WO2019054405A1 - Laminated body for protecting polarizing film, and method for manufacturing said laminated body - Google Patents

Laminated body for protecting polarizing film, and method for manufacturing said laminated body Download PDF

Info

Publication number
WO2019054405A1
WO2019054405A1 PCT/JP2018/033785 JP2018033785W WO2019054405A1 WO 2019054405 A1 WO2019054405 A1 WO 2019054405A1 JP 2018033785 W JP2018033785 W JP 2018033785W WO 2019054405 A1 WO2019054405 A1 WO 2019054405A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin layer
photocurable resin
film
polarizing film
polarizing
Prior art date
Application number
PCT/JP2018/033785
Other languages
French (fr)
Japanese (ja)
Inventor
絵美 川崎
沙樹 岡山
孝徳 磯崎
Original Assignee
株式会社クラレ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社クラレ filed Critical 株式会社クラレ
Priority to KR1020207010097A priority Critical patent/KR102636766B1/en
Priority to CN201880073610.0A priority patent/CN111316147B/en
Priority to JP2019542259A priority patent/JP7145161B2/en
Publication of WO2019054405A1 publication Critical patent/WO2019054405A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3025Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state
    • G02B5/3033Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid
    • G02B5/3041Polarisers, i.e. arrangements capable of producing a definite output polarisation state from an unpolarised input state in the form of a thin sheet or foil, e.g. Polaroid comprising multiple thin layers, e.g. multilayer stacks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D4/00Coating compositions, e.g. paints, varnishes or lacquers, based on organic non-macromolecular compounds having at least one polymerisable carbon-to-carbon unsaturated bond ; Coating compositions, based on monomers of macromolecular compounds of groups C09D183/00 - C09D183/16
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements

