WO2019054457A1 - 基板観察装置、塗布装置および位置決め方法 - Google Patents

基板観察装置、塗布装置および位置決め方法 Download PDF

Info

Publication number
WO2019054457A1
WO2019054457A1 PCT/JP2018/034060 JP2018034060W WO2019054457A1 WO 2019054457 A1 WO2019054457 A1 WO 2019054457A1 JP 2018034060 W JP2018034060 W JP 2018034060W WO 2019054457 A1 WO2019054457 A1 WO 2019054457A1
Authority
WO
WIPO (PCT)
Prior art keywords
coordinates
substrate
image
optical system
correction
Prior art date
Application number
PCT/JP2018/034060
Other languages
English (en)
French (fr)
Inventor
博明 大庭
Original Assignee
Ntn株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ntn株式会社 filed Critical Ntn株式会社
Publication of WO2019054457A1 publication Critical patent/WO2019054457A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C1/00Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating
    • B05C1/02Apparatus in which liquid or other fluent material is applied to the surface of the work by contact with a member carrying the liquid or other fluent material, e.g. a porous member loaded with a liquid to be applied as a coating for applying liquid or other fluent material to separate articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05CAPPARATUS FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05C11/00Component parts, details or accessories not specifically provided for in groups B05C1/00 - B05C9/00
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D1/00Processes for applying liquids or other fluent materials
    • B05D1/26Processes for applying liquids or other fluent materials performed by applying the liquid or other fluent material from an outlet device in contact with, or almost in contact with, the surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B05SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05DPROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
    • B05D3/00Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/95Investigating the presence of flaws or contamination characterised by the material or shape of the object to be examined
    • G01N21/956Inspecting patterns on the surface of objects
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/22Secondary treatment of printed circuits

