C, and the quenching medium is nitrogen.
  • tempering is carried out, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • Example 14 A knife with a cutting edge
  • the first material is cut according to the tool size and hot forged to obtain a substrate with the first side.
  • the first material is an alloy structural steel.
  • the first quenching and the first tempering were carried out in a vacuum furnace.
  • the quenching temperature is between 850 and 1250 ° C, and the quenching medium is nitrogen.
  • tempering is carried out, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • the laser power is not less than 1000 W, and the laser head moving speed is between 2.0 and 15.0 mm/s during laser cladding.
  • a second material is clad to the first side to form a cladding layer of the second material while forming a transition zone between the cladding layer and the substrate that bonds the first material to the metallurgical state of the second material.
  • the second material includes carbon and at least one of four metal monomers of tungsten, titanium, chromium, and vanadium, and the second material further includes nickel or cobalt.
  • the quenching temperature is between 850 and 1250 ° C, and the quenching medium is nitrogen.
  • tempering is carried out, the tempering temperature is between 200 and 600 ° C, and the holding time is 2 to 8 hours.
  • Test stroke 20mm The single-edged knife formed by the blade manufactured by the method of the present invention was tested for 60 cycles, and its sharpness and durability were as shown in Table 3 as compared with the existing single-opening knife:
  • the sharpened and durable tool having the edged tool of the embodiment of the present invention has improved relative to the existing single open blade.
  • the simultaneous use of nickel and cobalt (such as Examples 1, 4, 7 and 8) increased the sharpness by about 1 time and the durability by 2 to 3 times; while using nickel and cobalt, and using carbon and tungsten, titanium At least one of the four metal monomers, chromium and vanadium, forms carbides during laser cladding (such as Examples 1 and 8) with the highest sharpness and durability.
  • the 50Cr15MoV integral blade means that the base material is 50Cr15MoV, which has not undergone the laser cladding process, no cladding layer, transition layer, support and formation of the blade which is the overall blade of the blade.
  • the 30Cr13 integral blade means that the base material is 30Cr13, which has not undergone the laser cladding process, no cladding layer, transition layer, and the integral blade which is supported by the base body.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Optics & Photonics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Laser Beam Processing (AREA)

Abstract

一种带有刃口的工具的制造方法,该带有刃口的工具包括用于支撑的基体(1)和用于形成刃口的熔覆层(2),以及连接基体(1)与熔覆层(2)的过渡区(3);其制造方法包括:提供第一材料,其用于形成基体(1),并具有第一侧面;提供第二材料,采用激光熔覆方式将第二材料熔覆到第一侧面上形成熔覆层(2),且在熔覆层(2)和基体(1)之间形成第一材料与第二材料冶金状态结合的过渡区(3)。采用上述制造方法获得的工具兼具刀身韧性好,刃口硬度高,刀身和刀刃不容易断开的特点,使用寿命长。