Definitions

  • the present invention relates to a laminate for polarizing film protection in which a photocurable resin layer is laminated on a substrate film, and a method for producing the laminate.
  • a polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light.
  • Most polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film, and a polyvinyl alcohol (PVA) film is uniaxially used as a polarizing film constituting the polarizing plate.
  • TAC cellulose triacetate
  • PVA polyvinyl alcohol
  • the mainstream is one in which a dichroic dye such as an iodine based dye (I 3 - or 15 - etc.) or a dichroic organic dye is adsorbed to a stretched film which has been stretched and oriented.
  • Such a polarizing film is usually obtained by uniaxially stretching a PVA film containing a dichroic dye in advance, adsorbing a dichroic dye simultaneously with uniaxial stretching of the PVA film, or uniaxially stretching the PVA film. It is continuously produced by, for example, adsorbing a coloring dye.
  • LCDs have come to be used in a wide range of small devices such as calculators and watches, notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, car navigation systems, smart phones, measuring instruments used indoors and out.
  • mobile applications such as small smartphones in particular, the demand for thinner polarizing plates has become stronger.
  • One of the methods for thinning the polarizing plate is to thin the protective film, and in recent years, a polarizing plate in which a photocurable resin layer is formed instead of the protective film has been proposed (for example, patent documents See 1-4 etc.).
  • the polarization performance may be deteriorated when used under high temperature and high humidity conditions.
  • a composition comprising a radically polymerizable compound or the like is directly coated on the surface of a polarizing film as in the method described in Patent Document 1 or 2, the surface smoothness of the photocurable resin layer tends to be deteriorated, and disturbance As a result, the polarization performance of the polarizing plate may be degraded.
  • the solvent contained in the composition comprising a radically polymerizable compound or the like corrodes the polarizing film to deteriorate the polarization performance, or the adhesion between the polarizing film and the photocurable resin layer is lowered, and the long roll from the panel There is a problem that the photocurable resin layer peels off at the time of handling such as cutting the polarizing plate in size.
  • the polarizing film may be deteriorated, so that the ultraviolet light and the electron beam can not be sufficiently irradiated.
  • Patent Document 3 or 4 proposes a method in which a photocurable resin layer is formed on a base film such as a mold release PET film, and then a photocurable resin layer and a polarizing film are bonded together using an adhesive. .
  • a base film such as a mold release PET film
  • a photocurable resin layer and a polarizing film are bonded together using an adhesive.
  • the surface smoothness of the photocurable resin layer may be reduced, and the polarization performance of the polarizing plate may be reduced due to disturbance.
  • the polarization performance may deteriorate during use under high temperature and high humidity conditions, and an improvement has been required.
  • the present invention has been made to solve the above problems, and is a polarizing film which is excellent in surface smoothness, and which can obtain a polarizing plate excellent in heat and moisture resistance even when the thickness of the photocurable resin layer is 9 ⁇ m or less.
  • An object of the present invention is to provide a protective laminate and a method for producing the same.
  • the inventors of the present invention have found that, even when the thickness of the photocurable resin layer is 9 ⁇ m or less, the permeability of boric acid is 2.25 g / m 2 ⁇ day in terms of boron atom.
  • the permeability of boric acid is 2.25 g / m 2 ⁇ day in terms of boron atom.
  • a laminate for polarizing film protection in which a photocurable resin layer composed of a radically polymerizable compound is laminated on a substrate film,
  • the thickness of the photocurable resin layer is 9 ⁇ m or less, and the transmittance of boric acid of the photocurable resin layer is 2.25 g / m 2 ⁇ day or less in terms of boron atom,
  • the adhesion between the substrate film and the photocurable resin layer is 0.005 to 0.06 N / mm
  • a laminate for polarizing film protection in which the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side after peeling the base film from the photocurable resin layer is 300 nm or less;
  • [2] [1] A polarizing plate in which the photocurable resin layer in the laminate for protecting a polarizing film is bonded to at least one surface of the polarizing film via an adhesive layer;
  • a laminate for protecting a polarizing film which is excellent in surface smoothness and can obtain a polarizing plate excellent in moisture and heat resistance even when the thickness of the photocurable resin layer is 9 ⁇ m or less, and a manufacturing method thereof Is provided.
  • the laminate for polarizing film protection of the present invention is a laminate for polarizing film protection, in which a photocurable resin layer composed of a radical polymerizable compound having a thickness of 9 ⁇ m or less is laminated on a substrate film, and a boric acid of the photocurable resin layer It is characterized in that the permeability is 2.25 g / m 2 ⁇ day or less in terms of boron atom.
  • the boric acid permeability of the photocurable resin layer is 2.25 g / m 2 ⁇ day or less in terms of boron atom, when it is bonded to a polarizing film, the heat and humidity resistance can maintain initial polarization performance. An excellent polarizing plate can be obtained.
  • boric acid transmittance of the photocurable resin layer is not more than 1.50g / m 2 ⁇ day boron atoms terms, more preferably less 0.50g / m 2 ⁇ day, 0 more preferably .20g / m is 2 ⁇ day or less, even more preferably at most 0.10 g / m 2 ⁇ day.
  • the boric acid permeability is preferably 0.02 g / m 2 ⁇ day or more in terms of boron atom, and more preferably 0.03 g / m 2 ⁇ day or more.
  • the boric-acid conversion boric-acid permeability can be calculated
  • the photocurable resin layer is made of a radically polymerizable compound or the like.
  • a radically polymerizable compound By using a radically polymerizable compound, it is possible to reduce the boric acid equivalent degree of boron atom conversion of the obtained photocurable resin layer.
  • a radically polymerizable compound the compound which has an acryloyl group in a molecule
  • the radically polymerizable compounds may be used alone or in combination of two or more.
  • a radical polymerization initiator as a photoinitiator for irradiating and hardening at least one of an ultraviolet-ray and an electron beam.
  • radical polymerization initiator the compound which can accelerate
  • radical polymerization initiators include carbonyl compounds such as acetophenones, benzophenones, Michler ketones, and benzoins; and sulfur compounds such as tetramethylthiuram monosulfide and thioxanthone, with preference given to carbonyl compounds.
  • One of these radical polymerization initiators may be used alone, or two or more thereof may be used in combination.
  • the thickness of the photocurable resin layer is 9 ⁇ m or less.
  • the thickness of the photocurable resin layer is preferably 8 ⁇ m or less, more preferably 7 ⁇ m or less, and still more preferably 6 ⁇ m or less.
  • the thickness of the photocurable resin layer is not particularly limited, but when achieving the above-mentioned boric acid transmission in boron atom conversion with a thin photocurable resin layer, the flexibility of the photocurable resin layer tends to be lost Therefore, the thickness is preferably 0.1 ⁇ m or more, more preferably 0.5 ⁇ m or more, and still more preferably 1 ⁇ m or more.
  • a base film used for a layered product for polarizing film protection of the present invention what was excellent in surface homogeneity is preferred, and a polycarbonate film, a triacetyl cellulose film, a norbornene film, a polypropylene film, a polyester film, a polystyrene film etc. are used. be able to.
  • a release treatment may be applied to the surface of the base film on the photocurable resin layer side.
  • the adhesion between the photocurable resin layer and the base film is 0.005 to 0.06 N / mm. Since it is necessary to peel a base film from a photocuring resin layer after bonding a photocuring resin layer with a polarizing film and obtaining a polarizing plate, the adhesive force of a photocuring resin layer and a base film is 0.05N. / Mm or less is preferable, 0.04 N / mm or less is more preferable, and 0.03 N / mm or less is more preferable. In addition, the adhesive force of a photocurable resin layer and a base film can be made into 0.06 N / mm or less by strengthening the mold release process of the base film to be used.
  • the base film from the photocurable resin layer is handled when handling the laminate for protecting a polarizing film, for example, when bonding the photocurable resin layer to a polarizing film.
  • the adhesive strength between the photocurable resin layer and the base film is preferably 0.010 N / mm or more, more preferably 0.013 N / mm or more, because More preferably, it is at least 0. 15 N / mm.
  • the root mean square surface roughness (rms) of the photocurable resin layer on the side of the base film after peeling the base film from the photocurable resin layer is 300 nm or less.
  • the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side is preferably 250 nm or less, more preferably 200 nm or less, and still more preferably 150 nm or less.
  • the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side 300 nm or less when forming a laminate for polarizing film protection, a radically polymerizable compound and a solvent on the substrate film It is important that the solution containing the resin does not repel and that the releasability between the base film and the photocurable resin layer is good, as described later, the solubility parameter of the solvent used for the radically polymerizable compound and the coating of the base film It is effective to adjust the water contact angle of the work surface.
  • the lower limit of the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side is not particularly limited, but it is 20 nm or more, for example, because it is difficult to have an excessively smooth surface.
  • a step of applying a solution containing a radically polymerizable compound and a solvent to a base film, and heating the base film after coating to evaporate the solvent It is preferable that the method has a step of irradiating at least one of an ultraviolet ray and an electron beam, and the water contact angle of the coated surface of the base film is 40 to 100 degrees.
  • the surface smoothness of the photocurable resin layer having a thickness of 9 ⁇ m or less is improved.
  • Any appropriate method may be employed as the step of applying a solution containing a radically polymerizable compound and a solvent to a substrate film.
  • a method for applying a solution containing a radically polymerizable compound and a solvent to a substrate film for example, die coating, roll coating, air knife coating, gravure roll coating, doctor roll coating, doctor knife coating, curtain flow coating, spray coating Wire bar coat, rod coat, dipping, brushing and the like.
  • gravure roll coating is preferable in order to make the thickness of the obtained photocurable resin layer 9 ⁇ m or less.
  • solvent evaporation process Any appropriate method may be adopted as the step of heating the substrate film to volatilize the solvent after the solution is applied.
  • the substrate film coated with the solution may be heated on a heat roll, or may be heated in a floating dryer.
  • the preferable temperature of the heat roll or hot air can be determined by the boiling point of the solvent used, but is preferably in the range of 60 ° C. to 120 ° C.
  • At least one of the ultraviolet light and the electron beam may be irradiated directly, or the irradiation from the base film side You may Further, it is more preferable to have a step of irradiating ultraviolet rays from the viewpoint of curing speed, availability of irradiation apparatus, price and the like.
  • the ultraviolet light or electron beam can be irradiated using a known device.
  • a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an LED or the like which emits light in a wavelength range of 450 nm or less can be used.
  • an electron beam (EB) is used, the acceleration voltage is preferably in the range of 0.1 to 10 MeV, and the irradiation dose is preferably in the range of 1 to 500 kGy.
  • the integrated light quantity of the ultraviolet ray or the electron beam is not particularly limited, but is preferably in the range of 10 to 20,000 mJ / cm 2 , and more preferably in the range of 30 to 5,000 mJ / cm 2 .
  • the integrated light quantity of the ultraviolet ray or the electron beam is too small, the curing of the radically polymerizable compound becomes poor, the boric acid equivalent degree of boron atom conversion of the photocurable resin layer becomes high, or the mechanical strength of the photocurable resin layer decreases. Do.
  • the integrated light quantity of the ultraviolet ray or the electron beam is too large, excessive heat is generated in the polarizing film protection laminate, and the photocurable resin layer or the base film may be deteriorated.
  • heating may be performed as needed to accelerate the curing of the photocurable resin layer in order to increase the crosslink density of the photocurable resin layer.
  • the heating temperature is preferably in the range of 40 to 130 ° C., and more preferably in the range of 50 to 100 ° C., from the viewpoint of the curing speed and the influence on the photocurable resin layer and the base film. preferable.
  • the temperature is less than 40 ° C., curing of the photocurable resin layer is difficult to accelerate, and when the temperature exceeds 130 ° C., the base film is easily deformed and a smooth photocured resin layer can be obtained. It may not be possible.
  • the crosslink density of the photocurable resin layer can be sufficiently increased on the base film, it is possible to preferably reduce the boric acid transmission rate in terms of boron atom.
  • the water contact angle of the solution-coated surface of the base film is preferably 40 to 100 degrees.
  • a solution may be easy to repel and it may be difficult to apply a solution uniformly.
  • the surface of the photocurable resin layer on the substrate film side after peeling the base film from the photocurable resin layer is unlikely to be smooth.
  • the water contact angle of the solution-coated surface of the base film is preferably 45 to 95 degrees, more preferably 50 to 90 degrees, and still more preferably 55 to 85 degrees. In order to adjust the water contact angle of the solution coated surface of the substrate film to the above range, it is effective to adjust the strength of the hydrophilization treatment such as corona treatment.
  • the solubility parameter (SP value) of the solvent containing the radically polymerizable compound and the solvent is preferably 8 to 10 (cal / cm 3 ) 1/2 .
  • the solubility parameter of the solvent is more preferably in the range of 8.2 to 9.8 (cal / cm 3 ) 1/2 , and 8.4 to 9.6 (cal / cm 3 ) 1/2. Is more preferably in the range of 8.6 to 9.4 (cal / cm 3 ) 1/2 .
  • Solubility parameters are described in the literature (eg, Polymer Data Handbook: Polymer Science, Ed., Handbook of Solvents; Solvent Handbook; Tera Asahara, et al., DW VAN KREVELEN, PROPERTIES OF POLYMERS Third edition, p 214-220 (1990), etc.) The one described was used.
  • the detection strength of silicon on the coated surface of the base film is preferably 10 cps / mA or less.
  • the release agent containing silicon shifts to a solution containing a radically polymerizable compound and a solvent to change the physical properties of the obtained photocurable resin layer or contaminate the equipment for producing a laminate for protecting a polarizing film.
  • a base film which has been subjected to release treatment by a method not using a release agent containing silicon.
  • the measurement of the silicon of the coated surface of a base film can be measured using a X-ray-analysis microscope, as it described in the Example mentioned later.
  • the polarizing plate obtained by the present invention is obtained by bonding a photocurable resin layer to at least one surface of a polarizing film via an adhesive layer. Thereby, it is possible to obtain a polarizing plate excellent in moist heat resistance and surface smoothness.
  • the polarizing film used to produce a polarizing plate uniaxially stretches a PVA film containing a dichroic dye in advance, or makes it absorb a dichroic dye simultaneously with uniaxial stretching of a PVA film, uniaxially stretches a PVA film After that, it can be produced by, for example, adsorbing a dichroic dye.
  • a polarizing plate By bonding the photocurable resin layer in the laminate for polarizing film protection of the present invention to the polarizing film, it is possible to produce a polarizing plate further excellent in moisture and heat resistance while reducing thickness and weight.
  • a step of bonding a photocurable resin layer in a laminate for polarizing film protection of the present invention to at least one surface of a polarizing film via an adhesive layer (bonding step And curing the adhesive layer by irradiating at least one of ultraviolet light or electron beam after the bonding step (adhesion step), and further peeling off the base film after the adhesion step (peeling) It can produce by the manufacturing method provided with a process.
  • the photocurable resin layer in the laminate for protecting a polarizing film of the present invention is bonded to at least one surface of the polarizing film through an adhesive layer.
  • an adhesive may be applied to the surface of the photocurable resin layer in the other polarizing film protective laminate and may be superposed on the other surface of the polarizing film.
  • the method of applying the adhesive is not particularly limited, but, for example, die coat, roll coat, air knife coat, gravure roll coat, doctor roll coat, doctor knife coat, curtain flow coat, spray coat, wire bar coat, rod coat, brush coat And the like.
  • the bonded body obtained in the bonding step may be pressed with a roll or the like.
  • examples of the material of the roll include metal and rubber.
  • the adhesive to be used is not particularly limited as long as the polarizing film and the photocurable resin layer can be adhered to each other, and a solventless photocurable adhesive is suitably used.
  • the surface of the photocurable resin layer is reformed by known corona treatment, plasma treatment, UV treatment, flame treatment, etc., if necessary. You can also
  • the bonding step at least one of ultraviolet light and electron beam is irradiated to cure the uncured adhesive layer.
  • the irradiation of ultraviolet light or electron beam can be performed using a known apparatus.
  • the integrated light quantity of the ultraviolet ray or the electron beam is preferably in the range of 10 to 20,000 mJ / cm 2 , and more preferably in the range of 30 to 5,000 mJ / cm 2 . If the accumulated light amount is too small, the adhesion between the polarizing film and the photocurable resin layer may be insufficient. On the other hand, if the accumulated light amount is too large, excessive heat may be generated to deteriorate the adhesive layer, the polarizing film, and the photocurable resin layer. In addition, it is more preferable to use an ultraviolet ray from the viewpoints of curing speed, availability of an irradiation device, price and the like.
  • heating may be used to accelerate the curing of the adhesive layer, if necessary.
  • the heating temperature is preferably in the range of 40 to 130 ° C., and more preferably in the range of 50 to 100 ° C., from the viewpoint of the curing speed and the degree of deterioration of the polarizing film and the like.
  • the temperature is less than 40 ° C., curing of the adhesive layer is difficult to accelerate, and when the temperature exceeds 130 ° C., the polarizing film or the base film is easily deteriorated or deformed, and a polarizing plate having excellent polarizing performance and smoothness. It is difficult to get
  • the photocurable resin layer obtained in each of the following examples or comparative examples is attached to a moisture-permeable cup (tightening type, in accordance with JIS Z-0208) containing pure water, and an 8 mass% boric acid aqueous solution at 60 ° C.
  • the sample water (pure water) in the moisture transmission cup before the start of the test and the boron concentration of the sample water in the moisture transmission cup after 24 hours of immersion were subjected to ICP emission analysis (Shimadzu multi-type ICP emission manufactured by Shimadzu Corporation) The analysis was carried out using an analyzer ICPE-9000), and the boric acid permeability (A) in terms of boron atom was calculated by the following formula (1) from the increase amount of boron concentration (see FIG. 1).
  • A ⁇ (a 24 -a 0 ) ⁇ 10 ⁇ 6 ⁇ M ⁇ / S (1)
  • A Boric acid permeability in terms of boron atom [g / m 2 ⁇ day]
  • a 24 Boron concentration of sample water after 24 hours [ppm]
  • a 0 Boron concentration of sample water (pure water) before the start of the test [ppm]
  • M Weight of sample water [g]
  • S The area in which the photocurable resin layer and the boric acid aqueous solution are in contact (transmission area of the moisture permeability cup) [m 2 ]
  • Water contact angle A strip of 200 mm ⁇ 15 mm is cut out from the base film used in the following examples or comparative examples, and the water contact angle on the solution-coated surface of this film strip is measured according to JIS R 3257: 1999 (Wetness of substrate glass surface It measured according to the description of test method). That is, a water droplet of 4 ⁇ L or less is placed on the film piece placed horizontally, the shape of the water droplet is measured, the radius r (mm) of the surface where the water droplet contacts the film piece, and the water droplet from the film piece surface
  • Total light transmittance and degree of polarization of polarizing plate From the central part in the width direction (TD) of the polarizing plate obtained in the following examples or comparative examples, two rectangular samples of 2 cm in the length direction (MD) of the polarizing plate and 3 cm in the width direction (TD) It was collected. For each sample, the transmittance of light when tilted 45 ° with respect to the length direction and the transmittance of light when tilted ⁇ 45 ° are measured, and the average value of all of them is Total light transmittance (%).
  • the light transmittance T ⁇ (%) when the two samples are in the parallel nicol state, and the light transmittance T ⁇ (%) when the two samples are in the cross nicol state It measured similarly to the case of the said total light transmittance (%), and calculated
  • permeability is based on JIS Z 8722 (the measuring method of an object color) using the integrating sphere attached spectrophotometer (made by JASCO Corporation "V7100"), C light source, visible of 2 degree visual field A visibility correction of the light region was performed.
  • Degree of polarization ⁇ (T ⁇ -T ⁇ ) / (T ⁇ + T ⁇ ) ⁇ 1/2 ⁇ 100 (3)
  • the initial total light transmittance before the moist heat resistance test was set to T 0 .
  • Example 1 ⁇ Production of laminate for protecting polarizing film> 3.
  • a solution containing a radically polymerizable compound and a solvent, a thalloid 7975 containing a radically polymerizable compound (manufactured by Hitachi Chemical Co., Ltd., 32% by mass of resin, toluene as a solvent, SP value 8.9 of solvent) 31.25g and 1 -A solution was obtained by weighing 0.4 g of hydroxycyclohexyl phenyl ketone (manufactured by BASF, IRGACURE 184) into a sample tube, stirring for 24 hours and uniformly mixing.
  • Ray Hyper F manufactured by Nakai Kogyo Co., Ltd., water contact angle 68.9 degrees, detection strength of silicon 5.25 cps / mA
  • the solution is coated on the release-treated surface using a bar coater, heated at 70 ° C.
  • a long PVA film having a thickness of 30 ⁇ m and a width of 65 cm (containing PVA, glycerin and a surfactant, the content of glycerin being 12 parts by mass with respect to 100 parts by mass of PVA, the content of surfactant being 100 parts by mass of PVA PVA film, which is 0.03 parts by mass of PVA, which is a saponified homopolymer of vinyl acetate, having a degree of polymerization of 2,400 and a degree of saponification of 99.9 mol%. From the above, the film was continuously unwound, subjected to swelling treatment, dyeing treatment, crosslinking treatment, stretching treatment, fixing treatment and drying treatment to produce a polarizing film.
  • the PVA film was immersed in water at 30 ° C. for 1 minute, and in the meantime, uniaxial stretching was performed in the length direction at a draw ratio of 2 times. And as a dyeing process, it is immersed in an aqueous solution containing an iodine dye (iodine concentration: 0.02% by mass, potassium iodide concentration: 0.4% by mass, 30 ° C.) for 1 minute, and during that time, the stretching ratio is 1. It was uniaxially stretched in the length direction by 2 times.
  • an iodine dye iodine concentration: 0.02% by mass, potassium iodide concentration: 0.4% by mass, 30 ° C.
  • the laminate having the layer structure of the base film / photo-cured resin layer / adhesive / polarizing film / adhesive / photo-cured resin layer / base film thus obtained is pressed by passing it through a laminator, The thickness of the adhesive portion was adjusted to 1 ⁇ m. Then, after irradiating an ultraviolet-ray and hardening an adhesive agent, the base film of both sides was exfoliated and removed, and the polarizing plate was obtained.
  • Example 2 A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 1.4 ⁇ m.
  • the transmittance (T 48 ), the degree of polarization, and the total light transmittance change ( ⁇ T) were evaluated. The results are shown in Tables 1 and 2.
  • Example 3 A photocurable resin obtained by using Rey Hyper N1 (Nakai Kogyo Co., Ltd., water contact angle 84 degrees, detection strength of silicon 5.89 cps / mA) which is a release-treated PET film as a base film
  • a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the layer was 5.5 ⁇ m.
  • the transmittance (T 48 ), the degree of polarization, and the total light transmittance change ( ⁇ T) were evaluated. The results are shown in Tables 1 and 2.
  • Example 4 It was obtained using, as a substrate film, Purex AN15 (Teijin Dupont Film Co., Ltd., water contact angle 82.7 degrees, detection strength of silicon 6.12 cps / mA), which is a release-treated PET film.
  • Purex AN15 Teijin Dupont Film Co., Ltd., water contact angle 82.7 degrees, detection strength of silicon 6.12 cps / mA
  • a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the photocurable resin layer was 5.6 ⁇ m.
  • the transmittance (T 48 ), the degree of polarization, and the total light transmittance change ( ⁇ T) were evaluated. The results are shown in Tables 1 and 2.
  • Example 5 5 g of dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light acrylate DCP-A) and 5 g of tris (2-hydroxyethyl) isocyanurate triacrylate (manufactured by Toagosei Co., Ltd., M-315) as radically polymerizable compounds And 0.4 g of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF, IRGACURE 184) as a photopolymerization initiator and an arbitrary amount of ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd., SP value 9.1) as a solvent The mixture was weighed into a tube and stirred for 24 hours to be homogeneously mixed to obtain a solution.
  • a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 5.1 ⁇ m.
  • the transmittance (T 48 ), the degree of polarization, and the total light transmittance change ( ⁇ T) were evaluated. The results are shown in Tables 1 and 2.
  • Comparative Example 1 16.67 g of Hytaloid 7975 D (manufactured by Hitachi Chemical Co., Ltd., resin content 60% by mass, solvent methyl isobutyl ketone, solvent SP value 8.4) as a radically polymerizable compound and 1-hydroxycyclohexyl phenyl as a photopolymerization initiator A solution was obtained by weighing 0.4 g of a ketone (manufactured by BASF, IRGACURE 184) into a sample tube, stirring for 24 hours and uniformly mixing. After this, a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 6.0 ⁇ m.
  • the transmittance (T 48 ), the degree of polarization, and the total light transmittance change ( ⁇ T) were evaluated. The results are shown in Tables 1 and 2.
  • Comparative Example 2 10 g of 3 ', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (made by Daicel Co., Ltd., Celoxide 2021 P) as a radically polymerizable compound, and diphenyl [4- (phenylthio) phenyl] sulfonium as a photopolymerization initiator 0.8 g of a 50% by mass solution (CPI-100P manufactured by San-Apro Co., Ltd., CPI-100P) consisting of hexafluorophosphate and a solvent propylene carbonate was weighed into a sample tube, and stirred for 24 hours to obtain a solution by homogeneous mixing. .
  • CPI-100P 50% by mass solution
  • a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 6.1 ⁇ m.
  • the transmittance (T 48 ), the degree of polarization, and the total light transmittance change ( ⁇ T) were evaluated. The results are shown in Tables 1 and 2.
  • Comparative Example 3 As a substrate film, Purex A31 (manufactured by Teijin DuPont Film Co., Ltd., water contact angle 110.6 degrees, detection strength of silicon 19.24 cps / mA), which is a release-treated PET film, was obtained. A laminate for polarizing film protection was obtained in the same manner as in Example 1 except that the thickness of the photocurable resin layer was 5.7 ⁇ m. However, when applied on a PET film, the solution was repelled, so that it was not possible to obtain a photocurable resin layer having a uniform film surface.
  • Purex A31 manufactured by Teijin DuPont Film Co., Ltd., water contact angle 110.6 degrees, detection strength of silicon 19.24 cps / mA
  • Comparative Example 4 As a substrate film, Purex A71 (manufactured by Teijin DuPont Film Co., Ltd., water contact angle 108.2 degrees, detection strength of silicon 18.55 cps / mA), which is a release-treated PET film, was obtained. A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the photocurable resin layer was 5.8 ⁇ m. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side The root mean square surface roughness (rms) was evaluated.
  • Comparative Example 5 As a substrate film, a substrate having a contact angle of water of 33.3 degrees with corona treatment of Purex A71 (manufactured by Teijin DuPont Film Co., Ltd., detection strength of silicon 18.55 cps / mA) which is a release-treated PET film A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except for the use. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side The root mean square surface roughness (rms) was evaluated.
  • Comparative Example 6 As a substrate film, one having a water contact angle of 31.1 degrees was used, which was corona-treated with a release-treated PET film TN-100 (made by Toyobo Co., Ltd., detection strength of silicon 7.11 cps / mA). A laminate for polarizing film protection was obtained in the same manner as Example 1 except for the above. However, the adhesion between the base film and the photocurable resin layer was strong, and the photocurable resin layer was broken.
  • the results are shown in Tables 1 and 2.

Abstract

Provided is a laminated body for protecting a polarizing film, in which a photocurable resin layer comprising a radical polymerizable compound is laminated on a substrate film, wherein the laminated body for protecting a polarizing film is characterized in that: the thickness of the photocurable resin layer is 9 μm or less; the boric acid permeation in terms of boron atoms of the photocurable resin layer is 2.25 g/m2∙day or less; the adhesion force between the substrate film and the photocurable resin layer is 0.005-0.06 N/mm; and the root-mean-square surface roughness (rms) of the photocurable resin layer on the substrate film side, after the substrate film is separated from the photocurable resin layer, is 300 nm or less. There are thereby provided: a laminated body for protecting a polarizing film, the laminated body having exceptional surface smoothness and exceptional humidity and heat resistance even when the thickness of the photocurable resin layer is 9 μm or less; and a method for manufacturing said laminated body.