Definitions

  • the present invention relates to a substrate observation apparatus for observing a substrate through an observation optical system, a coating apparatus for coating a substrate with a coating material, and a positioning method.
  • Patent Document 1 Japanese Patent Application Laid-Open Nos. 2007-268354 (Patent Document 1), 2009-122259 Publication (Patent Document 2), JP 2009-237086 (Patent Document 3)
  • Patent Document 2 Japanese Patent Application Laid-Open Nos. 2007-268354
  • Patent Document 3 Japanese Patent Application Laid-Open Nos. 2007-268354
  • Patent Document 3 Japanese Patent Application Laid-Open Nos. 2007-268354
  • Patent Document 2 2009-122259 Publication
  • Patent Document 3 JP 2009-237086
  • Such a coating apparatus includes an observation optical system and a coating mechanism, and after confirming the position of the defect portion by observing the surface of the substrate through the observation optical system, the coating mechanism is positioned at the position. The material is applied to the defective portion by the application mechanism.
  • Patent Document 4 describes an operation of focusing on the surface of a substrate to be processed in a pattern correction apparatus provided with an observation optical system and a coating mechanism for the purpose of shortening working time. A technology for speeding up the system is disclosed. Specifically, the pattern correction apparatus stores, in advance, a plurality of XYZ coordinates of the observation optical system when the observation optical system is focused on a plurality of points on the surface of the substrate. The pattern correction apparatus determines XYZ coordinates of the observation optical system for focusing the observation optical system on a desired point on the surface of the substrate based on the stored plurality of XYZ coordinates, and determines the observation optical system in the determined XYZ coordinates. Positioning
  • JP 2007-268354 A JP, 2009-122259, A JP, 2009-237086, A Japanese Patent Application Publication No. 2007-303869
  • the position of the defect portion is confirmed by observing the surface of the substrate through the observation optical system, the position is specified as the application target position to position the coating mechanism,
  • the coating material may be applied out of alignment with the application target position.
  • the coordinate (100, 100) is designated as the application target position, It may be applied at a position deviated from the coordinates (100, 100).
  • the present invention has been made to solve the above-described problems, and one object thereof is to provide a substrate observation apparatus capable of accurately positioning an observation optical system and a positioning method of the observation optical system. It is. Furthermore, another object of the present invention is to provide a coating apparatus capable of accurately positioning the coating mechanism and a positioning method of the coating mechanism.
  • the substrate observation apparatus of the present disclosure includes an observation optical system for observing the surface of the substrate arranged in the XY plane from the Z direction, a camera for photographing the surface of the substrate via the observation optical system, and an instruction A positioning device for positioning the observation optical system in the X and Y directions according to the XY coordinates, and a command position determination unit which determines the XY coordinates of the observation target position of the surface of the substrate as the XY coordinates of the command position of the observation optical system And a storage unit storing an XY correction amount corresponding to each of a plurality of positions in the XY plane, and an XY correction amount corresponding to the observation target position referenced from the storage unit, and the commanded position using the referenced XY correction amount And a correction unit that instructs the positioning device on the corrected XY coordinates.
  • the XY correction amount is set such that the distance between the center of the first image and the observation target position in the first image is shorter than the distance between the center of the second image and the observation target position in the second image. It is set.
  • the XY correction amount is an X value of the corresponding position in the third image with respect to the center of the third image captured by the camera when the XY coordinate of the corresponding position among the plurality of positions is indicated to the positioning device. It is a shift amount of at least one of the direction and the Y direction.
  • the positioning device positions the observation optical system in the Z direction according to the indicated Z coordinate.
  • the command position determination unit determines a Z coordinate which is predetermined according to the thickness of the substrate as the Z coordinate of the command position.
  • the storage unit stores the Z correction amount corresponding to each of the plurality of positions.
  • the correction unit refers to the Z correction amount corresponding to the observation target position from the storage unit, corrects the Z coordinate of the command position based on the referred Z correction amount, and instructs the positioning device on the corrected Z coordinate.
  • the Z correction amount is the contrast of the fourth image captured by the camera when the corrected Z coordinate is instructed to the positioning device, and the fifth captured by the camera when the Z coordinate of the command position is instructed to the positioning device It is set to be higher than the contrast of the image.
  • the commanded position determination unit is determined based on the UV coordinates of each of two points on the surface of the substrate and the XY coordinates when receiving the UV coordinates of the observation target position in the UV coordinate system in the surface of the substrate According to the conversion equation from UV coordinates to XY coordinates, the UV coordinates of the observation target position are converted into XY coordinates, and the converted XY coordinates are determined as the XY coordinates of the command position.
  • This positioning method includes the steps of generating a correction map in which each of a plurality of positions in the XY plane is associated with an XY correction amount, and XY coordinates of the observation target position of the surface of the substrate at the command position XY of the observation optical system.
  • the process of determining as coordinates and the XY correction amount corresponding to the observation target position are referenced from the correction map, the XY coordinates of the command position are corrected based on the referred XY correction amount, and the corrected XY coordinates are indicated to the positioning device
  • the step of In the generating step for each of a plurality of positions, an image captured by a camera when XY coordinates of the position are indicated to the positioning device is acquired, and an X direction of the position in the image with respect to the center of the image and The amount of displacement in at least one of the Y directions is calculated as the amount of XY correction.
  • the positioning method further includes the step of associating and storing each of the plurality of positions and the latest calculation time at which the XY correction amount corresponding to the position is calculated in the generating step.
  • the step of generating the observation target position is performed. .
  • the coating apparatus of the present disclosure includes an observation optical system for observing the surface of a substrate arranged in the XY plane from the Z direction, a camera for photographing the surface of the substrate via the observation optical system, and the surface of the substrate. And a coating mechanism for applying a coating material.
  • the relative positional relationship between the observation optical system and the coating mechanism is constant.
  • the coating device further includes a positioning device for positioning the designated one of the observation optical system and the coating mechanism in the designated X direction and Y direction according to the designated XY coordinates, and XY of the coating target position of the surface of the substrate.
  • a command position determination unit that determines coordinates as XY coordinates of a command position of the application mechanism, a storage unit that stores an XY correction amount corresponding to each of a plurality of positions in the XY plane, and an XY correction amount corresponding to the application target position And a correction unit that corrects the XY coordinates of the command position using the referred XY correction amount, and instructs the positioning device to the XY coordinates after correction and the application mechanism.
  • the position of the surface of the substrate at the center of the image taken by the camera when the XY coordinates of the command position and the observation optical system are instructed to the positioning device is taken as the reference position.
  • the XY correction amount is determined by the application position and the reference position on the surface of the substrate when the application material is applied to the surface of the substrate by the application mechanism after instructing the positioner to the XY coordinates after correction and the application mechanism.
  • the distance is shorter than the distance between the application position and the reference position on the surface of the substrate when the application material is applied to the surface of the substrate by the application mechanism after instructing the positioning device to the XY coordinates of the command position and the application mechanism.
  • the XY correction amount is determined by applying the coating material in the image with respect to the center of the image captured by the camera when instructing the positioning device with the XY coordinates of the corresponding position among the plurality of positions and the observation optical system.
  • the amount of displacement of at least one of the X direction and the Y direction of the selected area This image is photographed after the application device is applied with the application mechanism after the positioning device is instructed of the XY coordinates of the corresponding position and the application mechanism.
  • the positioning device positions the coating mechanism and the observation optical system in the Z direction according to the indicated Z coordinate.
  • the command position determination unit determines a Z coordinate which is predetermined according to the thickness of the substrate as the Z coordinate of the command position.
  • the storage unit stores the Z correction amount corresponding to each of the plurality of positions.
  • the correction unit refers to the Z correction amount corresponding to the application target position from the storage unit, corrects the Z coordinate of the command position based on the referred Z correction amount, and instructs the positioning device on the corrected Z coordinate.
  • the Z correction amount is based on the contrast of the image taken by the camera when the corrected Z coordinate is instructed to the positioning device, or the contrast of the image taken by the camera when the Z coordinate of the command position is instructed to the positioning device Is also set to be high.
  • the command position determination unit receives UV coordinates of the application target position in the UV coordinate system in the surface of the substrate, it is determined based on the UV coordinates and XY coordinates of each of two points on the surface of the substrate According to the conversion formula from UV coordinates to XY coordinates, the UV coordinates of the application target position are converted into XY coordinates, and the converted XY coordinates are determined as the XY coordinates of the command position.
  • Another positioning method includes an observation optical system for observing the surface of a substrate arranged in the XY plane from the Z direction, a camera for photographing the surface of the substrate via the observation optical system, and It has a coating mechanism for coating the coating material on the surface, and a positioning device for positioning one of the designated observation optical system and the coating mechanism in the X and Y directions according to the designated XY coordinates. It is a positioning method of the application mechanism in a coating device. The relative positional relationship between the observation optical system and the coating mechanism is constant.
  • This positioning method comprises the steps of: generating a correction map in which each of a plurality of positions in the XY plane is associated with the XY correction amount; and XY coordinates of the application target position on the surface of the substrate as XY coordinates of the command position of the application mechanism And the XY correction amount corresponding to the application target position is referred from the correction map, the XY coordinates of the command position are corrected based on the referred XY correction amount, and the corrected XY coordinates and the application mechanism are positioned Instructing the device.
  • the generation process includes, for each of a plurality of positions, the process of applying an application material to the surface of the substrate by the application mechanism after instructing the positioning apparatus with the XY coordinates of the position and the application process.
  • an image captured by the camera is acquired, and at least the X direction and the Y direction of the region coated with the coating material in the image with respect to the center of the image. Calculating one of the deviation amounts as the XY correction amount.
  • the positioning method further includes a step of storing each of the plurality of positions in association with the latest calculation time at which the XY correction amount corresponding to the position is calculated in the calculating step.
  • the process of generating the application target position is performed. .
  • the observation optical system can be accurately positioned.
  • the coating mechanism can be positioned with high accuracy.
  • FIG. 1 is a schematic perspective view of a liquid application device according to a first embodiment. It is a schematic diagram which shows the application
  • FIG. 5 is a flowchart showing a flow of correction map generation processing according to the first embodiment. It is a figure which shows an example of a board
  • FIG. 13 is a functional block diagram schematically showing an internal configuration of a control computer according to a second embodiment.
  • FIG. 13 is a flowchart showing a flow of correction map generation processing according to Embodiment 2.
  • FIG. It is a figure which shows an example of the image acquired by FIG.15 S50. It is a flow chart which shows a flow of positioning processing of an application mechanism. After step S65 in FIG. 17, an example of an image acquired after the XYZ control of the command position and the observation optical system are instructed to the stage control unit is shown. It is a flowchart which shows the flow of a process when performing the production
  • FIG. 1 is a schematic perspective view of a liquid application device 200 according to the first embodiment.
  • a liquid applying apparatus 200 according to a first embodiment of the present invention includes a base 12 disposed on a floor, an X-axis stage 1, a Y-axis stage 2, and a Z-axis stage 3.
  • An application mechanism 4, an observation optical system 6, a CCD camera 7 connected to the observation optical system 6, and a control unit 11 are provided.
  • the liquid coating device 200 can be said to be a substrate observation device that observes the surface of the substrate through the observation optical system 6.
  • a Y-axis stage 2 configured to be movable in the Y-axis direction in FIG. 1 is installed on the upper surface of the base 12. Specifically, a guide portion is installed on the lower surface of the Y-axis stage 2 and is slidably connected along a guide rail installed on the upper surface of the base 12. Further, a ball screw is connected to the lower surface of the Y-axis stage 2. By operating the ball screw with a drive member such as a motor, the Y-axis stage 2 can be moved along the guide rail (in the Y-axis direction). Further, the upper surface portion of the Y-axis stage 2 is a mounting surface on which the substrate 5 which is an object to be coated is mounted, and is an XY plane. The substrate 5 is rectangular.
  • a gate-shaped structure installed so as to straddle the guide rail of the Y-axis stage 2 in the X-axis direction is provided.
  • an X-axis stage 1 movable in the X-axis direction is mounted. For example, it can be moved in the X-axis direction using a ball screw.
  • the Z-axis stage 3 is mounted on the moving body of the X-axis stage 1, and the coating mechanism 4 and the observation optical system 6 are mounted on the Z-axis stage 3.
  • the application mechanism 4 and the observation optical system 6 are integrally movable in the X direction together with the Z-axis stage 3.
  • the Z-axis stage 3 supports the coating mechanism 4 and the observation optical system 6 movably in the Z-axis direction.
  • the relative positional relationship between the coating mechanism 4 and the observation optical system 6 is always constant regardless of the states of the X axis stage 1, the Y axis stage 2 and the Z axis stage 3.
  • the coating mechanism 4 applies a coating material to the surface to be coated (upper surface side) of the substrate 5 disposed on the upper surface portion of the Y-axis stage 2 which is an XY plane, using a coating needle provided in the coating unit. is there.
  • the observation optical system 6 is for observing the surface of the substrate 5 arranged in the XY plane from the Z direction.
  • the CCD camera 7 is a member for capturing a magnified image of a part of the surface of the substrate 5 through the observation optical system 6, and converts the observed image (magnified image) into an electrical signal.
  • the control unit 11 includes an operation panel 8, a monitor 9, and a control computer 10, and controls the X axis stage 1, the Y axis stage 2, the Z axis stage 3, the coating mechanism 4, and the observation optical system 6.
  • the operation panel 8 is used to input a command to the control computer 10.
  • the monitor 9 displays the image data converted by the CCD camera 7 of the observation optical system 6 and the output data from the control computer 10.
  • the X-axis stage 1, Y-axis stage 2 and Z-axis stage 3 are not limited to the above configuration, and the observation optical system 6 and the coating mechanism 4 can be moved and positioned relative to the substrate 5 in the XYZ directions.
  • the configuration is sufficient.
  • Z axis stage 3 equipped with coating mechanism 4 and observation optical system 6 is mounted on X axis stage 1
  • X axis stage 1 is mounted on Y axis stage 2
  • Z axis stage 3 can be moved in XY directions It may be a configuration called a gantry system.
  • FIG. 2 is a schematic view showing a coating mechanism used in the coating apparatus shown in FIG. A front view is shown in FIG. 2 (A), and a side view is shown in FIG. 2 (B).
  • the application mechanism 4 includes a needle moving mechanism 19 and an application unit 20.
  • the needle moving mechanism 19 holds one application needle 24 whose tip 23 is tapered.
  • the needle moving mechanism 19 includes the applicator needle holder 14 for holding the applicator needle 24, the servomotor 15, the spring 16, the cam 17, the cam follower 18, and the cam connection plate 25. , A movable portion 26, a gantry 27, and a linear guide 28.
  • the servomotor 15 is provided with a rotation axis in the direction along the Z-axis direction shown in FIG.
  • the cam 17 is connected to the rotation shaft 15 b of the servomotor 15.
  • a sloped cam surface 17 a for guiding the cam follower 18 is formed on the upper surface of the cam 17. Then, when the rotary shaft is rotated by the drive of the servomotor 15, the cam 17 rotates with the cam surface 17a directed upward.
  • the tension of the spring 16 acts between the cam 17 and the cam follower 18 to press the cam follower 18 against the cam surface 17 a via the movable portion 26 and the cam connection plate 25. For this reason, when the cam 17 is rotated by the rotation of the servomotor 15, the cam follower 18 is pressed by the cam surface 17a and kept in contact with the cam surface 17a by the tension of the spring 16.
  • the cam connecting plate 25 is connected to the cam follower 18, and the other end of the cam connecting plate 25 is fixed to the movable portion 26.
  • the application needle holder 14 is attached to the lower end portion of the movable portion 26, and one application needle 24 is held downward from the lower side surface of the application needle holder 14 with the tip 23 facing downward.
  • the cam 17 is rotated by the drive of the servomotor 15, the applicator needle 24 is reciprocated upward and downward along with the upward and downward movement of the cam follower 18.
  • the application unit 20 includes a container 21.
  • the container 21 is fixed to the gantry 27 by the support 29.
  • the container 21 holds a coating material used when drawing a pattern.
  • one through hole 22 is formed in the bottom of the container 21. As shown in FIG. 2 (A), the through hole 22 formed in the bottom of the container 21 has a size that allows the application needle 24 to penetrate and the tip 23 to be protruded downward, and the container The size of the coating material held by 21 is set so as not to drip.
  • FIG. 3 is a schematic cross-sectional view for explaining the position of the application needle 24 in accordance with the operation of the application mechanism 4 shown in FIG.
  • the servomotor 15 of the coating mechanism 4 shown in FIG. 2 rotates the rotation shaft 15 b to rotate the cam 17 in accordance with a control signal from the control unit 11.
  • the height position of the cam surface 17a of the cam 17 changes in the Z-axis direction, so the height position of the cam follower 18 in contact with the cam surface 17a also changes.
  • the coating needle 24 ascends in a state where the cam follower 18 approaches the relatively upper upper region 17b of the cam surface 17a, and the cam follower 18 moves to the relatively lower lower region 17c.
  • the application needle 24 descends in a state in which the Thus, when the servomotor 15 is driven, the tip 23 of the application needle 24 can be reciprocated upward and downward via the cam 17.
  • the applicator needle 24 can move its upper end position (servo motor Move to the position closest to 15. At this time, the tip 23 of the application needle 24 is immersed in the application material 100 held in the container 21.
  • the application mechanism 4 is not limited to the structure shown in FIGS. 2 and 3 and may include a plurality of application units as described in, for example, JP 2009-122259 A (JP 2009-122259 A). See Figures 2, 6, 7, 13, and 16). Furthermore, the application mechanism 4 is not limited to a mechanism using an application needle, and other mechanisms may be used. For example, the application mechanism 4 may use a mechanism such as a dispenser or an inkjet.
  • FIG. 4 is a functional block diagram schematically showing an internal configuration of the control computer 10.
  • the control computer 10 is configured of, for example, a central processing unit (CPU), a read only memory (ROM), and a random access memory (RAM). These parts are connected to one another via an internal bus.
  • the CPU loads a program stored in the ROM into a RAM or the like and executes the program.
  • the program stored in the ROM is a program in which the processing method of the control computer 10 is written.
  • the control computer 10 includes an image acquisition unit 101, a stage control unit 102, a command position determination unit 103, a correction map generation unit 104, a storage unit 105, and a correction unit 106. Including.
  • the image acquisition unit 101 acquires an image captured by the CCD camera 7 of the observation optical system 6.
  • the image acquisition unit 101 displays the acquired image on the monitor 9 or outputs the image to the correction map generation unit 104.
  • the stage control unit 102 controls the X-axis stage 1, the Y-axis stage 2 and the Z-axis stage 3, and positions the observation optical system 6 in the X direction, Y direction and Z direction according to the designated XYZ coordinates.
  • the XYZ coordinates are indicated by a coordinate system in which the upper surface portion of the Y-axis stage 2 is an XY plane and the normal direction of the upper surface portion is a Z direction. That is, the X axis and the Y axis are fixed to the upper surface portion of the Y axis stage 2. Therefore, the relative position with respect to the upper surface portion of the Y-axis stage 2 can be designated by the XYZ coordinates.
  • the substrate 5 is disposed at a fixed position on the upper surface portion of the Y-axis stage 2. Therefore, it can be said that relative positions with respect to the substrate 5 can be indicated by the XYZ coordinates.
  • the stage control unit 102 positions the optical axis of the observation optical system 6 at the designated XY coordinate and the predetermined position of the observation optical system 6 (for example, the tip position on the Y axis stage 2 side) at the designated Z coordinate.
  • the X axis stage 1, the Y axis stage 2 and the Z axis stage 3 are controlled.
  • the stage control unit 102 together with the X-axis stage 1, the Y-axis stage 2 and the Z-axis stage 3, constitutes a positioning device 30 for positioning the observation optical system 6 in the X, Y and Z directions.
  • the command position determination unit 103 receives the designation of the observation target position on the surface of the substrate 5 and determines the XYZ coordinates of the command position of the observation optical system 6.
  • the “command position” is an ideal position for observing the observation target position of the surface of the substrate 5 on the premise that the X-axis stage 1, the Y-axis stage 2 and the Z-axis stage 3 are correctly assembled as designed. Relative position of the observation optical system 6.
  • the command position determination unit 103 sets the XY coordinates of the observation target position as the XY coordinates of the command position. Furthermore, the command position determination unit 103 sets the Z coordinate predetermined according to the thickness of the substrate 5 as the Z coordinate of the command position so that the focal point of the observation optical system 6 matches the surface of the substrate 5.
  • the command position determination unit 103 may acquire the XY coordinates of the observation target position from the information input to the operation panel 8 by the user, or acquires the XY coordinates of the observation target position from the recording medium connected to the control computer 10 You may
  • the command position determination unit 103 outputs the XYZ coordinates of the determined command position to the correction map generation unit 104 in the process of creating the correction map.
  • the commanded position determination unit 103 outputs the XYZ coordinates of the determined commanded position to the correction unit 106 at a time other than the process of creating the correction map.
  • the command position determination unit 103 determines whether to perform the correction map generation process. Alternatively, the command position determination unit 103 may determine that the correction map creation process is to be performed at a predetermined timing.
  • the correction map generation unit 104 generates a correction map in which each of a plurality of positions in the XY plane (upper surface portion of the Y-axis stage 2) is associated with the XYZ correction amount, and stores the generated correction map in the storage unit 105. Do.