Description

一种带有刃口的工具及其制造方法
技术领域
本发明涉及一种带有刃口的工具,特别涉及一种通过激光熔覆处理在刃口的表面形成熔覆层得到的工具,实现该工具兼具刃口的高硬度和高耐磨性,以及刀身或其他部位的高韧性。本发明还涉及这种带有刃口的工具的制造方法。
背景技术
带有刃口的工具用于对物体进行切割或剪切,比如各种刀具、航空剪、带刀刃的钳子等。传统的不锈钢类刀具(如单开刀)多采用整体马氏体不锈钢(包括但不限于下述20Cr13、30Cr13、40Cr13、50Cr15MoV、68Cr17、95Cr18、90Cr18MoV等)为基体,冲裁下料后整体热处理,然后开刃、装配。如果单开刀采用整体低碳马氏体不锈钢(如20Cr13、30Cr13等),那么该类单开刀基体韧性良好,但刃口硬度较低,耐磨性较差,整体刀刃的实际切割寿命较低。而如果单开刀采用整体高碳马氏体不锈钢(如95Cr18、90Cr18MoV等),那么其刃口的硬度、耐磨性提升,整体刀刃的实际切割寿命提升,但整体刀片脆性较大,跌落时容易断裂,并且高碳马氏体不锈钢的单位原材料成本较高,市场竞争力较差。
传统的航空剪多采用整体合金结构钢、工具钢、弹簧钢(包括但不限于50CrMo、6CrW2Si、60Si2Mn、60Si2Cr、60Si2CrV、60CrMn等)为基体,热锻成型后整体热处理,然后开刃、装配。采用该方法得到的航空剪其基体的抗冲击/韧性较好,但刃口的耐磨性较差,实际剪切寿命较低。
若选用的制作材料介于高硬度和高韧性之间,也只能获得刀具或航空剪基体韧性和刃口硬度之间的平衡,但是两者都没有达到最好的效果。其他的带有刃口的工具也存在与刀具和航空剪类似的缺陷。
因此,本领域的技术人员致力于开发兼具刃口高硬度和高耐磨性,且其他部位高韧性,使用寿命长的带刃口的工具及其制造方法。
发明内容
有鉴于现有技术的上述缺陷,本发明所要解决的技术问题是提供一种兼具刃口高硬度和高耐磨性,且其他部位高韧性,使用寿命长的带刃口的工具及其制造方法。
为实现上述目的,本发明的一个方面是提供了一种带有刃口的工具的制造方法:该带有刃口的工具包括用于支撑的基体和用于形成刃口的熔覆层,以及连接基体与熔覆层的过渡区;制造方法包括:
提供第一材料,其用于形成基体,并具有第一侧面;
提供第二材料,采用激光熔覆方式将第二材料熔覆到第一侧面上形成熔覆层,且在熔覆层和基体之间形成第一材料与第二材料冶金状态结合的过渡区。
在一个具体实施方式中,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,或者包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种;第二材料还包括镍和/或钴。
优选地,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,或者包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种;第二材料还包括镍和钴。
在另一个具体实施方式中,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,还包括镍和/或钴。
优选地,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,还包括镍和钴。
进一步地,所述碳、所述钨、所述钛、所述铬、所述钒均为粉状。
进一步地,第一材料为淬火硬化钢。
优选地,第一材料包括马氏体不锈钢、合金结构钢、工具钢和弹簧钢中的一种或者多种。
进一步地,马氏体不锈钢选自20Cr13、30Cr13、40Cr13、50Cr15MoV、68Cr17、95Cr18、90Cr18MoV。
在一个具体实施方式中,第一材料选自50CrMo、6CrW2Si、60Si2Mn、60Si2Cr、60Si2CrV、60CrMn。
进一步地,激光熔覆方式指通过激光器在设定的激光器功率和设定的激光头移动速度下将第二材料中熔点低于激光器产生的激光温度的物质熔化并携带着熔点高于激光温度的物质结合到第一侧面上形成熔覆层;同时第一侧面及其靠近第一侧面的第一材料在激光温度作用下熔化并与靠近第一侧面的第二材料冶金状态结合形成过渡区。
进一步地,第二材料中熔点高于激光温度的物质弥散分布于熔覆层中。
优选地,第二材料中熔点高于激光温度的物质均匀分布于熔覆层中。
进一步地,激光器为CO2气体激光器、YAG固体激光器、光纤激光器或DIODE半导体激光器。
进一步地,激光器功率≥1000W,熔覆时激光头移动速度为2.0~15.0mm/s。
进一步地,制造方法还包括:
激光熔覆后,将工具毛坯进行真空淬火,淬火温度为850~1250℃,淬火介质为淬火油或惰性气体;
淬火完成后,将工具毛坯进行真空回火,回火温度为200~600℃,保温时间2~8小时。
进一步地,制造方法还包括:
激光熔覆前,将工具毛坯进行真空淬火,淬火温度为850~1250℃,淬火介质为淬火油或惰性气体;
淬火完成后,将工具毛坯进行真空回火,回火温度为200~600℃,保温时间2~8小时。
进一步地,制造方法还包括:
激光熔覆、淬火、回火后,将工具毛坯进行磨削刀刃;
装配、包装。
进一步地,熔覆层的硬度比基体的硬度高10HRC以上。
本发明的另一个方面是提供一种带有刃口的工具,包括用于支撑的基体和用于形成刃口的熔覆层,以及连接基体与熔覆层的过渡区;
基体由第一材料组成,第一材料为淬火硬化钢,并具有第一侧面;
熔覆层由第二材料组成,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,或者包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种;第二材料还包括镍和/或钴;
过渡区为通过激光熔覆方式将第二材料熔覆到第一侧面上形成熔覆层的同时在熔覆层和基体之间形成的第一材料与第二材料冶金状态结合的区域。