Description

偏光フィルム保護用積層体およびその製造方法LAMINATED FILM PROTECTIVE LAMINATE AND METHOD FOR MANUFACTURING THE SAME
 本発明は、基材フィルムに光硬化樹脂層が積層された偏光フィルム保護用積層体、および当該積層体の製造方法に関する。 The present invention relates to a laminate for polarizing film protection in which a photocurable resin layer is laminated on a substrate film, and a method for producing the laminate.
 光の透過および遮蔽機能を有する偏光板は、光の偏光状態を変化させる液晶と共に液晶ディスプレイ(LCD)の基本的な構成要素である。偏光板の多くは、偏光フィルムの表面に三酢酸セルロース(TAC)フィルムなどの保護フィルムが貼り合わされた構造を有しており、偏光板を構成する偏光フィルムとしてはポリビニルアルコール(PVA)フィルムを一軸延伸して配向させた延伸フィルムにヨウ素系色素(I やI 等)や二色性有機染料といった二色性色素が吸着しているものが主流となっている。このような偏光フィルムは、通常、二色性色素を予め含有させたPVAフィルムを一軸延伸したり、PVAフィルムの一軸延伸と同時に二色性色素を吸着させたり、PVAフィルムを一軸延伸した後に二色性色素を吸着させたりするなどして連続的に製造される。 A polarizing plate having a light transmission and shielding function is a basic component of a liquid crystal display (LCD) together with a liquid crystal that changes the polarization state of light. Most polarizing plates have a structure in which a protective film such as a cellulose triacetate (TAC) film is bonded to the surface of a polarizing film, and a polyvinyl alcohol (PVA) film is uniaxially used as a polarizing film constituting the polarizing plate. The mainstream is one in which a dichroic dye such as an iodine based dye (I 3 - or 15 - etc.) or a dichroic organic dye is adsorbed to a stretched film which has been stretched and oriented. Such a polarizing film is usually obtained by uniaxially stretching a PVA film containing a dichroic dye in advance, adsorbing a dichroic dye simultaneously with uniaxial stretching of the PVA film, or uniaxially stretching the PVA film. It is continuously produced by, for example, adsorbing a coloring dye.
 LCDは、電卓および腕時計などの小型機器、ノートパソコン、液晶モニター、液晶カラープロジェクター、液晶テレビ、車載用ナビゲーションシステム、スマートフォン、屋内外で用いられる計測機器などの広範囲において用いられるようになっているが、近年、特に小型のスマートフォンなどのモバイル用途への展開などに伴い、偏光板への薄型化の要求が強くなっている。また、モバイル用途では、使用場所が広範囲に渡ることから、同時に耐久性の向上も求められている。 LCDs have come to be used in a wide range of small devices such as calculators and watches, notebook computers, liquid crystal monitors, liquid crystal color projectors, liquid crystal televisions, car navigation systems, smart phones, measuring instruments used indoors and out. In recent years, with the development of mobile applications such as small smartphones in particular, the demand for thinner polarizing plates has become stronger. In addition, in mobile applications, there is also a demand for improvement in durability because of the wide range of use places.
 偏光板を薄型化する手法の1つとしては、保護フィルムを薄型化することが挙げられ、近年、保護フィルムの代わりに光硬化樹脂層を形成した偏光板が提案されている(例えば、特許文献1~4などを参照)。 One of the methods for thinning the polarizing plate is to thin the protective film, and in recent years, a polarizing plate in which a photocurable resin layer is formed instead of the protective film has been proposed (for example, patent documents See 1-4 etc.).
特開2011-221185号公報JP 2011-221185 A 特開2004-245924号公報JP 2004-245924 A 特表2013-513832号公報JP-A-2013-513832 特開2008-20891号公報JP 2008-20891 A
 しかしながら、特許文献1~4に記載されている光硬化樹脂層を形成した偏光板では、高温高湿度条件下での使用時に偏光性能が低下する場合がある。特許文献1または2に記載されている方法のように、偏光フィルムの表面に直接にラジカル重合性化合物などからなる組成物を塗工すると、光硬化樹脂層の表面平滑性が低下しやすく、外乱により偏光板の偏光性能が低下する可能性がある。更に、ラジカル重合性化合物などからなる組成物に含まれる溶剤が偏光フィルムを侵食することにより偏光性能が低下したり、偏光フィルムと光硬化樹脂層との接着力が低くなり、長尺ロールからパネルサイズに偏光板を切断するときなどの取り扱い時に光硬化樹脂層が剥離したりする問題がある。また、偏光フィルムの表面に直接にラジカル重合性化合物などからなる組成物を塗工した場合、偏光フィルムが劣化する恐れがあるため、十分に紫外線や電子線を照射することができず、架橋密度を上げることが困難である。一方、特許文献3または4では、離型PETフィルムなどの基材フィルム上に光硬化樹脂層を形成した後、接着剤を用いて光硬化樹脂層と偏光フィルムを貼り合わせる方法が提案されている。しかしながら、基材フィルムと光硬化樹脂層との剥離性が良好ではないと、光硬化樹脂層の表面平滑性が低下してしまい、外乱によって偏光板の偏光性能が低下する場合があった。また、高温高湿度条件下での使用時に偏光性能が低下する場合もあり、改善が求められていた。 However, in the polarizing plate having the photocurable resin layer described in Patent Documents 1 to 4, the polarization performance may be deteriorated when used under high temperature and high humidity conditions. When a composition comprising a radically polymerizable compound or the like is directly coated on the surface of a polarizing film as in the method described in Patent Document 1 or 2, the surface smoothness of the photocurable resin layer tends to be deteriorated, and disturbance As a result, the polarization performance of the polarizing plate may be degraded. Furthermore, the solvent contained in the composition comprising a radically polymerizable compound or the like corrodes the polarizing film to deteriorate the polarization performance, or the adhesion between the polarizing film and the photocurable resin layer is lowered, and the long roll from the panel There is a problem that the photocurable resin layer peels off at the time of handling such as cutting the polarizing plate in size. In addition, when a composition comprising a radically polymerizable compound or the like is directly coated on the surface of the polarizing film, the polarizing film may be deteriorated, so that the ultraviolet light and the electron beam can not be sufficiently irradiated. It is difficult to raise On the other hand, Patent Document 3 or 4 proposes a method in which a photocurable resin layer is formed on a base film such as a mold release PET film, and then a photocurable resin layer and a polarizing film are bonded together using an adhesive. . However, if the releasability between the base film and the photocurable resin layer is not good, the surface smoothness of the photocurable resin layer may be reduced, and the polarization performance of the polarizing plate may be reduced due to disturbance. In addition, there are cases where the polarization performance may deteriorate during use under high temperature and high humidity conditions, and an improvement has been required.
 本発明は上記課題を解決するためになされたものであり、表面平滑性に優れ、光硬化樹脂層の厚みが9μm以下であっても耐湿熱性に優れた偏光板を得ることのできる、偏光フィルム保護用積層体、およびその製造方法を提供することを目的とする。 The present invention has been made to solve the above problems, and is a polarizing film which is excellent in surface smoothness, and which can obtain a polarizing plate excellent in heat and moisture resistance even when the thickness of the photocurable resin layer is 9 μm or less. An object of the present invention is to provide a protective laminate and a method for producing the same.
 本発明者らは上記の目的を達成すべく鋭意検討を重ねた結果、光硬化樹脂層の厚みが9μm以下であっても、ホウ酸透過度がホウ素原子換算で2.25g/m・day以下である光硬化樹脂層を偏光フィルムに貼り合わせることで、耐湿熱性に優れた偏光板が得られること、基材フィルムと光硬化樹脂層との接着力が0.005~0.06N/mmであることで、表面平滑性に優れた光硬化樹脂層が得られることを見出し、これらの知見に基づいて更に検討を重ねて本発明を完成させた。 As a result of intensive studies to achieve the above object, the inventors of the present invention have found that, even when the thickness of the photocurable resin layer is 9 μm or less, the permeability of boric acid is 2.25 g / m 2 · day in terms of boron atom. By bonding the following photo-curing resin layer to the polarizing film, a polarizing plate having excellent moisture and heat resistance can be obtained, and the adhesion between the base film and the photo-curing resin layer is 0.005 to 0.06 N / mm. It has been found that a photocurable resin layer having excellent surface smoothness can be obtained, and the present invention has been completed based on these findings.
 すなわち、本発明は、
[1]ラジカル重合性化合物からなる光硬化樹脂層が基材フィルムに積層された偏光フィルム保護用積層体であって、
前記光硬化樹脂層の厚みが9μm以下であり、前記光硬化樹脂層のホウ酸透過度がホウ素原子換算で2.25g/m・day以下であり、
基材フィルムと光硬化樹脂層との接着力が0.005~0.06N/mmであり、
光硬化樹脂層から基材フィルムを剥離した後の、基材フィルム側における該光硬化樹脂層の二乗平均面粗さ(rms)が300nm以下である、偏光フィルム保護用積層体;
[2][1]に記載の偏光フィルム保護用積層体における光硬化樹脂層が、偏光フィルムの少なくとも一方の面に接着剤層を介して貼り合わされた偏光板;
[3]ラジカル重合性化合物からなる光硬化樹脂層を基材フィルムに積層して得られる偏光フィルム保護用積層体の製造方法であって、
ラジカル重合性化合物と溶剤とを含む溶液を基材フィルムに塗工する工程と、
塗工後に前記基材フィルムを加熱して溶剤を揮発させる工程と、
紫外線および電子線の少なくとも一方を照射する工程とを有し、
前記基材フィルムの塗工面の水接触角が40~100度であることを特徴とする[1]に記載の偏光フィルム保護用積層体の製造方法;
[4]基材フィルムの塗工面におけるケイ素の検出強度が10cps/mA以下である[3]に記載の偏光フィルム保護用積層体の製造方法;
に関する。
That is, the present invention
[1] A laminate for polarizing film protection, in which a photocurable resin layer composed of a radically polymerizable compound is laminated on a substrate film,
The thickness of the photocurable resin layer is 9 μm or less, and the transmittance of boric acid of the photocurable resin layer is 2.25 g / m 2 · day or less in terms of boron atom,
The adhesion between the substrate film and the photocurable resin layer is 0.005 to 0.06 N / mm,
A laminate for polarizing film protection, in which the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side after peeling the base film from the photocurable resin layer is 300 nm or less;
[2] [1] A polarizing plate in which the photocurable resin layer in the laminate for protecting a polarizing film is bonded to at least one surface of the polarizing film via an adhesive layer;
[3] A method for producing a laminate for protecting a polarizing film obtained by laminating a photocurable resin layer comprising a radically polymerizable compound on a substrate film,
Applying a solution containing a radically polymerizable compound and a solvent to a substrate film;
Heating the substrate film after application to volatilize the solvent;
Irradiating at least one of ultraviolet light and electron beam;
The method for producing a laminate for protecting a polarizing film according to [1], wherein the contact angle of water on the coated surface of the substrate film is 40 to 100 degrees;
[4] The method for producing a laminate for protecting a polarizing film according to [3], wherein the detection strength of silicon on the coated surface of the substrate film is 10 cps / mA or less;
About.
 本発明によれば、表面平滑性に優れ、光硬化樹脂層の厚みが9μm以下であっても、耐湿熱性に優れた偏光板を得ることのできる、偏光フィルム保護用積層体、およびその製造方法が提供される。 According to the present invention, a laminate for protecting a polarizing film, which is excellent in surface smoothness and can obtain a polarizing plate excellent in moisture and heat resistance even when the thickness of the photocurable resin layer is 9 μm or less, and a manufacturing method thereof Is provided.
ホウ素原子換算のホウ酸透過度を測定する方法についての概略図である。It is the schematic about the method to measure the boric-acid conversion boric-acid permeability degree.
 以下に本発明について詳細に説明する。
<偏光フィルム保護用積層体>
The present invention will be described in detail below.
<Laminated film for polarizing film protection>
 本発明の偏光フィルム保護用積層体は、基材フィルムに厚み9μm以下のラジカル重合性化合物からなる光硬化樹脂層が積層された偏光フィルム保護用積層体であって、光硬化樹脂層のホウ酸透過度がホウ素原子換算で2.25g/m・day以下であることを特徴とする。光硬化樹脂層のホウ酸透過度がホウ素原子換算で2.25g/m・day以下であることにより、偏光フィルムと貼り合わせた際に、初期の偏光性能を維持することのできる耐湿熱性に優れた偏光板を得ることができる。ホウ酸透過度がホウ素原子換算で2.25g/m・dayを超える場合、偏光板の耐湿熱性を十分に改善することができない。この観点より、光硬化樹脂層のホウ酸透過度がホウ素原子換算で1.50g/m・day以下であることが好ましく、0.50g/m・day以下であることがより好ましく、0.20g/m・day以下であることが更に好ましく、0.10g/m・day以下であることが特に好ましい。一方、光硬化樹脂層のホウ素原子換算のホウ酸透過度の下限に特に制限はないが、ホウ素原子換算のホウ酸透過度が低すぎる場合、光硬化樹脂層の柔軟性が失われやすい傾向にあることから、ホウ酸透過度がホウ素原子換算で0.02g/m・day以上であることが好ましく、0.03g/m・day以上であることがより好ましい。なお、ホウ素原子換算のホウ酸透過度は、後述する実施例に記載の方法で求めることができる。 The laminate for polarizing film protection of the present invention is a laminate for polarizing film protection, in which a photocurable resin layer composed of a radical polymerizable compound having a thickness of 9 μm or less is laminated on a substrate film, and a boric acid of the photocurable resin layer It is characterized in that the permeability is 2.25 g / m 2 · day or less in terms of boron atom. When the boric acid permeability of the photocurable resin layer is 2.25 g / m 2 · day or less in terms of boron atom, when it is bonded to a polarizing film, the heat and humidity resistance can maintain initial polarization performance. An excellent polarizing plate can be obtained. When the boric acid permeability exceeds 2.25 g / m 2 · day in terms of boron atom, the heat and moisture resistance of the polarizing plate can not be sufficiently improved. From this viewpoint, it is preferable that boric acid transmittance of the photocurable resin layer is not more than 1.50g / m 2 · day boron atoms terms, more preferably less 0.50g / m 2 · day, 0 more preferably .20g / m is 2 · day or less, even more preferably at most 0.10 g / m 2 · day. On the other hand, there is no particular limitation on the lower limit of the boric acid-permeated boric acid permeability of the photocurable resin layer, but when the boric acid-permeated boric acid permeability is too low, the flexibility of the photocurable resin layer tends to be lost. From the point of view, the boric acid permeability is preferably 0.02 g / m 2 · day or more in terms of boron atom, and more preferably 0.03 g / m 2 · day or more. In addition, the boric-acid conversion boric-acid permeability can be calculated | required by the method as described in the Example mentioned later.
 本発明において、光硬化樹脂層は、ラジカル重合性化合物などからなる。ラジカル重合性化合物を用いることで、得られる光硬化樹脂層のホウ素原子換算のホウ酸透過度を低下させることができる。ラジカル重合性化合物としては、分子内にアクリロイル基を有する化合物を好ましく用いることができる。ラジカル重合性化合物は1種を単独で使用してもよく、2種以上を併用してもよい。また、紫外線および電子線の少なくとも一方を照射して硬化させるための光重合開始剤として、ラジカル重合開始剤を用いることが好ましい。ラジカル重合開始剤としては、活性エネルギー線を照射することによりラジカル重合性化合物の反応を促進することのできる化合物を用いることができる。このようなラジカル重合開始剤としては、例えば、アセトフェノン類、ベンゾフェノン類、ミヒラーケトン類、ベンゾイン類等のカルボニル化合物;テトラメチルチウラムモノスルフィド、チオキサントン等の硫黄化合物などが挙げられ、カルボニル化合物が好ましい。これらのラジカル重合開始剤は1種を単独で使用してもよく、2種以上を併用してもよい。 In the present invention, the photocurable resin layer is made of a radically polymerizable compound or the like. By using a radically polymerizable compound, it is possible to reduce the boric acid equivalent degree of boron atom conversion of the obtained photocurable resin layer. As a radically polymerizable compound, the compound which has an acryloyl group in a molecule | numerator can be used preferably. The radically polymerizable compounds may be used alone or in combination of two or more. Moreover, it is preferable to use a radical polymerization initiator as a photoinitiator for irradiating and hardening at least one of an ultraviolet-ray and an electron beam. As a radical polymerization initiator, the compound which can accelerate | stimulate reaction of a radically polymerizable compound can be used by irradiating an active energy ray. Examples of such radical polymerization initiators include carbonyl compounds such as acetophenones, benzophenones, Michler ketones, and benzoins; and sulfur compounds such as tetramethylthiuram monosulfide and thioxanthone, with preference given to carbonyl compounds. One of these radical polymerization initiators may be used alone, or two or more thereof may be used in combination.