  • the relative position between the observation optical system 6 and the upper surface portion of the Y-axis stage 2 slightly changes due to the finished dimensional error, assembly error, pitching, yawing, etc. of the X-axis stage 1, Y-axis stage 2 and Z-axis stage 3. . Therefore, even if the observation optical system 6 is positioned according to the XYZ coordinates of the command position determined by the command position determination unit 103, the position of the observation target shifts from the center of the image captured by the CCD camera 7, and the contrast of the image decreases. Sometimes. In order to suppress such a problem, the correction map generation unit 104 generates a correction map.
  • the storage unit 105 stores the correction map generated by the correction map generation unit 104.
  • Storage unit 105 is, for example, a non-volatile memory.
  • FIG. 5 is a diagram illustrating an example of the correction map stored in the storage unit 105.
  • the correction map shown in FIG. 5 shows an XYZ correction amount corresponding to each of the plurality of areas when the area of the XY plane in which the substrate 5 is disposed is divided into a plurality of M ⁇ N areas. .
  • Each of the plurality of areas is identified by (i, j). i can take one of 0, 1, 2,..., M ⁇ 1. j can take one of 0, 1, 2,..., N ⁇ 1.
  • ⁇ x represents an X correction amount
  • ⁇ y represents a Y correction amount
  • ⁇ z represents a Z correction amount.
  • the correction map shown in FIG. 5 includes, for each area, a flag indicating whether the XYZ correction amount is set for the area.
  • the correction unit 106 refers to the XYZ correction amount corresponding to the observation target position from the correction map.
  • the correction unit 106 corrects the XYZ coordinates of the command position based on the referred XYZ correction amount, and instructs the stage control unit 102 on the corrected XYZ coordinates.
  • An image captured by the CCD camera 7 when the corrected XY coordinates are instructed to the stage control unit 102 is taken as a first image.
  • An image captured by the CCD camera 7 when the XY control of the command position is instructed to the stage control unit 102 is taken as a second image.
  • the XY correction amount shown in the correction map is based on the distance between the center of the first image and the observation target position in the first image from the distance between the center of the second image and the observation target position in the second image. Is also set to be short.
  • the Z correction amount shown in the correction map is such that the contrast of the image (fourth image) taken by the CCD camera 7 when the corrected Z coordinate is instructed to the stage control unit 102 is the Z coordinate of the command position. When instructed to the stage control unit 102, it is set to be higher than the contrast of the image (fifth image) captured by the CCD camera 7.
  • FIG. 6 is a flowchart showing a flow of a method of positioning the observation optical system 6 in the control computer 10.
  • step S100 the control computer 10 generates a correction map.
  • step S200 the control computer uses the correction map to position the X direction, Y direction and Z direction of the observation optical system 6 according to the observation target position of the surface of the substrate 5. Thereby, the user can observe the surface of the substrate 5 by the image captured by the CCD camera 7.
  • the details of the correction map generation process (step S100) and the positioning process of the observation optical system 6 (step S200) will be described below.
  • FIG. 7 is a flowchart showing the flow of the correction map generation process.
  • step S 11 the substrate 5 is disposed at a fixed position on the upper surface portion of the Y-axis stage 2.
  • FIG. 8 is a view showing an example of the substrate 5. As shown in FIG. 8, a plurality of circular patterns 50 are formed on the substrate 5. The lower left corner of the rectangular substrate 5 is located at the origin of the XY plane, the lower end is located on the X axis, and the left end is located on the Y axis when viewed from the upper surface side. Is placed in the fixed position of.
  • the plurality of circular patterns 50 are formed at equal intervals.
  • the intervals of the plurality of circular patterns 50 are set so that two or more circular patterns 50 are not included in the image (enlarged image) captured by the CCD camera 7.
  • step S12 the command position determination unit 103 receives specification of a plurality of observation target positions on the surface of the substrate 5, and determines XYZ coordinates of the command position of the observation optical system 6 according to each of the plurality of observation target positions. .
  • the center of each of the plurality of circular patterns 50 (see FIG. 8) formed on the substrate 5 is set as the observation target position, and the command position determination unit 103 determines the center coordinates of each of the plurality of circular patterns 50.
  • the coordinate file indicates the coordinates of the center of each of the plurality of circular patterns 50 in the UV coordinate system with the lower left corner of the substrate 5 as the origin, the lower end of the substrate 5 as the U axis, and the left end of the substrate 5 as the V axis.
  • the command position determination unit 103 may obtain the coordinate file from, for example, a recording medium connected to the control computer 10.
  • the substrate 5 is disposed such that the lower left corner is located at the origin of the XY plane, the lower end is located on the X axis, and the left end is located on the Y axis. Therefore, the UV coordinate system coincides with the XY coordinate system.
  • the command position determination unit 103 determines the XY coordinates of the observation target position as the XY coordinates of the command position, and determines the Z coordinate predetermined according to the thickness of the substrate 5 as the Z coordinate of the command position.
  • step S13 the correction map generation unit 104 selects one command position determined by the command position determination unit 103. Let XYZ coordinates of the selected command position be (gx, gy, gz).
  • step S14 the correction map generation unit 104 instructs the stage control unit 102 on the coordinates (gx, gy, gz) of the selected command position.
  • the stage control unit 102 controls the X-axis stage 1, the Y-axis stage 2 and the Z-axis stage 3 to position the observation optical system 6 according to the coordinates (gx, gy, gz).
  • step S15 the correction map generation unit 104 sequentially instructs the stage control unit 102 a plurality of Z coordinates including the Z coordinate gz of the command position, and moves the Z axis stage 3 up and down.
  • the correction map generation unit 104 receives, from the image acquisition unit 101, an image captured by the CCD camera 7 after the Z-axis stage 3 has moved with respect to each of the plurality of Z coordinates.
  • step S ⁇ b> 16 the correction map generation unit 104 calculates the contrast value C of each of the plurality of images received from the image acquisition unit 101. Then, the correction map generation unit 104 calculates the amount of deviation ⁇ z between the Z coordinate of the observation optical system 6 when the image corresponding to the largest contrast value C is taken and the Z coordinate gz of the command position as the Z correction amount. Do.
  • the correction map generation unit 104 obtains the differential values dx (p, q) and dy (p, q) for each pixel according to the following equations (1) and (2). Then, the correction map generation unit 104 calculates the contrast value C according to the following equation (3).
  • p indicates the horizontal position of the pixel
  • q indicates the vertical position of the pixel
  • f (p, q) indicates the luminance value at the pixel (p, q)
  • P indicates the horizontal direction in the image.
  • Q indicates the number of pixels in the vertical direction in the image.
  • s and t indicate distances to reference pixels for calculating differential values dx (p, q) and dy (p, q), and are constants set appropriately.
  • Pixel (p + s, q) is a reference pixel laterally shifted from pixel (p, q) by + s, and pixel (p ⁇ s, q) is laterally shifted from pixel (p, q) by ⁇ s It is a misaligned reference pixel.
  • Pixel (p, q + t) is a reference pixel vertically shifted from pixel (p, q) by + t, and pixel (p, q ⁇ t) is vertically shifted from pixel (p, q) by -t It is a misaligned reference pixel.
  • the differential values dx (p, q) and dy (p, q) are determined based on the reference pixel shifted in the horizontal direction and the vertical direction with respect to the pixel (p, q). Are calculated, respectively, but the differential value may be calculated based on the reference pixel shifted in the oblique direction with respect to the pixel (p, q).
  • step S17 the correction map generation unit 104 calculates the X correction amount ⁇ x and the Y correction amount ⁇ y based on the position of the circular pattern 50 in the image (enlarged image) in which the contrast value C is maximum.
  • FIG. 9 is a view showing an example of an image in which the contrast value C is maximum.
  • the correction map generation unit 104 detects the center R1 of the circular pattern 50 from the image, and shifts the shift amount ⁇ x of the center R1 of the circular pattern 50 with respect to the center G of the image in the X direction and the shift amount ⁇ y of the Y direction. calculate.
  • the correction map generation unit 104 determines the calculated deviation amounts ⁇ x and ⁇ y as the X correction amount and the Y correction amount, respectively.
  • the center R1 of the circular pattern 50 by the correction map generation unit 104 As a detection method of the center R1 of the circular pattern 50 by the correction map generation unit 104, a detection method based on known image processing can be used.
  • the center R1 may be detected using a pattern matching method, or the image may be binarized and its center of gravity may be detected as the center R1.
  • step S18 the correction map generation unit 104 updates the correction map stored in the storage unit 105 based on the correction amounts ⁇ x, ⁇ y, ⁇ z calculated in step S16 and step S17.
  • the correction map generation unit 104 specifies the area (i, j) corresponding to the command position.
  • the correction map generation unit 104 updates the correction amount corresponding to the identified area (i, j) to the correction amounts ⁇ x, ⁇ y, ⁇ z calculated in step S16 and step S17.
  • the correction map generation unit 104 changes the flag corresponding to the area (i, j) to “1” indicating that the correction amount has been updated.
  • step S19 the correction map generation unit 104 confirms whether or not there is an unselected command position among the command positions determined in step S12. If there is an unselected command position, the process returns to step S13. If there is no unselected command position, the process ends.
  • FIG. 10 is a flowchart showing the flow of the positioning process of the observation optical system 6.
  • step S 21 the substrate 5 is placed at a fixed position on the upper surface of the Y-axis stage 2.
  • the Y axis stage 2 when viewed from the upper surface side, the Y axis stage 2 so that the lower left corner is positioned at the origin of the XY plane, the lower end is positioned on the X axis, and the left end is positioned on the Y axis. Will be placed.
  • the command position determination unit 103 receives the designation of the observation target position on the surface of the substrate 5, and determines the XYZ coordinates of the command position of the observation optical system 6 according to the observation target position.
  • the observation target position is, for example, a position where the wiring is missing in the substrate 5 or the like.
  • the command position determination unit 103 determines the XY coordinates of the observation target position as the XY coordinates of the command position, and determines the Z coordinate predetermined according to the thickness of the substrate 5 as the Z coordinate of the command position.
  • the correction unit 106 refers to the correction amounts stored in the storage unit 105 for the correction amounts ⁇ x, ⁇ y, ⁇ z corresponding to the observation target position (XY coordinates (gx, gy)).
  • the correction unit 106 corrects the XYZ coordinates (gx, gy, gz) of the command position according to the referred correction amounts ⁇ x, ⁇ y, ⁇ z, and generates the corrected XYZ coordinates (gx + ⁇ x, gy + ⁇ y, gz + ⁇ z).
  • step S24 the correction unit 106 instructs the stage control unit 102 on the XYZ coordinates (gx + ⁇ x, gy + ⁇ y, gz + ⁇ z) after correction.
  • the stage control unit 102 controls the X-axis stage 1, the Y-axis stage 2 and the Z-axis stage 3 to position the observation optical system 6 in accordance with the instructed corrected XYZ coordinates (gx + ⁇ x, gy + ⁇ y, gz + ⁇ z) Do.
  • the positioning process ends with step S24.
  • FIG. 11 shows an example of an image captured by the CCD camera 7 after step S24.
  • FIG. 11 shows an image when the center of the circular pattern 50 of the substrate 5 is set as the observation target position.
  • the distance between the center G and the center R1 of the circular pattern 50 in the image shown in FIG. 11 is shorter than the distance between the center G and the center R1 of the circular pattern 50 in the image shown in FIG.
  • the image shown in FIG. 11 corresponds to an image (first image) captured by the CCD camera 7 when the corrected XY coordinates (gx + ⁇ x, gy + ⁇ y) are instructed to the stage control unit 102.
  • the distance between the center of the first image and the observation target position in the first image is the distance between the center of the second image and the observation target position in the second image. It is set to be shorter than the distance.
  • the contrast of the image shown in FIG. 11 is higher than the contrast of the image (fifth image) captured by the CCD camera 7 when the Z-coordinate gz of the command position is instructed to the stage control unit 102.
  • the image illustrated in FIG. 11 corresponds to an image (fourth image) captured by the CCD camera 7 when the corrected Z coordinate gz + ⁇ z is instructed to the stage control unit 102.
  • the Z correction amount ⁇ z is set such that the contrast of the fourth image is higher than the contrast of the fifth image.
  • FIG. 12 is a flow chart showing the flow of processing when the correction map generation processing and the positioning processing of the observation optical system 6 are performed in parallel.
  • step S ⁇ b> 31 the substrate 5 on which the plurality of circular patterns 50 are formed is disposed at the fixed position of the upper surface portion of the Y-axis stage 2.
  • step S32 the command position determination unit 103 receives the designation of the observation target position on the surface of the substrate 5, and determines the XYZ coordinates of the command position of the observation optical system according to the observation target position. Let XYZ coordinates of the command position be (gx, gy, gz).
  • step S33 the command position determination unit 103 specifies an area corresponding to the XY coordinates of the command position among the plurality of areas of the correction map, and confirms whether the flag of the specified area is “0”. If the flag is “0” (YES in step S33), a correction map generation process is performed in step S34.
  • the process of step S34 is the same as the process of steps S14 to S18 shown in FIG.
  • Step S35 and S36 are the same as steps S13 and S14 shown in FIG. 10, respectively.
  • the correction amount of the area of the flag “0” can be updated in the correction map.
  • the liquid application apparatus (substrate observation apparatus) 200 includes the observation optical system 6, the CCD camera 7, the stage control unit 102, the command position determination unit 103, and the storage unit 105. , And the correction unit 106.
  • the stage control unit 102 configures a positioning device 30 that positions the observation optical system 6 in the X direction and the Y direction in accordance with the instructed XY coordinates.
  • the command position determination unit 103 determines the XY coordinates of the observation target position on the surface of the substrate 5 as the XY coordinates of the command position of the observation optical system 6.
  • the storage unit 105 stores an XY correction amount corresponding to each of a plurality of positions in the XY plane.
  • the correction unit 106 refers to the XY correction amount corresponding to the observation target position from the storage unit 105, corrects the XY coordinates of the command position using the referred XY correction amount, and transmits the corrected XY coordinates to the stage control unit 102.
  • the image captured by the CCD camera 7 is designated as a first image when the corrected XY coordinates are instructed to the stage control unit 102, and the XY coordinates of the command position are captured by the CCD camera 7 when instructed to the stage control unit 102.
  • Image is taken as the second image.
  • the XY correction amount is set such that the distance between the center of the first image and the observation target position in the first image is shorter than the distance between the center of the second image and the observation target position in the second image. It is set.
  • the liquid application device 200 can position the observation optical system 6 with high accuracy when observing the observation target position.
  • the X correction amount ⁇ x and the Y correction amount ⁇ y are images taken by the CCD camera 7 when the stage control unit 102 is instructed on the XY coordinates of the center of the circular pattern 50 specified in the correction map generation process (FIG. 9 Reference) (the third image) is set. That is, the X correction amount ⁇ x is a deviation amount of the X coordinate of the center R1 of the circular pattern 50 in the image with respect to the center G of the image. Similarly, the Y correction amount ⁇ y is an amount of deviation of the Y coordinate of the center R1 of the circular pattern 50 in the image with respect to the center G of the image.
  • the observation target position can be confirmed near the center of the image.
  • the stage control unit 102 positions the observation optical system 6 in the Z direction according to the instructed Z coordinate.
  • the command position determination unit 103 determines a Z coordinate, which is previously determined according to the thickness of the substrate 5, as the Z coordinate of the command position.
  • the storage unit 105 stores the Z correction amount corresponding to each of a plurality of positions in the XY plane.
  • the correction unit 106 refers to the Z correction amount corresponding to the observation target position from the storage unit 105, corrects the Z coordinate of the command position based on the referred Z correction amount, and corrects the corrected Z coordinate after XY coordinate And instructs the stage control unit 102. Because of the process of step S16 of FIG.
  • the Z correction amount is set so that the contrast of the image (fourth image) captured by the CCD camera 7 when the corrected Z coordinate is instructed to the stage control unit 102 It is set so as to be higher than the contrast of the image (fifth image) captured by the CCD camera 7 when the Z coordinate is instructed to the stage control unit 102.
  • the contrast of the image captured by the CCD camera 7 becomes high. As a result, the surface of the substrate 5 can be easily observed.
  • the method of positioning the observation optical system 6 in the liquid coating apparatus 200 according to the first embodiment includes the first to third steps.
  • the first step is a step of generating a correction map in which each of a plurality of positions in the XY plane is associated with the XY correction amount.
  • the second step (step S22) is a step of determining the XY coordinates of the observation target position on the surface of the substrate 5 as the XY coordinates of the command position of the observation optical system 6, and the third step (steps S23 and S24) is In this process, the XY correction amount corresponding to the observation target position is referred to from the correction map, the XY coordinates of the command position are corrected based on the referred XY correction amount, and the stage control unit 102 is instructed of the corrected XY coordinates.
  • step S17 is performed for each of the plurality of positions (the center of the circular pattern 50).
  • the liquid application device 200 can position the observation optical system 6 with high accuracy when observing the observation target position.
  • the liquid application device according to the second embodiment is a modification of the liquid application device 200 according to the first embodiment.
  • the positioning of the observation optical system 6 is performed based on the XYZ coordinates corrected using the correction map.
  • positioning of the application mechanism 4 is performed based on the XYZ coordinates corrected using the correction map.
  • FIG. 13 is a functional block diagram showing the configuration of the control computer 10a according to the second embodiment.
  • the liquid application device according to the second embodiment is different from the liquid application device 200 according to the first embodiment only in that a control computer 10a shown in FIG. 11 is provided instead of the control computer 10.
  • the control computer 10a includes an image acquisition unit 101, a stage control unit 102a, a command position determination unit 103a, a correction map generation unit 104a, a storage unit 105, and a correction unit 106a. And an application mechanism control unit 107.
  • the image acquisition unit 101 and the storage unit 105 have the same functions as in the first embodiment, and thus detailed description will be omitted here.
  • the stage control unit 102a controls the X-axis stage 1 and the Y-axis stage 2 and positions one of the instructed X and Y directions of the observation optical system 6 and the application mechanism 4 according to the instructed XY coordinates. . Specifically, when the observation optical system 6 is instructed, the stage control unit 102a places the X axis stage 1 and the Y axis stage 2 so that the optical axis of the observation optical system 6 is positioned at the instructed XY coordinates. Control. When the application mechanism 4 is instructed, the stage control unit 102a controls the X-axis stage 1 and the Y-axis stage 2 so that the axis of the application needle 24 of the application mechanism 4 is positioned at the instructed XY coordinates. Furthermore, the stage control unit 102 a controls the Z-axis stage 3 and positions the Z direction of the observation optical system 6 and the application mechanism 4 according to the instructed Z coordinate.
  • the observation optical system 6 and the application mechanism 4 are integrally mounted on the Z-axis stage 3. Therefore, the relative positional relationship between the coating mechanism 4 and the observation optical system 6 is always constant regardless of the states of the X axis stage 1, the Y axis stage 2 and the Z axis stage 3.
  • the axis of the coating needle 24 of the coating mechanism 4 is offset from the optical axis of the observation optical system 6 by ⁇ ux in the X direction and by ⁇ uy in the Y direction.
  • the relative positions of the observation optical system 6 and the application mechanism 4 with respect to the substrate 5 when the XY coordinates (gx, gy) and the application mechanism 4 are instructed to the stage control unit 102a are the XY coordinates (gx + ⁇ ux, gy + ⁇ uy) and the observation optical
  • the relative positions of the observation optical system 6 and the coating mechanism 4 with respect to the substrate 5 when the system 6 is instructed to the stage control unit 102 a are the same.
  • the stage control unit 102a controls the application mechanism control unit 107 after controlling the X-axis stage 1, the Y-axis stage 2 and the Z-axis stage 3 according to the instructed XYZ coordinates only when the application mechanism 4 is instructed. Output the instruction.
  • the stage control unit 102 a performs positioning along the X axis stage 1, the Y axis stage 2, and the Z axis stage 3 to position the observation optical system 6 or the coating mechanism 4 in the X direction, Y direction, and Z direction.
  • the apparatus 30a is configured.
  • the command position determination unit 103 a determines XYZ coordinates of the command position of the coating mechanism 4 according to the coating target position on the surface of the substrate 5.
  • the “command position” in the second embodiment is a relative position of the ideal application mechanism 4 for applying the application material to the application target position on the surface of the substrate 5.
  • the command position determination unit 103a sets the XY coordinates of the application target position as the XY coordinates of the command position, and sets the Z coordinate predetermined according to the thickness of the substrate 5 as the Z coordinate of the command position.
  • the command position determination unit 103a may acquire the XY coordinates of the application target position from the information input to the operation panel 8 at the time of the correction map creation processing, or from the recording medium connected to the control computer 10a.
  • the XY coordinates of the application target position may be acquired.
  • the commanded position determining unit 103a determines the XY coordinates of the position of the defect portion confirmed on the image acquired by the image acquiring unit 101 via the observation optical system 6 at the position to be coated, other than the correction map generation processing. Acquire as XY coordinates.
  • the command position determination unit 103a outputs the XYZ coordinates of the determined command position to the correction map generation unit 104a in the process of creating the correction map.
  • the commanded position determination unit 103a outputs the XYZ coordinates of the determined commanded position to the correction unit 106a, except for the process of creating the correction map.
  • the correction map generation unit 104a generates a correction map in which each of a plurality of positions in the XY plane is associated with the correction amount, and stores the generated correction map in the storage unit 105.
  • the position is specified as the application target position to position the application mechanism 4 as well.
  • the application coordinates may be applied offset from the application target position. This is because the optical axis of the observation optical system 6 and the axis of the coating needle 24 of the coating mechanism 4 are separated, and the finished dimensional error and assembly error of the X axis stage 1, the Y axis stage 2 and the Z axis stage 3 , Pitching, yawing, etc.
  • the correction map generation unit 104a generates a correction map.
  • the correction unit 106 a corrects the XYZ coordinates of the command position received from the command position determination unit 103 a according to the correction map, and instructs the stage control unit 102 a the XYZ coordinates after correction and the application mechanism 4.
  • the position of the surface of the substrate 5 at the center of the image captured by the CCD camera 7 when the XY control of the command position and the observation optical system 6 are instructed to the stage control unit 102a is taken as the reference position. Furthermore, after instructing the stage control unit 102a to indicate the XY coordinates after correction and the coating mechanism 4, the distance between the coating position on the surface of the substrate 5 and the reference position when the coating material is coated on the surface of the substrate 5 by the coating mechanism 4. As distance A.