进一步地,所述碳、所述钨、所述钛、所述铬、所述钒均为粉状。
进一步地,熔覆层的深度是0.2~6.0mm,优选是1.0~3.0mm。
进一步地,熔覆层具有用于切割或剪切的第一边缘,第一边缘是平滑的或锯齿形的。
进一步地,带有刃口的工具采用如上所述的带有刃口的工具的制造方法制造而成。
进一步地,带有刃口的工具为刀具、锯子、斧子、航空剪或者带有刃口的钳子。
在一个具体实施方式中,第二材料还包括镍和钴。
在另一个具体实施方式中,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种。
在又一个具体实施方式中,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,还包括镍和钴。
进一步地,第一材料包括马氏体不锈钢、合金结构钢、工具钢和弹簧钢中的一种或者多种。
进一步地,激光熔覆方式指通过激光器在设定的激光器功率和设定的激光头移动速度下将第二材料中熔点低于激光器产生的激光温度的物质熔化并携带着熔点高于激光温度的物质结合到第一侧面上形成熔覆层;同时第一侧面及其靠近第一侧面的第一材料在激光温度作用下熔化并与靠近第一侧面的第二材料冶金状态结合形成过渡区;第二材料中熔点高于激光温度的物质弥散分布于熔覆层中。
进一步地,熔覆层的硬度比基体的硬度高10HRC以上。
本发明的带有刃口的工具其用于支撑的基体韧性好,同时用于形成刃口的熔覆层硬度高、耐磨性高。采用本发明中的第一材料和第二材料以及激光熔覆方法,获得的熔覆层、过渡区,以及过渡区附近的基体的金相组织无孔洞,这表明激光熔覆效果和连接效果均良好,因此过渡区强度较高,不容易折断;同时保留了基体的强的抗拉强度;并且熔覆层分布有高硬度、高耐磨性的碳化物颗粒,提升了刃口的硬度和耐磨性,从而使得该刃口更经久耐用。
通过本发明的金属材料组成及工艺方法,获得的带有刃口的工具,其刀身硬度在48-54HRC,刃口硬度在60-70HRC,熔覆层的硬度比基体提高了10HRC以上,平均提高了15HRC。兼具支撑部分的高韧性和刃口部分的高硬度与高耐磨性,其耐久度在240mm以上,大大提高了该工具的使用寿命。
另外,第二材料中同时使用镍和钴有利于固液结合的更好。在激光熔覆过程中,第二材料中熔点低于激光温度的物质被熔化为液态,而熔点高于激光温度的物质保持固体粉状结构。被熔化为液态的物质与未被熔化的固体粉粒若能更好的结合,则有利于熔覆层中高硬度、高耐磨性的未被熔化的固体粉粒均匀分布。由于镍和钴为不同金属元素,它们的熔点是低于激光温度的,当被熔化为液体后的混合液比单一液体更容易使得固体被润湿,即产生的润湿角更小,润湿角越小则固液结合越好,从而使得固液结合更好。
其次,第二材料包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,也有利于高硬度、高耐磨性的粉粒均匀分布或弥散分布在熔覆层中,从而整体提高刃口的硬度与耐磨性。高硬度、高耐磨性的粉粒分布均匀受两个条件的制约:一是粒子大小;二是混合条件。粒子越大越不容易分布均匀。如果激光熔覆过程中通过碳与金属单体反应生成碳化物(比如熔化过程中碳粉和钨粉反应生成碳化钨),则会在分子级别上生成碳化物,从而使得碳化物的粒子更小,小于直接加入的碳化物成品。碳化物成品的粒径受市场上产品粒径大小的限制,不如激光熔覆过程单独反应生成的碳化物粒径那么容易受控制。故第二材料包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,通过激光熔覆过程使得反应生成碳化物,可以使得第二材料中的碳化物分布更均匀。
以下将结合附图对本发明的构思、具体结构及产生的技术效果作进一步说明,以充分地了解本发明的目的、特征和效果。
附图说明
图1是本发明的一个较佳实施例的结构示意图,其具体为单开刀。
图2是图1沿AA切开的剖面结构示意图。
图3是本发明的另一个实施例的结构示意图,其具体为航空剪。
图4是本发明的又一个实施例的结构示意图,其具体为带刃口的钳子。
图5是本发明的带刃口的工具的一种实施例构造的金相图,显示基体、过渡区和熔覆层的金相组织,其放大倍数为100倍。
图6是图5中的一区域放大倍数为400倍的金相图。
具体实施方式
本发明所指的带有刃口的工具,用于对物体进行切割和/或剪切,包括基体、熔覆层和连接基体与熔覆层的过渡区。基体起到支撑刃口部分的作用;刃口部分可用于进行切割和/或剪切,由熔覆层经热处理后磨削刀刃形成。
图1显示了本发明的一个实施例,是一种单开刀。图2示出了该单开刀沿AA线剖切的示意图。该单开刀具有用于支撑的基体1,用于形成刃口的熔覆层2,以及连接基体1和熔覆层2的过渡区3。基体1由第一材料制成,具有第一侧面。熔覆层2由第二材料制成,且是通过激光熔覆方式将该第二材料熔覆到第一侧面上形成。同时形成的还有在熔覆层2和基体1之间的过渡区3。过渡区3为第一材料与第二材料在冶金状态下的结合。熔覆层2的深度在0.2~6.0mm之间,优选为1.0~3.0mm之间。
本领域技术人员可知,本发明的带有刃口的工具可以有多种形状与构造,例如,如图3所示的一种航空剪,以及如图4所示的一种带有刃口的钳子。与图1和2中示出的单开刀相同的是均具有基体1、熔覆层2和过渡区3。此外,本发明的带有刃口的工具还可以是其他刀具、锯子、斧子,这里不再赘述。熔覆层具有用于切割或剪切的第一边缘,第一边缘是平滑的或锯齿形的。比如当为单开刀时,第一边缘为平滑的;当为锯子时,第一边缘为锯齿形的。
第一材料为淬火硬化钢,首选具有较高的韧性的钢,比如马氏体不锈钢、合金结构钢、工具钢和弹簧钢中的一种或者多种。在一个优选的实施例中,该马氏体不锈钢选自于以下牌号(中国牌号)的标准化的马氏体不锈钢,20Cr13、30Cr13、40Cr13、50Cr15MoV、68Cr17、95Cr18、90Cr18MoV等。在另一个优选的实施例中,第一材料选自50CrMo、6CrW2Si、60Si2Mn、60Si2Cr、60Si2CrV、60CrMn。