 本発明において、光硬化樹脂層の厚みは9μm以下である。厚みが9μmを超える場合、従来の保護フィルムを積層した偏光板に対して十分な薄膜化を達成できない。この観点より、光硬化樹脂層の厚みは8μm以下であることが好ましく、7μm以下であることがより好ましく、6μm以下であることがさらに好ましい。一方、光硬化樹脂層の厚みの下限は特に限定されないが、薄い光硬化樹脂層で前記ホウ素原子換算のホウ酸透過度を達成する場合、光硬化樹脂層の柔軟性が失われやすい傾向があることから、0.1μm以上であることが好ましく、0.5μm以上であることがより好ましく、1μm以上であることがさらに好ましい。 In the present invention, the thickness of the photocurable resin layer is 9 μm or less. When the thickness exceeds 9 μm, sufficient thinning can not be achieved with respect to a polarizing plate on which a conventional protective film is laminated. From this viewpoint, the thickness of the photocurable resin layer is preferably 8 μm or less, more preferably 7 μm or less, and still more preferably 6 μm or less. On the other hand, the lower limit of the thickness of the photocurable resin layer is not particularly limited, but when achieving the above-mentioned boric acid transmission in boron atom conversion with a thin photocurable resin layer, the flexibility of the photocurable resin layer tends to be lost Therefore, the thickness is preferably 0.1 μm or more, more preferably 0.5 μm or more, and still more preferably 1 μm or more.
 本発明の偏光フィルム保護用積層体に用いられる基材フィルムとしては、表面均一性に優れたものが好ましく、ポリカーボネートフィルム、トリアセチルセルロースフィルム、ノルボルネンフィルム、ポリプロピレンフィルム、ポリエステルフィルム、ポリスチレンフィルム等を用いることができる。基材フィルムの光硬化樹脂層側の表面には、離型処理が施されていてもよい。表面均一性に優れた基材フィルムを用いることによって、光硬化樹脂層から基材フィルムを剥離した後の、基材フィルム側における該光硬化樹脂層の二乗平均面粗さ(rms)が300nm以下となりやすい。 As a base film used for a layered product for polarizing film protection of the present invention, what was excellent in surface homogeneity is preferred, and a polycarbonate film, a triacetyl cellulose film, a norbornene film, a polypropylene film, a polyester film, a polystyrene film etc. are used. be able to. A release treatment may be applied to the surface of the base film on the photocurable resin layer side. By using a base film excellent in surface uniformity, the root mean square surface roughness (rms) of the photocurable resin layer on the base film side after peeling the base film from the photocurable resin layer is 300 nm or less It is easy to become.
 本発明において、光硬化樹脂層と基材フィルムとの接着力は0.005~0.06N/mmである。光硬化樹脂層を偏光フィルムと貼り合わせて偏光板を得た後、光硬化樹脂層から基材フィルムを剥離する必要があるため、光硬化樹脂層と基材フィルムとの接着力は0.05N/mm以下であることが好ましく、0.04N/mm以下であることがより好ましく、0.03N/mm以下であることが更に好ましい。なお、用いる基材フィルムの離型処理を強化することで、光硬化樹脂層と基材フィルムとの接着力を0.06N/mm以下にすることができる。光硬化樹脂層と基材フィルムとの接着力があまりに低い場合には、光硬化樹脂層を偏光フィルムと貼り合わせる際などの偏光フィルム保護用積層体の取り扱い時に、光硬化樹脂層から基材フィルムが剥離して取り扱いにくくなることから、光硬化樹脂層と基材フィルムとの接着力は、0.010N/mm以上であることが好ましく、0.013N/mm以上であることがより好ましく、0.015N/mm以上であることが更に好ましい。 In the present invention, the adhesion between the photocurable resin layer and the base film is 0.005 to 0.06 N / mm. Since it is necessary to peel a base film from a photocuring resin layer after bonding a photocuring resin layer with a polarizing film and obtaining a polarizing plate, the adhesive force of a photocuring resin layer and a base film is 0.05N. / Mm or less is preferable, 0.04 N / mm or less is more preferable, and 0.03 N / mm or less is more preferable. In addition, the adhesive force of a photocurable resin layer and a base film can be made into 0.06 N / mm or less by strengthening the mold release process of the base film to be used. When the adhesion between the photocurable resin layer and the base film is too low, the base film from the photocurable resin layer is handled when handling the laminate for protecting a polarizing film, for example, when bonding the photocurable resin layer to a polarizing film. The adhesive strength between the photocurable resin layer and the base film is preferably 0.010 N / mm or more, more preferably 0.013 N / mm or more, because More preferably, it is at least 0. 15 N / mm.
 本発明において、光硬化樹脂層から基材フィルムを剥離した後の、基材フィルム側における該光硬化樹脂層の二乗平均面粗さ(rms)は、300nm以下である。基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)は、250nm以下であることが好ましく、200nm以下であることがより好ましく、150nm以下であることが更に好ましい。基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)を300nm以下にするためには、偏光フィルム保護用積層体を形成する際に基材フィルム上でラジカル重合性化合物と溶剤とを含む溶液が弾かないことや、基材フィルムと光硬化樹脂層との剥離性が良いことが重要であり、後述するように、ラジカル重合性化合物に用いる溶剤の溶解度パラメーターや基材フィルムの塗工面の水接触角を調整することが有効である。基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)の下限に特に制限はないが、あまりに平滑な表面を有することは困難であることから、例えば、20nm以上である。 In the present invention, the root mean square surface roughness (rms) of the photocurable resin layer on the side of the base film after peeling the base film from the photocurable resin layer is 300 nm or less. The root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side is preferably 250 nm or less, more preferably 200 nm or less, and still more preferably 150 nm or less. In order to make the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side 300 nm or less, when forming a laminate for polarizing film protection, a radically polymerizable compound and a solvent on the substrate film It is important that the solution containing the resin does not repel and that the releasability between the base film and the photocurable resin layer is good, as described later, the solubility parameter of the solvent used for the radically polymerizable compound and the coating of the base film It is effective to adjust the water contact angle of the work surface. The lower limit of the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side is not particularly limited, but it is 20 nm or more, for example, because it is difficult to have an excessively smooth surface.
<偏光フィルム保護用積層体の製造方法>
 本発明の偏光フィルム保護用積層体の製造方法としては、ラジカル重合性化合物と溶剤とを含む溶液を基材フィルムに塗工する工程と、塗工後に基材フィルムを加熱して溶剤を揮発させる工程と、紫外線および電子線の少なくとも一方を照射する工程とを有し、基材フィルムの塗工面の水接触角が40~100度であることが好ましい。該溶液に溶剤を含むことにより、厚み9μm以下である光硬化樹脂層の表面平滑性が良好となる。
<Production Method of Polarized Film Protective Laminate>
As a method for producing a laminate for polarizing film protection of the present invention, a step of applying a solution containing a radically polymerizable compound and a solvent to a base film, and heating the base film after coating to evaporate the solvent It is preferable that the method has a step of irradiating at least one of an ultraviolet ray and an electron beam, and the water contact angle of the coated surface of the base film is 40 to 100 degrees. By including a solvent in the solution, the surface smoothness of the photocurable resin layer having a thickness of 9 μm or less is improved.
[塗工工程]
 ラジカル重合性化合物と溶剤とを含む溶液を基材フィルムに塗工する工程としては、任意の適切な方法が採用され得る。ラジカル重合性化合物と溶剤とを含む溶液を基材フィルムに塗工する方法としては、例えば、ダイコート、ロールコート、エアナイフコート、グラビアロールコート、ドクターロールコート、ドクターナイフコート、カーテンフローコート、スプレーコート、ワイヤーバーコート、ロッドコート、浸漬、刷毛塗り等の方法が挙げられる。中でも、得られる光硬化樹脂層の厚みを9μm以下にするためには、グラビアロールコートが好ましい。
[Coating process]
Any appropriate method may be employed as the step of applying a solution containing a radically polymerizable compound and a solvent to a substrate film. As a method for applying a solution containing a radically polymerizable compound and a solvent to a substrate film, for example, die coating, roll coating, air knife coating, gravure roll coating, doctor roll coating, doctor knife coating, curtain flow coating, spray coating Wire bar coat, rod coat, dipping, brushing and the like. Among them, gravure roll coating is preferable in order to make the thickness of the obtained photocurable resin layer 9 μm or less.
[溶剤揮発工程]
 溶液を塗工後に基材フィルムを加熱して溶剤を揮発させる工程としては、任意の適切な方法が採用される。溶液を塗工した基材フィルムをヒートロール上で加熱してもよいし、フローティング乾燥機内で加熱してもよい。ヒートロールや熱風の好ましい温度は、用いる溶剤の沸点により決定することができるが、60℃~120℃の範囲であることが好ましい。また、溶剤の残存量が10%以下になるまで、溶剤を揮発させることが好ましい。
[Solvent evaporation process]
Any appropriate method may be adopted as the step of heating the substrate film to volatilize the solvent after the solution is applied. The substrate film coated with the solution may be heated on a heat roll, or may be heated in a floating dryer. The preferable temperature of the heat roll or hot air can be determined by the boiling point of the solvent used, but is preferably in the range of 60 ° C. to 120 ° C. Moreover, it is preferable to evaporate the solvent until the residual amount of the solvent is 10% or less.
[照射工程]
 紫外線および電子線の少なくとも一方を照射する工程としては、基材フィルムの上に塗工した溶液を乾燥後に紫外線および電子線の少なくとも一方を直接に照射してもよいし、基材フィルム側から照射してもよい。また、硬化速度、照射装置の入手性、価格等の観点から、紫外線を照射する工程を有することがより好ましい。
[Irradiation process]
In the step of irradiating at least one of the ultraviolet light and the electron beam, after drying the solution coated on the base film, at least one of the ultraviolet light and the electron beam may be irradiated directly, or the irradiation from the base film side You may Further, it is more preferable to have a step of irradiating ultraviolet rays from the viewpoint of curing speed, availability of irradiation apparatus, price and the like.
 前記紫外線または電子線は、公知の装置を用いて照射することができる。紫外線を用いる場合、450nm以下の波長域の光を発する高圧水銀ランプ、超高圧水銀灯、カーボンアーク灯、メタルハライドランプ、キセノンランプ、ケミカルランプ、LED等を用いることができる。また、電子線(EB)を用いる場合、加速電圧としては0.1~10MeVの範囲内であることが好ましく、照射線量としては1~500kGyの範囲内であることが好ましい。 The ultraviolet light or electron beam can be irradiated using a known device. When ultraviolet light is used, a high pressure mercury lamp, an ultrahigh pressure mercury lamp, a carbon arc lamp, a metal halide lamp, a xenon lamp, a chemical lamp, an LED or the like which emits light in a wavelength range of 450 nm or less can be used. When an electron beam (EB) is used, the acceleration voltage is preferably in the range of 0.1 to 10 MeV, and the irradiation dose is preferably in the range of 1 to 500 kGy.
 前記紫外線または電子線の積算光量に特に制限はないが、10~20,000mJ/cmの範囲内であることが好ましく、30~5,000mJ/cmの範囲内であることがより好ましい。紫外線または電子線の積算光量が少なすぎると、ラジカル重合性化合物の硬化が不良となり、光硬化樹脂層のホウ素原子換算のホウ酸透過度が高くなったり、光硬化樹脂層の機械的強度が低下したりする。一方、紫外線または電子線の積算光量が多すぎると、偏光フィルム保護用積層体に過剰の熱が発生し、光硬化樹脂層や基材フィルムが劣化する場合がある。 The integrated light quantity of the ultraviolet ray or the electron beam is not particularly limited, but is preferably in the range of 10 to 20,000 mJ / cm 2 , and more preferably in the range of 30 to 5,000 mJ / cm 2 . When the integrated light quantity of the ultraviolet ray or the electron beam is too small, the curing of the radically polymerizable compound becomes poor, the boric acid equivalent degree of boron atom conversion of the photocurable resin layer becomes high, or the mechanical strength of the photocurable resin layer decreases. Do. On the other hand, when the integrated light quantity of the ultraviolet ray or the electron beam is too large, excessive heat is generated in the polarizing film protection laminate, and the photocurable resin layer or the base film may be deteriorated.
 紫外線または電子線の照射中または照射後に、光硬化樹脂層の架橋密度を上げるために、必要に応じて加熱して光硬化樹脂層の硬化を促進してもよい。この加熱温度としては、硬化速度や光硬化樹脂層および基材フィルムへの影響などの観点から、40~130℃の範囲内であることが好ましく、50~100℃の範囲内であることがより好ましい。温度が40℃未満の場合には、光硬化樹脂層の硬化が促進されにくく、温度が130℃を超える場合には、基材フィルムが変形しやすくなり、平滑な光硬化樹脂層を得ることができない場合がある。上記の方法では、基材フィルムの上で光硬化樹脂層の架橋密度を十分に上げることができるため、ホウ素原子換算のホウ酸透過度を好ましく低下させることが可能になる。 During or after irradiation with ultraviolet light or electron beam, heating may be performed as needed to accelerate the curing of the photocurable resin layer in order to increase the crosslink density of the photocurable resin layer. The heating temperature is preferably in the range of 40 to 130 ° C., and more preferably in the range of 50 to 100 ° C., from the viewpoint of the curing speed and the influence on the photocurable resin layer and the base film. preferable. When the temperature is less than 40 ° C., curing of the photocurable resin layer is difficult to accelerate, and when the temperature exceeds 130 ° C., the base film is easily deformed and a smooth photocured resin layer can be obtained. It may not be possible. In the above method, since the crosslink density of the photocurable resin layer can be sufficiently increased on the base film, it is possible to preferably reduce the boric acid transmission rate in terms of boron atom.