  • the distance between the application position on the surface of the substrate 5 and the reference position when the application material is applied to the surface of the substrate 5 by the application mechanism 4 after instructing the stage control unit 102a to indicate the XY coordinates of the command position and the application mechanism 4 I say B. At this time, the XY correction amount shown in the correction map is set such that the distance A is shorter than the distance B.
  • the Z correction amount shown in the correction map is the contrast of the image taken by the CCD camera 7 when the corrected Z coordinate is instructed to the stage control unit 102a, and the Z coordinate of the command position to the stage control unit 102a. It is set to be higher than the contrast of the image taken by the CCD camera 7 when instructed.
  • the coating mechanism control unit 107 controls the coating mechanism 4 to lower the coating needle 24 when receiving a coating instruction from the stage control unit 102 a, and applies a coating material on the surface of the substrate 5.
  • FIG. 14 is a flowchart showing a flow of a method of positioning the application mechanism 4 in the control computer 10a.
  • step S400 the control computer 10a generates a correction map.
  • step S600 the control computer 10a uses the correction map to position the application mechanism 4 in the X, Y, and Z directions according to the application target position on the surface of the substrate 5. Thereby, the application mechanism 4 can apply the application material to the designated application target position with high accuracy.
  • the details of the correction map generation process (step S400) and the positioning process of the application mechanism 4 (step S600) will be described below.
  • FIG. 15 is a flowchart showing a flow of correction map generation processing according to the second embodiment.
  • step S41 the substrate 5 is disposed at a fixed position on the upper surface portion of the Y-axis stage 2.
  • the substrate 5 is arranged such that the lower left corner is located at the origin of the XY plane, the lower end is located on the X axis, and the left end is located on the Y axis when viewed from the upper surface side. Ru.
  • the command position determination unit 103a receives specification of a plurality of application target positions on the surface of the substrate 5, and determines XYZ coordinates of the command position of the application mechanism 4 according to each of the plurality of application target positions.
  • the command position determination unit 103a acquires, for example, a coordinate file indicating coordinates of each of a plurality of application target positions from a recording medium connected to the control computer 10a.
  • the command position determination unit 103a determines the XY coordinates of the application target position as the XY coordinates of the command position, and determines the Z coordinate predetermined according to the thickness of the substrate 5 as the Z coordinate of the command position.
  • step S43 the correction map generation unit 104a selects one command position determined by the command position determination unit 103a. Let XYZ coordinates of the selected command position be (gx, gy, gz).
  • step S44 the correction map generation unit 104a instructs the stage control unit 102a on the XYZ coordinates (gx, gy, gz) of the selected command position and the observation optical system 6.
  • the observation optical system 6 is positioned at the command position.
  • the observation optical system 6 is deviated from the application mechanism 4 by ⁇ ux in the X direction and by ⁇ uy in the Y direction.
  • the positions of the observation optical system 6 and the coating mechanism 4 when the XYZ coordinates (gx, gy, gz) and the observation optical system 6 are instructed to the stage control unit 102 a are the XYZ coordinates (gx- ⁇ ux, gy- ⁇ uy)
  • the positions of the observation optical system 6 and the application mechanism 4 when the application mechanism 4 is instructed to the stage control unit 102a are the same.
  • step S45 the correction map generation unit 104a sequentially instructs the stage control unit 102a on the plurality of Z coordinates including the Z coordinate gz of the command position, and moves the Z axis stage 3 up and down.
  • the correction map generation unit 104 a receives from the image acquisition unit 101 an image captured by the CCD camera 7 after the Z-axis stage 3 has moved with respect to each of the plurality of Z coordinates.
  • step S46 the correction map generation unit 104a calculates the contrast value C of each of the plurality of images received from the image acquisition unit 101. Then, the correction map generation unit 104a calculates the amount of deviation ⁇ z between the Z coordinate of the observation optical system 6 when the image corresponding to the largest contrast value C is taken and the Z coordinate gz of the command position as the Z correction amount. Do.
  • the correction map generation unit 104a may calculate the contrast value C using the method described in the first embodiment.
  • step S47 the correction map generation unit 104a instructs the stage control unit 102a on the XYZ coordinates (gx, gy, gz) of the selected command position and the application mechanism 4.
  • the application mechanism 4 is positioned at the command position.
  • the positions of the observation optical system 6 and the application mechanism 4 when the XYZ coordinates (gx, gy, gz) and the application mechanism 4 are instructed to the stage control unit 102 a are the XYZ coordinates (gx + ⁇ ux, gy + ⁇ uy) and the observation optical system 6. And the same as the positions of the observation optical system 6 and the application mechanism 4 when the stage control unit 102a is instructed.
  • step S ⁇ b> 48 the coating mechanism control unit 107 controls the coating mechanism 4 to apply the coating material to the surface of the substrate 5.
  • step S49 the correction map generation unit 104a instructs the stage control unit 102a on the XYZ coordinates (gx, gy, gz) of the command position and the observation optical system 6. Thereby, the observation optical system 6 is positioned at the command position again.
  • step S50 the correction map generation unit 104a calculates the X correction amount ⁇ x and the Y correction amount ⁇ y based on the image acquired by the image acquisition unit 101 from the CCD camera 7.
  • FIG. 16 is a view showing an example of the image acquired in step S50.
  • the image includes an application area 51.
  • the correction map generation unit 104a detects the center R2 of the application area 51 from the image, and shifts the shift amount ⁇ x of the center R2 of the application area 51 with respect to the center G of the image in the X direction and the shift amount ⁇ y in the Y direction. And calculate.
  • the correction map generation unit 104a determines the calculated deviation amounts ⁇ x and ⁇ y as the X correction amount and the Y correction amount, respectively.
  • a detection method using known image processing can be used.
  • the center R2 may be detected using a pattern matching method, or the image may be binarized and its center of gravity may be detected as the center R2.
  • step S51 the correction map generation unit 104a updates the correction map stored in the storage unit 105 based on the correction amounts ⁇ x, ⁇ y, ⁇ z calculated in steps S46 and S50.
  • the correction map generation unit 104a may update the correction map by the same method as the correction map generation unit 104 of the first embodiment.
  • step S52 the correction map generation unit 104a confirms whether there is an unselected command position among the command positions determined in step S42. If there is an unselected command position, the process returns to step S43. If there is no unselected command position, the process ends.
  • Step S600 Parting Process of Coating Mechanism 4
  • FIG. 17 is a flowchart showing the flow of the positioning process of the application mechanism 4.
  • step S 61 the substrate 5 is placed at a fixed position on the upper surface of the Y-axis stage 2.
  • the Y axis stage 2 when viewed from the upper surface side, the Y axis stage 2 so that the lower left corner is positioned at the origin of the XY plane, the lower end is positioned on the X axis, and the left end is positioned on the Y axis. Will be placed.
  • step S62 the command position determination unit 103a receives the designation of the application target position on the surface of the substrate 5, and determines the XYZ coordinates of the command position of the application mechanism 4 according to the application target position.
  • the application target position is, for example, a position where the wiring is missing in the substrate 5 or the like.
  • the user instructs the stage control unit 102 a the XY coordinates of the observation target position on the surface of the substrate 5 and the observation optical system 6 to move the observation optical system 6, and observes the image captured by the CCD camera 7,
  • the defective portion of the wiring pattern formed on the surface of the substrate 5 is searched.
  • the user designates the position of the defect portion on the image as the application target position on the surface of the substrate.
  • the command position determination unit 103a calculates the XY coordinates of the application target position from the XY coordinates instructed by the stage control unit 102a and the designated position on the image, and determines the calculated XY coordinates as the XY coordinates of the command position. Do.
  • the command position determination unit 103a sets the Z coordinate, which is predetermined according to the thickness of the substrate 5, as the Z coordinate of the command position. Let XYZ coordinates of the command position be (gx, gy, gz).
  • the correction unit 106a refers to the correction amounts ⁇ x, ⁇ y, ⁇ z corresponding to the application target position from the correction map stored in the storage unit 105.
  • the correction unit 106a corrects the XYZ coordinates (gx, gy, gz) of the command position in accordance with the referred correction amounts ⁇ x, ⁇ y, ⁇ z, and generates the corrected XYZ coordinates (gx + ⁇ x, gy + ⁇ y, gz + ⁇ z).
  • step S64 the correction unit 106a instructs the stage control unit 102a on the XYZ coordinates (gx + ⁇ x, gy + ⁇ y, gz + ⁇ z) and the application mechanism 4 after correction.
  • the stage control unit 102a controls the X-axis stage 1, the Y-axis stage 2 and the Z-axis stage 3 to position the application mechanism 4 in accordance with the instructed corrected XYZ coordinates (gx + ⁇ x, gy + ⁇ y, gz + ⁇ z).
  • step S ⁇ b> 65 the coating mechanism control unit 107 controls the coating mechanism 4 to apply the coating material to the surface of the substrate 5. This completes the positioning process.
  • FIG. 18 shows an example of an image acquired by the image acquisition unit 101 after instructing the stage control unit 102 to indicate the XYZ coordinates of the command position and the observation optical system 6 after step S65.
  • the distance between the center G (reference position) and the center R2 of the application area 51 in the image shown in FIG. 18 is shorter than the distance between the center G and the center R2 of the application area 51 in the image shown in FIG.
  • the application area 51 in the image shown in FIG. 18 is an area applied after the corrected XY coordinates (gx + ⁇ x, gy + ⁇ y) and the application mechanism 4 are instructed to the stage control unit 102 a.
  • the 16 is an area applied after the XY control of the command position and the application mechanism 4 are instructed to the stage control unit 102a.
  • the X correction amount ⁇ x and the Y correction amount ⁇ y are obtained when the application mechanism 4 applies the application material to the surface of the substrate 5 after the XY control after correction and the application mechanism 4 are instructed to the stage control unit 102a.
  • the coating position when the coating material is coated on the surface of the substrate 5 by the coating mechanism 4 It is set to be shorter than the distance to the center G of the image.
  • the contrast of the image illustrated in FIG. 18 is higher than the contrast of the image captured when the Z coordinate of the command position is instructed to the stage control unit 102a.
  • the image shown in FIG. 18 corresponds to the image captured by the CCD camera 7 when the stage control unit 102 is instructed to the Z coordinate gz + ⁇ z after correction and the observation optical system 6.
  • the Z correction amount ⁇ z is calculated based on the Z coordinate of the command position, the Z coordinate of the command position, and the observation optical system 6 when the corrected Z coordinate and the image taken when the observation optical system 6 is instructed to the stage control unit 102. Is set to be higher than the contrast of the image taken when the stage control unit 102 is instructed.
  • FIG. 19 is a flowchart showing the flow of processing when the correction map generation processing and the positioning processing of the application mechanism 4 are performed in parallel.
  • step S 71 the substrate 5 is disposed at a fixed position on the upper surface portion of the Y-axis stage 2.
  • the Y axis stage 2 is arranged such that the lower left corner of the substrate 5 is located at the origin of the XY plane, the lower side is located on the X axis, and the left side is located on the Y axis.
  • step S72 the command position determination unit 103a receives the designation of the application target position on the surface of the substrate 5, and determines the XYZ coordinates of the command position of the application mechanism 4 according to the application target position.
  • step S73 the command position determination unit 103a specifies an area corresponding to the XY coordinates of the application target position among the plurality of areas of the correction map, and confirms whether the flag of the specified area is “0”. . If the flag is “0” (YES in step S73), generation of a correction map is performed in step S74.
  • the update process of step S74 is the same as the process of steps S44 to S51 shown in FIG.
  • steps S75 to S77 are performed. Steps S75 to S77 are the same as steps S63 to S65 shown in FIG. 17, respectively.
  • the correction amount of the area of the flag "0" can be updated in the correction map.
  • the liquid application apparatus includes the observation optical system 6, the CCD camera 7, the application mechanism 4, the stage control unit 102a, the command position determination unit 103a, and the storage unit 105. And a correction unit 106a.
  • the stage control unit 102 a configures a positioning device 30 that positions the application mechanism 4 in the X direction and the Y direction according to the instructed XY coordinates.
  • the command position determination unit 103 a determines the XY coordinates of the application target position on the surface of the substrate 5 as the XY coordinates of the command position of the application mechanism 4.
  • the storage unit 105 stores an XY correction amount corresponding to each of a plurality of positions in the XY plane.
  • the correction unit 106a refers to the XY correction amount corresponding to the XY coordinate of the command position from the storage unit 105, corrects the XY coordinate of the command position using the referred XY correction amount, and corrects the XY coordinate after correction Instruct 102a.
  • the position of the surface of the substrate 5 at the center of the image captured by the CCD camera 7 when the XY control of the command position and the observation optical system 6 are instructed to the stage control unit 102a is taken as the reference position. Furthermore, after instructing the stage control unit 102a to indicate the XY coordinates after correction and the coating mechanism 4, the distance between the coating position on the surface of the substrate 5 and the reference position when the coating material is coated on the surface of the substrate 5 by the coating mechanism 4. As distance A.
  • the XY correction amount shown in the correction map is set such that the distance A is shorter than the distance B.
  • the application mechanism 4 can be accurately positioned at the designated application target position.
  • the X correction amount ⁇ x and the Y correction amount ⁇ y are images taken by the CCD camera 7 when the stage control unit 102 a is instructed on the XY coordinates of the application target position designated in the correction map generation processing and the observation optical system 6 It sets based on (refer FIG. 16).
  • the image is photographed after the application mechanism 4 applies the application material to the substrate 5 after instructing the stage control unit 102 a of the XY coordinates of the application target position and the application mechanism 4.
  • the X correction amount ⁇ x is a shift amount of the X coordinate of the center R2 of the application region 51 with respect to the center G of the image.
  • the Y correction amount ⁇ y is an amount of deviation of the Y coordinate of the center R2 of the application region 51 with respect to the center G of the image.
  • the stage control unit 102a performs positioning of the observation optical system 6 and the application mechanism 4 in the Z direction in accordance with the instructed Z coordinate.
  • the commanded position determination unit 103a determines the Z coordinate, which is previously determined according to the thickness of the substrate 5, as the Z coordinate of the commanded position.
  • the storage unit 105 stores the Z correction amount corresponding to each of a plurality of positions in the XY plane.
  • the correction unit 106a refers to the Z correction amount corresponding to the application target position from the storage unit 105, corrects the Z coordinate of the command position based on the referred Z correction amount, and transmits the corrected Z coordinate to the stage control unit 102.
  • the Z correction amount indicates the contrast of the image captured when the corrected Z coordinate is instructed to the stage control unit 102 and the Z coordinate of the command position to the stage control unit 102. It is set to be higher than the contrast of the image taken when shooting.
  • the contrast of the image captured by the CCD camera 7 becomes high. As a result, the surface of the substrate 5 can be easily observed.
  • the method of positioning the coating mechanism 4 in the liquid coating apparatus according to the second embodiment includes the first to third steps.
  • the first step is a step of generating a correction map in which each of a plurality of positions in the XY plane is associated with the XY correction amount.
  • the second step (step S62) is a step of determining the XY coordinates of the application target position on the surface of the substrate 5 as the XY coordinates of the command position of the observation optical system 6, and the third step (steps S63 and S64) is the application
  • the XY correction amount corresponding to the target position is referred to from the correction map
  • the XY coordinates of the command position are corrected based on the referred XY correction amount
  • the stage control unit 102 is instructed of the corrected XY coordinates.
  • the following fourth and fifth steps are performed for each of a plurality of positions (application target positions) in the XY plane.
  • the fourth step is a step of applying a coating material on the surface of the substrate 5 by the coating mechanism 4 after instructing the stage control unit 102 a of the XY coordinates of the coating target position and the coating mechanism 4.
  • the XY controller of the application target position and the observation optical system 6 are instructed to the stage control unit 102a, and then an image captured by the CCD camera 7 is acquired.
  • the shift amount ⁇ x in the X direction of the center R2 of the application region 51 in the image is calculated as the X correction amount.
  • a shift amount ⁇ y in the Y direction of the center R2 of the application region 51 in the image with respect to the center of the image is calculated as a Y correction amount.
  • the liquid application device when the liquid application device designates an application target position in an image captured through the observation optical system 6, the liquid application device can apply the application material to the application target position.
  • the mechanism 4 can be positioned with high accuracy.
  • the correction map generation units 104 and 104a calculate the X correction amount, the Y correction amount, and the Z correction amount, and store the calculated correction amounts in the storage unit 105.
  • the correction map generation units 104 and 104a may calculate at least one of the X correction amount and the Y correction amount, and store the calculated correction amount in the storage unit 105.
  • the correction map generation units 104 and 104a may calculate one of the X correction amount and the Y correction amount and the Z correction amount, and store the calculated correction amount in the storage unit 105.
  • the amount of operation of the correction map generation units 104 and 104a and the correction units 106 and 106a can be reduced, and the positioning process can be speeded up.
  • the pitch Lx in the X direction of the area of the correction map and the pitch Ly in the Y direction are respectively set to fixed values.
  • the pitches Lx and Ly may not be constant values.
  • the pitch of the area belonging to the range may be smaller than the pitch of the other areas.
  • the mechanical positional relationship between the X axis stage 1, the Y axis stage 2 and the Z axis stage 3 may change with time due to the influence of temperature and the like. Therefore, the correction map may be periodically updated as follows.
  • the storage unit 105 stores, for each area of the correction map, the latest calculation time TS at which the XYZ correction amount is calculated.
  • the correction map generation unit 104, 104a updates the latest calculation time TS of the area corresponding to the XYZ correction amount.
  • the correction map generation unit 104 determines that the difference TC-TS between the reference time TC and the latest calculation time TS of the area corresponding to the XYZ correction amount exceeds a predetermined time. Check if it is. If the TC-TS exceeds the predetermined time, the correction map generation unit 104 specifies the area to which the XYZ correction amount is referred to as the update target area. The correction map generation unit 104 calculates a new XYZ correction amount by performing the processing of steps S14 to S18 for the update target area, and updates the XYZ correction amount.
  • the correction map generation unit 104a performs a process of steps S44 to S51 on the update target area to calculate a new XYZ correction amount, and updates the XYZ correction amount.
  • the correction map is also periodically updated according to the change with time.
  • the Y-axis is such that the lower left corner of the substrate 5 is located at the origin of the XY plane, the lower end is located on the X axis, and the left end is located on the Y axis when viewed from the upper surface side. It shall be arranged at the fixed position of the stage 2.
  • the command position determination unit 103, 103a determines the UV coordinates of the observation target position or the application target position as it is as the XY coordinates of the command position.
  • the commanded position determination unit 103, 103a may determine the XY coordinates of the commanded position as follows.
  • the command position determination unit 103, 103a instructs the stage control unit 102, 102a to give XY coordinates (0, 0) to the stage control unit 102, 102a and then the XY of the position of the lower left corner of the substrate 5 among the images acquired by the image acquisition unit 101.
  • the coordinates (x1, y1) are detected.
  • a detection method based on image processing can be used, such as a pattern matching method or a method of binarizing an image to obtain a center of gravity.
  • the command position determination unit 103, 103a When the command position determination unit 103, 103a can not detect the lower left corner of the substrate 5 in the image, it instructs XY coordinates to instruct the stage control unit 102, 102a until the lower left corner of the substrate 5 is detected in the image. Change as appropriate.
  • the commanded position determination units 103 and 103a specify the XY coordinates (W, H) to the stage control units 102 and 102a, and then from among the images acquired by the image acquisition unit 101, the upper right corner of the substrate 5
  • the XY coordinates (x2, y2) of the position are detected.
  • a detection method based on image processing can be used, such as a pattern matching method or a method of binarizing an image to obtain a center of gravity.
  • the command position determination unit 103, 103a can not detect the upper right corner of the substrate 5 in the image, it instructs XY coordinates to instruct the stage control unit 102, 102a until the upper right corner of the substrate 5 is detected in the image. Change as appropriate.
  • the UV coordinate of the lower left corner of the substrate 5 is (0, 0).
  • the UV coordinates of the upper right corner of the substrate 5 are (W, H).
  • W is the lateral length of the rectangular substrate 5
  • H is the longitudinal length of the substrate 5.
  • cos ⁇ , sin ⁇ , x0, y0 are determined.
  • Equation (4) and Equation (5) above show coordinate conversion from the xy coordinate system to the uv coordinate system, where ⁇ is the rotation angle of the uv coordinate system with respect to the xy coordinate system, and (x0, y0) are xy coordinates The translation of the uv coordinate system with respect to the system is shown.
  • UV coordinates (W, H) and XY coordinates (x2, y2) of the upper right corner of the substrate 5 are substituted to obtain the following simultaneous equations.
  • x2 c1 ⁇ W + c2 ⁇ H + x1
  • y2 c2 ⁇ W-c1 ⁇ H + y1
  • c2 ⁇ H ⁇ (x2-x1) + W ⁇ (y2-y1) ⁇ / (W 2 + H 2 )
  • c1 (c2 ⁇ W + y1-y2) / H
  • the command position determination unit 103 When receiving the UV coordinates of the observation target position, the command position determination unit 103 converts the UV coordinates of the observation target position into XY coordinates according to the above conversion formula, and determines the converted XY coordinates as the XY coordinates of the command position. Do. Similarly, when receiving the UV coordinates of the application target position, the command position determination unit 103a converts the UV coordinates of the application target position into XY coordinates according to the above conversion formula, and converts the converted XY coordinates into the XY of the command position. Determined as coordinates.
  • the conversion formula is determined using the lower left corner and the upper right corner of the substrate 5, it is not necessary to use these, and two of the four corners of the substrate 5 may be used.
  • the conversion equation may be determined using two marks (usually referred to as alignment marks) on the substrate 5 or two patterns formed on the substrate 5 prepared to determine the conversion equation. At this time, UV coordinates of two marks or two patterns are measured in advance.
  • the correction unit 106 specifies the area (i, j) corresponding to the observation target position, and corrects the XYZ coordinates of the command position using the XYZ correction amount of the specified area (i, j). However, the correction unit 106 specifies the four areas close to the observation target position, and corrects the XYZ coordinates of the command position using the XYZ correction amounts obtained by interpolating the XYZ correction amounts of the specified four areas. You may Similarly, with regard to the correction unit 106a, the XYZ coordinates of the command position may be corrected using the XYZ correction amount obtained by the interpolation calculation.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Coating Apparatus (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position Or Direction (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Abstract