第二材料具有较高的硬度和/或耐磨性。在一个优选的实施例中,第二材料选自碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,同时第二材料还包括镍或钴。在又一个优选的实施例中,第二材料选自碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,同时第二材料还包括镍和钴。在第三个优选的实施例中,第二材料包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,同时第二材料还包括镍或钴。在第四个优选的实施例中,第二材料包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,同时第二材料还包括镍和钴。在第五个优选实施例中,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,还包括镍或钴。在第六个优选实施例中,第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,还包括镍和钴。上述第二材料中的所有物资均为颗粒状(当为细小颗粒时则为粉状)。
本发明的另一方面提供如上所述的带有刃口的工具的制造方法,在一个具体实施方式中,该制造方法包括以下步骤:1)按照工具尺寸对第一材料下料,获得带有第一侧面的基体;2)采用激光熔覆方式,将第二材料熔覆到第一侧面上,形成又第二材料构成的熔覆层,同时在熔覆层和基体之间形成第一材料与第二材料冶金状态结合的过渡区;3)淬火、回火;4)磨削刀刃;5)装配、包装。
首先,将第一材料下料,切割成大致对应于成品带有刃口的工具的基体的形状。该切割可以采用线切割或高速冲床进行,也可以采用本领域中常规使用的其他切割方式进行。切割后的第一材料具有较为平坦的第一侧面。
然后,采用CO2气体激光器、YAG固体激光器、光纤激光器或DIODE半导体激光器进行激光熔覆操作。激光器功率不小于1000W,熔覆时激光头移动速度在2.0~15.0mm/s的脉冲激光,在切割后的第一材料的第一侧面上熔覆一层第二材料,形成熔覆层,同时在熔覆层和基体之间形成既包含第一材料又包含第二材料的过渡区。在过渡区中,第一材料和第二材料彼此融合在一起,即呈冶金状态结合。
之后,对激光熔覆后的工具毛坯进行整体淬火和整体回火。淬火和回火均在真空炉中进行。淬火温度在850~1250℃之间,淬火介质可以是淬火油,也可以是惰性气体。作为优选项目,淬火介质采用氮气。淬火完成后,将工具毛坯在真空炉中进行真空回火,回火温度在200~600℃之间,保温时间2~8小时。
最后,对淬火、回火后的工具毛坯进行尺寸和形状的磨削,尤其是磨削出刃口。磨削可以采用本领域常规使用的方法进行,比如利用磨床进行。
在本发明制造方法的另一个具体实施方式中,还包括在激光熔覆操作前,先行对步骤一中形成的基体进行淬火和回火。余下步骤与上一具体实施方式同,这里不再赘述。
在本发明制造方法的又一个具体实施方式中,还包括在按照工具尺寸对第一材料下料后,通过热锻成型获得一定形状的带有第一侧面的基体。余下步骤与上一具体实施方式同,这里不再赘述。
通过上述具体实施方式或实施例的制造方法,获得的基体1、熔覆层2、过渡区3,其金相结构中基本不存在孔洞(如图5和6所示),这表明具体实施方式中的激光熔覆方式能够很好的将第一材料与第二材料结合在一起,既保证了基体的高韧性,又保证了熔覆层的高硬度和高耐磨性,以及确保了过渡区将基体和熔覆层紧密连接。
在经过激光熔覆、淬火、回火处理后,基体的硬度在48-54HRC,这样的硬度赋予了基体较好的韧性,使得基体不容易折断。熔覆层的硬度在60-70HRC,其赋予了熔覆层很好的耐磨性,使得刃口的使用寿命更长。
实施例1 一种单开刀
1)按照工具尺寸对第一材料下料,获得带有第一侧面的基体。第一材料为马氏体不锈钢。然后,在真空炉中进行第一次淬火、第一次回火。淬火温度在850~1250℃之间,淬火介质采用氮气。淬火完成后,进行回火,回火温度在200~600℃之间,保温时间2~8小时。
2)采用DIODE半导体激光器,激光器功率不小于1000W,熔覆时激光头移动速度在2.0~15.0mm/s之间进行激光熔覆操作。将第二材料熔覆到第一侧面上,形成由第二材料构成的熔覆层,同时在熔覆层和基体之间形成第一材料与第二材料冶金状态结合的过渡区。第二材料包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,同时第二材料还包括镍和钴。第二材料中的物质均为粉状。
3)在真空炉中进行第二次淬火、第二次回火。淬火温度在850~1250℃之间,淬火介质采用氮气。淬火完成后,进行回火,回火温度在200~600℃之间,保温时间2~8小时。
4)磨削刀刃。
5)装配、包装,得到实施例1的单开刀。
实施例2~6的单开刀的制备方法与实施例1的单开刀的制备方法除表1所列的不同外,其余完全相同。
表1 单开刀实施例2~6
与实施例 1 的不同
实施例 2 步骤 2 )中第二材料除了包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种外,只包括镍不包括钴。
实施例 3 步骤 2 )中第二材料除了包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种外,只包括钴不包括镍。
实施例 4 步骤 2 )中第二材料为包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,且同时包括镍和钴。
实施例 5 步骤 2 )中第二材料为包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,且只包括镍不包括钴。
实施例 6 步骤 2 )中第二材料为包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,且只包括钴不包括镍。