 本発明の偏光フィルム保護用積層体の製造方法において、基材フィルムの溶液塗工面の水接触角は、40~100度であることが好ましい。基材フィルムの溶液塗工面の水接触角が大きい場合には、基材フィルム上に溶液を塗工した際に溶液が弾きやすく、均一に溶液を塗工することが難しい場合がある。更に、均一に溶液を塗工できた場合でも、光硬化樹脂層から基材フィルムを剥離した後の、基材フィルム側における光硬化樹脂層の表面が平滑になりにくい問題がある。一方、水接触角が小さい場合には、基材フィルムと光硬化樹脂層との接着力が強くなり、光硬化樹脂層から基材フィルムを剥離しにくくなったり、光硬化樹脂層から基材フィルムを剥離した後の、基材フィルム側における光硬化樹脂層の表面平滑性が粗くなったりする場合がある。これらの観点から、基材フィルムの溶液塗工面の水接触角は、45~95度であることが好ましく、50~90度であることがより好ましく、55~85度であることが更に好ましい。基材フィルムの溶液塗工面の水接触角を上記範囲に調整するためには、コロナ処理などの親水化処理の強度を調整したりすることが有効である。 In the method for producing a laminate for polarizing film protection of the present invention, the water contact angle of the solution-coated surface of the base film is preferably 40 to 100 degrees. When the water contact angle of the solution application side of a substrate film is large, when applying a solution on a substrate film, a solution may be easy to repel and it may be difficult to apply a solution uniformly. Furthermore, even when the solution can be applied uniformly, there is a problem that the surface of the photocurable resin layer on the substrate film side after peeling the base film from the photocurable resin layer is unlikely to be smooth. On the other hand, when the water contact angle is small, the adhesion between the base film and the photocurable resin layer becomes strong, making it difficult to peel the base film from the photocurable resin layer, or from the photocurable resin layer to the base film The surface smoothness of the photocurable resin layer on the side of the substrate film after peeling off may be roughened. From these viewpoints, the water contact angle of the solution-coated surface of the base film is preferably 45 to 95 degrees, more preferably 50 to 90 degrees, and still more preferably 55 to 85 degrees. In order to adjust the water contact angle of the solution coated surface of the substrate film to the above range, it is effective to adjust the strength of the hydrophilization treatment such as corona treatment.
 ラジカル重合性化合物と溶剤とを含む溶液の、溶剤の溶解度パラメーター(SP値)は、8~10(cal/cm1/2であることが好ましい。溶剤の溶解度パラメーターが小さすぎたり大きすぎたりすると、基材フィルム上に溶液を塗工した際に溶液が弾きやすく、均一に溶液を塗工することが難しい。この観点から、溶剤の溶解度パラメーターは8.2~9.8(cal/cm1/2の範囲であることがより好ましく、8.4~9.6(cal/cm1/2の範囲であることが更に好ましく、8.6~9.4(cal/cm1/2の範囲であることが特に好ましい。溶解度パラメーターは、文献(例として、高分子データハンドブック:高分子学会編、溶剤ハンドブック;浅原照三他編、D.W.VAN KREVELEN、PROPERTIES OF POLYMERS Third edition,p214~220(1990)など)に記載されているものを用いた。 The solubility parameter (SP value) of the solvent containing the radically polymerizable compound and the solvent is preferably 8 to 10 (cal / cm 3 ) 1/2 . When the solubility parameter of the solvent is too small or too large, when the solution is coated on the substrate film, the solution is easily repelled and it is difficult to uniformly apply the solution. From this viewpoint, the solubility parameter of the solvent is more preferably in the range of 8.2 to 9.8 (cal / cm 3 ) 1/2 , and 8.4 to 9.6 (cal / cm 3 ) 1/2. Is more preferably in the range of 8.6 to 9.4 (cal / cm 3 ) 1/2 . Solubility parameters are described in the literature (eg, Polymer Data Handbook: Polymer Science, Ed., Handbook of Solvents; Solvent Handbook; Tera Asahara, et al., DW VAN KREVELEN, PROPERTIES OF POLYMERS Third edition, p 214-220 (1990), etc.) The one described was used.
 本発明の偏光フィルム保護用積層体の製造方法において、基材フィルムの塗工面におけるケイ素の検出強度は、10cps/mA以下であることが好ましい。通常、基材フィルムの表面にケイ素を含む離型剤などを塗工することで、形成した光硬化樹脂層の剥離性を良好にさせることが可能である。しかし、ケイ素を含む離型剤などがラジカル重合性化合物と溶剤とを含む溶液に移行して、得られる光硬化樹脂層の物性が変化したり、偏光フィルム保護用積層体を製造する設備を汚染したりする問題がある。そのため、ケイ素を含む離型剤を用いない方法で離型処理を施した基材フィルムを用いることが好ましい。なお、基材フィルムの塗工面のケイ素の測定は、後述する実施例に記載した通り、X線分析顕微鏡を用いて測定することができる。 In the method for producing a laminate for protecting a polarizing film of the present invention, the detection strength of silicon on the coated surface of the base film is preferably 10 cps / mA or less. Usually, it is possible to make the releasability of the formed photocurable resin layer favorable by coating the mold release agent containing silicon etc. on the surface of a substrate film. However, the release agent containing silicon shifts to a solution containing a radically polymerizable compound and a solvent to change the physical properties of the obtained photocurable resin layer or contaminate the equipment for producing a laminate for protecting a polarizing film. Have problems with Therefore, it is preferable to use a base film which has been subjected to release treatment by a method not using a release agent containing silicon. In addition, the measurement of the silicon of the coated surface of a base film can be measured using a X-ray-analysis microscope, as it described in the Example mentioned later.
<偏光板>
 本発明により得られる偏光板は、偏光フィルムの少なくとも一方の面に、接着剤層を介して光硬化樹脂層を貼り合わせたものである。これにより、耐湿熱性と表面平滑性に優れた偏光板を得ることができる。偏光板を作製するために用いる偏光フィルムは、二色性色素を予め含有させたPVAフィルムを一軸延伸したり、PVAフィルムの一軸延伸と同時に二色性色素を吸着させたり、PVAフィルムを一軸延伸した後に二色性色素を吸着させたりするなどして製造することができる。
<Polarizer>
The polarizing plate obtained by the present invention is obtained by bonding a photocurable resin layer to at least one surface of a polarizing film via an adhesive layer. Thereby, it is possible to obtain a polarizing plate excellent in moist heat resistance and surface smoothness. The polarizing film used to produce a polarizing plate uniaxially stretches a PVA film containing a dichroic dye in advance, or makes it absorb a dichroic dye simultaneously with uniaxial stretching of a PVA film, uniaxially stretches a PVA film After that, it can be produced by, for example, adsorbing a dichroic dye.
 本発明の偏光フィルム保護用積層体における光硬化樹脂層を偏光フィルムに貼り合わせることにより、薄型軽量化しながら、更に耐湿熱性に優れた偏光板を作製することができる。偏光板の作製方法に特に制限はなく、例えば、偏光フィルムの少なくとも一方の面に、本発明の偏光フィルム保護用積層体における光硬化樹脂層を接着剤層を介して貼り合わせる工程(貼合工程)、および、当該貼合工程の後で紫外線または電子線の少なくとも一方を照射して接着剤層を硬化させる工程(接着工程)、さらに、当該接着工程の後に基材フィルムを剥離する工程(剥離工程)を備える製造方法により、作製することができる。 By bonding the photocurable resin layer in the laminate for polarizing film protection of the present invention to the polarizing film, it is possible to produce a polarizing plate further excellent in moisture and heat resistance while reducing thickness and weight. There is no particular limitation on the method of producing a polarizing plate, and for example, a step of bonding a photocurable resin layer in a laminate for polarizing film protection of the present invention to at least one surface of a polarizing film via an adhesive layer (bonding step And curing the adhesive layer by irradiating at least one of ultraviolet light or electron beam after the bonding step (adhesion step), and further peeling off the base film after the adhesion step (peeling) It can produce by the manufacturing method provided with a process.
[貼合工程]
 貼合工程において、偏光フィルムの少なくとも一方の面に、本発明の偏光フィルム保護用積層体における光硬化樹脂層を接着剤層を介して貼り合わせる。この貼り合わせ方法に特に制限はないが、より簡便に貼り合わせることができることから、本発明の偏光フィルム保護用積層体における光硬化樹脂層面に接着剤を塗工した後、偏光フィルムを重ね合わせる方法が好ましい。さらに、もう一つの偏光フィルム保護用積層体における光硬化樹脂層面に接着剤を塗工して、偏光フィルムの他方の面に重ね合わせてもよい。接着剤を塗布する方法は特に限定されないが、例えば、ダイコート、ロールコート、エアナイフコート、グラビアロールコート、ドクターロールコート、ドクターナイフコート、カーテンフローコート、スプレーコート、ワイヤーバーコート、ロッドコート、刷毛塗り等の方法が挙げられる。
[Bonding process]
In the bonding step, the photocurable resin layer in the laminate for protecting a polarizing film of the present invention is bonded to at least one surface of the polarizing film through an adhesive layer. There is no particular limitation to this bonding method, but since it can be more easily bonded, after the adhesive is applied to the photocurable resin layer surface in the laminate for polarizing film protection of the present invention, the polarizing film is laminated. Is preferred. Furthermore, an adhesive may be applied to the surface of the photocurable resin layer in the other polarizing film protective laminate and may be superposed on the other surface of the polarizing film. The method of applying the adhesive is not particularly limited, but, for example, die coat, roll coat, air knife coat, gravure roll coat, doctor roll coat, doctor knife coat, curtain flow coat, spray coat, wire bar coat, rod coat, brush coat And the like.
 更に、貼合工程で得られた貼り合わせ体をロール等で加圧してもよい。この場合、ロールの材質としては、例えば金属やゴム等が挙げられる。 Furthermore, the bonded body obtained in the bonding step may be pressed with a roll or the like. In this case, examples of the material of the roll include metal and rubber.
 用いる接着剤としては、偏光フィルムと光硬化樹脂層を接着することができるものであれば特に制限はなく、無溶剤型光硬化性接着剤などが好適に用いられる。 The adhesive to be used is not particularly limited as long as the polarizing film and the photocurable resin layer can be adhered to each other, and a solventless photocurable adhesive is suitably used.
 また、偏光フィルムと光硬化樹脂層との接着力をより一層向上させるため、必要に応じて、上記光硬化樹脂層の表面を公知のコロナ処理、プラズマ処理、UV処理、火炎処理などで改質することもできる。 In addition, in order to further improve the adhesion between the polarizing film and the photocurable resin layer, the surface of the photocurable resin layer is reformed by known corona treatment, plasma treatment, UV treatment, flame treatment, etc., if necessary. You can also
[接着工程]
 接着工程では、紫外線または電子線の少なくとも一方を照射して未硬化の接着剤層を硬化させる。紫外線または電子線の照射は公知の装置を用いて行うことができる。紫外線または電子線の積算光量に特に制限はないが、10~20,000mJ/cmの範囲内であることが好ましく、30~5,000mJ/cmの範囲内であることがより好ましい。積算光量が少なすぎると、偏光フィルムと光硬化樹脂層との接着力が不足することがある。一方、積算光量が多すぎると、過剰の熱が発生し、接着剤層や偏光フィルム、および光硬化樹脂層が劣化することがある。なお、硬化速度、照射装置の入手性、価格等の観点から、紫外線を用いることがより好ましい。
Bonding process
In the bonding step, at least one of ultraviolet light and electron beam is irradiated to cure the uncured adhesive layer. The irradiation of ultraviolet light or electron beam can be performed using a known apparatus. There is no particular limitation on the integrated light quantity of the ultraviolet ray or the electron beam, but it is preferably in the range of 10 to 20,000 mJ / cm 2 , and more preferably in the range of 30 to 5,000 mJ / cm 2 . If the accumulated light amount is too small, the adhesion between the polarizing film and the photocurable resin layer may be insufficient. On the other hand, if the accumulated light amount is too large, excessive heat may be generated to deteriorate the adhesive layer, the polarizing film, and the photocurable resin layer. In addition, it is more preferable to use an ultraviolet ray from the viewpoints of curing speed, availability of an irradiation device, price and the like.
 紫外線または電子線の照射中または照射後に、必要に応じて加熱により接着剤層の硬化を促進してもよい。この加熱温度としては、硬化速度や偏光フィルムなどの劣化度合いなどの観点から、40~130℃の範囲内であることが好ましく、50~100℃の範囲内であることがより好ましい。温度が40℃未満の場合、接着剤層の硬化が促進されにくく、温度が130℃を超える場合、偏光フィルムや基材フィルムが劣化や変形をしやすくなり、偏光性能や平滑性に優れる偏光板を得ることができにくい。 During or after irradiation with ultraviolet light or electron beam, heating may be used to accelerate the curing of the adhesive layer, if necessary. The heating temperature is preferably in the range of 40 to 130 ° C., and more preferably in the range of 50 to 100 ° C., from the viewpoint of the curing speed and the degree of deterioration of the polarizing film and the like. When the temperature is less than 40 ° C., curing of the adhesive layer is difficult to accelerate, and when the temperature exceeds 130 ° C., the polarizing film or the base film is easily deteriorated or deformed, and a polarizing plate having excellent polarizing performance and smoothness. It is difficult to get
[剥離工程]
 接着工程の後で基材フィルムを剥離することで、光硬化樹脂層が偏光フィルムの少なくとも一方の面に接着剤層を介して配置された偏光板を得ることができる。
[Peeling process]
By peeling off the base film after the adhesion step, it is possible to obtain a polarizing plate in which the photocurable resin layer is disposed on at least one surface of the polarizing film via the adhesive layer.
 本発明を以下の実施例により具体的に説明するが、本発明はこれらの実施例により何ら限定されるものではない。なお、以下の実施例および比較例において採用された各評価方法ないし測定方法を以下に示す。 The present invention is specifically described by the following examples, but the present invention is not limited by these examples. In addition, each evaluation method thru | or measurement method employ | adopted in the following Example and a comparative example are shown below.
[光硬化樹脂層のホウ素原子換算のホウ酸透過度]
 以下の各実施例または比較例で得られた光硬化樹脂層を、純水を入れた透湿度カップ(締付式、JIS Z-0208準拠)に取り付けて、60℃の8質量%ホウ酸水溶液の中に浸漬した。そして、試験開始前の透湿度カップ内のサンプル水(純水)と、浸漬して24時間後の透湿度カップ内のサンプル水のホウ素濃度をICP発光分析法(島津製作所製 島津マルチ形ICP発光分析装置 ICPE-9000)で分析し、そのホウ素濃度増加量より下記式(1)でホウ素原子換算のホウ酸透過度(A)を算出した(図1参照)。
  A={(a24-a)×10-6×M}/S  (1)
A:ホウ素原子換算のホウ酸透過度[g/m・day]
24:24時間後のサンプル水のホウ素濃度[ppm]
:試験開始前のサンプル水(純水)のホウ素濃度[ppm]
M:サンプル水の重量[g]
S:光硬化樹脂層とホウ酸水溶液が接触している面積(透湿度カップの透過面積)[m
[Permeability of boric acid in boron equivalent of light curable resin layer]
The photocurable resin layer obtained in each of the following examples or comparative examples is attached to a moisture-permeable cup (tightening type, in accordance with JIS Z-0208) containing pure water, and an 8 mass% boric acid aqueous solution at 60 ° C. Soak in the Then, the sample water (pure water) in the moisture transmission cup before the start of the test and the boron concentration of the sample water in the moisture transmission cup after 24 hours of immersion were subjected to ICP emission analysis (Shimadzu multi-type ICP emission manufactured by Shimadzu Corporation) The analysis was carried out using an analyzer ICPE-9000), and the boric acid permeability (A) in terms of boron atom was calculated by the following formula (1) from the increase amount of boron concentration (see FIG. 1).
A = {(a 24 -a 0 ) × 10 −6 × M} / S (1)
A: Boric acid permeability in terms of boron atom [g / m 2 · day]
a 24 : Boron concentration of sample water after 24 hours [ppm]
a 0 : Boron concentration of sample water (pure water) before the start of the test [ppm]
M: Weight of sample water [g]
S: The area in which the photocurable resin layer and the boric acid aqueous solution are in contact (transmission area of the moisture permeability cup) [m 2 ]
[基材フィルムと光硬化樹脂層との接着力]
 以下の各実施例または比較例で得られた偏光フィルム保護用積層体を23℃、50%RHの条件下で24時間静置後、当該偏光フィルム保護用積層体から250mm×25mmの短冊状のフィルム片を5枚ずつ切り出した。次に、各フィルム片毎に、基材フィルムと光硬化樹脂層との間を、JIS K6854-3:1999のT型はく離試験に準拠してはく離し、得られたはく離力の5回測定の平均値を接着力とした。当該試験において、剥離速度は30mm/分とした。なお、基材フィルムと光硬化樹脂層との接着力が高すぎて、基材フィルムまたは光硬化樹脂層が破壊された場合には、「材破」と評価した。
[Adhesive force between base film and photocurable resin layer]