液体塗布装置は、観察光学系と、CCDカメラ(7)と、ステージ制御部(102)と、指令位置決定部(103)と、記憶部(105)と、補正部(106)とを備える。ステージ制御部(102)は、指示されたXY座標に従って、観察光学系のX方向およびY方向の位置決めを行なう。指令位置決定部(103)は、基板の表面上の観察対象位置のXY座標を観察光学系の指令位置のXY座標として決定する。記憶部(105)は、XY平面内の複数の位置の各々に対応するXY補正量を記憶する。補正部(106)は、観察対象位置に対応するXY補正量を記憶部(105)から参照し、参照したXY補正量を用いて指令位置のXY座標を補正し、補正後のXY座標をステージ制御部(102)に指示する。

Description

基板観察装置、塗布装置および位置決め方法
 本発明は、基板を観察光学系を介して観察する基板観察装置、基板に塗布材料を塗布する塗布装置、および位置決め方法に関する。
 従来、先端径が数10μmの塗布針を用いて、微細なパターンの欠陥部分を修正する塗布装置が知られている(特開2007-268354号公報(特許文献1)、特開2009-122259号公報(特許文献2)、特開2009-237086号公報(特許文献3))。塗布針を用いることにより、比較的粘度の高い材料を塗布することができる。そのため、たとえばMEMS(Micro Mechanical Systems)、センサなどの半導体デバイスの電子回路パターン等を形成するために、10μm以上の比較的厚みのある膜の形成にも利用されている。
 このような塗布装置は、観察光学系と塗布機構とを備え、観察光学系を介して基板の表面を観察することで欠陥部分の位置を確認した後、当該位置に塗布機構を位置決めしてから塗布機構によって欠陥部分に材料を塗布する。
 ところで、塗布針を用いて電子回路パターンを形成する装置は、製造ラインの途中工程に導入されるため、生産効率化のために処理の高速化が望まれる。
 特開2007-303869号公報(特許文献4)には、作業時間の短縮化を目的として、観察光学系と塗布機構とを備えたパターン修正装置において、処理対象の基板の表面に焦点を合わせる動作を高速化する技術が開示されている。具体的には、パターン修正装置は、基板の表面の複数の点に観察光学系の焦点を合わせたときの観察光学系の複数のXYZ座標を予めそれぞれ記憶する。パターン修正装置は、記憶した複数のXYZ座標に基づいて、基板の表面の所望の点に観察光学系の焦点を合わせるための観察光学系のXYZ座標を求め、求めたXYZ座標に観察光学系を位置決めする。
特開2007-268354号公報 特開2009-122259号公報 特開2009-237086号公報 特開2007-303869号公報
 しかしながら、特開2007-303869号公報に記載の技術では、焦点の合った画像を観察しやすくなるものの、所望の観察対象位置が画像の中心からずれ、観察光学系を精度良く位置決めすることができないことがある。たとえば、座標(100,100)の観察対象位置を指定しているにもかかわらず、観察光学系を介して撮影された画像の中心が座標(100,100)からずれることがある。
 他の問題として、観察光学系を介して基板の表面を観察することで欠陥部分の位置を確認した後、当該位置を塗布対象位置として指定して塗布機構を位置決めしているにもかかわらず、塗布対象位置からずれて塗布材料が塗布されることがある。たとえば、観察光学系を介して撮影された画像の中心(座標(100,100))に欠陥部分が見つかったため、当該座標(100,100)を塗布対象位置として指定しているにもかかわらず、座標(100,100)からずれた位置に塗布されることがある。
 本発明は、上記の課題を解決するためになされたものであって、その1つの目的は、観察光学系を精度良く位置決めすることが可能な基板観察装置および観察光学系の位置決め方法を提供することである。さらに、本発明の別の目的は、塗布機構を精度良く位置決めすることが可能な塗布装置および塗布機構の位置決め方法を提供することである。
 本開示の基板観察装置は、XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、観察光学系を介して基板の表面を撮影するためのカメラと、指示されたXY座標に従って、観察光学系のX方向およびY方向の位置決めを行なうための位置決め装置と、基板の表面の観察対象位置のXY座標を観察光学系の指令位置のXY座標として決定する指令位置決定部と、XY平面内の複数の位置の各々に対応するXY補正量を記憶する記憶部と、観察対象位置に対応するXY補正量を記憶部から参照し、参照したXY補正量を用いて指令位置のXY座標を補正し、補正後のXY座標を位置決め装置に指示する補正部とを備える。補正後のXY座標を位置決め装置に指示したときにカメラによって撮影される画像を第1画像とし、指令位置のXY座標を位置決め装置に指示したときにカメラによって撮影される画像を第2画像とする。このとき、XY補正量は、第1画像の中心と第1画像中の観察対象位置との距離が、第2画像の中心と第2画像中の観察対象位置との距離よりも短くなるように設定される。
 好ましくは、XY補正量は、複数の位置のうちの対応する位置のXY座標を位置決め装置に指示したときにカメラによって撮影される第3画像の中心に対する、第3画像中の対応する位置のX方向およびY方向の少なくとも一方のずれ量である。
 好ましくは、位置決め装置は、指示されたZ座標に従って、観察光学系のZ方向の位置決めを行なう。指令位置決定部は、基板の厚みに応じて予め定めれたZ座標を指令位置のZ座標として決定する。記憶部は、複数の位置の各々に対応するZ補正量を記憶する。補正部は、観察対象位置に対応するZ補正量を記憶部から参照し、参照したZ補正量に基づいて指令位置のZ座標を補正し、補正後のZ座標を位置決め装置に指示する。Z補正量は、補正後のZ座標を位置決め装置に指示したときにカメラによって撮影される第4画像のコントラストが、指令位置のZ座標を位置決め装置に指示したときにカメラによって撮影される第5画像のコントラストよりも高くなるように設定される。
 好ましくは、指令位置決定部は、基板の表面内のUV座標系における観察対象位置のUV座標を受けた場合、基板の表面の2点の各々のUV座標とXY座標とに基づいて決定されたUV座標からXY座標への変換式に従って、観察対象位置のUV座標をXY座標に変換し、変換後のXY座標を指令位置のXY座標として決定する。
 本開示の位置決め方法は、XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、観察光学系を介して基板の表面を撮影するためのカメラと、指示されたXY座標に従って、観察光学系のX方向およびY方向の位置決めを行なうための位置決め装置とを備えた基板観察装置における観察光学系の位置決め方法である。この位置決め方法は、XY平面内の複数の位置の各々とXY補正量とを対応付けた補正マップを生成する工程と、基板の表面の観察対象位置のXY座標を観察光学系の指令位置のXY座標として決定する工程と、観察対象位置に対応するXY補正量を補正マップから参照し、参照したXY補正量に基づいて指令位置のXY座標を補正し、補正後のXY座標を位置決め装置に指示する工程とを備える。生成する工程は、複数の位置の各々について、当該位置のXY座標を前記位置決め装置に指示したときにカメラによって撮影される画像を取得し、画像の中心に対する、画像中の当該位置のX方向およびY方向の少なくとも一方のずれ量をXY補正量として算出する。
 好ましくは、位置決め方法は、複数の位置の各々と、生成する工程において当該位置に対応するXY補正量が算出された最新算出時刻とを対応付けて記憶する工程をさらに備える。指示する工程において観察対象位置に対応するXY補正量を参照した時刻と観察対象位置に対応する最新算出時刻との差が所定時間を超えている場合、観察対象位置について生成する工程が実行される。
 本開示の塗布装置は、XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、観察光学系を介して基板の表面を撮影するためのカメラと、基板の表面に塗布材料を塗布するための塗布機構とを備える。観察光学系と塗布機構との相対位置関係は一定である。塗布装置は、さらに、指示されたXY座標に従って、観察光学系および塗布機構のうち指示された一方のX方向およびY方向の位置決めを行なうための位置決め装置と、基板の表面の塗布対象位置のXY座標を塗布機構の指令位置のXY座標として決定する指令位置決定部と、XY平面内の複数の位置の各々に対応するXY補正量を記憶する記憶部と、塗布対象位置に対応するXY補正量を記憶部から参照し、参照したXY補正量を用いて指令位置のXY座標を補正し、補正後のXY座標と塗布機構とを位置決め装置に指示する補正部とを備える。指令位置のXY座標と観察光学系とを前記位置決め装置に指示したときにカメラによって撮影される画像の中心にある基板の表面の位置を基準位置とする。このとき、XY補正量は、補正後のXY座標と塗布機構とを位置決め装置に指示した後に塗布機構により基板の表面に前記塗布材料を塗布したときの基板の表面における塗布位置と基準位置との距離が、指令位置のXY座標と塗布機構とを位置決め装置に指示した後に塗布機構により基板の表面に塗布材料を塗布したときの基板の表面における塗布位置と基準位置との距離よりも短くなるように設定される。
 好ましくは、XY補正量は、複数の位置のうちの対応する位置のXY座標と観察光学系とを位置決め装置に指示したときにカメラによって撮影される画像の中心に対する、画像中の塗布材料が塗布された領域のX方向およびY方向の少なくとも一方のずれ量である。この画像は、対応する位置のXY座標と塗布機構とを位置決め装置に指示してから塗布機構により塗布材料を塗布させた後に撮影される。
 好ましくは、位置決め装置は、指示されたZ座標に従って、塗布機構および観察光学系のZ方向の位置決めを行なう。指令位置決定部は、基板の厚みに応じて予め定めれたZ座標を指令位置のZ座標として決定する。記憶部は、複数の位置の各々に対応するZ補正量を記憶する。補正部は、塗布対象位置に対応するZ補正量を記憶部から参照し、参照したZ補正量に基づいて指令位置のZ座標を補正し、補正後のZ座標を位置決め装置に指示する。Z補正量は、補正後のZ座標を位置決め装置に指示したときにカメラによって撮影される画像のコントラストが、指令位置のZ座標を位置決め装置に指示したときにカメラによって撮影される画像のコントラストよりも高くなるように設定される。
 好ましくは、指令位置決定部は、基板の表面内のUV座標系における塗布対象位置のUV座標を受けた場合、基板の表面の2点の各々のUV座標とXY座標とに基づいて決定されたUV座標からXY座標への変換式に従って、塗布対象位置のUV座標をXY座標に変換し、変換後のXY座標を指令位置のXY座標として決定する。
 本開示の別の位置決め方法は、XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、観察光学系を介して基板の表面を撮影するためのカメラと、基板の表面上に塗布材料を塗布するための塗布機構と、指示されたXY座標に従って、観察光学系および塗布機構のうち指示された一方のX方向およびY方向の位置決めを行なうための位置決め装置とを備えた塗布装置における前記塗布機構の位置決め方法である。観察光学系と塗布機構との相対位置関係は一定である。この位置決め方法は、XY平面内の複数の位置の各々とXY補正量とを対応付けた補正マップを生成する工程と、基板の表面の塗布対象位置のXY座標を塗布機構の指令位置のXY座標として決定する工程と、塗布対象位置に対応するXY補正量を補正マップから参照し、参照したXY補正量に基づいて指令位置のXY座標を補正し、補正後のXY座標と塗布機構とを位置決め装置に指示する工程とを備える。生成する工程は、複数の位置の各々について、当該位置のXY座標と塗布機構とを位置決め装置に指示した後に塗布機構により基板の表面に塗布材料を塗布する工程と、塗布する工程の後、当該位置のXY座標と観察光学系とを位置決め装置に指示してからカメラによって撮影される画像を取得し、画像の中心に対する、画像中の塗布材料が塗布された領域のX方向およびY方向の少なくとも一方のずれ量をXY補正量として算出する工程とを含む。
 好ましくは、位置決め方法は、複数の位置の各々と、算出する工程において当該位置に対応するXY補正量が算出された最新算出時刻とを対応付けて記憶する工程をさらに備える。指示する工程において塗布対象位置に対応するXY補正量を参照した時刻と塗布対象位置に対応する最新算出時刻との差が所定時間を超えている場合、塗布対象位置について生成する工程が実行される。
 本開示の基板観察装置および観察光学系の位置決め方法によれば、観察光学系を精度良く位置決めすることができる。本開示の塗布装置および塗布機構の位置決め方法によれば、塗布機構を精度良く位置決めすることができる。
実施の形態1に従った液体塗布装置の模式的な斜視図である。 図1に示した液体塗布装置に用いられる塗布機構を示す模式図である。 図2に示した塗布機構の動作にともなう塗布針の位置を説明するための模式的な断面図である。 図1に示すた液体塗布装置が備える制御用コンピュータ10の内部構成の概略を示す機能ブロック図である。 図4に示す記憶部が記憶する補正マップの一例を示す図である。 図4に示す制御用コンピュータにおける観察光学系の位置決め方法の流れを示すフローチャートである。 実施の形態1における補正マップの生成処理の流れを示すフローチャートである。 基板の一例を示す図である。 コントラスト値Cが最大となる画像の一例を示す図である。 観察光学系の位置決め処理の流れを示すフローチャートである。 図10に示すステップS24の後に撮影された画像の一例を示す。 補正マップの生成処理と観察光学系の位置決め処理とを並行して行なうときの処理の流れを示すフローチャートである。 実施の形態2に係る制御用コンピュータの内部構成の概略を示す機能ブロック図である。 図13に示す制御用コンピュータにおける塗布機構の位置決め方法の流れを示すフローチャートである。 実施の形態2における補正マップの生成処理の流れを示すフローチャートである。 図15のステップS50で取得された画像の一例を示す図である。 塗布機構の位置決め処理の流れを示すフローチャートである。 図17のステップS65の後に、指令位置のXYZ座標と観察光学系とをステージ制御部に指示してから取得された画像の一例を示す。 補正マップの生成処理と塗布機構の位置決め処理とを並行して行なうときの処理の流れを示すフローチャートである。
 以下、本発明の実施の形態について図面を参照しつつ説明する。なお、以下の図面において同一または相当する部分には同一の参照番号を付し、その説明は繰返さない。また、以下で説明する変形例は、適宜選択的に組み合わされてもよい。
 [実施の形態1]
 (塗布装置全体の構成)
 図1は、実施の形態1に従った液体塗布装置200の模式的な斜視図である。図1を参照して、本発明の実施の形態1である液体塗布装置200は、床面に配置された基台12と、X軸ステージ1と、Y軸ステージ2と、Z軸ステージ3と、塗布機構4と、観察光学系6と、観察光学系6に接続されたCCDカメラ7と、制御部11とを備えている。液体塗布装置200は、観察光学系6を介して基板の表面を観察する基板観察装置ともいえる。
 基台12の上面には、図1中のY軸方向に移動可能に構成されたY軸ステージ2が設置されている。具体的には、Y軸ステージ2の下面にガイド部が設置されており、基台12の上面に設置されたガイドレールに沿って摺動可能に接続されている。また、Y軸ステージ2の下面には、ボールねじが接続されている。ボールねじをモータなどの駆動部材により動作させることにより、Y軸ステージ2はガイドレールに沿って(Y軸方向に)移動可能になっている。また、Y軸ステージ2の上面部は、被塗布物である基板5を搭載する搭載面となっており、XY平面である。基板5は矩形状である。
 基台12上には、X軸方向にY軸ステージ2のガイドレールを跨ぐように設置された門型の構造体が設けられている。この構造体上には、X軸方向に移動可能なX軸ステージ1が搭載されている。たとえばボールねじを用いてX軸方向に移動可能としている。
 X軸ステージ1の移動体には、Z軸ステージ3が搭載されており、このZ軸ステージ3に塗布機構4および観察光学系6が搭載される。塗布機構4および観察光学系6は、一体となって、Z軸ステージ3とともにX方向へ移動可能とされている。Z軸ステージ3は、これらの塗布機構4および観察光学系6をZ軸方向に移動可能に支持している。塗布機構4と観察光学系6との相対位置関係は、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3の状態にかかわらず常に一定である。
 塗布機構4は、塗布ユニットに設けられた塗布針を用いて、XY平面であるY軸ステージ2の上面部に配置された基板5の被塗布面(上面側)に塗布材料を塗布するものである。観察光学系6は、XY平面に配置された基板5の表面をZ方向から観察するためのものである。CCDカメラ7は、観察光学系6を介して基板5の表面の一部の拡大画像を撮影するための部材であり、観察した画像(拡大画像)を電気信号に変換する。
 制御部11は、操作パネル8、モニタ9、制御用コンピュータ10を備え、X軸ステージ1、Y軸ステージ2、Z軸ステージ3、塗布機構4および観察光学系6を制御する。操作パネル8は、制御用コンピュータ10への指令を入力するために用いられる。モニタ9は、観察光学系6のCCDカメラ7で変換された画像データおよび、制御用コンピュータ10からの出力データを表示する。
 なお、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3は、上記の構成に限定されず、観察光学系6および塗布機構4を基板5に対してXYZ方向に相対的に移動および位置決め可能な構成であればよい。たとえば、塗布機構4および観察光学系6を搭載したZ軸ステージ3をX軸ステージ1に搭載し、さらにX軸ステージ1をY軸ステージ2に搭載し、Z軸ステージ3をXY方向に移動可能とするガントリー方式と呼ばれる構成でもよい。
 (塗布機構の構成)
 塗布ユニット20が設けられている塗布機構4について、図2を参照して説明する。図2は、図1に示した塗布装置に用いられる塗布機構を示す模式図である。図2(A)には正面図が示され、図2(B)には側面図が示される。
 図2に示されるように、塗布機構4は、針移動機構19と、塗布ユニット20とを含む。針移動機構19は、先端23をテーパ状に先細りさせた1本の塗布針24を保持する。図2(B)に示されるように、針移動機構19は、塗布針24を保持する塗布針ホルダ14と、サーボモータ15と、バネ16と、カム17と、カムフォロア18と、カム連結板25と、可動部26と、架台27と、リニアガイド28とを含む。
 サーボモータ15は、図1に示したZ軸方向に沿う方向に回転軸が設けられる。サーボモータ15の回転軸15bにはカム17が接続される。カム17の上部表面には、カムフォロア18をガイドするスロープ状のカム面17aが形成される。そして、サーボモータ15の駆動により回転軸が回転すると、カム17は、カム面17aを上方に向けた状態で回転する。
 カム17とカムフォロア18との間には、バネ16の張力が作用して、可動部26およびカム連結板25を介してカムフォロア18をカム面17aに押圧している。このため、サーボモータ15の回転によりカム17が回転する際、バネ16の張力により、カムフォロア18は、カム面17aに押圧されて接触した状態が保たれる。
 カムフォロア18には、カム連結板25が接続されていて、かつカム連結板25の反対側の端部は可動部26に固定される。可動部26には、下端部に塗布針ホルダ14が装着され、塗布針ホルダ14の下側面から1本の塗布針24が下方に先端23を向けて保持される。サーボモータ15の駆動により、カム17が回転すると、カムフォロア18の上,下方向の移動に伴って、塗布針24は上,下方向に往復移動される。
 塗布ユニット20には、容器21が含まれる。容器21は、支持部29によって架台27に固定される。容器21には、パターンの描画を行なう際に用いる塗布材料が保持される。また、容器21の底面部には、貫通孔22が1つ形成される。図2(A)に示されるように、容器21の底部に形成された貫通孔22は、塗布針24を貫通させて下方へ向けて先端23を突出させることができる大きさで、かつ、容器21に保持された塗布材料が垂れ落ちない大きさに設定される。
 針移動機構19によって上,下方向に往復移動される塗布針24は、貫通孔22から下向きに移動すると、先端23の表面に塗布材料を付着させた状態で、貫通孔22から被塗布物に向けて突出する。
 (塗布機構の動作)
 図3は、図2に示した塗布機構4の動作にともなう塗布針24の位置を説明するための模式的な断面図である。制御部11からの制御信号により、図2に示す塗布機構4のサーボモータ15は、回転軸15bを回転させてカム17を回転させる。この結果、カム17のカム面17aは、Z軸方向の高さ位置が変化するため、カム面17aと接するカムフォロア18の高さ位置も変化する。図2(A)に示されるように、カム面17aのうち、比較的上方の上側領域17bにカムフォロア18が近接する状態で塗布針24は上昇し、比較的下方の下側領域17cにカムフォロア18が近接する状態で塗布針24は下降する。これにより、サーボモータ15を駆動させると、カム17を介して塗布針24の先端23を上,下方向に往復移動させることができる。
 たとえば、カムフォロア18がカム17のカム面17aにおける上側領域17bに接している状態では、図3(A)に示されるように、塗布針24は、その移動が可能な範囲の上端位置(サーボモータ15に最も近い位置)に移動している。このとき、塗布針24の先端23は、容器21内に保持されている塗布材料100内に浸されている。
 サーボモータ15の回転軸15bの回転により、さらにカム17が回転してカムフォロア18がカム面17aにおける下側領域17cに到達すると、塗布針24は、図3(B)のように下端位置に移動する。これにより先端23は、容器21の底部に形成された貫通孔22を貫通して容器21の底面から下向きに突出する。
 なお、塗布機構4は、図2および図3に示す構造に限定されず、たとえば特開2009-122259号公報に記載されたように複数の塗布ユニットを含んでもよい(特開2009-122259号公報の図2,6,7,13,16参照)。さらに、塗布機構4は、塗布針を用いて機構に限定されず、他の機構を用いてもよい。たとえば、塗布機構4は、ディスペンサまたはインクジェットなどの機構を用いてもよい。
 (制御用コンピュータの構成)
 図4は、制御用コンピュータ10の内部構成の概略を示す機能ブロック図である。制御用コンピュータ10は、たとえばCPU(Central Processing Unit)と、ROM(Read Only Memory)と、RAM(Random Access Memory)とによって構成される。なお、これらの部位は、内部バスを介して互いに接続される。CPUは、ROMに格納されているプログラムをRAMなどに展開して実行する。ROMに格納されるプログラムは、制御用コンピュータ10の処理方法が記されたプログラムである。図4に示されるように、制御用コンピュータ10は、画像取得部101と、ステージ制御部102と、指令位置決定部103と、補正マップ生成部104と、記憶部105と、補正部106とを含む。
 画像取得部101は、観察光学系6のCCDカメラ7によって撮影された画像を取得する。画像取得部101は、取得した画像をモニタ9に表示したり、補正マップ生成部104に出力したりする。
 ステージ制御部102は、X軸ステージ1とY軸ステージ2とZ軸ステージ3とを制御し、指示されたXYZ座標に従って観察光学系6のX方向、Y方向およびZ方向の位置決めを行なう。ここで、XYZ座標は、Y軸ステージ2の上面部をXY平面とし、当該上面部の法線方向をZ方向とする座標系によって示される。すなわち、X軸およびY軸は、Y軸ステージ2の上面部に固定される。そのため、XYZ座標によって、Y軸ステージ2の上面部に対する相対位置を指示することができる。基板5は、Y軸ステージ2の上面部の固定位置に配置される。したがって、XYZ座標によって、基板5に対する相対位置を指示することができるとも言える。
 ステージ制御部102は、指示されたXY座標に観察光学系6の光軸が位置し、指示されたZ座標に観察光学系6の所定位置(たとえばY軸ステージ2側の先端位置)が位置するように、X軸ステージ1とY軸ステージ2とZ軸ステージ3とを制御する。
 このように、ステージ制御部102は、X軸ステージ1とY軸ステージ2とZ軸ステージ3とともに、観察光学系6のX方向,Y方向およびZ方向の位置決めを行なうための位置決め装置30を構成する。
 指令位置決定部103は、基板5の表面の観察対象位置の指定を受け、観察光学系6の指令位置のXYZ座標を決定する。「指令位置」とは、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3が設計通りに正確に組み付けられていることを前提として、基板5の表面の観察対象位置を観察するための理想的な観察光学系6の相対位置である。指令位置決定部103は、観察対象位置のXY座標を指令位置のXY座標とする。さらに、指令位置決定部103は、観察光学系6の焦点が基板5の表面に合うように、基板5の厚みに応じて予め定められたZ座標を指令位置のZ座標とする。
 指令位置決定部103は、ユーザが操作パネル8に入力した情報から観察対象位置のXY座標を取得してもよいし、制御用コンピュータ10に接続された記録媒体から観察対象位置のXY座標を取得してもよい。
 指令位置決定部103は、補正マップの作成処理のときに、決定した指令位置のXYZ座標を補正マップ生成部104に出力する。指令位置決定部103は、補正マップの作成処理以外のときに、決定した指令位置のXYZ座標を補正部106に出力する。指令位置決定部103は、ユーザが操作パネル8に入力した情報に基づいて、補正マップの作成処理を行なうか否かを判断する。もしくは、指令位置決定部103は、所定のタイミングのときに補正マップの作成処理を行なうと判断してもよい。
 補正マップ生成部104は、XY平面(Y軸ステージ2の上面部)内の複数の位置の各々とXYZ補正量とを対応付けた補正マップを生成し、生成した補正マップを記憶部105に格納する。