实施例7 一种单开刀
1)按照工具尺寸对第一材料下料,获得带有第一侧面的基体。第一材料为马氏体不锈钢。
2)采用DIODE半导体激光器,激光器功率不小于1000W,熔覆时激光头移动速度在2.0~15.0mm/s之间进行激光熔覆操作。将第二材料熔覆到第一侧面上,形成由第二材料构成的熔覆层,同时在熔覆层和基体之间形成第一材料与第二材料冶金状态结合的过渡区。第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,同时第二材料还包括镍和钴。第二材料中的物质均为粉状。
3)在真空炉中进行淬火、回火。淬火温度在850~1250℃之间,淬火介质采用淬火油。淬火完成后,进行回火,回火温度在200~600℃之间,保温时间2~8小时。
4)磨削刀刃。
5)装配、包装,得到实施例7的单开刀。
实施例8~12的单开刀的制备方法与实施例7的单开刀的制备方法除表2所列的不同外,其余完全相同。
表2 单开刀实施例8~12
与实施例 7 的不同
实施例 8 步骤 2 )中第二材料为包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,同时包括镍和钴。
实施例 9 步骤 2 )中第二材料为包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,且只包括镍不包括钴。
实施例 10 步骤 2 )中第二材料为包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,且只包括钴不包括镍。
实施例 11 步骤 2 )中第二材料除了包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物外,只包括镍不包括钴。
实施例 12 步骤 2 )中第二材料除了包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物外,只包括钴不包括镍。
实施例13 一种航空剪
1)按照工具尺寸对第一材料下料,热锻成型,获得带有第一侧面的基体。第一材料为合金结构钢、工具钢、弹簧钢类原材料:棒料。然后,在真空炉中进行第一次淬火、第一次回火。淬火温度在850~1250℃之间,淬火介质采用氮气。淬火完成后,进行回火,回火温度在200~600℃之间,保温时间2~8小时。
2)采用DIODE半导体激光器,激光器功率不小于1000W,熔覆时激光头移动速度在2.0~15.0mm/s之间进行激光熔覆操作。将第二材料熔覆到第一侧面上,形成由第二材料构成的熔覆层,同时在熔覆层和基体之间形成第一材料与第二材料冶金状态结合的过渡区。第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,同时第二材料还包括镍和钴。
3)在真空炉中进行第二次淬火、第二次回火。淬火温度在850~1250℃之间,淬火介质采用氮气。淬火完成后,进行回火,回火温度在200~600℃之间,保温时间2~8小时。
4)磨削刀刃。
5)装配、包装,得到实施例13的航空剪。
实施例14 一种带刃口的钳子
1)按照工具尺寸对第一材料下料,热锻成型,获得带有第一侧面的基体。第一材料为合金结构钢。然后,在真空炉中进行第一次淬火、第一次回火。淬火温度在850~1250℃之间,淬火介质采用氮气。淬火完成后,进行回火,回火温度在200~600℃之间,保温时间2~8小时。
2)采用CO2气体激光器,激光器功率不小于1000W,熔覆时激光头移动速度在2.0~15.0mm/s之间进行激光熔覆操作。将第二材料熔覆到第一侧面上,形成由第二材料构成的熔覆层,同时在熔覆层和基体之间形成第一材料与第二材料冶金状态结合的过渡区。第二材料包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,同时第二材料还包括镍或钴。
3)在真空炉中进行第二次淬火、第二次回火。淬火温度在850~1250℃之间,淬火介质采用氮气。淬火完成后,进行回火,回火温度在200~600℃之间,保温时间2~8小时。
4)磨削刀刃。
5)装配、包装,得到实施例14的带刃口的钳子。
测试行程20mm, 测试60个循环,使用本发明的方法制造的刀片形成的单开刀,与现有的单开刀相比,其锋利度和耐久度如表3所示:
表 3 各单开刀的锋利度和耐久度
序号 项目 锋利度 (mm) 耐久度 (mm)
1 实施例 1 和 8 的单开刀 56~66 300~333
2 实施例 2 、 3 、 9 和 10 的单开刀 43~53 235~255
3 实施例 4 和 7 的单开刀 50~60 242~273
4 实施例 5 、 6 、 11 和 12 的单开刀 32~42 186~216
5 现有的单开刀( 50Cr15MoV 整体刀片) 30.7 109.3
6 现有的单开刀( 30Cr13 整体刀片) 24.3 77.6
由此可见,具有本发明实施例的带刃口的工具(以单开刀为例)其锋利度和耐久度相对于现有的单开刀刀片均有所提高。其中,同时使用镍和钴(比如实施例1、4、7和8)使得锋利度提高了1倍左右,耐久度提高了2到3倍;同时使用镍和钴,且采用碳与钨、钛、铬、钒这四种金属单体中的至少一种在激光熔覆过程中生成碳化物(比如实施例1和8),其锋利度和耐久度最高。
50Cr15MoV整体刀片指基体材料为50Cr15MoV,未经过激光熔覆工艺,没有熔覆层、过渡层,支撑和形成刃口均由基体担当的整体刀片。30Cr13整体刀片指基体材料为30Cr13,未经过激光熔覆工艺,没有熔覆层、过渡层,支撑和形成刃口均由基体担当的整体刀片。
以上详细描述了本发明的较佳具体实施例。应当理解,本领域的普通技术无需创造性劳动就可以根据本发明的构思作出诸多修改和变化。因此,凡本技术领域中技术人员依本发明的构思在现有技术的基础上通过逻辑分析、推理或者有限的实验可以得到的技术方案,皆应在由权利要求书所确定的保护范围内。