After leaving the laminate for polarizing film protection obtained in each of the following Examples or Comparative Examples for 24 hours under conditions of 23 ° C. and 50% RH, a strip of 250 mm × 25 mm is formed from the laminate for polarizing film protection. Five pieces of film were cut out. Next, for each film piece, the base film and the photocurable resin layer are peeled off according to the T-peel test according to JIS K 6854-3: 1999, and the obtained peel force is measured 5 times The average value was taken as adhesion. In the said test, the peeling speed was 30 mm / min. In addition, when the adhesive force of a base film and a photocurable resin layer was too high, and a base film or a photocurable resin layer was destroyed, it was evaluated as "material breakage".
[基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)]
 以下の各実施例または比較例で得られた偏光フィルム保護用積層体の基材フィルムを剥離し、基材フィルム側における光硬化樹脂層の表面を露出させた。その後、白色干渉顕微鏡(zygo社製)を用いて、基材フィルム側における光硬化樹脂層の表面形状を測定し、二乗平均面粗さ(rms)を計算した(計算範囲は、2.0mm×2.7mm)。
[Root-mean-square surface roughness (rms) of the photocurable resin layer on the substrate film side]
The base film of the laminate for polarizing film protection obtained in each of the following examples or comparative examples was peeled off to expose the surface of the photocurable resin layer on the base film side. Then, the surface shape of the photocurable resin layer on the substrate film side was measured using a white interference microscope (manufactured by zygo), and the root mean square surface roughness (rms) was calculated (the calculation range is 2.0 mm × 2.7 mm).
[水接触角]
 以下の実施例または比較例において使用する基材フィルムから200mm×15mmの短冊状のフィルム片を切り出し、このフィルム片の溶液塗工面における水接触角を、JIS R3257:1999(基板ガラス表面のぬれ性試験方法)の記載に準拠して測定した。すなわち、水平に置かれたフィルム片の上に4μL以下の水滴を静置し、水滴の形状を測定し、水滴がフィルム片に接している面の半径r(mm)、およびフィルム片表面から水滴の頂点までの高さh(mm)から、下記式(2)により水接触角θ(度)を求めた。
   θ = 2tan-1(h/r)   (2)
 なお、測定は5回実施し、その平均値をその基材フィルムの水接触角とした。また、測定は、25℃、50%RHの条件下で行った。
Water contact angle
A strip of 200 mm × 15 mm is cut out from the base film used in the following examples or comparative examples, and the water contact angle on the solution-coated surface of this film strip is measured according to JIS R 3257: 1999 (Wetness of substrate glass surface It measured according to the description of test method). That is, a water droplet of 4 μL or less is placed on the film piece placed horizontally, the shape of the water droplet is measured, the radius r (mm) of the surface where the water droplet contacts the film piece, and the water droplet from the film piece surface The water contact angle θ (degree) was determined by the following equation (2) from the height h (mm) to the top of the circle.
θ = 2 tan -1 (h / r) (2)
In addition, the measurement was implemented 5 times and made the average value into the water contact angle of the base film. Moreover, the measurement was performed under conditions of 25 ° C. and 50% RH.
[基材フィルムの塗工面のケイ素]
 以下の実施例または比較例において使用する基材フィルムから50mm角のフィルム片を切り出し、X線分析顕微鏡(株式会社堀場製作所社製XGT-5200、X線照射径100μm、電流1mA、X線管電圧30kV、測定時間400秒)を用いて、このフィルム片の溶液塗工面のケイ素の検出強度を測定した。
[Silicon on coated surface of base film]
A film piece of 50 mm square is cut out from a base film used in the following examples or comparative examples, and an X-ray analytical microscope (XGT-5200 manufactured by Horiba, Ltd. X-ray irradiation diameter 100 μm, current 1 mA, X-ray tube voltage The detection intensity of silicon on the solution coated surface of this film piece was measured using 30 kV and a measuring time of 400 seconds.
[偏光板の全光線透過率および偏光度]
 以下の実施例または比較例で得られた偏光板の幅方向(TD)の中央部から、偏光板の長さ方向(MD)に2cm、幅方向(TD)に3cmの長方形のサンプルを2枚採取した。それぞれのサンプルについて、長さ方向に対して45°傾けた場合の光の透過率と、-45°傾けた場合の光の透過率を測定して、それらの全ての平均値をその偏光板の全光線透過率(%)とした。また、当該2枚のサンプルをパラレルニコル状態にした際の光の透過率T∥(%)、及び当該2枚のサンプルをクロスニコル状態にした際の光の透過率T⊥(%)を、上記全光線透過率(%)の場合と同様にして測定し、下記式(3)により偏光度を求めた。なお、透過率の測定は、積分球付き分光光度計(日本分光株式会社製「V7100」)を用いて、JIS Z 8722(物体色の測定方法)に準拠し、C光源、2°視野の可視光領域の視感度補正を行った。
  偏光度={(T∥-T⊥)/(T∥+T⊥)}1/2×100  (3)
  なお、耐湿熱性試験前の、初期の全光線透過率をTとした。
[Total light transmittance and degree of polarization of polarizing plate]
From the central part in the width direction (TD) of the polarizing plate obtained in the following examples or comparative examples, two rectangular samples of 2 cm in the length direction (MD) of the polarizing plate and 3 cm in the width direction (TD) It was collected. For each sample, the transmittance of light when tilted 45 ° with respect to the length direction and the transmittance of light when tilted −45 ° are measured, and the average value of all of them is Total light transmittance (%). In addition, the light transmittance T∥ (%) when the two samples are in the parallel nicol state, and the light transmittance T⊥ (%) when the two samples are in the cross nicol state, It measured similarly to the case of the said total light transmittance (%), and calculated | required the polarization degree by following formula (3). In addition, the measurement of the transmittance | permeability is based on JIS Z 8722 (the measuring method of an object color) using the integrating sphere attached spectrophotometer (made by JASCO Corporation "V7100"), C light source, visible of 2 degree visual field A visibility correction of the light region was performed.
Degree of polarization = {(T∥-T⊥) / (T∥ + T⊥)} 1/2 × 100 (3)
The initial total light transmittance before the moist heat resistance test was set to T 0 .
[偏光板の耐湿熱性]
 以下の実施例または比較例で得られた偏光板の幅方向(TD)の中央部から、偏光板の長さ方向(MD)に4cm、幅方向(TD)に3cmの長方形のサンプルを2枚採取し、それぞれ金属枠に固定して、上記の方法により、初期の全光線透過率(T)および偏光度を求めた。60℃、90%RHの恒温恒湿器(ヤマト科学株式会社製 HUMIDIC CHAMBER IG400)に入れて、48時間の耐湿熱性試験を行い、上記の方法により耐湿熱性試験後の全光線透過率(T48)、偏光度を測定した。上記のTとT48から、下記式(4)用いて全光線透過率の変化量(ΔT)を求め、これを偏光板の耐湿熱性の指標とした。
   ΔT=T48-T  (4)
[Moisture and heat resistance of polarizing plate]
Two rectangular samples of 4 cm in the length direction (MD) of the polarizing plate and 3 cm in the width direction (TD) from the central part in the width direction (TD) of the polarizing plate obtained in the following examples or comparative examples Each sample was fixed and fixed to a metal frame, and the initial total light transmittance (T 0 ) and the degree of polarization were determined by the method described above. In a constant temperature and humidity chamber (HUMIDIC CHAMBER IG400 manufactured by Yamato Scientific Co., Ltd., 60 ° C., 90% RH), the heat and humidity resistance test is carried out for 48 hours, and the total light transmittance (T 48) after the heat and humidity resistance test by the above method ), The degree of polarization was measured. From the above T 0 and T 48, the following equation (4) the amount of change in total light transmittance ([Delta] T) determined using, as an index of the polarizing plate of wet heat resistance.
ΔT = T 48 -T 0 (4)
[実施例1]
<偏光フィルム保護用積層体の作製>
 ラジカル重合性化合物と溶剤とを含む溶液として、ラジカル重合性化合物を含むヒタロイド7975(日立化成工業株式会社製、樹脂分32質量%、溶剤トルエン、溶剤のSP値8.9)31.25gと1-ヒドロキシシクロヘキシルフェニルケトン(BASF製、IRGACURE 184)0.4gをサンプル管に秤量し、24時間撹拌して均一に混合することで、溶液を得た。その後、基材フィルムとして、離型処理PETフィルムであるレイハイパーF(中井工業株式会社製、水接触角68.9度、ケイ素の検出強度5.25cps/mA)をサイズ300mm×150mmに切り出し、バーコーターを用いて前記溶液を離型処理面に塗工し、70℃で1分間加熱して溶剤を揮発した後、紫外線照射装置(GS YUASA株式会社のメタルハライドランプを使用、照射強度300mW/cm)を用い、積算光量が300mJ/cmとなるように紫外線を照射することで、基材フィルム上に厚み5.9μmの光硬化樹脂層を有する偏光フィルム保護用積層体を得た。なお、この積算光量についてはUV計測器(GS YUASA株式会社)を用いて測定した。
Example 1
<Production of laminate for protecting polarizing film>
3. A solution containing a radically polymerizable compound and a solvent, a thalloid 7975 containing a radically polymerizable compound (manufactured by Hitachi Chemical Co., Ltd., 32% by mass of resin, toluene as a solvent, SP value 8.9 of solvent) 31.25g and 1 -A solution was obtained by weighing 0.4 g of hydroxycyclohexyl phenyl ketone (manufactured by BASF, IRGACURE 184) into a sample tube, stirring for 24 hours and uniformly mixing. After that, as a substrate film, Ray Hyper F (manufactured by Nakai Kogyo Co., Ltd., water contact angle 68.9 degrees, detection strength of silicon 5.25 cps / mA), which is a release-treated PET film, is cut into a size 300 mm × 150 mm. The solution is coated on the release-treated surface using a bar coater, heated at 70 ° C. for 1 minute to volatilize the solvent, and then an ultraviolet irradiation device (using a metal halide lamp of GS YUASA Co., Ltd., irradiation intensity 300 mW / cm By applying ultraviolet light so that the accumulated light amount becomes 300 mJ / cm 2 using 2 ), a laminate for polarizing film protection having a photocurable resin layer with a thickness of 5.9 μm on a substrate film was obtained. The integrated light quantity was measured using a UV measuring instrument (GS YUASA Co., Ltd.).
<偏光フィルム保護用積層体の評価>
 得られた偏光フィルム保護用積層体について、前記した方法により、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、および基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)の評価を行った。結果を表1及び表2に示した。
<Evaluation of Polarized Film Protective Laminate>
With respect to the obtained laminate for polarizing film protection, by the above-mentioned method, the boric acid equivalent transmittance of boron in the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, and the light on the base film side The root mean square surface roughness (rms) of the cured resin layer was evaluated. The results are shown in Tables 1 and 2.
<偏光フィルムの作製>
 厚みが30μmで幅が65cmの長尺のPVAフィルム(PVAとグリセリンと界面活性剤を含み、グリセリンの含有量がPVA100質量部に対して12質量部で、界面活性剤の含有量がPVA100質量部に対して0.03質量部であるPVAフィルム。PVAは酢酸ビニルの単独重合体のけん化物であり、重合度は2,400で、けん化度は99.9モル%。)を、そのフィルムロールから連続的に巻き出し、膨潤処理、染色処理、架橋処理、延伸処理、固定処理および乾燥処理を施して偏光フィルムを作製した。
 すなわち、膨潤処理として、PVAフィルムを30℃の水中に1分間浸漬し、その間に延伸倍率2倍で長さ方向に一軸延伸した。そして、染色処理として、ヨウ素系色素を含有する水溶液(ヨウ素濃度:0.02質量%、ヨウ化カリウム濃度:0.4質量%、30℃)中に1分間浸漬し、その間に延伸倍率1.2倍で長さ方向に一軸延伸した。更に架橋処理として、ホウ酸水溶液(ホウ酸濃度:2.6質量%、30℃)中に2分間浸漬し、その間に延伸倍率1.1倍で長さ方向に一軸延伸した。続いて、延伸処理として、ホウ酸水溶液(ホウ酸濃度:2.8質量%、ヨウ化カリウム濃度:5質量%、57℃)中で延伸倍率2.4倍で長さ方向に一軸延伸した(全延伸倍率は6.3倍)。更に固定処理として、ホウ酸水溶液(ホウ酸濃度:1.5質量%、ヨウ化カリウム濃度:5質量%、22℃)中に10秒間浸漬した。そして乾燥処理として、60℃で1分間乾燥して、偏光フィルムを得た。
<Production of Polarizing Film>
A long PVA film having a thickness of 30 μm and a width of 65 cm (containing PVA, glycerin and a surfactant, the content of glycerin being 12 parts by mass with respect to 100 parts by mass of PVA, the content of surfactant being 100 parts by mass of PVA PVA film, which is 0.03 parts by mass of PVA, which is a saponified homopolymer of vinyl acetate, having a degree of polymerization of 2,400 and a degree of saponification of 99.9 mol%. From the above, the film was continuously unwound, subjected to swelling treatment, dyeing treatment, crosslinking treatment, stretching treatment, fixing treatment and drying treatment to produce a polarizing film.
That is, as a swelling process, the PVA film was immersed in water at 30 ° C. for 1 minute, and in the meantime, uniaxial stretching was performed in the length direction at a draw ratio of 2 times. And as a dyeing process, it is immersed in an aqueous solution containing an iodine dye (iodine concentration: 0.02% by mass, potassium iodide concentration: 0.4% by mass, 30 ° C.) for 1 minute, and during that time, the stretching ratio is 1. It was uniaxially stretched in the length direction by 2 times. Further, as a crosslinking treatment, it was immersed in an aqueous boric acid solution (boric acid concentration: 2.6% by mass, 30 ° C.) for 2 minutes, and in the meantime, uniaxial stretching was performed in the longitudinal direction at a draw ratio of 1.1. Subsequently, uniaxial stretching was performed in the boric acid aqueous solution (boric acid concentration: 2.8% by mass, potassium iodide concentration: 5% by mass, 57 ° C.) at a draw ratio of 2.4 times in the longitudinal direction as a stretching process ( Total draw ratio is 6.3 times). Furthermore, as a fixing process, it was immersed for 10 seconds in a boric acid aqueous solution (boric acid concentration: 1.5% by mass, potassium iodide concentration: 5% by mass, 22 ° C.). And as a drying process, it dried at 60 degreeC for 1 minute, and obtained the polarizing film.
<接着剤の作製>
 3-エチル-3-ヒドロキシメチルオキセタン(東亞合成株式会社製、OXT-101)2gと、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製、セロキサイド2021P)8gと、ジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスフェートのプロピレンカーボネート50質量%溶液(サンアプロ株式会社製、CPI-100P)0.8gをサンプル管に秤量し、24時間撹拌して均一に混合することで、偏光フィルムと光硬化樹脂層を接着させるための接着剤を得た。
<Preparation of adhesive>
2 g of 3-ethyl-3-hydroxymethyl oxetane (manufactured by Toagosei Co., Ltd., OXT-101) and 8 g of 3 ', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (manufactured by Daicel Co., Ltd., Celoxide 2021 P) And 0.8 g of a 50% by mass solution of propylene carbonate in diphenyl [4- (phenylthio) phenyl] sulfonium hexafluorophosphate (CPI-100P manufactured by San-Apro Co., Ltd.) are weighed into a sample tube, and stirred for 24 hours for uniform mixing By doing this, an adhesive for bonding the polarizing film and the photocurable resin layer was obtained.
<偏光板の作製>
 偏光フィルム保護用積層体を140mm×120mmの大きさに2枚切り出し、1枚目の偏光フィルム保護用積層体の光硬化樹脂層面に、バーコーターを用いて上記接着剤を塗工した。次に、その上に、長さ方向(MD)に120mm、幅方向(TD)に100mmに切り出した偏光フィルムを、上記接着剤を介して重ね合せた。その後、2枚目の偏光フィルム保護用積層体の光硬化樹脂面に、上記と同じ接着剤をバーコーターを用いて塗工し、偏光フィルムの他方の面に重ね合せた。このようにして得られた基材フィルム/光硬化樹脂層/接着剤/偏光フィルム/接着剤/光硬化樹脂層/基材フィルムの層構成を有する貼り合わせ体をラミネーターに通すことで押圧し、接着剤の部分の厚みがそれぞれ1μmとなるように調整した。その後、紫外線を照射し、接着剤を硬化した後、両面の基材フィルムを剥離除去し、偏光板を得た。
<Production of Polarizing Plate>