 観察光学系6とY軸ステージ2の上面部との相対位置は、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3の、仕上り寸法誤差、組み付け誤差、ピッチング、ヨーイング等によって微妙に変化する。そのため、指令位置決定部103が決定した指令位置のXYZ座標に従って観察光学系6を位置決めしたとしても、CCDカメラ7によって撮影された画像の中心から観察対象位置がずれたり、画像のコントラストが低くなることがある。このような問題を抑制するために、補正マップ生成部104により補正マップが生成される。
 記憶部105は、補正マップ生成部104によって生成された補正マップを記憶する。記憶部105は、たとえば不揮発性メモリである。
 図5は、記憶部105が記憶する補正マップの一例を示す図である。図5に示す補正マップには、XY平面のうち基板5が配置される領域をM×N個の複数の区域に分割したときの、当該複数の区域の各々に対応するXYZ補正量が示される。複数の区域の各々は、(i,j)によって特定される。iは、0,1,2,・・・,M-1のいずれかを取り得る。jは、0,1,2,・・・,N-1のいずれかを取り得る。区域のX方向のピッチLxは、矩形状の基板5のX方向の長さをWとするとき、Lx=W/Mとなる。区域のY方向のピッチLyは、基板のY方向の長さをHとするとき、Ly=H/Nとなる。図5において、ΔxはX補正量を示し、ΔyはY補正量を示し、ΔzはZ補正量を示す。また、図5に示す補正マップには、区域ごとに、当該区域にXYZ補正量が設定されているか否かを示すフラグを含む。
 図4に戻って、補正部106は、観察対象位置に対応するXYZ補正量を補正マップから参照する。補正部106は、参照したXYZ補正量に基づいて指令位置のXYZ座標を補正し、補正後のXYZ座標をステージ制御部102に指示する。
 補正後のXY座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像を第1画像とする。指令位置のXY座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像を第2画像とする。このとき、補正マップに示されるXY補正量は、第1画像の中心と第1画像中の観察対象位置との距離が、第2画像の中心と第2画像中の観察対象位置との距離よりも短くなるように設定される。
 さらに、補正マップに示されるZ補正量は、補正後のZ座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第4画像)のコントラストが、指令位置のZ座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第5画像)のコントラストよりも高くなるように設定される。
 (観察光学系の位置決め方法)
 図6を参照して、制御用コンピュータ10における観察光学系6の位置決め方法の流れについて説明する。図6は、制御用コンピュータ10における観察光学系6の位置決め方法の流れを示すフローチャートである。
 まずステップS100において、制御用コンピュータ10は、補正マップを生成する。次にステップS200において、制御用コンピュータは、補正マップを用いて、基板5の表面の観察対象位置に応じた観察光学系6のX方向、Y方向およびZ方向の位置決めを行なう。これにより、ユーザは、CCDカメラ7によって撮影された画像によって、基板5の表面を観察することができる。以下、補正マップの生成処理(ステップS100)および観察光学系6の位置決め処理(ステップS200)の詳細について説明する。
  (補正マップの生成処理(ステップS100))
 図7を参照して、補正マップの生成処理の流れについて説明する。図7は、補正マップの生成処理の流れを示すフローチャートである。補正マップの生成処理を開始するとき、記憶部105が記憶する補正マップの各区域のXYZ補正量およびフラグが全て0に初期化される。
 まずステップS11において、基板5がY軸ステージ2の上面部の固定位置に配置される。図8は、基板5の一例を示す図である。図8に示されるように、基板5には、複数の円状パターン50が形成されている。矩形状の基板5は、上面側から見たときに、左下角がXY平面の原点に位置し、下端がX軸上に位置し、左端がY軸上に位置するように、Y軸ステージ2の固定位置に配置される。
 複数の円状パターン50は、等間隔に形成される。CCDカメラ7によって撮影される画像(拡大画像)内に2つ以上の円状パターン50が含まれないように、複数の円状パターン50の間隔が設定されている。
 ステップS12において、指令位置決定部103は、基板5の表面の複数の観察対象位置の指定を受け、当該複数の観察対象位置の各々に応じた観察光学系6の指令位置のXYZ座標を決定する。ここでは、基板5に形成された複数の円状パターン50(図8参照)の各々の中心が観察対象位置として設定され、指令位置決定部103は、複数の円状パターン50の各々の中心座標を示す座標ファイルを取得する。座標ファイルは、基板5の左下角を原点とし、基板5の下端をU軸とし、基板5の左端をV軸とするUV座標系における、複数の円状パターン50の各々の中心の座標を示す。指令位置決定部103は、たとえば制御用コンピュータ10に接続された記録媒体から座標ファイルを取得すればよい。上述したように、基板5は、左下角がXY平面の原点に位置し、下端がX軸上に位置し、左端がY軸上に位置するように配置される。そのため、UV座標系はXY座標系と一致する。したがって、円状パターン50の中心のUV座標は、観察対象位置のXY座標となる。指令位置決定部103は、観察対象位置のXY座標を指令位置のXY座標として決定するとともに、基板5の厚みに応じて予め定められたZ座標を指令位置のZ座標として決定する。
 ステップS13において、補正マップ生成部104は、指令位置決定部103が決定した1つの指令位置を選択する。選択した指令位置のXYZ座標を(gx,gy,gz)とする。
 ステップS14において、補正マップ生成部104は、選択した指令位置の座標(gx,gy,gz)をステージ制御部102に指示する。これにより、ステージ制御部102は、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3を制御して、座標(gx,gy,gz)に従って観察光学系6を位置決めする。
 ステップS15において、補正マップ生成部104は、指令位置のZ座標gzを含む複数のZ座標をステージ制御部102に順次指示し、Z軸ステージ3を上下移動させる。補正マップ生成部104は、複数のZ座標の各々に対して、Z軸ステージ3が移動した後にCCDカメラ7によって撮影された画像を画像取得部101から受ける。
 ステップS16において、補正マップ生成部104は、画像取得部101から受けた複数の画像の各々のコントラスト値Cを算出する。そして、補正マップ生成部104は、最も大きいコントラスト値Cに対応する画像を撮影したときの観察光学系6のZ座標と、指令位置のZ座標gzとのずれ量Δzを、Z補正量として算出する。
 たとえば、補正マップ生成部104は、以下の式(1)および式(2)に従って、微分値dx(p,q)、dy(p,q)を各画素について求める。そして、補正マップ生成部104は、以下の式(3)に従って、コントラスト値Cを算出する。ここで、pは画素の横方向の位置を示し、qは画素の縦方向の位置を示し、f(p,q)は画素(p,q)における輝度値を示し、Pは画像における横方向の画素数を示し、Qは画像における縦方向の画素数を示す。s,tは、微分値dx(p,q)、dy(p,q)を算出するための参照画素との距離を示し、適宜設定される定数である。画素(p+s,q)は、画素(p,q)から+sだけ横方向にずれた参照画素であり、画素(p-s,q)は、画素(p,q)から-sだけ横方向にずれた参照画素である。画素(p,q+t)は、画素(p,q)から+tだけ縦方向にずれた参照画素であり、画素(p,q-t)は、画素(p,q)から-tだけ縦方向にずれた参照画素である。
dx(p,q)=|2f(p,q)-f(p-s,q)-f(p+s,q)| 式(1)dy(p,q)=|2f(p,q)-f(p,q-t)-f(p,q+t)| 式(2)
Figure JPOXMLDOC01-appb-M000001
 なお、式(1)および式(2)では、画素(p,q)に対して横方向および縦方向にずれた参照画素に基づいて微分値dx(p,q)、dy(p,q)がそれぞれ算出されるが、画素(p,q)に対して斜め方向にずれた参照画素に基づいて微分値が算出されてもよい。
 ステップS17において、補正マップ生成部104は、コントラスト値Cが最大となる画像(拡大画像)中の円状パターン50の位置に基づいて、X補正量ΔxとY補正量Δyとを算出する。
 図9は、コントラスト値Cが最大となる画像の一例を示す図である。補正マップ生成部104は、画像の中から円状パターン50の中心R1を検出し、画像の中心Gに対する円状パターン50の中心R1のX方向のずれ量ΔxとY方向のずれ量Δyとを算出する。補正マップ生成部104は、算出したずれ量Δx,ΔyをそれぞれX補正量、Y補正量として決定する。
 補正マップ生成部104による円状パターン50の中心R1の検出方法としては、公知の画像処理による検出法を用いることができる。たとえば、パターンマッチング法を用いて中心R1を検出してもよいし、画像を二値化し、その重心を中心R1として検出してもよい。
 ステップS18において、補正マップ生成部104は、ステップS16およびステップS17で算出した補正量Δx,Δy,Δzに基づいて、記憶部105が記憶する補正マップを更新する。
 図5に示す補正マップの場合、補正マップ生成部104は、ステップS13で選択した指令位置に対応する区域(i,j)を特定する。具体的には、区域のX方向のピッチLx(=W/M)を用いて、補正マップ生成部104は、指令位置のX座標gxをLxで除算した商の値(整数値)をiとする。区域のY方向のピッチLy(=H/N)を用いて、補正マップ生成部104は、指令位置のY座標gyをLyで除算した商の値(整数値)をjとする。これにより、補正マップ生成部104は、指令位置に対応する区域(i,j)を特定する。補正マップ生成部104は、特定した区域(i,j)に対応する補正量を、ステップS16およびステップS17で算出した補正量Δx,Δy,Δzに更新する。このとき、補正マップ生成部104は、区域(i,j)に対応するフラグを、補正量を更新したことを示す「1」に変更する。
 ステップS19において、補正マップ生成部104は、ステップS12で決定された指令位置のうち未選択の指令位置があるか確認する。未選択の指令位置がある場合、処理はステップS13に戻される。未選択の指令位置がない場合、処理は終了する。
  (観察光学系6の位置決め処理(ステップS200))
 図10を参照して、観察光学系6の位置決め処理の流れについて説明する。図10は、観察光学系6の位置決め処理の流れを示すフローチャートである。
 ますステップS21において、基板5がY軸ステージ2の上面部の固定位置に配置される。このとき、基板5は、上面側から見たときに、左下角がXY平面の原点に位置し、下端がX軸上に位置し、左端がY軸上に位置するように、Y軸ステージ2の配置される。
 ステップS22において、指令位置決定部103は、基板5の表面の観察対象位置の指定を受け、観察対象位置に応じて観察光学系6の指令位置のXYZ座標を決定する。観察対象位置とは、たとえば基板5において配線が欠落した位置などである。指令位置決定部103は、観察対象位置のXY座標を指令位置のXY座標として決定するとともに、基板5の厚みに応じて予め定められたZ座標を指令位置のZ座標として決定する。指令位置のXYZ座標を(gx,gy,gz)とする。
 ステップS23において、補正部106は、観察対象位置(XY座標(gx、gy))に対応する補正量Δx,Δy,Δzを、記憶部105が記憶する補正マップから参照する。補正部106は、参照した補正量Δx,Δy,Δzに従って、指令位置のXYZ座標(gx,gy,gz)を補正し、補正後のXYZ座標(gx+Δx,gy+Δy,gz+Δz)を生成する。
 ステップS24において、補正部106は、補正後のXYZ座標(gx+Δx,gy+Δy,gz+Δz)をステージ制御部102に指示する。これにより、ステージ制御部102は、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3を制御して、指示された補正後のXYZ座標(gx+Δx,gy+Δy,gz+Δz)に従って観察光学系6を位置決めする。ステップS24により、位置決め処理は終了する。
 図11は、ステップS24の後にCCDカメラ7によって撮影された画像の一例を示す。図11には、観察対象位置として、基板5の円状パターン50の中心が設定されたときの画像が示される。図11に示される画像における、中心Gと円状パターン50の中心R1との距離は、図9に示される画像における、中心Gと円状パターン50の中心R1との距離よりも短い。図11に示される画像は、補正後のXY座標(gx+Δx,gy+Δy)をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第1画像)に対応する。一方、図9に示される画像は、指令位置のXY座標(gx,gy)をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第2画像)に対応する。このように、X補正量ΔxおよびY補正量Δyは、第1画像の中心と第1画像中の観察対象位置との距離が、第2画像の中心と第2画像中の観察対象位置との距離よりも短くなるように設定される。
 さらに、図11に示される画像のコントラストは、指令位置のZ座標gzをステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第5画像)のコントラストよりも高い。図11に示される画像は、補正後のZ座標gz+Δzをステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第4画像)に対応する。このように、Z補正量Δzは、第4画像のコントラストが第5画像のコントラストより高くなるように設定される。
 (変形例)
 上記の説明では、補正マップの生成処理と観察光学系6の位置決め処理とを別のタイミングで行なうものとした。しかしながら、制御用コンピュータ10は、補正マップの生成処理と観察光学系6の位置決め処理とを並行して行なってもよい。
 図12は、補正マップの生成処理と観察光学系6の位置決め処理とを並行して行なうときの処理の流れを示すフローチャートである。
 まずステップS31において、複数の円状パターン50が形成された基板5がY軸ステージ2の上面部の固定位置に配置される。
 ステップS32において、指令位置決定部103は、基板5の表面の観察対象位置の指定を受け、観察対象位置に応じて観察光学系の指令位置のXYZ座標を決定する。指令位置のXYZ座標を(gx,gy,gz)とする。
 ステップS33において、指令位置決定部103は、補正マップの複数の区域の中から、指令位置のXY座標に対応する区域を特定し、特定した区域のフラグが「0」か否かを確認する。フラグが「0」である場合(ステップS33でYES)、ステップS34において補正マップの生成処理が実行される。ステップS34の処理は、図7に示すステップS14~S18の処理と同じである。
 フラグが「1」である場合(ステップS33でNO)、または、ステップS34の後、ステップS35,S36が行なわれる。ステップS35,S36は、それぞれ図10に示すステップS13,S14と同じである。
 これにより、観察光学系6の位置決め処理の際に、補正マップにおいてフラグ「0」の区域の補正量を更新することができる。
 (利点)
 以上のように、実施の形態1に係る液体塗布装置(基板観察装置)200は、観察光学系6と、CCDカメラ7と、ステージ制御部102と、指令位置決定部103と、記憶部105と、補正部106とを備える。ステージ制御部102は、指示されたXY座標に従って、観察光学系6のX方向およびY方向の位置決めを行なう位置決め装置30を構成する。指令位置決定部103は、基板5の表面上の観察対象位置のXY座標を観察光学系6の指令位置のXY座標として決定する。記憶部105は、XY平面内の複数の位置の各々に対応するXY補正量を記憶する。補正部106は、観察対象位置に対応するXY補正量を記憶部105から参照し、参照したXY補正量を用いて指令位置のXY座標を補正し、補正後のXY座標をステージ制御部102に指示する。補正後のXY座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像を第1画像とし、指令位置のXY座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像を第2画像とする。このとき、XY補正量は、第1画像の中心と第1画像中の観察対象位置との距離が、第2画像の中心と第2画像中の観察対象位置との距離よりも短くなるように設定される。
 上記の構成により、基板5の表面の観察対象位置を指定して、CCDカメラ7によって撮影された画像により基板5の表面を観察したとき、観察対象位置が画像の中心付近に存在する。このように、液体塗布装置200は、観察対象位置を観察する際に、観察光学系6を精度良く位置決めすることができる。
 X補正量ΔxおよびY補正量Δyは、補正マップの生成処理において指定された円状パターン50の中心のXY座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(図9参照)(第3画像)に基づいて設定される。すなわち、X補正量Δxは、当該画像の中心Gに対する、当該画像中の円状パターン50の中心R1のX座標のずれ量である。同様に、Y補正量Δyは、当該画像の中心Gに対する、当該画像中の円状パターン50の中心R1のY座標のずれ量である。これにより、観察光学系6の位置決め処理(S200)の後にCCDカメラ7によって撮影された画像(図11参照)において、画像の中心付近に観察対象位置を確認することができる。
 さらに、ステージ制御部102は、指示されたZ座標に従って、観察光学系6のZ方向の位置決めを行なう。指令位置決定部103は、基板5の厚みに応じて予め定めれたZ座標を指令位置のZ座標として決定する。記憶部105は、XY平面内の複数の位置の各々に対応するZ補正量を記憶する。補正部106は、観察対象位置に対応するZ補正量を記憶部105から参照し、参照したZ補正量に基づいて指令位置のZ座標を補正し、補正後のZ座標を補正後のXY座標とともにステージ制御部102に指示する。図7のステップS16の処理のため、Z補正量は、補正後のZ座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第4画像)のコントラストが、指令位置のZ座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像(第5画像)のコントラストよりも高くなるように設定される。
 上記の構成により、基板5の表面の観察対象位置を指定したときに、CCDカメラ7によって撮影された画像のコントラストが高くなる。その結果、基板5の表面を観察しやすくなる。
 また、本実施の形態1に係る液体塗布装置200における観察光学系6の位置決め方法は、第1~第3工程を備える。第1工程(ステップS11~S19)は、XY平面内の複数の位置の各々とXY補正量とを対応付けた補正マップを生成する工程である。第2工程(ステップS22)は、基板5の表面上の観察対象位置のXY座標を観察光学系6の指令位置のXY座標として決定する工程である、第3工程(ステップS23、S24)は、観察対象位置に対応するXY補正量を補正マップから参照し、参照したXY補正量に基づいて指令位置のXY座標を補正し、補正後のXY座標をステージ制御部102に指示する工程である。第1工程では、複数の位置(円状パターン50の中心)の各々について、ステップS17が行なわれる。すなわち、円状パターン50の中心のXY座標をステージ制御部102に指示したときにCCDカメラ7によって撮影される画像を取得し、取得した画像の中心に対する、画像中の円状パターン50の中心R1のX方向のずれ量ΔxをX補正量として算出する。同様に、画像の中心に対する、画像中の円状パターン50の中心R1のY方向のずれ量ΔyをY補正量として算出する。
 上記の構成によっても、液体塗布装置200は、観察対象位置を観察する際に、観察光学系6を精度良く位置決めすることができる。
 [実施の形態2]
 実施の形態2に係る液体塗布装置は、実施の形態1に係る液体塗布装置200の変形例である。上記の実施の形態1では、補正マップを用いて補正されたXYZ座標に基づいて観察光学系6の位置決めを行なった。これに対して、実施の形態2では、補正マップを用いて補正されたXYZ座標に基づいて塗布機構4の位置決めを行なう。
 (制御用コンピュータの構成)
 図13は、実施の形態2に係る制御用コンピュータ10aの構成を示す機能ブロック図である。実施の形態2に係る液体塗布装置は、実施の形態1に係る液体塗布装置200と比較して、制御用コンピュータ10の代わりに図11に示す制御用コンピュータ10aを備える点でのみ相違する。図13に示されるように、制御用コンピュータ10aは、画像取得部101と、ステージ制御部102aと、指令位置決定部103aと、補正マップ生成部104aと、記憶部105と、補正部106aと、塗布機構制御部107とを備える。画像取得部101および記憶部105については、実施の形態1と同様の機能であるため、ここでは詳細な説明を省略する。
 ステージ制御部102aは、X軸ステージ1とY軸ステージ2とを制御し、指示されたXY座標に従って、観察光学系6および塗布機構4のうち指示された一方のX方向およびY方向を位置決めする。具体的には、ステージ制御部102aは、観察光学系6が指示された場合、指示されたXY座標に観察光学系6の光軸が位置するように、X軸ステージ1とY軸ステージ2とを制御する。ステージ制御部102aは、塗布機構4が指示された場合、指示されたXY座標に塗布機構4の塗布針24の軸が位置するように、X軸ステージ1とY軸ステージ2とを制御する。さらに、ステージ制御部102aは、Z軸ステージ3を制御し、指示されたZ座標に従って観察光学系6および塗布機構4のZ方向を位置決めする。
 上述したように、観察光学系6と塗布機構4とは、一体となってZ軸ステージ3に搭載される。そのため、塗布機構4と観察光学系6との相対位置関係は、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3の状態にかかわらず常に一定である。塗布機構4の塗布針24の軸は、観察光学系6の光軸からX方向にΔux、Y方向にΔuyだけずれている。そのため、XY座標(gx,gy)と塗布機構4とをステージ制御部102aに指示した場合の基板5に対する観察光学系6および塗布機構4の相対位置は、XY座標(gx+Δux,gy+Δuy)と観察光学系6とをステージ制御部102aに指示した場合の基板5に対する観察光学系6および塗布機構4の相対位置と同じである。
 さらに、塗布機構4が基板5に対して塗布材料を塗布可能な位置にあるとき、観察光学系6の焦点が基板5に合うように、塗布機構4と観察光学系6とのZ方向の相対位置関係が設定されている。
 ステージ制御部102aは、塗布機構4が指示された場合に限り、指示されたXYZ座標に従ってX軸ステージ1とY軸ステージ2とZ軸ステージ3とを制御した後に、塗布機構制御部107に塗布指示を出力する。
 このように、ステージ制御部102aは、X軸ステージ1とY軸ステージ2とZ軸ステージ3とともに、観察光学系6または塗布機構4のX方向,Y方向およびZ方向の位置決めを行なうための位置決め装置30aを構成する。
 指令位置決定部103aは、基板5の表面の塗布対象位置に応じた塗布機構4の指令位置のXYZ座標を決定する。実施の形態2における「指令位置」とは、基板5の表面の塗布対象位置に塗布材料を塗布するための理想的な塗布機構4の相対位置である。指令位置決定部103aは、塗布対象位置のXY座標を指令位置のXY座標とし、基板5の厚みに応じて予め定められたZ座標を指令位置のZ座標とする。
 指令位置決定部103aは、補正マップの作成処理のときに、操作パネル8に入力された情報から塗布対象位置のXY座標を取得してもよいし、制御用コンピュータ10aに接続された記録媒体から塗布対象位置のXY座標を取得してもよい。指令位置決定部103aは、補正マップの作成処理以外のときに、観察光学系6を介して画像取得部101が取得した画像上で確認された欠陥部分の位置のXY座標を、塗布対象位置のXY座標として取得する。
 指令位置決定部103aは、実施の形態1の指令位置決定部103と同様に、補正マップの作成処理のときに、決定した指令位置のXYZ座標を補正マップ生成部104aに出力する。指令位置決定部103aは、補正マップの作成処理以外のときに、決定した指令位置のXYZ座標を補正部106aに出力する。
 補正マップ生成部104aは、XY平面内の複数の位置の各々と補正量とを対応付けた補正マップを生成し、生成した補正マップを記憶部105に格納する。
 上述したように、観察光学系6を介して基板5の表面を観察することで欠陥部分の位置を確認した後、当該位置を塗布対象位置として指定して塗布機構4を位置決めしているにもかかわらず、塗布対象位置からずれて塗布座標が塗布されることがある。これは、観察光学系6の光軸と塗布機構4の塗布針24の軸とが離れていることと、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3の、仕上り寸法誤差、組み付け誤差、ピッチング、ヨーイング等の影響とに起因する。このような問題を抑制するために、補正マップ生成部104aにより補正マップが生成される。
 補正部106aは、補正マップに従って、指令位置決定部103aから受けた指令位置のXYZ座標を補正し、補正後のXYZ座標と塗布機構4とをステージ制御部102aに指示する。
 指令位置のXY座標と観察光学系6とをステージ制御部102aに指示したときにCCDカメラ7によって撮影される画像の中心にある基板5の表面の位置を基準位置とする。さらに、補正後のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布機構4により基板5の表面に塗布材料を塗布したときの基板5の表面における塗布位置と基準位置との距離を距離Aとする。指令位置のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布機構4により基板5の表面に塗布材料を塗布したときの基板5の表面における塗布位置と基準位置との距離を距離Bとする。このとき、補正マップに示されるXY補正量は、距離Aが距離Bよりも短くなるように設定される。