Claims (23)

  1. 一种带有刃口的工具的制造方法,其特征在于:
    所述带有刃口的工具包括用于支撑的基体和用于形成刃口的熔覆层,以及连接所述基体与所述熔覆层的过渡区;
    所述制造方法包括:
    提供第一材料,其用于形成所述基体,并具有第一侧面;
    提供第二材料,采用激光熔覆方式将所述第二材料熔覆到所述第一侧面上形成所述熔覆层,且在所述熔覆层和所述基体之间形成所述第一材料与所述第二材料冶金状态结合的所述过渡区。
  2. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,或者包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种;所述第二材料还包括镍和/或钴。
  3. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,或者包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种;所述第二材料还包括镍和钴。
  4. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,还包括镍和/或钴。
  5. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,还包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种,还包括镍和钴。
  6. 如权利要求2-5任一项所述的带有刃口的工具的制造方法,其特征在于,所述碳、所述钨、所述钛、所述铬、所述钒均为粉状。
  7. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述第一材料为淬火硬化钢。
  8. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述第一材料包括马氏体不锈钢、合金结构钢、工具钢和弹簧钢中的一种或者多种。
  9. 如权利要求8所述的带有刃口的工具的制造方法,其特征在于,所述马氏体不锈钢选自20Cr13、30Cr13、40Cr13、50Cr15MoV、68Cr17、95Cr18、90Cr18MoV。
  10. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述第一材料选自50CrMo、6CrW2Si、60Si2Mn、60Si2Cr、60Si2CrV、60CrMn。
  11. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述激光熔覆方式指通过激光器在设定的激光器功率和设定的激光头移动速度下将所述第二材料中熔点低于激光器产生的激光温度的物质熔化并携带着熔点高于所述激光温度的物质结合到所述第一侧面上形成所述熔覆层;同时所述第一侧面及其靠近所述第一侧面的所述第一材料在所述激光温度作用下熔化并与靠近所述第一侧面的所述第二材料冶金状态结合形成所述过渡区。
  12. 如权利要求11所述的带有刃口的工具的制造方法,其特征在于,所述第二材料中熔点高于所述激光温度的物质弥散分布于所述熔覆层中。
  13. 如权利要求11所述的带有刃口的工具的制造方法,其特征在于,所述第二材料中熔点高于所述激光温度的物质均匀分布于所述熔覆层中。
  14. 如权利要求11所述的带有刃口的工具的制造方法,其特征在于,所述激光器为CO2气体激光器、YAG固体激光器、光纤激光器或DIODE半导体激光器。
  15. 如权利要求11所述的带有刃口的工具的制造方法,其特征在于,所述激光器功率≥1000W,熔覆时所述激光头移动速度为2.0~15.0mm/s。
  16. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述制造方法还包括:
    激光熔覆后,将工具毛坯进行真空淬火,淬火温度为850~1250℃,淬火介质为淬火油或惰性气体;
    淬火完成后,将工具毛坯进行真空回火,回火温度为200~600℃,保温时间2~8小时。
  17. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述制造方法还包括:
    激光熔覆前,将工具毛坯进行真空淬火,淬火温度为850~1250℃,淬火介质为淬火油或惰性气体;
    淬火完成后,将工具毛坯进行真空回火,回火温度为200~600℃,保温时间2~8小时。
  18. 如权利要求1所述的带有刃口的工具的制造方法,其特征在于,所述熔覆层的硬度比所述基体的硬度高10HRC以上。
  19. 一种带有刃口的工具,其特征在于:包括用于支撑的基体和用于形成刃口的熔覆层,以及连接所述基体与所述熔覆层的过渡区;
    所述基体由第一材料组成,所述第一材料为硬化的不锈钢,并具有第一侧面;
    所述熔覆层由第二材料组成,所述第二材料包括碳化钨、碳化钛、碳化铬、碳化钒、氧化铝、氧化锆中的至少一种化合物,或者包括碳以及钨、钛、铬、钒这四种金属单体中的至少一种;所述第二材料还包括镍和/或钴;
    所述过渡区为通过激光熔覆方式将所述第二材料熔覆到所述第一侧面上形成所述熔覆层的同时在所述熔覆层和所述基体之间形成的所述第一材料与所述第二材料冶金状态结合的区域。
  20. 如权利要求19所述的带有刃口的工具,其特征在于,所述熔覆层的深度是0.2~6.0mm,优选是1.0~3.0mm。
  21. 如权利要求19所述的带有刃口的工具,其特征在于,所述熔覆层具有用于切割或剪切的第一边缘,所述第一边缘是平滑的或锯齿形的。
  22. 如权利要求19所述的带有刃口的工具,其特征在于,所述带有刃口的工具采用如权利要求1-18任一项所述的带有刃口的工具的制造方法制造而成。
  23. 如权利要求19所述的带有刃口的工具,其特征在于,所述带有刃口的工具为刀具、锯子、斧子、航空剪或者带有刃口的钳子。
PCT/CN2017/102517 2017-09-20 2017-09-20 一种带有刃口的工具及其制造方法 WO2019056227A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2017/102517 WO2019056227A1 (zh) 2017-09-20 2017-09-20 一种带有刃口的工具及其制造方法
US16/344,089 US20200061747A1 (en) 2017-09-20 2017-09-20 Tool with cutting edge and method of manufacturing it