Two polarizing film protective laminates were cut out in a size of 140 mm × 120 mm, and the above adhesive was applied to the photocurable resin layer surface of the first polarizing film protective laminate using a bar coater. Next, a polarizing film cut out in 120 mm in the length direction (MD) and 100 mm in the width direction (TD) was superposed thereon via the above-mentioned adhesive. After that, the same adhesive as described above was coated on the photocurable resin surface of the second polarizing film protective laminate using a bar coater, and the other surface of the polarizing film was overlapped. The laminate having the layer structure of the base film / photo-cured resin layer / adhesive / polarizing film / adhesive / photo-cured resin layer / base film thus obtained is pressed by passing it through a laminator, The thickness of the adhesive portion was adjusted to 1 μm. Then, after irradiating an ultraviolet-ray and hardening an adhesive agent, the base film of both sides was exfoliated and removed, and the polarizing plate was obtained.
<偏光板の評価>
 得られた偏光板について、前記の方法により、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行った。結果を表2に示した。
<Evaluation of polarizing plate>
With respect to the obtained polarizing plate, the initial polarization performance (initial total light transmittance (T 0 ), degree of polarization) of the polarizing plate and the polarization performance after the moist heat resistance test of the polarizing plate (moisture heat resistance test) The total light transmittance (T 48 ), the degree of polarization, and the change in total light transmittance (ΔT) were evaluated. The results are shown in Table 2.
[実施例2]
 得られた光硬化樹脂層の厚みが1.4μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行った。結果を表1及び表2に示した。
Example 2
A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 1.4 μm. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side Surface roughness (rms), initial polarization performance of the polarizing plate (initial total light transmittance (T 0 ), degree of polarization), and polarization performance after the heat and humidity resistance test of the polarizing plate (all light after the heat and humidity resistance test) The transmittance (T 48 ), the degree of polarization, and the total light transmittance change (ΔT) were evaluated. The results are shown in Tables 1 and 2.
[実施例3]
 基材フィルムとして、離型処理PETフィルムであるレイハイパーN1(中井工業株式会社製、水接触角84度、ケイ素の検出強度5.89cps/mA)を用いたことと、得られた光硬化樹脂層の厚みが5.5μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行った。結果を表1及び表2に示した。
[Example 3]
A photocurable resin obtained by using Rey Hyper N1 (Nakai Kogyo Co., Ltd., water contact angle 84 degrees, detection strength of silicon 5.89 cps / mA) which is a release-treated PET film as a base film A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the layer was 5.5 μm. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side Surface roughness (rms), initial polarization performance of the polarizing plate (initial total light transmittance (T 0 ), degree of polarization), and polarization performance after the heat and humidity resistance test of the polarizing plate (all light after the heat and humidity resistance test) The transmittance (T 48 ), the degree of polarization, and the total light transmittance change (ΔT) were evaluated. The results are shown in Tables 1 and 2.
[実施例4]
 基材フィルムとして、離型処理PETフィルムであるピューレックスAN15(帝人デュポンフィルム株式会社製、水接触角82.7度、ケイ素の検出強度6.12cps/mA)を用いたことと、得られた光硬化樹脂層の厚みが5.6μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行った。結果を表1及び表2に示した。
Example 4
It was obtained using, as a substrate film, Purex AN15 (Teijin Dupont Film Co., Ltd., water contact angle 82.7 degrees, detection strength of silicon 6.12 cps / mA), which is a release-treated PET film. A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the photocurable resin layer was 5.6 μm. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side Surface roughness (rms), initial polarization performance of the polarizing plate (initial total light transmittance (T 0 ), degree of polarization), and polarization performance after the heat and humidity resistance test of the polarizing plate (all light after the heat and humidity resistance test) The transmittance (T 48 ), the degree of polarization, and the total light transmittance change (ΔT) were evaluated. The results are shown in Tables 1 and 2.
[実施例5]
 ラジカル重合性化合物としてジメチロールトリシクロデカンジアクリレート(共栄社化学株式会社製、ライトアクリレートDCP-A)5gとトリス(2-ヒドロキシエチル)イソシアヌレートトリアクリレート(東亜合成株式会社製、M-315)5gと、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASF製、IRGACURE 184)0.4gと、溶剤として酢酸エチル(和光純薬工業株式会社製、SP値9.1)の任意の量をサンプル管に秤量し、24時間撹拌して均一に混合し、溶液を得た。これ以降は、得られた光硬化樹脂層の厚みが5.1μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行った。結果を表1及び表2に示した。
[Example 5]
5 g of dimethylol tricyclodecane diacrylate (manufactured by Kyoeisha Chemical Co., Ltd., light acrylate DCP-A) and 5 g of tris (2-hydroxyethyl) isocyanurate triacrylate (manufactured by Toagosei Co., Ltd., M-315) as radically polymerizable compounds And 0.4 g of 1-hydroxycyclohexyl phenyl ketone (manufactured by BASF, IRGACURE 184) as a photopolymerization initiator and an arbitrary amount of ethyl acetate (manufactured by Wako Pure Chemical Industries, Ltd., SP value 9.1) as a solvent The mixture was weighed into a tube and stirred for 24 hours to be homogeneously mixed to obtain a solution. After this, a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 5.1 μm. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side Surface roughness (rms), initial polarization performance of the polarizing plate (initial total light transmittance (T 0 ), degree of polarization), and polarization performance after the heat and humidity resistance test of the polarizing plate (all light after the heat and humidity resistance test) The transmittance (T 48 ), the degree of polarization, and the total light transmittance change (ΔT) were evaluated. The results are shown in Tables 1 and 2.
[比較例1]
 ラジカル重合性化合物として、ヒタロイド7975D(日立化成工業株式会社製、樹脂分60質量%、溶剤メチルイソブチルケトン、溶剤のSP値8.4)16.67gと、光重合開始剤として1-ヒドロキシシクロヘキシルフェニルケトン(BASF製、IRGACURE 184)0.4gをサンプル管に秤量し、24時間撹拌して均一に混合することで溶液を得た。これ以降は、得られた光硬化樹脂層の厚みが6.0μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行った。結果を表1及び表2に示した。
Comparative Example 1
16.67 g of Hytaloid 7975 D (manufactured by Hitachi Chemical Co., Ltd., resin content 60% by mass, solvent methyl isobutyl ketone, solvent SP value 8.4) as a radically polymerizable compound and 1-hydroxycyclohexyl phenyl as a photopolymerization initiator A solution was obtained by weighing 0.4 g of a ketone (manufactured by BASF, IRGACURE 184) into a sample tube, stirring for 24 hours and uniformly mixing. After this, a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 6.0 μm. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side Surface roughness (rms), initial polarization performance of the polarizing plate (initial total light transmittance (T 0 ), degree of polarization), and polarization performance after the heat and humidity resistance test of the polarizing plate (all light after the heat and humidity resistance test) The transmittance (T 48 ), the degree of polarization, and the total light transmittance change (ΔT) were evaluated. The results are shown in Tables 1 and 2.
[比較例2]
 ラジカル重合性化合物として、3’,4’-エポキシシクロヘキシルメチル 3,4-エポキシシクロヘキサンカルボキシレート(株式会社ダイセル製、セロキサイド2021P)10gと、光重合開始剤としてジフェニル[4-(フェニルチオ)フェニル]スルホニウムヘキサフルオロホスフェートと溶剤のプロピレンカーボネートからなる50質量%溶液(サンアプロ株式会社製、CPI-100P)0.8gをサンプル管に秤量し、24時間撹拌して均一に混合することで、溶液を得た。これ以降は、得られた光硬化樹脂層の厚みが6.1μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行った。結果を表1及び表2に示した。
Comparative Example 2
10 g of 3 ', 4'-epoxycyclohexylmethyl 3,4-epoxycyclohexane carboxylate (made by Daicel Co., Ltd., Celoxide 2021 P) as a radically polymerizable compound, and diphenyl [4- (phenylthio) phenyl] sulfonium as a photopolymerization initiator 0.8 g of a 50% by mass solution (CPI-100P manufactured by San-Apro Co., Ltd., CPI-100P) consisting of hexafluorophosphate and a solvent propylene carbonate was weighed into a sample tube, and stirred for 24 hours to obtain a solution by homogeneous mixing. . After this, a laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the obtained photocurable resin layer was 6.1 μm. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side Surface roughness (rms), initial polarization performance of the polarizing plate (initial total light transmittance (T 0 ), degree of polarization), and polarization performance after the heat and humidity resistance test of the polarizing plate (all light after the heat and humidity resistance test) The transmittance (T 48 ), the degree of polarization, and the total light transmittance change (ΔT) were evaluated. The results are shown in Tables 1 and 2.
[比較例3]
 基材フィルムとして、離型処理PETフィルムであるピューレックスA31(帝人デュポンフィルム株式会社製、水接触角110.6度、ケイ素の検出強度19.24cps/mA)を用いたことと、得られた光硬化樹脂層の厚みが5.7μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体を得た。但し、PETフィルムの上に塗工した際に溶液が弾いたため、膜面均一な光硬化樹脂層を得ることができなかった。そのため、得られた光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行うことができなかった。結果を表1及び表2に示した。
Comparative Example 3
As a substrate film, Purex A31 (manufactured by Teijin DuPont Film Co., Ltd., water contact angle 110.6 degrees, detection strength of silicon 19.24 cps / mA), which is a release-treated PET film, was obtained. A laminate for polarizing film protection was obtained in the same manner as in Example 1 except that the thickness of the photocurable resin layer was 5.7 μm. However, when applied on a PET film, the solution was repelled, so that it was not possible to obtain a photocurable resin layer having a uniform film surface. Therefore, the boron atom conversion boric acid permeability of the obtained photocurable resin layer, the adhesive force between the base film and the photocurable resin layer, and the root mean square surface roughness (rms) of the photocurable resin layer on the base film side , Initial polarization performance of polarizing plate (initial total light transmittance (T 0 ), degree of polarization) and polarization performance after humidity and heat resistance test of polarizing plate (total light transmittance (T 48 ) after humidity and heat resistance test, degree of polarization However, it was not possible to evaluate the total light transmittance change amount (ΔT)). The results are shown in Tables 1 and 2.
[比較例4]
 基材フィルムとして、離型処理PETフィルムであるピューレックスA71(帝人デュポンフィルム株式会社製、水接触角108.2度、ケイ素の検出強度18.55cps/mA)を用いたことと、得られた光硬化樹脂層の厚みが5.8μmであること以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)の評価を行った。基材フィルム側における光硬化樹脂層の二乗平均面粗さが非常に大きかったため、不適と判断して、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を中止した。結果を表1及び表2に示した。
Comparative Example 4
As a substrate film, Purex A71 (manufactured by Teijin DuPont Film Co., Ltd., water contact angle 108.2 degrees, detection strength of silicon 18.55 cps / mA), which is a release-treated PET film, was obtained. A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except that the thickness of the photocurable resin layer was 5.8 μm. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side The root mean square surface roughness (rms) was evaluated. Since the root mean square surface roughness of the photocurable resin layer on the substrate film side was very large, it was judged unsuitable and the initial polarization performance (initial total light transmittance (T 0 ), degree of polarization) and polarization of the polarizing plate were judged to be unsuitable. Evaluation of the polarization performance (total light transmittance (T 48 ), degree of polarization, change in total light transmittance (ΔT)) after the moist heat resistance test of the plate was stopped. The results are shown in Tables 1 and 2.
[比較例5]
 基材フィルムとして、離型処理PETフィルムであるピューレックスA71(帝人デュポンフィルム株式会社製、ケイ素の検出強度18.55cps/mA)をコロナ処理して水接触角を33.3度にしたものを用いたこと以外は実施例1と同様にして、偏光フィルム保護用積層体および偏光板を得た。得られた偏光フィルム保護用積層体および偏光板について、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルムと光硬化樹脂層との接着力、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)の評価を行った。基材フィルム側における光硬化樹脂層の二乗平均面粗さが非常に大きかったため、不適と判断して、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を中止した。結果を表1及び表2に示した。
Comparative Example 5
As a substrate film, a substrate having a contact angle of water of 33.3 degrees with corona treatment of Purex A71 (manufactured by Teijin DuPont Film Co., Ltd., detection strength of silicon 18.55 cps / mA) which is a release-treated PET film A laminate for polarizing film protection and a polarizing plate were obtained in the same manner as in Example 1 except for the use. With respect to the obtained laminate for polarizing film protection and the polarizing plate, the boron atom transmission rate of the photocurable resin layer, the adhesion between the base film and the photocurable resin layer, the photocurable resin layer on the base film side The root mean square surface roughness (rms) was evaluated. Since the root mean square surface roughness of the photocurable resin layer on the substrate film side was very large, it was judged unsuitable and the initial polarization performance (initial total light transmittance (T 0 ), degree of polarization) and polarization of the polarizing plate were judged to be unsuitable. Evaluation of the polarization performance (total light transmittance (T 48 ), degree of polarization, change in total light transmittance (ΔT)) after the moist heat resistance test of the plate was stopped. The results are shown in Tables 1 and 2.
[比較例6]
 基材フィルムとして、離型処理PETフィルムであるTN-100(東洋紡株式会社製、ケイ素の検出強度7.11cps/mA)をコロナ処理して水接触角を31.1度にしたものを用いたこと以外は実施例1と同様にして、偏光フィルム保護用積層体を得た。但し、基材フィルムと光硬化樹脂層との接着力が強く、光硬化樹脂層が材破した。そのため、光硬化樹脂層のホウ素原子換算のホウ酸透過度、基材フィルム側における光硬化樹脂層の二乗平均面粗さ(rms)、偏光板の初期偏光性能(初期の全光線透過率(T)、偏光度)および偏光板の耐湿熱性試験後の偏光性能(耐湿熱性試験後の全光線透過率(T48)、偏光度、全光線透過率の変化量(ΔT))の評価を行うことができなかった。結果を表1及び表2に示した。