 さらに、補正マップに示されるZ補正量は、補正後のZ座標をステージ制御部102aに指示したときにCCDカメラ7によって撮影される画像のコントラストが、指令位置のZ座標をステージ制御部102aに指示したときにCCDカメラ7によって撮影される画像のコントラストよりも高くなるように設定される。
 塗布機構制御部107は、ステージ制御部102aから塗布指示を受けたとき、塗布針24を下降させるように塗布機構4を制御し、基板5の表面上に塗布材料を塗布させる。
 (塗布機構の位置決め方法)
 図14を参照して、制御用コンピュータ10aにおける塗布機構4の位置決め方法の流れについて説明する。図14は、制御用コンピュータ10aにおける塗布機構4の位置決め方法の流れを示すフローチャートである。
 まずステップS400において、制御用コンピュータ10aは、補正マップを生成する。次にステップS600において、制御用コンピュータ10aは、補正マップを用いて、基板5の表面の塗布対象位置に応じた塗布機構4のX方向、Y方向およびZ方向の位置決めを行なう。これにより、塗布機構4は、指定された塗布対象位置に精度良く塗布材料を塗布することができる。以下、補正マップの生成処理(ステップS400)および塗布機構4の位置決め処理(ステップS600)の詳細について説明する。
  (補正マップの生成処理(ステップS400))
 図15を参照して、補正マップの生成処理の流れについて説明する。図15は、実施の形態2における補正マップの生成処理の流れを示すフローチャートである。補正マップの生成処理を開始するとき、記憶部105が記憶する補正マップの各区域の補正量およびフラグが全て0に初期化される。
 まずステップS41において、基板5がY軸ステージ2の上面部の固定位置に配置される。基板5は、上面側から見たときに、左下角がXY平面の原点に位置し、下端がX軸上に位置し、左端がY軸上に位置するように、Y軸ステージ2の配置される。
 ステップS42において、指令位置決定部103aは、基板5の表面の複数の塗布対象位置の指定を受け、当該複数の塗布対象位置の各々に応じた塗布機構4の指令位置のXYZ座標を決定する。指令位置決定部103aは、たとえば制御用コンピュータ10aに接続された記録媒体から、複数の塗布対象位置の各々の座標を示す座標ファイルを取得する。指令位置決定部103aは、塗布対象位置のXY座標を指令位置のXY座標として決定するとともに、基板5の厚みに応じて予め定められたZ座標を指令位置のZ座標として決定する。
 ステップS43において、補正マップ生成部104aは、指令位置決定部103aが決定した1つの指令位置を選択する。選択した指令位置のXYZ座標を(gx,gy,gz)とする。
 ステップS44において、補正マップ生成部104aは、選択した指令位置のXYZ座標(gx,gy,gz)と観察光学系6とをステージ制御部102aに指示する。これにより、観察光学系6は、指令位置に位置決めされる。なお、観察光学系6は、塗布機構4からX方向にΔux、Y方向にΔuyだけずれている。そのため、XYZ座標(gx,gy,gz)と観察光学系6とをステージ制御部102aに指示したときの観察光学系6および塗布機構4の位置は、XYZ座標(gx-Δux,gy-Δuy)と塗布機構4とをステージ制御部102aに指示したときの観察光学系6および塗布機構4の位置と同じである。
 ステップS45において、補正マップ生成部104aは、指令位置のZ座標gzを含む複数のZ座標をステージ制御部102aに順次指示し、Z軸ステージ3を上下移動させる。補正マップ生成部104aは、複数のZ座標の各々に対して、Z軸ステージ3が移動した後にCCDカメラ7によって撮影された画像を画像取得部101から受ける。
 ステップS46において、補正マップ生成部104aは、画像取得部101から受けた複数の画像の各々のコントラスト値Cを算出する。そして、補正マップ生成部104aは、最も大きいコントラスト値Cに対応する画像を撮影したときの観察光学系6のZ座標と、指令位置のZ座標gzとのずれ量Δzを、Z補正量として算出する。補正マップ生成部104aは、実施の形態1で説明した方法を用いてコントラスト値Cを算出すればよい。
 ステップS47において、補正マップ生成部104aは、選択した指令位置のXYZ座標(gx,gy,gz)と塗布機構4とをステージ制御部102aに指示する。これにより、塗布機構4は、指令位置に位置決めされる。なお、XYZ座標(gx,gy,gz)と塗布機構4とをステージ制御部102aに指示したときの観察光学系6および塗布機構4の位置は、XYZ座標(gx+Δux,gy+Δuy)と観察光学系6とをステージ制御部102aに指示したときの観察光学系6および塗布機構4の位置と同じである。その後ステップS48において、塗布機構制御部107は、塗布機構4を制御して、基板5の表面に塗布材料を塗布させる。
 ステップS49において、補正マップ生成部104aは、指令位置のXYZ座標(gx,gy,gz)と観察光学系6とをステージ制御部102aに指示する。これにより、観察光学系6は、再度指令位置に位置決めされる。
 ステップS50において、補正マップ生成部104aは、画像取得部101がCCDカメラ7から取得した画像に基づいて、X補正量ΔxとY補正量Δyとを算出する。図16は、ステップS50で取得された画像の一例を示す図である。図16に示されるように、画像の中には塗布領域51が含まれる。ステップS50において、補正マップ生成部104aは、画像の中から塗布領域51の中心R2を検出し、画像の中心Gに対する塗布領域51の中心R2のX方向のずれ量ΔxとY方向のずれ量Δyとを算出する。補正マップ生成部104aは、算出したずれ量Δx,ΔyをそれぞれX補正量、Y補正量として決定する。
 補正マップ生成部104aによる塗布領域51の中心R2の検出方法としては、公知の画像処理による検出法を用いることができる。たとえば、パターンマッチング法を用いて中心R2を検出してもよいし、画像を二値化し、その重心を中心R2として検出してもよい。
 ステップS51において、補正マップ生成部104aは、ステップS46およびステップS50で算出した補正量Δx,Δy,Δzに基づいて、記憶部105が記憶する補正マップを更新する。補正マップ生成部104aは、実施の形態1の補正マップ生成部104と同様の方法により補正マップを更新すればよい。
 ステップS52において、補正マップ生成部104aは、ステップS42で決定された指令位置のうち未選択の指令位置があるか確認する。未選択の指令位置がある場合、処理はステップS43に戻される。未選択の指令位置がない場合、処理は終了する。
  (塗布機構4の位置決め処理(ステップS600))
 図17を参照して、塗布機構4の位置決め処理の流れについて説明する。図17は、塗布機構4の位置決め処理の流れを示すフローチャートである。
 ますステップS61において、基板5がY軸ステージ2の上面部の固定位置に配置される。このとき、基板5は、上面側から見たときに、左下角がXY平面の原点に位置し、下端がX軸上に位置し、左端がY軸上に位置するように、Y軸ステージ2の配置される。
 ステップS62において、指令位置決定部103aは、基板5の表面の塗布対象位置の指定を受け、塗布対象位置に応じて塗布機構4の指令位置のXYZ座標を決定する。塗布対象位置とは、たとえば基板5において配線が欠落した位置などである。
 ユーザは、基板5の表面の観察対象位置のXY座標と観察光学系6とをステージ制御部102aに指示して観察光学系6を移動させ、CCDカメラ7によって撮影された画像を観察しながら、基板5の表面に形成された配線パターンの欠陥部分を探索する。ユーザは、画像上の欠陥部分の位置を基板の表面の塗布対象位置として指定する。指令位置決定部103aは、ステージ制御部102aに指示されたXY座標と画像上の指定された位置とから、塗布対象位置のXY座標を算出し、算出したXY座標を指令位置のXY座標として決定する。さらに、指令位置決定部103aは、基板5の厚みに応じて予め定められたZ座標を指令位置のZ座標とする。指令位置のXYZ座標を(gx,gy,gz)とする。
 ステップS63において、補正部106aは、塗布対象位置に対応する補正量Δx,Δy,Δzを、記憶部105が記憶する補正マップから参照する。補正部106aは、参照した補正量Δx,Δy,Δzに従って、指令位置のXYZ座標(gx,gy,gz)を補正し、補正後のXYZ座標(gx+Δx,gy+Δy,gz+Δz)を生成する。
 ステップS64において、補正部106aは、補正後のXYZ座標(gx+Δx,gy+Δy,gz+Δz)と塗布機構4とをステージ制御部102aに指示する。これにより、ステージ制御部102aは、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3を制御して、指示された補正後のXYZ座標(gx+Δx,gy+Δy,gz+Δz)に従って塗布機構4を位置決めする。
 ステップS65において、塗布機構制御部107は、塗布機構4を制御して、基板5の表面に塗布材料を塗布させる。これにより、位置決め処理は終了する。
 図18は、ステップS65の後に、指令位置のXYZ座標と観察光学系6とをステージ制御部102に指示してから画像取得部101によって取得された画像の一例を示す。図18に示される画像における、中心G(基準位置)と塗布領域51の中心R2との距離は、図16に示される画像における、中心Gと塗布領域51の中心R2との距離よりも短い。図18に示される画像における塗布領域51は、補正後のXY座標(gx+Δx,gy+Δy)と塗布機構4とをステージ制御部102aに指示した後に塗布された領域である。一方、図16に示される画像における塗布領域51は、指令位置のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布された領域である。このように、X補正量ΔxおよびY補正量Δyは、補正後のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布機構4により基板5の表面に塗布材料を塗布したときの塗布位置と画像の中心Gとの距離が、指令位置のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布機構4により基板5の表面に塗布材料を塗布したときの塗布位置と画像の中心Gとの距離よりも短くなるように設定される。
 さらに、図18に示される画像のコントラストは、指令位置のZ座標をステージ制御部102aに指示したときに撮影される画像のコントラストよりも高い。図18に示される画像は、補正後のZ座標gz+Δzと観察光学系6とをステージ制御部102に指示したときにCCDカメラ7によって撮影される画像に対応する。このように、Z補正量Δzは、補正後のZ座標と観察光学系6とをステージ制御部102に指示したときに撮影される画像のコントラストが、指令位置のZ座標と観察光学系6とをステージ制御部102に指示したときに撮影される画像のコントラストよりも高くなるように設定される。
 (変形例)
 上記の説明では、補正マップの生成処理と塗布機構4の位置決め処理とを別のタイミングで行なうものとした。しかしながら、制御用コンピュータ10aは、補正マップの生成処理と塗布機構4の位置決め処理とを並行して行なってもよい。
 図19は、補正マップの生成処理と塗布機構4の位置決め処理とを並行して行なうときの処理の流れを示すフローチャートである。
 まずステップS71において、基板5がY軸ステージ2の上面部の固定位置に配置される。基板5は、左下角がXY平面の原点に位置し、下辺がX軸上に位置し、左辺がY軸上に位置するように、Y軸ステージ2の配置される。
 ステップS72において、指令位置決定部103aは、基板5の表面の塗布対象位置の指定を受け、塗布対象位置に応じて塗布機構4の指令位置のXYZ座標を決定する。
 ステップS73において、指令位置決定部103aは、補正マップの複数の区域の中から、塗布対象位置のXY座標に対応する区域を特定し、特定した区域のフラグが「0」か否かを確認する。フラグが「0」である場合(ステップS73でYES)、ステップS74において補正マップの生成処理が実行される。ステップS74の更新処理は、図15に示すステップS44~S51の処理と同じである。
 フラグが「1」である場合(ステップS73でNO)、ステップS75~S77が行なわれる。ステップS75~S77は、それぞれ図17に示すステップS63~S65と同じである。
 これにより、塗布機構4の位置決め処理の際に、補正マップにおいてフラグ「0」の区域の補正量を更新することができる。
 (利点)
 以上のように、実施の形態2に係る液体塗布装置は、観察光学系6と、CCDカメラ7と、塗布機構4と、ステージ制御部102aと、指令位置決定部103aと、記憶部105と、補正部106aとを備える。ステージ制御部102aは、指示されたXY座標に従って、塗布機構4のX方向およびY方向の位置決めを行なう位置決め装置30を構成する。指令位置決定部103aは、基板5の表面上の塗布対象位置のXY座標を塗布機構4の指令位置のXY座標として決定する。記憶部105は、XY平面内の複数の位置の各々に対応するXY補正量を記憶する。補正部106aは、指令位置のXY座標に対応するXY補正量を記憶部105から参照し、参照したXY補正量を用いて指令位置のXY座標を補正し、補正後のXY座標をステージ制御部102aに指示する。指令位置のXY座標と観察光学系6とをステージ制御部102aに指示したときにCCDカメラ7によって撮影される画像の中心にある基板5の表面の位置を基準位置とする。さらに、補正後のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布機構4により基板5の表面に塗布材料を塗布したときの基板5の表面における塗布位置と基準位置との距離を距離Aとする。指令位置のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布機構4により基板5の表面に塗布材料を塗布したときの基板5の表面における塗布位置と基準位置との距離を距離Bとする。このとき、補正マップに示されるXY補正量は、距離Aが距離Bよりも短くなるように設定される。
 上記の構成により、観察光学系6を介して撮影された画像上で塗布対象位置を指定したとしても、指定された塗布対象位置に、塗布機構4を精度良く位置決めすることができる。
 X補正量ΔxおよびY補正量Δyは、補正マップの生成処理において指定された塗布対象位置のXY座標と観察光学系6とをステージ制御部102aに指示したときにCCDカメラ7によって撮影される画像(図16参照)に基づいて設定される。当該画像は、塗布対象位置のXY座標と塗布機構4とをステージ制御部102aに指示してから塗布機構4により塗布材料を基板5に塗布させた後に撮影される。X補正量Δxは、当該画像の中心Gに対する塗布領域51の中心R2のX座標のずれ量である。同様に、Y補正量Δyは、当該画像の中心Gに対する塗布領域51の中心R2のY座標のずれ量である。これにより、観察光学系6を介して撮影された画像において塗布対象位置を指定したとき、当該塗布対象位置付近に塗布材料を塗布することができる。
 さらに、ステージ制御部102aは、指示されたZ座標に従って、観察光学系6および塗布機構4のZ方向の位置決めを行なう。指令位置決定部103aは、基板5の厚みに応じて予め定めれたZ座標を指令位置のZ座標として決定する。記憶部105は、XY平面内の複数の位置の各々に対応するZ補正量を記憶する。補正部106aは、塗布対象位置に対応するZ補正量を記憶部105から参照し、参照したZ補正量に基づいて指令位置のZ座標を補正し、補正後のZ座標をステージ制御部102に指示する。図15のステップS46の処理のため、Z補正量は、補正後のZ座標をステージ制御部102に指示したときに撮影される画像のコントラストが、指令位置のZ座標をステージ制御部102に指示したときに撮影される画像のコントラストよりも高くなるように設定される。
 上記の構成により、基板5の表面の観察対象位置を指定したときに、CCDカメラ7によって撮影された画像のコントラストが高くなる。その結果、基板5の表面を観察しやすくなる。
 また、本実施の形態2に係る液体塗布装置における塗布機構4の位置決め方法は、第1~第3工程を備える。第1工程(ステップS41~S52)は、XY平面内の複数の位置の各々とXY補正量とを対応付けた補正マップを生成する工程である。第2工程(ステップS62)は、基板5の表面の塗布対象位置のXY座標を観察光学系6の指令位置のXY座標として決定する工程である、第3工程(ステップS63、S64)は、塗布対象位置に対応するXY補正量を補正マップから参照し、参照したXY補正量に基づいて指令位置のXY座標を補正し、補正後のXY座標をステージ制御部102に指示する工程である。第1工程では、XY平面内の複数の位置(塗布対象位置)の各々について、以下の第4工程と第5工程とが行なわれる。第4工程は、塗布対象位置のXY座標と塗布機構4とをステージ制御部102aに指示した後に塗布機構4により基板5の表面に塗布材料を塗布する工程である。第5工程は、第4工程の後、塗布対象位置のXY座標と観察光学系6とをステージ制御部102aに指示してからCCDカメラ7によって撮影される画像を取得し、当該画像の中心に対する、画像中の塗布領域51の中心R2のX方向のずれ量ΔxをX補正量として算出する。同様に、画像の中心に対する、画像中の塗布領域51の中心R2のY方向のずれ量ΔyをY補正量として算出する。
 上記の構成によっても、液体塗布装置は、観察光学系6を介して撮影された画像において塗布対象位置が指定されたときに、当該塗布対象位置に塗布材料を塗布することができるように、塗布機構4を精度良く位置決めすることができる。
 [実施の形態1,2の変形例]
 上記の説明では、補正マップ生成部104,104aは、X補正量、Y補正量およびZ補正量を算出し、算出した補正量を記憶部105に格納した。しかしながら、補正マップ生成部104,104aは、X補正量およびY補正量の少なくとも一方を算出し、算出した補正量を記憶部105に格納してもよい。もしくは、補正マップ生成部104,104aは、X補正量およびY補正量の一方とZ補正量とを算出し、算出した補正量を記憶部105に格納してもよい。これにより、補正マップ生成部104,104aおよび補正部106,106aの演算量を削減し、位置決め処理を高速化することができる。
 上記の説明では、補正マップの区域のX方向のピッチLxおよびY方向のピッチLyをそれぞれ一定値とした。しかしながら、ピッチLx,Lyは一定値でなくてもよい。たとえば、基板5の表面のうち高い位置決め精度を必要とする範囲が予めわかっている場合には、当該範囲に属する区域のピッチを他の区域のピッチよりも小さくしてもよい。これにより、当該範囲内を観察対象位置とする場合に観察光学系6の位置決め精度を高めることができる。
 X軸ステージ1、Y軸ステージ2およびZ軸ステージ3の機械的な位置関係は、温度等の影響により、経時変化することがある。そのため、補正マップは、以下のようにして定期的に更新されてもよい。
 記憶部105は、補正マップの区域ごとに、XYZ補正量が算出された最新算出時刻TSを記憶する。補正マップ生成部104,104aは、XYZ補正量を算出したときに、当該XYZ補正量に対応する区域の最新算出時刻TSを更新する。
 補正マップ生成部104は、補正部106がXYZ補正量を参照するたびに、その参照時刻TCと当該XYZ補正量に対応する区域の最新算出時刻TSとの差TC-TSが所定時間を超えているか確認する。TC-TSが所定時間を超えている場合、補正マップ生成部104は、XYZ補正量が参照された区域を更新対象区域として特定する。補正マップ生成部104は、更新対象区域について、上記のステップS14~S18の処理を行なうことにより新たなXYZ補正量を算出し、XYZ補正量を更新する。同様にして、補正マップ生成部104aは、更新対象区域について、上記のステップS44~S51の処理を行なうことにより新たなXYZ補正量を算出し、XYZ補正量を更新する。これにより、X軸ステージ1、Y軸ステージ2およびZ軸ステージ3の機械的な位置関係が経時変化しても、当該経時変化に応じて補正マップも定期的に更新される。
 上記の説明では、基板5は、上面側から見たときに、左下角がXY平面の原点に位置し、下端がX軸上に位置し、左端がY軸上に位置するように、Y軸ステージ2の固定位置に配置されるものとした。これにより、UV座標系がXY座標系に一致するため、指令位置決定部103,103aは、観察対象位置または塗布対象位置のUV座標をそのまま指令位置のXY座標として決定した。
 これに対し、基板5がY軸ステージ2の固定位置からわずかにずれて配置される場合、指令位置決定部103,103aは、以下のようにして指令位置のXY座標を決定すればよい。
 指令位置決定部103,103aは、XY座標(0,0)をステージ制御部102,102aに指示してから画像取得部101により取得された画像の中から、基板5の左下角の位置のXY座標(x1,y1)を検出する。基板5の左下角の検出には、パターンマッチング法や画像を二値化して重心を求める方法など、画像処理による検出法を用いることができる。指令位置決定部103,103aは、画像の中に基板5の左下角を検出できない場合、画像の中に基板5の左下角が検出されるまで、ステージ制御部102,102aに指示するXY座標を適宜変更する。
 次に、指令位置決定部103,103aは、XY座標(W,H)をステージ制御部102,102aに指示してから画像取得部101により取得された画像の中から、基板5の右上角の位置のXY座標(x2,y2)を検出する。基板5の右上角の検出には、パターンマッチング法や画像を二値化して重心を求める方法など、画像処理による検出法を用いることができる。指令位置決定部103,103aは、画像の中に基板5の右上角を検出できない場合、画像の中に基板5の右上角が検出されるまで、ステージ制御部102,102aに指示するXY座標を適宜変更する。
 基板5の左下角のUV座標は(0,0)である。基板5の右上角のUV座標は(W,H)である。Wは、矩形状の基板5の横方向の長さであり、Hは、基板5の縦方向の長さである。
 基板5の左下角のUV座標(0,0)およびXY座標(x1,y1)と、基板5の右上角のUV座標(W,H)およびXY座標(x2,y2)とを以下の式(4)、式(5)に代入し、cosθ、sinθ、x0、y0を求める。
u=cosθ×x+sinθ×y+x0・・・式(4)
v=sinθ×x-conθ×y+y0・・・式(5)
 上記の式(4)、式(5)は、xy座標系からuv座標系への座標変換を示しており、θはxy座標系に対するuv座標系の回転角度、(x0,y0)はxy座標系に対するuv座標系の並進を示す。
 ここで、cosθ=c1、sinθ=c2とおくと、式(4)および式(5)を、以下のように書き換えることができる。
x=c1×u+c2×v+x0・・・式(6)
y=c2×u-c1×v+y0・・・式(7)
 最初に、基板5の左下角のUV座標(0,0)とXY座標(x1,y1)を式(6)と式(7)に代入し、
x1=c1×0+c2×0+x0
y1=c2×0-c1×0+y0
x0=x1、y0=y1
を得る。
 次に、基板5の右上角のUV座標(W,H)とXY座標(x2,y2)を代入し、以下の連立方程式を得る。
x2=c1×W+c2×H+x1
y2=c2×W-c1×H+y1
 以上を解くことにより、
c2={H×(x2-x1)+W×(y2-y1)}/(W+H
c1=(c2×W+y1-y2)/H
を得ることができる。
 これら2つの係数c1、c2とUV座標(u,v)とを式(6)と式(7)に代入すれば、回転と並進を補正したXY座標(x,y)に変換することができる。
 指令位置決定部103は、観察対象位置のUV座標を受けた場合、上記の変換式に従って、観察対象位置のUV座標をXY座標に変換し、変換後のXY座標を指令位置のXY座標として決定する。同様に、指令位置決定部103aは、塗布対象位置のUV座標を受けた場合、上記の変換式に従って、塗布対象位置のUV座標をXY座標に変換し、変換後のXY座標を指令位置のXY座標として決定する。
 なお、ここでは、基板5の左下角および右上角を用いて変換式を求めたが、必ずしもこれらを用いる必要はなく、基板5の4つの角の内の2つを用いればよい。もしくは、変換式を求めるために用意された、基板5上の2つのマーク(通常アライメントマークと呼ばれる)または基板5上に形成された2つのパターンを用いて、変換式を求めてもよい。このとき、2つのマークまたは2つのパターンのUV座標は、予め計測されている。
 このように、基板5の傾きや位置ズレに応じて、UV座標をXY座標に変換することにより、基板5を厳密に位置合わせしてY軸ステージ2の固定位置にセットする必要がなくなり、作業を効率化することができる。
 上記の説明では、補正部106は、観察対象位置に対応する区域(i,j)を特定し、特定した区域(i,j)のXYZ補正量を用いて指令位置のXYZ座標を補正した。しかしながら、補正部106は、観察対象位置に近い4つの区域を特定し、特定した4つの区域のXYZ補正量を補間演算することにより得られたXYZ補正量を用いて指令位置のXYZ座標を補正してもよい。補正部106aについても同様に、補間演算により得られたXYZ補正量を用いて指令位置のXYZ座標を補正してもよい。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明でなくて請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
 1,2,3 軸ステージ、4 塗布機構、5 基板、6 観察光学系、7 CCDカメラ、8 操作パネル、9 モニタ、10,10a 制御用コンピュータ、11 制御部、12 基台、14 塗布針ホルダ、15 サーボモータ、15b 回転軸、16 バネ、17 カム、17a カム面、17b 上側領域、17c 下側領域、18 カムフォロア、19 針移動機構、20 塗布ユニット、21 容器、22 貫通孔、23 先端、24 塗布針、25 カム連結板、26 可動部、27 架台、28 リニアガイド、29 支持部、30,30a 位置決め装置、50 円状パターン、51 塗布領域、101 画像取得部、102,102a ステージ制御部、103,103a 指令位置決定部、104,104a 補正マップ生成部、105 記憶部、106,106a 補正部、107 塗布機構制御部、200 液体塗布装置。