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/102517 WO2019056227A1 (zh) 2017-09-20 2017-09-20 一种带有刃口的工具及其制造方法

Publications (1)

Publication Number Publication Date
WO2019056227A1 true WO2019056227A1 (zh) 2019-03-28

Family

ID=65809966

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/102517 WO2019056227A1 (zh) 2017-09-20 2017-09-20 一种带有刃口的工具及其制造方法

Country Status (2)

Country Link
US (1) US20200061747A1 (zh)
WO (1) WO2019056227A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081143A1 (en) * 2019-10-22 2021-04-29 Milwaukee Electric Tool Corporation Cladded tool and method of making a cladded tool
CN113652685A (zh) * 2021-07-30 2021-11-16 山东莱钢永锋钢铁有限公司 一种轧辊表面强化工艺

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11007658B2 (en) * 2009-05-11 2021-05-18 Roger J. Malcolm Fiber-resin composite bolt cutter tool
CN111702176B (zh) * 2020-06-29 2022-07-19 中国铁建重工集团股份有限公司 一种盾构机刀具的制备方法
CN112064015A (zh) * 2020-09-11 2020-12-11 阳江市佰伦实业有限公司 一种430抗菌不锈钢熔覆刀及其制备方法
CN113278962B (zh) * 2021-04-16 2022-12-09 北京工业大学 基于粉芯焊丝深熔模式的刀具刃口激光熔覆层制备方法
CN115572971B (zh) * 2022-09-22 2024-04-26 吉林农业大学 一种旋耕刀刀刃增强用激光熔覆设备