 
Comparative Example 6
As a substrate film, one having a water contact angle of 31.1 degrees was used, which was corona-treated with a release-treated PET film TN-100 (made by Toyobo Co., Ltd., detection strength of silicon 7.11 cps / mA). A laminate for polarizing film protection was obtained in the same manner as Example 1 except for the above. However, the adhesion between the base film and the photocurable resin layer was strong, and the photocurable resin layer was broken. Therefore, the boric acid conversion degree in boron atom conversion of the photocurable resin layer, the root mean square surface roughness (rms) of the photocurable resin layer on the substrate film side, the initial polarization performance of the polarizing plate (initial light transmittance (T 0 ), the degree of polarization) and the polarization performance after the heat and humidity resistance test (total light transmittance (T 48 ), degree of polarization, change in total light transmittance (ΔT)) after the heat and humidity resistance test I could not. The results are shown in Tables 1 and 2.

Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000001

 
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
  1 光硬化樹脂層
  2 透湿度カップ
  3 純水
  4 密閉容器
  5 60℃の8質量%ホウ酸水溶液
  6 サンプル水
1 light curing resin layer 2 moisture permeability cup 3 pure water 4 closed container 5 8 mass% boric acid aqueous solution at 60 ° C. 6 sample water

Claims (4)

  1.  ラジカル重合性化合物からなる光硬化樹脂層が基材フィルムに積層された偏光フィルム保護用積層体であって、
    前記光硬化樹脂層の厚みが9μm以下であり、前記光硬化樹脂層のホウ酸透過度がホウ素原子換算で2.25g/m・day以下であり、
    基材フィルムと光硬化樹脂層との接着力が0.005~0.06N/mmであり、
    光硬化樹脂層から基材フィルムを剥離した後の、基材フィルム側における該光硬化樹脂層の二乗平均面粗さ(rms)が300nm以下である、偏光フィルム保護用積層体。
    A laminate for polarizing film protection, in which a photocurable resin layer composed of a radically polymerizable compound is laminated on a substrate film,
    The thickness of the photocurable resin layer is 9 μm or less, and the transmittance of boric acid of the photocurable resin layer is 2.25 g / m 2 · day or less in terms of boron atom,
    The adhesion between the substrate film and the photocurable resin layer is 0.005 to 0.06 N / mm,
    The laminated body for polarizing film protection whose root mean square surface roughness (rms) of this photocurable resin layer in the base film side after peeling a base film from a photocurable resin layer is 300 nm or less.
  2.  請求項1に記載の偏光フィルム保護用積層体における光硬化樹脂層が、偏光フィルムの少なくとも一方の面に接着剤層を介して貼り合わされた偏光板。 A polarizing plate in which the photocurable resin layer in the laminate for protecting a polarizing film according to claim 1 is bonded to at least one surface of the polarizing film via an adhesive layer.
  3.  ラジカル重合性化合物からなる光硬化樹脂層を基材フィルムに積層して得られる偏光フィルム保護用積層体の製造方法であって、
    ラジカル重合性化合物と溶剤とを含む溶液を基材フィルムに塗工する工程と、
    塗工後に前記基材フィルムを加熱して溶剤を揮発させる工程と、
    紫外線および電子線の少なくとも一方を照射する工程とを有し、
    前記基材フィルムの塗工面の水接触角が40~100度であることを特徴とする請求項1に記載の偏光フィルム保護用積層体の製造方法。
    It is a manufacturing method of the layered product for polarizing film protection obtained by laminating a photocurable resin layer which consists of a radical polymerization compound on a substrate film,
    Applying a solution containing a radically polymerizable compound and a solvent to a substrate film;
    Heating the substrate film after application to volatilize the solvent;
    Irradiating at least one of ultraviolet light and electron beam;
    The method for producing a laminate for protecting a polarizing film according to claim 1, wherein the contact angle of water on the coated surface of the substrate film is 40 to 100 degrees.
  4.  基材フィルムの塗工面におけるケイ素の検出強度が10cps/mA以下である請求項3に記載の偏光フィルム保護用積層体の製造方法。 The method for producing a laminate for polarizing film protection according to claim 3, wherein the detection strength of silicon on the coated surface of the base film is 10 cps / mA or less.
PCT/JP2018/033785 2017-09-14 2018-09-12 Laminated body for protecting polarizing film, and method for manufacturing said laminated body WO2019054405A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020207010097A KR102636766B1 (en) 2017-09-14 2018-09-12 Polarizing film protective laminate and manufacturing method thereof
CN201880073610.0A CN111316147B (en) 2017-09-14 2018-09-12 Polarizing film protective laminate and method for producing same
JP2019542259A JP7145161B2 (en) 2017-09-14 2018-09-12 POLARIZING FILM PROTECTION LAMINATE AND METHOD FOR MANUFACTURING THE SAME

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-176420 2017-09-14
JP2017176420 2017-09-14

Publications (1)

Publication Number Publication Date
WO2019054405A1 true WO2019054405A1 (en) 2019-03-21

Family

ID=65723690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/033785 WO2019054405A1 (en) 2017-09-14 2018-09-12 Laminated body for protecting polarizing film, and method for manufacturing said laminated body

Country Status (4)

Country Link
JP (1) JP7145161B2 (en)
KR (1) KR102636766B1 (en)
CN (1) CN111316147B (en)
WO (1) WO2019054405A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114127987A (en) 2020-05-07 2022-03-01 株式会社Lg新能源 High nickel electrode sheet with reduced moisture reactivity and method of making same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142142A1 (en) * 2006-06-02 2007-12-13 Dai Nippon Printing Co., Ltd. Optical laminate, polarizing plate, and image display device
JP2015518574A (en) * 2013-02-21 2015-07-02 エルジー・ケム・リミテッド Double-sided polarizing plate manufacturing method and double-sided polarizing plate manufactured thereby
JP2016500832A (en) * 2013-03-28 2016-01-14 エルジー・ケム・リミテッド Method for producing double-sided polarizing plate and double-sided polarizing plate produced therefrom
WO2017086270A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate
WO2018038023A1 (en) * 2016-08-25 2018-03-01 日本電産株式会社 Control device, program, method for controlling refrigerator, and refrigerator

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4306269B2 (en) 2003-02-12 2009-07-29 住友化学株式会社 Polarizing plate, manufacturing method thereof, optical member, and liquid crystal display device
JP5009690B2 (en) 2006-06-15 2012-08-22 日東電工株式会社 Polarizing plate, image display device, and manufacturing method of polarizing plate
KR101182468B1 (en) 2009-12-15 2012-09-12 주식회사 엘지화학 Polarizing plate, manufacturing thereof and display device employing thereof
JP5546933B2 (en) 2010-04-07 2014-07-09 日東電工株式会社 Adhesive polarizing plate and image display device
CN103221876B (en) * 2010-11-10 2016-03-30 Lg化学株式会社 Optical element
JP6434309B2 (en) * 2012-08-06 2018-12-05 株式会社クラレ Laminated body, polarizing film, and manufacturing method of polarizing film
JP6235370B2 (en) * 2014-02-19 2017-11-22 住友化学株式会社 Production method of polarizing laminated film and polarizing plate
JP6249820B2 (en) * 2014-02-27 2017-12-20 住友化学株式会社 Manufacturing method of polarizing plate and polarizing plate
TWI712496B (en) 2016-08-22 2020-12-11 日商可樂麗股份有限公司 Polarizing plate

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007142142A1 (en) * 2006-06-02 2007-12-13 Dai Nippon Printing Co., Ltd. Optical laminate, polarizing plate, and image display device
JP2015518574A (en) * 2013-02-21 2015-07-02 エルジー・ケム・リミテッド Double-sided polarizing plate manufacturing method and double-sided polarizing plate manufactured thereby
JP2016500832A (en) * 2013-03-28 2016-01-14 エルジー・ケム・リミテッド Method for producing double-sided polarizing plate and double-sided polarizing plate produced therefrom
WO2017086270A1 (en) * 2015-11-18 2017-05-26 日本ゼオン株式会社 Optical film and polarizing plate
WO2018038023A1 (en) * 2016-08-25 2018-03-01 日本電産株式会社 Control device, program, method for controlling refrigerator, and refrigerator

Also Published As

Publication number Publication date
KR20200054235A (en) 2020-05-19
CN111316147A (en) 2020-06-19
JPWO2019054405A1 (en) 2020-10-29
CN111316147B (en) 2022-07-08
JP7145161B2 (en) 2022-09-30
KR102636766B1 (en) 2024-02-14
TW201920557A (en) 2019-06-01

Similar Documents

Publication Publication Date Title
TWI684513B (en) Polarized film and its manufacturing method, optical film and image display device
JP5512360B2 (en) Adhesive polarizing plate and image display device
TWI724076B (en) Manufacturing method of optical film
JP6122812B2 (en) Polarizing plate and image display device
TWI725980B (en) Optical film and manufacturing method thereof
JP5915291B2 (en) UV curable composition, adhesive and polarizing plate
JP5850244B2 (en) UV curable composition, adhesive and polarizing plate
KR101797879B1 (en) Optical film production method, optical film, and image display device
WO2018193729A1 (en) Polarizing plate and liquid crystal panel
TW201447399A (en) Optical film, polarizing plate, image display device, and optical film fabrication method
JP2012215867A (en) Light-diffusing film, manufacturing method therefor, coating liquid therefor, polarizing plate using the same, and liquid crystal display device
JP7145161B2 (en) POLARIZING FILM PROTECTION LAMINATE AND METHOD FOR MANUFACTURING THE SAME
WO2017047405A1 (en) Composite polarizing plate and liquid crystal panel using same
TWI830706B (en) Laminate for protecting polarizing film and method for producing same
WO2016043240A1 (en) Protective film, film layered body, and polarizing plate
WO2021131237A1 (en) Image display device and set of optical members
JP2017146431A (en) Method for manufacturing laminate and method for manufacturing polarizing plate, and laminate
JP6668605B2 (en) Optical film
JP6757177B2 (en) Protective film, film laminate and polarizing plate
JP7388443B2 (en) Laminate, method for manufacturing a laminate, method for manufacturing a polarizing plate
JP5994273B2 (en) UV curable composition, adhesive and polarizing plate
JP2022077996A (en) Polarizing plate and image display device
JP2024019596A (en) Method for manufacturing optical laminate and optical laminate
TW202340770A (en) Polarizing plate
JP2022059255A (en) Flexible laminate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855700

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019542259

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010097

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18855700

Country of ref document: EP

Kind code of ref document: A1