Claims (12)

  1.  XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、
     前記観察光学系を介して前記基板の表面を撮影するためのカメラと、
     指示されたXY座標に従って、前記観察光学系のX方向およびY方向の位置決めを行なうための位置決め装置と、
     前記基板の表面の観察対象位置のXY座標を前記観察光学系の指令位置のXY座標として決定する指令位置決定部と、
     XY平面内の複数の位置の各々に対応するXY補正量を記憶する記憶部と、
     前記観察対象位置に対応する前記XY補正量を前記記憶部から参照し、参照した前記XY補正量を用いて前記指令位置のXY座標を補正し、補正後のXY座標を前記位置決め装置に指示する補正部とを備え、
     前記補正後のXY座標を前記位置決め装置に指示したときに前記カメラによって撮影される画像を第1画像とし、前記指令位置のXY座標を前記位置決め装置に指示したときに前記カメラによって撮影される画像を第2画像とするとき、
     前記XY補正量は、前記第1画像の中心と前記第1画像中の前記観察対象位置との距離が、前記第2画像の中心と前記第2画像中の前記観察対象位置との距離よりも短くなるように設定される、基板観察装置。
  2.  前記XY補正量は、前記複数の位置のうちの対応する位置のXY座標を前記位置決め装置に指示したときに前記カメラによって撮影される第3画像の中心に対する、前記第3画像中の前記対応する位置のX方向およびY方向の少なくとも一方のずれ量である、請求項1に記載の基板観察装置。
  3.  前記位置決め装置は、指示されたZ座標に従って、前記観察光学系のZ方向の位置決めを行ない、
     前記指令位置決定部は、前記基板の厚みに応じて予め定めれたZ座標を前記指令位置のZ座標として決定し、
     前記記憶部は、前記複数の位置の各々に対応するZ補正量を記憶し、
     前記補正部は、前記観察対象位置に対応する前記Z補正量を前記記憶部から参照し、参照した前記Z補正量に基づいて前記指令位置のZ座標を補正し、補正後のZ座標を前記位置決め装置に指示し、
     前記Z補正量は、前記補正後のZ座標を前記位置決め装置に指示したときに前記カメラによって撮影される第4画像のコントラストが、前記指令位置のZ座標を前記位置決め装置に指示したときに前記カメラによって撮影される第5画像のコントラストよりも高くなるように設定される、請求項1に記載の基板観察装置。
  4.  前記指令位置決定部は、前記基板の表面内のUV座標系における前記観察対象位置のUV座標を受けた場合、前記基板の表面の2点の各々のUV座標とXY座標とに基づいて決定されたUV座標からXY座標への変換式に従って、前記観察対象位置のUV座標をXY座標に変換し、変換後のXY座標を前記指令位置のXY座標として決定する、請求項1に記載の基板観察装置。
  5.  XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、
     前記観察光学系を介して前記基板の表面を撮影するためのカメラと、
     指示されたXY座標に従って、前記観察光学系のX方向およびY方向の位置決めを行なうための位置決め装置とを備えた基板観察装置における前記観察光学系の位置決め方法であって、
     XY平面内の複数の位置の各々とXY補正量とを対応付けた補正マップを生成する工程と、
     前記基板の表面の観察対象位置のXY座標を前記観察光学系の指令位置のXY座標として決定する工程と、
     前記観察対象位置に対応する前記XY補正量を前記補正マップから参照し、参照した前記XY補正量に基づいて前記指令位置のXY座標を補正し、補正後のXY座標を前記位置決め装置に指示する工程とを備え、
     前記生成する工程は、前記複数の位置の各々について、当該位置のXY座標を前記位置決め装置に指示したときに前記カメラによって撮影される画像を取得し、前記画像の中心に対する、前記画像中の当該位置のX方向およびY方向の少なくとも一方のずれ量を前記XY補正量として算出する、位置決め方法。
  6.  前記複数の位置の各々と、前記生成する工程において当該位置に対応するXY補正量が算出された最新算出時刻とを対応付けて記憶する工程をさらに備え、
     前記指示する工程において前記観察対象位置に対応する前記XY補正量を参照した時刻と前記観察対象位置に対応する前記最新算出時刻との差が所定時間を超えている場合、前記観察対象位置について前記生成する工程が実行される、請求項5に記載の位置決め方法。
  7.  XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、
     前記観察光学系を介して前記基板の表面を撮影するためのカメラと、
     前記基板の表面に塗布材料を塗布するための塗布機構とを備え、
     前記観察光学系と前記塗布機構との相対位置関係は一定であり、さらに、
     指示されたXY座標に従って、前記観察光学系および前記塗布機構のうち指示された一方のX方向およびY方向の位置決めを行なうための位置決め装置と、
     前記基板の表面の塗布対象位置のXY座標を前記塗布機構の指令位置のXY座標として決定する指令位置決定部と、
     XY平面内の複数の位置の各々に対応するXY補正量を記憶する記憶部と、
     前記塗布対象位置に対応する前記XY補正量を前記記憶部から参照し、参照した前記XY補正量を用いて前記指令位置のXY座標を補正し、補正後のXY座標と前記塗布機構とを前記位置決め装置に指示する補正部とを備え、
     前記指令位置のXY座標と前記観察光学系とを前記位置決め装置に指示したときに前記カメラによって撮影される画像の中心にある前記基板の表面の位置を基準位置とするとき、
     前記XY補正量は、前記補正後のXY座標と前記塗布機構とを前記位置決め装置に指示した後に前記塗布機構により前記基板の表面に前記塗布材料を塗布したときの前記基板の表面における塗布位置と前記基準位置との距離が、前記指令位置のXY座標と前記塗布機構とを前記位置決め装置に指示した後に前記塗布機構により前記基板の表面に前記塗布材料を塗布したときの前記基板の表面における塗布位置と前記基準位置との距離よりも短くなるように設定される、塗布装置。
  8.  前記XY補正量は、前記複数の位置のうちの対応する位置のXY座標と前記観察光学系とを前記位置決め装置に指示したときに前記カメラによって撮影される画像の中心に対する、前記画像中の前記塗布材料が塗布された領域のX方向およびY方向の少なくとも一方のずれ量であり、
     前記画像は、前記対応する位置のXY座標と前記塗布機構とを前記位置決め装置に指示してから前記塗布機構により前記塗布材料を塗布させた後に撮影される、請求項7に記載の塗布装置。
  9.  前記位置決め装置は、指示されたZ座標に従って、前記塗布機構および前記観察光学系のZ方向の位置決めを行ない、
     前記指令位置決定部は、前記基板の厚みに応じて予め定めれたZ座標を前記指令位置のZ座標として決定し、
     前記記憶部は、前記複数の位置の各々に対応するZ補正量を記憶し、
     前記補正部は、前記塗布対象位置に対応する前記Z補正量を前記記憶部から参照し、参照した前記Z補正量に基づいて前記指令位置のZ座標を補正し、補正後のZ座標を前記位置決め装置に指示し、
     前記Z補正量は、前記補正後のZ座標を前記位置決め装置に指示したときに前記カメラによって撮影される画像のコントラストが、前記指令位置のZ座標を前記位置決め装置に指示したときに前記カメラによって撮影される画像のコントラストよりも高くなるように設定される、請求項7に記載の塗布装置。
  10.  前記指令位置決定部は、前記基板の表面内のUV座標系における前記塗布対象位置のUV座標を受けた場合、前記基板の表面の2点の各々のUV座標とXY座標とに基づいて決定されたUV座標からXY座標への変換式に従って、前記塗布対象位置のUV座標をXY座標に変換し、変換後のXY座標を前記指令位置のXY座標として決定する、請求項7に記載の塗布装置。
  11.  XY平面に配置された基板の表面をZ方向から観察するための観察光学系と、
     前記観察光学系を介して前記基板の表面を撮影するためのカメラと、
     前記基板の表面上に塗布材料を塗布するための塗布機構と、
     指示されたXY座標に従って、前記観察光学系および前記塗布機構のうち指示された一方のX方向およびY方向の位置決めを行なうための位置決め装置とを備えた塗布装置における前記塗布機構の位置決め方法であって、
     前記観察光学系と前記塗布機構との相対位置関係は一定であり、
     XY平面内の複数の位置の各々とXY補正量とを対応付けた補正マップを生成する工程と、
     前記基板の表面の塗布対象位置のXY座標を前記塗布機構の指令位置のXY座標として決定する工程と、
     前記塗布対象位置に対応する前記XY補正量を前記補正マップから参照し、参照した前記XY補正量に基づいて前記指令位置のXY座標を補正し、補正後のXY座標と前記塗布機構とを前記位置決め装置に指示する工程とを備え、
     前記生成する工程は、前記複数の位置の各々について、
     当該位置のXY座標と前記塗布機構とを前記位置決め装置に指示した後に前記塗布機構により前記基板の表面に前記塗布材料を塗布する工程と、
     前記塗布する工程の後、当該位置のXY座標と前記観察光学系とを前記位置決め装置に指示してから前記カメラによって撮影される画像を取得し、前記画像の中心に対する、前記画像中の前記塗布材料が塗布された領域のX方向およびY方向の少なくとも一方のずれ量を前記XY補正量として算出する工程とを含む、位置決め方法。
  12.  前記複数の位置の各々と、前記算出する工程において当該位置に対応する前記XY補正量が算出された最新算出時刻とを対応付けて記憶する工程をさらに備え、
     前記指示する工程において前記塗布対象位置に対応する前記XY補正量を参照した時刻と前記塗布対象位置に対応する最新算出時刻との差が所定時間を超えている場合、前記塗布対象位置について前記生成する工程が実行される、請求項11に記載の位置決め方法。
PCT/JP2018/034060 2017-09-15 2018-09-13 基板観察装置、塗布装置および位置決め方法 WO2019054457A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-178073 2017-09-15
JP2017178073A JP6918657B2 (ja) 2017-09-15 2017-09-15 基板観察装置、塗布装置および位置決め方法

Publications (1)

Publication Number Publication Date
WO2019054457A1 true WO2019054457A1 (ja) 2019-03-21

Family

ID=65723955

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/034060 WO2019054457A1 (ja) 2017-09-15 2018-09-13 基板観察装置、塗布装置および位置決め方法

Country Status (2)

Country Link
JP (1) JP6918657B2 (ja)
WO (1) WO2019054457A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112968A (zh) * 2018-10-30 2020-05-08 武汉远大天安智能科技有限公司 一种pcb板自动组装装置及其组装方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6999526B2 (ja) * 2018-09-21 2022-01-18 Ntn株式会社 液状材料塗布装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122554A (ja) * 1995-10-30 1997-05-13 Hitachi Techno Eng Co Ltd ペースト塗布機
JP2005270800A (ja) * 2004-03-24 2005-10-06 Seiko Epson Corp 座標精度確認装置を有する液滴吐出装置、座標精度確認方法、電気光学装置の製造方法、電気光学装置および電子機器
JP2010073703A (ja) * 2008-09-16 2010-04-02 Hitachi High-Technologies Corp パターンの検査装置、およびパターンの検査方法
CN102078848A (zh) * 2009-12-01 2011-06-01 塔工程有限公司 用于控制涂胶机的方法
JP2011258922A (ja) * 2010-06-04 2011-12-22 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2014092397A (ja) * 2012-11-01 2014-05-19 Musashi Eng Co Ltd 位置補正機能を有する作業装置および作業方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09122554A (ja) * 1995-10-30 1997-05-13 Hitachi Techno Eng Co Ltd ペースト塗布機
JP2005270800A (ja) * 2004-03-24 2005-10-06 Seiko Epson Corp 座標精度確認装置を有する液滴吐出装置、座標精度確認方法、電気光学装置の製造方法、電気光学装置および電子機器
JP2010073703A (ja) * 2008-09-16 2010-04-02 Hitachi High-Technologies Corp パターンの検査装置、およびパターンの検査方法
CN102078848A (zh) * 2009-12-01 2011-06-01 塔工程有限公司 用于控制涂胶机的方法
JP2011258922A (ja) * 2010-06-04 2011-12-22 Nikon Corp 露光装置及び露光方法、並びにデバイス製造方法
JP2014092397A (ja) * 2012-11-01 2014-05-19 Musashi Eng Co Ltd 位置補正機能を有する作業装置および作業方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111112968A (zh) * 2018-10-30 2020-05-08 武汉远大天安智能科技有限公司 一种pcb板自动组装装置及其组装方法

Also Published As

Publication number Publication date
JP2019053599A (ja) 2019-04-04
JP6918657B2 (ja) 2021-08-11

Similar Documents

Publication Publication Date Title
JP4903627B2 (ja) 表面実装機、及び、そのカメラ位置補正方法
TW201831858A (zh) 用以促進顯微鏡術中的大區域成像之相機與試樣對準
CN105359640B (zh) 安放设备和安放方法
JP2009172718A (ja) 作業装置及びその校正方法
JP2017110991A (ja) 計測システム、計測方法、ロボット制御方法、ロボット、ロボットシステムおよびピッキング装置
CN103162642B (zh) 三维测量装置
CN105323455B (zh) 一种基于机器视觉的定位补偿方法
WO2019054457A1 (ja) 基板観察装置、塗布装置および位置決め方法
CN113767465B (zh) 半导体装置的制造装置以及半导体装置的制造方法
CN107993958A (zh) 半导体缺陷检测/光刻中的正交性补偿方法及补偿系统
CN109738061B (zh) 一种面向照度计检定的照度计位置自动对准方法及系统
CN1913769B (zh) 电子部件的图像获取方法以及装置
KR100694320B1 (ko) 길이 측정장치 및 방법
JP3644846B2 (ja) 描画装置の移動誤差検出装置及びその方法
CN103192399A (zh) 一种基于目标运动的显微视觉手眼标定方法
JP5096852B2 (ja) 線幅測定装置および線幅測定装置の検査方法
KR200422239Y1 (ko) 보정파일 생성기능을 갖는 레이저 마킹장치
JPH07263308A (ja) 電子ビーム露光方法及び装置
JP2010266750A (ja) 観察装置および観察システム
JP2006024619A (ja) 電子部品実装方法および電子部品実装装置
JP6665028B2 (ja) 形状測定装置およびそれを搭載した塗布装置
WO2014188564A1 (ja) 部品実装装置
JP4061265B2 (ja) 突起の高さ測定方法および測定装置
JP2001313241A (ja) 露光装置および露光方法
JP2007334213A (ja) パターン欠陥修正装置およびパターン欠陥修正方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855805

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855805

Country of ref document: EP

Kind code of ref document: A1