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532304A (zh) * 2003-03-18 2004-09-29 浙江工业大学 一种刀具及其加工方法
CN104647404A (zh) * 2015-02-13 2015-05-27 武汉苏泊尔炊具有限公司 刀具及该刀具的制造方法
WO2015157169A2 (en) * 2014-04-07 2015-10-15 Scoperta, Inc. Fine-grained high carbide cast iron alloys
CN105287030A (zh) * 2015-09-22 2016-02-03 杭州博华激光技术有限公司 一种医用口腔畸正钳及医用口腔畸正钳刀口的加工方法
WO2016055545A1 (en) * 2014-10-09 2016-04-14 Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw Work roll manufactured by laser cladding and method therefor
CN106119838A (zh) * 2016-08-12 2016-11-16 阳江市五金刀剪产业技术研究院 一种利用激光熔覆技术强化刀刃的刀具
CN107022759A (zh) * 2016-07-15 2017-08-08 阳江市五金刀剪产业技术研究院 一种高硬度增材制造刀具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1532304A (zh) * 2003-03-18 2004-09-29 浙江工业大学 一种刀具及其加工方法
WO2015157169A2 (en) * 2014-04-07 2015-10-15 Scoperta, Inc. Fine-grained high carbide cast iron alloys
WO2016055545A1 (en) * 2014-10-09 2016-04-14 Centre de Recherches Métallurgiques asbl - Centrum voor Research in de Metallurgie vzw Work roll manufactured by laser cladding and method therefor
CN104647404A (zh) * 2015-02-13 2015-05-27 武汉苏泊尔炊具有限公司 刀具及该刀具的制造方法
CN105287030A (zh) * 2015-09-22 2016-02-03 杭州博华激光技术有限公司 一种医用口腔畸正钳及医用口腔畸正钳刀口的加工方法
CN107022759A (zh) * 2016-07-15 2017-08-08 阳江市五金刀剪产业技术研究院 一种高硬度增材制造刀具
CN106119838A (zh) * 2016-08-12 2016-11-16 阳江市五金刀剪产业技术研究院 一种利用激光熔覆技术强化刀刃的刀具

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021081143A1 (en) * 2019-10-22 2021-04-29 Milwaukee Electric Tool Corporation Cladded tool and method of making a cladded tool
CN113652685A (zh) * 2021-07-30 2021-11-16 山东莱钢永锋钢铁有限公司 一种轧辊表面强化工艺

Also Published As

Publication number Publication date
US20200061747A1 (en) 2020-02-27

Similar Documents

Publication Publication Date Title
WO2019056227A1 (zh) 一种带有刃口的工具及其制造方法
Ming et al. Laser cladding of nickel-based hardfacing alloys
EP1258312B1 (en) Repair of a single crystal nickel based superalloy article
KR101156982B1 (ko) 다결정 다이아몬드 연마요소
EP2692471B1 (en) Tool for friction stir processing and method for friction stir processing using same
CN108326280B (zh) 一种超薄蓝宝石玻璃切割用金刚石切割刀及其制备方法
JP7458789B2 (ja) 金属系基材の補修方法
CN108588704A (zh) 一种采用定点输入能量快速冷却制备高熵合金/金刚石复合材料薄膜或涂层的方法
KR20100018500A (ko) 가스 터빈 부품에 연마 코팅을 제조하기 위한 방법
CN110468406B (zh) 耐磨涂层及其制备方法、盾构滚刀的刀圈、盾构滚刀和盾构机
US3193926A (en) Blades for molten glass cutters
Xu et al. Optimized AgCuSnTi filler alloy for brazing of diamond/copper combination used in microwave windows: microstructure and mechanical performance
JP2013086238A (ja) Cu−Ga合金の切断方法およびスパッタリングターゲットの製造方法
CN117545571A (zh) 切削工具
RU2297902C1 (ru) Дисковый нож
CN103402688A (zh) 用两步焊接生产弥散强化铂基合金的焊接物品的方法
JP2003266370A (ja) 繊維用切断刃、及びそれを用いた繊維切断装置、並びにガラスチョップドストランド
JP2003053693A (ja) 繊維用切断刃及びその製造方法、繊維切断装置、並びにガラスチョップドストランド
Fu et al. Joining of oxide dispersion strengthened Eurofer steel via spark plasma sintering
JP4099342B2 (ja) ガラスストランド切断装置
JP3891793B2 (ja) 高速歯切加工ですぐれた耐チッピング性を発揮する高速度工具鋼製むく歯切工具の製造方法
CN107538362A (zh) 金刚石切磨工具及其制备方法
TWI803106B (zh) 用於框鋸之切削工具
JP2000015624A (ja) スライシング加工用粘着シート
JP3019739B2 (ja) 掘削工具及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925661

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925661

Country of ref document: EP

Kind code of ref document: A1